781 research outputs found

    Nonlinear Evolutionary PDE-Based Refinement of Optical Flow

    Full text link
    The goal of this paper is to propose two nonlinear variational models for obtaining a refined motion estimation from an image sequence. Both the proposed models can be considered as a part of a generalized framework for an accurate estimation of physics-based flow fields such as rotational and fluid flow. The first model is novel in the sense that it is divided into two phases: the first phase obtains a crude estimate of the optical flow and then the second phase refines this estimate using additional constraints. The correctness of this model is proved using an Evolutionary PDE approach. The second model achieves the same refinement as the first model, but in a standard manner, using a single functional. A special feature of our models is that they permit us to provide efficient numerical implementations through the first-order primaldual Chambolle-Pock scheme. Both the models are compared in the context of accurate estimation of angle by performing an anisotropic regularization of the divergence and curl of the flow respectively. We observe that, although both the models obtain the same level of accuracy, the two-phase model is more efficient. In fact, we empirically demonstrate that the single-phase and the two-phase models have convergence rates of order O(1/N2)O(1/N^2) and O(1/N)O(1/N) respectively

    On well-posedness of variational models of charged drops

    Get PDF
    Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespectively of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, since the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast with the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges.Comment: 18 pages, 2 figure

    Inverse optical tomography through PDE constrained optimisation in L∞

    Get PDF
    Fluorescent Optical Tomography (FOT) is a new bio-medical imaging method with wider industrial applications. It is currently intensely researched since it is very precise and with no side effects for humans, as it uses non-ionising red and infrared light. Mathematically, FOT can be modelled as an inverse parameter identification problem, associated with a coupled elliptic system with Robin boundary conditions. Herein we utilise novel methods of Calculus of Variations in L∞ to lay the mathematical foundations of FOT which we pose as a PDE-constrained minimisation problem in Lp and L∞

    Weighted Generalized Fractional Integration by Parts and the Euler-Lagrange Equation

    Full text link
    Integration by parts plays a crucial role in mathematical analysis, e.g., during the proof of necessary optimality conditions in the calculus of variations and optimal control. Motivated by this fact, we construct a new, right-weighted generalized fractional derivative in the Riemann-Liouville sense with its associated integral for the recently introduced weighted generalized fractional derivative with Mittag-Leffler kernel. We rewrite these operators equivalently in effective series, proving some interesting properties relating to the left and the right fractional operators. These results permit us to obtain the corresponding integration by parts formula. With the new general formula, we obtain an appropriate weighted Euler-Lagrange equation for dynamic optimization, extending those existing in the literature. We end with the application of an optimization variational problem to the quantum mechanics framework.Comment: This is a preprint of a paper whose final and definite form is published Open Access in 'Axioms' at [https://doi.org/10.3390/axioms11040178

    Non-local control in the conduction coefficients: well posedness and convergence to the local limit

    Full text link
    We consider a problem of optimal distribution of conductivities in a system governed by a non-local diffusion law. The problem stems from applications in optimal design and more specifically topology optimization. We propose a novel parametrization of non-local material properties. With this parametrization the non-local diffusion law in the limit of vanishing non-local interaction horizons converges to the famous and ubiquitously used generalized Laplacian with SIMP (Solid Isotropic Material with Penalization) material model. The optimal control problem for the limiting local model is typically ill-posed and does not attain its infimum without additional regularization. Surprisingly, its non-local counterpart attains its global minima in many practical situations, as we demonstrate in this work. In spite of this qualitatively different behaviour, we are able to partially characterize the relationship between the non-local and the local optimal control problems. We also complement our theoretical findings with numerical examples, which illustrate the viability of our approach to optimal design practitioners

    Stability of the solution set of quasi-variational inequalities and optimal control

    Get PDF
    For a class of quasi-variational inequalities (QVIs) of obstacle-type the stability of its solution set and associated optimal control problems are considered. These optimal control problems are non-standard in the sense that they involve an objective with set-valued arguments. The approach to study the solution stability is based on perturbations of minimal and maximal elements of the solution set of the QVI with respect to {monotone} perturbations of the forcing term. It is shown that different assumptions are required for studying decreasing and increasing perturbations and that the optimization problem of interest is well-posed.Comment: 29 page
    corecore