78 research outputs found

    Ekeland-type variational principle with applications to nonconvex minimization and equilibrium problems

    Get PDF
    The aim of the present paper is to establish a variational principle in metric spaces without assumption of completeness when the involved function is not lower semicontinuous. As consequences, we derive many fixed point results, nonconvex minimization theorem, a nonconvex minimax theorem, a nonconvex equilibrium theorem in noncomplete metric spaces. Examples are also given to illustrate and to show that obtained results are proper generalizations

    Variational Principles for Set-Valued Mappings with Applications to Multiobjective Optimization

    Get PDF
    This paper primarily concerns the study of general classes of constrained multiobjective optimization problems (including those described via set-valued and vector-valued cost mappings) from the viewpoint of modern variational analysis and generalized differentiation. To proceed, we first establish two variational principles for set-valued mappings, which~being certainly of independent interest are mainly motivated by applications to multiobjective optimization problems considered in this paper. The first variational principle is a set-valued counterpart of the seminal derivative-free Ekeland variational principle, while the second one is a set-valued extension of the subdifferential principle by Mordukhovich and Wang formulated via an appropriate subdifferential notion for set-valued mappings with values in partially ordered spaces. Based on these variational principles and corresponding tools of generalized differentiation, we derive new conditions of the coercivity and Palais-Smale types ensuring the existence of optimal solutions to set-valued optimization problems with noncompact feasible sets in infinite dimensions and then obtain necessary optimality and suboptimality conditions for nonsmooth multiobjective optmization problems with general constraints, which are new in both finite-dimensional and infinite-dimensional settings

    A Survey of Ekeland\u27s Variational Principle and Related Theorems and Applications

    Full text link
    Ekeland\u27s Variational Principle has been a key result used in various areas of analysis such as fixed point analysis, optimization, and optimal control theory. In this paper, the application of Ekeland\u27s Variational Principle to Caristi\u27s Fixed Point Theorem, Clarke\u27s Fixed Point Theorem, and Takahashi\u27s Minimization theorem is the focus. In addition, Ekeland produced a version of the classical Pontryagin Mini- mum Principle where his variational principle can be applied. A further look at this proof and discussion of his approach will be contrasted with the classical method of Pontryagin. With an understanding of how Ekeland\u27s Variational Princple is used in these settings, I am motivated to explore a multi-valued version of the principle and investigate its equivalence with a multi-valued version of Caristi\u27s Fixed Point Theorem and Takahashi\u27s Minimization theorem

    Ekeland's variational principle for vector optimization with variable ordering structure

    Get PDF
    There are many generalizations of Ekeland's variational principle for vector optimization problems with fixed ordering structures, i.e., ordering cones. These variational principles are useful for deriving optimality conditions, epsilon-Kolmogorov conditions in approximation theory, and epsilon-maximum principles in optimal control. Here, we present several generalizations of Ekeland's variational principle for vector optimization problems with respect to variable ordering structures. For deriving these variational principles we use nonlinear scalarization techniques. Furthermore, we derive necessary conditions for approximate solutions of vector optimization problems with respect to variable ordering structures using these variational principles and the subdifferential calculus by Mordukhovich

    A Subgradient Method for Free Material Design

    Get PDF
    A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into a saddle-point form in which the inverse of the stiffness matrix A(E) in the constraint is eliminated. The size of A(E) is generally large, denoted as N by N. This is the first formulation of FMO without A(E). We apply the primal-dual subgradient method [17] to solve the restricted saddle-point formula. This is the first gradient-type method for FMO. Each iteration of our algorithm takes a total of O(N2)O(N^2) foating-point operations and an auxiliary vector storage of size O(N), compared with formulations having the inverse of A(E) which requires O(N3)O(N^3) arithmetic operations and an auxiliary vector storage of size O(N2)O(N^2). To solve the problem, we developed a closed-form solution to a semidefinite least squares problem and an efficient parameter update scheme for the gradient method, which are included in the appendix. We also approximate a solution to the bounded Lagrangian dual problem. The problem is decomposed into small problems each only having an unknown of k by k (k = 3 or 6) matrix, and can be solved in parallel. The iteration bound of our algorithm is optimal for general subgradient scheme. Finally we present promising numerical results.Comment: SIAM Journal on Optimization (accepted

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Well-posedness for set optimization problems

    Get PDF
    If you wish to contact a Curtin researcher associated with this document, you may obtain an email address fro
    corecore