2,907 research outputs found

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    A flexible space-variant anisotropic regularisation for image restoration with automated parameter selection

    Get PDF
    We propose a new space-variant anisotropic regularisation term for variational image restoration, based on the statistical assumption that the gradients of the target image distribute locally according to a bivariate generalised Gaussian distribution. The highly flexible variational structure of the corresponding regulariser encodes several free parameters which hold the potential for faithfully modelling the local geometry in the image and describing local orientation preferences. For an automatic estimation of such parameters, we design a robust maximum likelihood approach and report results on its reliability on synthetic data and natural images. For the numerical solution of the corresponding image restoration model, we use an iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM). A suitable preliminary variable splitting together with a novel result in multivariate non-convex proximal calculus yield a very efficient minimisation algorithm. Several numerical results showing significant quality-improvement of the proposed model with respect to some related state-of-the-art competitors are reported, in particular in terms of texture and detail preservation

    Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI

    Get PDF
    Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space or/and in time. The performance of parallel imaging strongly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2D- or slice-specific regularization in the wavelet domain has been deeply investigated. In this paper, we extend this approach using 3D-wavelet representations in order to handle all slices together and address reconstruction artifacts which propagate across adjacent slices. The gain induced by such extension (3D-Unconstrained Wavelet Regularized -SENSE: 3D-UWR-SENSE) is validated on anatomical image reconstruction where no temporal acquisition is considered. Another important extension accounts for temporal correlations that exist between successive scans in functional MRI (fMRI). In addition to the case of 2D+t acquisition schemes addressed by some other methods like kt-FOCUSS, our approach allows us to deal with 3D+t acquisition schemes which are widely used in neuroimaging. The resulting 3D-UWR-SENSE and 4D-UWR-SENSE reconstruction schemes are fully unsupervised in the sense that all regularization parameters are estimated in the maximum likelihood sense on a reference scan. The gain induced by such extensions is illustrated on both anatomical and functional image reconstruction, and also measured in terms of statistical sensitivity for the 4D-UWR-SENSE approach during a fast event-related fMRI protocol. Our 4D-UWR-SENSE algorithm outperforms the SENSE reconstruction at the subject and group levels (15 subjects) for different contrasts of interest (eg, motor or computation tasks) and using different parallel acceleration factors (R=2 and R=4) on 2x2x3mm3 EPI images.Comment: arXiv admin note: substantial text overlap with arXiv:1103.353
    • …
    corecore