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‘Dedicated to Stephan Rolewicz

Abstract: This paper primarily concerns the study of general classes of constrained |
multiobjective optimization problems (including those described via set-valued and vector-
valued cost mappings) from the viewpoint of modern variational analysis and generalized
differentiation. To proceed, we first establish two variational principles for set-valued map-
pings, which—being certainly of independent interest—are mainly motivated by applica-
tions to multiobjective optimization problems considered in this paper. The first variational
principle is a set-valued counterpart of the seminal derivative-free Ekeland variational prin-
ciple, while the second one is a set-valued extension of the subdifferential principle by Mor-
dukhovich and Wang formulated via an appropriate subdifferential notion for set-valued
" mappings with values in partially ordered spaces. Based on these variational principles
and corresponding tools of generalized differentiation, we derive new conditions of the co-
ercivity and Palais-Smale types ensuring the existence of optimal solutions to set-valued
optimization problems with noncompact feasible sets in infinite dimensions and then ob-
tain necessary optimality and suboptimality conditions for nonsmooth multiobjective opti-
mization problems with general constraints, which are new in both ﬁnlte-dlmensmnal and
infinite-dimensional settings. - :

‘Keywords: multiobjective optimization, variational principles, generalized differentia-
tion, existence of optimal solutions, necessary optimality and suboptimality conditions.

1 Intro duction

The primary goal of this paper is to study constrained maultiobjective optzmzzatwn problems
genera.lly given by

minimize: F(z) subjectto z€QC X (T.1)

by using advanced tools of modern variational analysis and generalized differentiation. In
(1.1), the cost mapping F: X = Z may be set-valued, and “minimization” is understood
with respect to some partiol ordering on Z. Thus (1.1} is a problem of set-valued opti-
mization, while the term of vector optimization is usually used when F = f: X — Z is
a single-valued mapping. In this paper we unify both set-valued and vector optimization
problems under the name of multiobjective optimization. '

!This research was partly supported by the National Science Foundation under grants DMS;0304989 and
DMBS-0603846 and by the Ausiralian Research Council under grant DP-0451168. ‘



There is an abundant literature on various problems of multiobjective optimization.
One of the first work in modern variational theory for such problems was done by Rolewicz;
see [23] and {20, Chapter 10]. We refer the reader to the books {5, 8, 14, 16, 18, 20]
and the bibliographies therein for more information on history, results, and methods in
multiobjective optimization and related problems.

A characteristic feature of the current stage of variational analysis is the broad usage
of modern variational principles started with the seminal work by Ekeland [6]. The funda-
mental Ekeland variational principle asserts that, given a proper and lower semicontinuous
function ¢: X — IR := (—o0, co] bounded from below on the complete metric space (X, d),
for every € > 0, A > 0, and zg € X with p{z¢) < infx ¢(z) + € there is Z € X satisfying
the conditions ¢(Z) < ¢(z0), d(Z, 20) < A, and

o{z) — o(T) + ;d(m,:ﬁ) > 0 whenever x € X with = # Z. (1.2)

Note that (1.2) means that the perturbed function ¢(z) +(e/N)d(z, T) attains its strict global
minimum over X at . If X is Banach and f is Gateaux differentiable, then (1.2) easily
implies the perturbed stationary condition

[Ve@)] < 5 a3

which can be treated as a suboptimality condition to the problem of minimizing @(2)—with
no assumption on the ezistence of optimal solutions to this problem over X particularly
restrictive in infinite dimensions—and which was among the strongest original motivations
for developing Ekeland’s variational principle in [6] and its subsequent applications.

When ¢ is nonsmooth—just extended-real-valued, lower semicontinuous, and bounded
from below as in the afore-mentioned Ekeland general result—another variational principle
is established by Mordukhovich and Wang [19] under the name of subdifferential varia-
tional principle. It gives the same conclusions as Ekeland’s principle with replacihg the
minimization condition (1.2) by the subdifferential one: |

lz*|| < /X for some x* € Bp(E), (1.4)

where 8y(z) stands for the so-called Fréchet subdifferentiol of ¢ at Z defined by

|2 — Z|

- (L8)

and where the space X is assumed to be Asplund, i.e., a Banach space whose separable

subspaces have separable duals; see, e.g., [21] for more information and references on the
broad class of Asplund spaces that includes, in particular, all reflexive Banach spaces.

The subdifferential variational principle is established in [19] (see also [17, Theorem 2.28])
~ as a consequence of (actually an eguivalence to) the extremal principle, which is a varia-
tional counterpart of local separation for nonconver sets being a variational principle of
the geometric type independent of the analytic Ekeland variational principle; see the books
[17, 18] for a comprehensive variational theory and numerous applications of the extremal
principle. Observe that the subdifferential condition (1.4) is a nonsmooth counterpart of
the almost stationary condition (1.3); furthermore, it implies certain enhanced versions of
(analytic) smooth variational principles under additional smoothness assumptions of the
space X in question; see (17, Subsection 2.3.3].



In this paper we derive an appropriate analog of the afore-mentioned subdifferential-
variational principle for set-valued (in particular, vector-valued) mappings with values in
partially ordered spaces. We need such a result for the subsequent applications to con-
strained multiobjective optimization problems of type (1.1). The proof of the set-valued
subdifferential variational principle (SVSVP) obtained in this paper is based on the ez-
- tremal principle and a new version of the set-valued Ekeland variational principle (SVEVP)
established below. The required version of the latter needed for our purposes (while cer- .
tainly of independent interest) is different from various vector and set-valued extensions of
Ekeland’s seminal result known in the literature; see, e.g., [2, 3, 5, 8, 9, 10, 12, 13, 15] and
the references therein as well as further comments in Section 3.

The rest of the paper is organized as follows. In Section 2 we briefly review (for the
reader’s convenience) certain basic tools of variational analysis and generalized differentia-
tion widely used in the paper. Then we introduce new subdifferential notions for set-valued
mappings (m particular, for vector-valued mappings) with values in partially ordered spaces
and establish some of their important properties needed in the sequel.

In Section 3 we first derive a new version of the SVEVP and then use it in the proof of the
new SVSVP via the extremal principle. The formulation of the SVSVP result, which plays a
crucial role in the subsequent applications in this paper, involves the subdifferentials of set-
valued mappings introduced in Section 2. We discuss relationships of the results obtained
with those known in the literature. :

Section 4 contains applications of the wariationdl techniques and principles developed
in Section 3 to deriving efficient conditions for the ezistence of optimal solutions to set-

~valued constrained optimization problems. In particular, we establish new conditions of the
' coercivity type and of the subdifferentiol Palais-Smale type for set-valued and nonsmoocth
single-valued mappings ensuring the existence of weak minimizers to ‘the multiob] jective
- optimization problems under consideration. '

The concluding Section 5 is devoted to applications of the variational principles estab-

lished in Section 3 and some basic calculus rules of generalized differentiation from [17] - |

to deriving necessary optimality conditions for multiobjective optimization problems with
general geometric constraints as well as their specifications for multiobjective problems of
mathematical programming with equality and inequality constraints given by nonsmooth
functions. In this section we also obtain suboptimality conditions for the afore-mentioned
multiobjective problems, which do not assume the existence of optimal solutions and are
important for both theoretical and numerical aspects of multiobjective optimization.
Throughout the paper we use standard notation from variational analysis and set-valued
opt1m1zat10n cf. the books {14, 17, 22]. Some special symbols are described in the text when
they are introduced. Recall that IV = {1,2,...}, that B and IB* stand for the closed unit

ball of the space in question and its topologically dual, and that x 2 % means that ¢ — 7

with = € . Unless otherwise stated, the norm on the product X x Y of Banach spaces we
define by ' '

i@l = llz] + Iyl (@y)e X x V.

Given a set-valued mapping G: X =2 X* between a Banach space X and its dual spabe X,
the Painlevé-Kuratowski sequential outer/upper limit of F' as x — T is defined by

Limsup G(:J:) {m* € X*

. ° ’wﬂ( .
J sequences z; — Z, z} — z*
r—i

(1.6)
such that =} € G(zy) for all &€ IN},
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: w*
where — signifies the weak™ convergence on X*.

2 Subdifferentials of set-valued mappings

The primary goal of this section is to infroduce and discuss new notions of sﬁbdiﬁemntmls -

for set-valued and vector-valued mappings with values in partially ordered spaces. To pro-
ceed, we first need to recall some well-recognized generalized differential constructions of
variational analysis widely used in this paper. We mainly follow the recent books by Mor-
dukhovich {17, 18], where the reader can find more details, references, and discussions. We
also recommend the book by Rockafellar and Wets [22] for related and additional material
in finite dimensions and the one by Borwein and Zhu [4] for that in Fréchet smooth spaces.
Given a nonempty subset { C X of a Banach space X, define the collection of e-normals

to © at T € 0 by :
' (x*,z — Z)

1imsup —
e flz —z|l

F.(z;9) = {g; € X* < s}, e>0, (2.1)

with Ny(;9) := 0 if 7 ¢ Q. Fore = 0 in (2.1), the construction N(z;Q) := No(z Q)
is known as the Fréchet normal cone (or prenormal cone) to ) at z. When X = R",
the dual/polar cone to N (Z;QY) agrees with the (Bouligand-Severi) contingent cone to € at
#. Note that the Fréchet subdifferential Bcp(:r) defined in (1.5) for an extended-real-valued
function : X — IR finite at Z admits the following equivalent geometric representation:

-~

Bp(#) = {z* € X*| (=", ~1) € N(@ p(@)sepiv)} (22)

via Fréchet normals to the epigraph epiy = {(z,x) € X x R} p > (p(m)} "The basic
' (lmutlng, Mordukhov1ch) normal cone to £ at Z is defined by :

N(%Q) := Limsup No(2;Q) (23)

=T

el0

via the Painlevé-Kuratowski sequential outer limit (1.6). If therspa,ce X is Asplund and the

set {2 is locally closed around Z, we can equivalently put ¢ = 0 in (2.3). Note that both -

cones N(%; 1) and N (Z;2) reduce to the normal cone of convex analysis for convex sets Q2.
Having now a set-valued mapping F': X = Z between Banach spaces with the graph

gph F = {{z,2) € X x Z| z € F(z)},

define its e-coderivative ﬁﬂf(i, z): Z¥ = X* at (T,Z) € gph F by

DiF(z,2)(z*) = {z* € X"| .('w’f? —2") € M((a-:','-é);gphp)}, >0, (2.4)

where D*F(%,2)(z*) = 0 for (z,7) ¢ gph F, and where D*F(z,z) := DtF(,2) is a posi-
tively homogeneous set-valued mapping called the Fréchet coderivative of F at (Z, Z). Based
on (2.4) considered at points nearby the reference one, construct as in [17] two (sequential)
limiting coderivatives of F' at (T, %) called, respectively, the normal coderivative

Dy F(z,2)(z") = Limsup D:F(z,7)(=") | (28
| (0r2)(2,2) -
|0

k1L .
¥ E
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and the mized coderivative of F at (%, %) that is given by

Dy F(z,2)(z*) :== Limsup D!F(z,z)(z*) (2.6)

(?3:2)_’(fs£)
e}l

|l —2*||—0

We can equivalently put & = 0 in (2.5) and (2.6) if both spaces X and Z are Asplund and
if the mapping F' is locally closed-graph around (%, z). '
Note that, by definition (1.6) of the sequential outer limit, the only difference between

(2.5) and (2. 6) is that the weak* convergence w* is used in (2.5) on both dual spaces

X* and Z*, while in (2.6) the strong/norm convergence is employed on Z* versus the

weak™ convergence on X*. Thus these limiting coderivatives agree when dim Z < co (they

both reduce to the original construction by Mordukhovich; see [17] with the references and

commentaries therein), while D},F(Z, Z) may be essentially smaller than D} F(Z, %) even

for single-valued Lipschitzian mappings f: JR — H to an arbitrary Hilbert space H as [17,

Example 1.35]. Note that the normal coderivative (2. 5) can be equivalently defined by

DNF(CB z)(z*) ={z* ¢ X*| (z*,—2*) € N((z, z) gph )}
via the basic normal cone (2.3) to the graph of F.
Now let us consider a set-valued mapping F: X = Z between Banach spaces, where Z
is partially ordered by a convex and closed cone ©® C Z. Denoting the ordering relation on
- Z under consideration by “<”, we therefore have its description:
lez;g-iﬂ: 21—2269. 7 ' ) . (27)
Given F': X = Z, define its (generalized) epigraph with respect to the above order by
CepiFi={(z,2) X x Z| z € F(z) -0}
and associate with ' the epigraphical multifunction Ep: X = Z d'eﬁnecll' by .
Ep(z) = {2z € Z| z € F(z) — ©} with gph&p = cpiF, . (2.8)

where the ordering cone © is not mentioned in the epigraphical notation for simplicity.
Our goal is to introduc_e_appropriate subdifferentiols of sel-volued mappings with values
in partially ordered spaces by using the corresponding coderivatives of the associated epi-
graphical multifunctions. Although there are many various definitions of subdifferentials
for (single-valued) wector functions with values in partially ordered spaces, our coderiva-

tive approach and the subdifferential constructions below are different from those known
in the literature (see, e.g., a very good survey on vector subdifferentials by Stamate [24)).
Furthermore, our constructions apply to set-valued mappings/ mﬁlti_functions with values in
partially ordered spaces, which is important for the main results of this paper.

The following definition contains only those subdifferential constructions, which are used
in this paper. Based on the coderivative approach and employing various limiting procedures
on dual spaces, the reader can construct other subdifferentials that may be different from
the ones given below in infinite dimensions. -~

Definition 2.1 (subdiﬂ'erentials of set-valued mappings). Let F: X =3 Z be a map-
ping between Banach spaces, let © C Z be a closed, convez, and pointed cone that generates



o partial order on Z by (2.7), and let (z,2) cepiF'. We Eeﬁne the following subdifferentials
of F at (T,Z) via the correspondmg coderivatives of the engmphzcal multifunction (2. 8)

- —the e- SUBDIFFERENTIAL of F at (Z,z) by
B.F(z,2) = {a* € X*\ = D*EF(.’E, (), #* e N©0;©), |*] = 1}, >0, (2:9)

where 8F(Z, zZ) = & F(Z, ) is the FRECHET SUBDIFFERENTIAL of F at thzs point;
—the LIMITING SUBDIFFERENTIAL of F' at (Z,2) by

6‘LF(:T:,2) .= Limsup 8.F(z,z), ' o (2.10)
- (22)—(3,2) ‘
ElO

where 8. F(z, z) 1= (D if (a: z) ¢ epi I, and where one can equwalently put e=10 zf both X
and Z ore Asplund and 1f epi F' is locally closed around (T, Z);-

~—the NORMAL SUBDIFFERENTIAL of F at (%, 2) by
ONF(3,2) = {2* € X*| 2 € Dy&r(3,5)(z"), 2" € N(%;8), [l*=1}; (211
'che SINGULAR SUBDIFFERENTIALS of F' at (Z,2) by |
8%F(z,7) := DY En(Z, 2)(0). (2.12)

As usual, we drop Z = £() in the subdifferential notation (2.9)-(2.12) if F = f: X — Z
is single-valued. When v: X — IR is an extended-real-valued Junction finite at T with the
standard order © = IR_ on IR, the epigraphical multifunction (2.8) agrees with the standard

one Ey(z) = {p€ Rj x> go(o:)} and the subdifferentials (2.9)—(2. 12) reduce to thelr well-
: known prototypes namely:

—construction (2.9) with £ = 0 reduces to the Fréchet subdifferential &p(m) in (1.5)—due
to the geometric representation (2.2) of the latter;

—both limiting (2.10) and normal (2.11) subd1fferent1als reduce to the baszc subdzﬁerentml
8o(T) by Mordukhovich [17]; . '

 —the singular subdifferential in (2.12) reduces to the one 8% p(Z) in [17].

Among the strongest adva.ntages of the coderivative approach.to subd1ﬂerent1als of set-.
valued and vector-valued mappings is a full coderivative ealculus [17], which induces a va-
riety of calculus rules for the subdifferential constructions defined in {2.9)-(2.12). Other
“Tmajor advaitages include compleie coderivative characierizations of fundanental properties
in nonlinear analysis related to metric regularity, linear openness, and robust Lipschitzian.
stability of set-valued mappings; see [17 22]. These characterizations generate the corre-

. sponding results for mappings with values in partial ordered spaces via the Subdlfferentlals
(2.9)—(2.12) introduced in this paper.

In infinite-dimensional spaces, the afore-mentioned calculus and characterizations re-
quire certain additional “sequential normal compactness” properties of sets and mappings,
which are automatic in finite dimensions, while turn out to be a crucial ingredient of varia-

" tional analysis in infinite dimensions; see the books [17, 18] for a comprehensive theory and
- numerous applications of various properties of this type. -



Let us recall some of these properties needed in the paper. Considering generally & set
1 C X X Z in the product of Banach spaces, we say that it is sequentmlly normally compact
at U= (%,%) € 2 if for any sequences

610, w5, and (zf,2) € N (v;Q), k€N, | (2.13)

“one has the implication (z}, 2}) V0= (%, z5)|| — 0 as k — oco. The product structure
of the space in question plays no role in this property (we can put Z = {0} without loss
of generality) in contrast to its following partial modifications. We say that  is partiaily
sequentially normally compact (PSNC) with respect to X at & € Q if for any sequences
(ek» Vky z}, z}) satisfying (2.13) one has the implication '

[=1 %0, |zl = 0] = llafll - 0 as k— oo.
Finally, a set {2 is strongly PSNC Wlth respect to X at v if for any sequences (g, vy, sck, zy)

satisfying (2.13) one has (x%,28) = | flzx]| = 0 as k — co. We can equivalently put -
er = 01in (2.13) for all the above propertles if both spaces X and Z are Asplund and if the
set (2 is locally closed around &.

Given a set-valued mapping F: X = Z between Banach spaces, its SNC/PSNC prop-
erties at (%, 2) € gph F induce by the corresponding properties of its graph. In particular,
we say that I is PSNC at (Z, 2) if its graph is PSNC with respect to X at this point. The
reader can find in [17] a number of efficient conditions for the fulfiliment of SNC/PSNC

properties of sets and mappings, which often relate to their Lipschitzian behavior of some
“kind. Furthermore, there is a well-developed SNC' calculus in [17] ensuring the preservation
of SNC and PSNC properties under natural operations performed on sets and mappings.

For mappings F': X = Z with values in Banach spaces Z partially ordered by convex
cones © C' Z as in (2.7), the above SNC and PSNC properties induce the corresponding
+ epigraphical counterparts by applying to their epigraphical multifunctions (2.8). Following

this way, we say that such a mapping F is sequentially normally epicompact (SNEC) or,
respectively, partially SNEC at (Z,Z) € epi F' if the- eplgraphlcal multifunction £ i is SNC
(resp. PSNC) at this point.

Employing the SNC property of the ordering convex cone © C Z and the above defi-
nitions, we now establish relationships between the limiting subdifferential (2.10) and the
normal subdifferential (2 11) of an arbitrary set-valued mapping F': X = Z .in the Banach
space setting with the range space Z ordered by ©.

Theorem 2.2 (relat10nsh1ps between limiting and normal subdifferentials of set-
valued mappings). Let F: X = Z be a mapping between Banach spaces with Z ordered

by @ conwer cone © in (2.7), and let(Z; Z) € ept F—Assume thulthe closed wnit -ball IB*of ——

Z* is sequentially compact in the weak topology (this is surely the case of Asplund spaces,
in particular) and that the ordering cone © is SNC at the origin. Then

OLF(%,%2) C OnF(Z, 2). ' - (2.14)
If furthermore dim Z < ob, then (2.14) holds as equality.

Proof. First we justify (2.14). Taking any z* € 0 F(Z, Z) and using subsequeﬁtly definj-
tions (2.10), (1.6} and (2.9), find sequences ey, | 0, (zk, z1) — (Z,2) with 2, € F(zy) —
and 2} € N(0;0) with |jz[| = 1 such that

Th € ﬁ;kgp(a:k,zk)(zz) forall ke IN. (2.15)

7



Since the unit ball B* of Z* is sequentially compact, we select subsequence-of {z}} that
weak® converges to some 2* € JB*. Note that z* # 0, because the converse property 1mp11es
that 2} =+ 0 and hence ||z}|| — O by the assumed SNC property of ©, which is impossible
due to ||z}l = 1 for all ¥ € IN. Supposing with no loss of generality that ||z*] = 1 and

passmg to the limit in (2. 15) we get by definition (2.5} of the normal coderivative that

z* € D Ep(T, 2)(2*). Since z* € N(0; ©) by the closed-graph property of the normal cone
to convex sets, we get' z* € Oy F(Z, £) and complete the proof of inclusion (2.14).

Next let us show that the opposite inclusion holds in (2.14) provided that Z is ﬁmte-

dimensional, Picking any z* € OnF(Z, 2), we have z* € N(0;0) Wlth |z*}| = 1 and find by
(2.11) and (2.5) sequences & | 0, (:ck,zk) —(Z, ), and (mk,zk) LN (z*, *) with

(zx, 2) € epiF' and (a:ﬁ,—-z}:) € N., ((zk, z); epi F) for all k€ IN. (2.16)

Since Z is finite-dimensional, we have ||2f}} — 1 as k — oco. It follows from the second
inclusion in (2:16} that for any -y > 0 there is > 0 such that

{(@h =2, (2,2) = (@ry20)) < (v + )| (2, 2) = (o 20| | (2.17)

for all (z,2) € epi F with z € 2 +nJB and z € 2 +nB and for all k € IN. By the deﬁmtlon
of epi F' with respect to the ordering cone © we have ' : :

zp = v, ~ O, for some vy, € F(sck) and .0, ke IN. (2. 18)

Taking further an arbitrary vector (u,v) € epi F with u € zy + niB and v € v, + B,
observe by the above ordering that

v:af@fmmmemeF@)wdaee;kewj” | (2.19)
Now we deﬁne"z”k € Z by
_ Zx :=U+(zk—vk)
and get due to (2.18), (2.19), and the convezity of the cone © that

B=T— O~ € Flu)—©, kel

Since Iz, — zx|| = {jv—v|| < n by the choice of Z, we have (u,Zk) € epi Fwithue z,+nB |

and % € z; + nIB. Substituting (u, Z;) into (2.17) gives

(k=) (%) = (@0, 20) < (v + ) [0, 7) — @ z)], ke B,

and hence, by z; — zx = v — vy, we get

Ak~ v) — (o)) < (v + )| (o) = (@mw)]), ke V. (2.20)

Remember that points (u,v) were chosen arbitrarily in epi F' and in the r-neighborhood of
{xk, z) and that (zx,v) is one of such points. Putting (x,v) into (2.20), we arrive at

(—22, v — i) S (7 +&)llv — vil| whenever v € (vx — ©) N (v +nIB), '
~ which implies by (2.1) and the convexity of © that |
—z €N, e (UK, Uk — ©) = Nsk(O —6} = —N{0,©)+ ¢, B*, ke N,

8



see [17, Proposition 1.3] for the latter conclusion for convex sets. Thus thereis 2§ € NV (O, 9)
satisfying the relationships

7 € N(0;0) and |7 - 7l <ex, ke NN | (2.21)

The inequality in (2.21) implies that 2} — z* by 2} - z*. Since ||| — L as k — oo, we
-assume without loss of generality that ||2f]| = 1 for all k € IV. It follows from (2.16) and.
(2.21) that

(@i, =70) € Moy (00, ) epiF) + B, ke,
and thus by taking (2.21) into account, we have _ _
T} € Dzskgp(ask,zk)(zk) and S0 Iy, € 825,;17’(:1:;;-,2;6), ke lN.

‘The latter gives by (2.10) and (1.6) that z* € BLF(.?:, z}, which completes the proof of the
equality in (2.14) and of the whole theorem. A

Next we formulate a robust Lipschitzian property of set-valued mappings with values in -
ordered Banach spaces, which ensures simultaneously. the partial SNEC property and the
~triviality of the singular subdifferential (2.12), which are both important in what follows.
‘We say that a set-valued mapping F: X =3 Z is epi-Lipschitz-like {ELL) around a point
(%,Z) € epiF with respect to the ordering cone ® C Z if the associated epigraphical
multifunction (2.8) is Lipschitz-like (or enjoys Aubin’s “pseudo-Lipschitzian” property; see
[17, 22]) around this point, i.e.; there are neighborhoods U of # and V' of Z and a number
£ >0 such that one has the mclusmn ' '

Ep(m)ﬂVCEF( )+E||$—~ui|lB for all z, uEU

This robust L1psch1tz1an property of £ is known to be equivalent to both metric regulamty
- and linear openness properties of the inverse multifunction.

Proposition 2.3 (singular subdifferential and partial SNEC property of ELL
mappings). Let F: X ‘= Z be a mapping between Banach spaces, where Z is ordered
by a cone ©. Assume that F is ELL around (Z,%) € epi F. Then F is partially SNEC at
(Z.%), and one has the singulor subdifferential condition

8°F(z, %) = {0}. | | (2.22)

Proof. The partial SNEC property of F' follows from [17, Proposition 1.68] due to the
above definitions of this and ELL properties, while the subdifferential condition (2.22) as a
consequence of definition {2.12) and [17, Theorem 1.44]. _ A

Finally in this section, we formulate the (approximate) ertremal prfiﬁciple from (17,
= *’7—*6‘11&13‘5eﬁﬁ,—whielﬁythemmam—dnvmg—fefee—ferﬁhewdeve-lepment—cf—%%‘e— -afere-mentionsed

calculus results and' characterizations (including the SNC calculus in infinite dimensions)
and plays a crucial role in this paper. Given two sets 1,0 C X locally closed around

- & € 1 Ny, we say that T is local extremal point of the set system {4, Qs} if there is a
neighborhood U of Z such that for any & > 0 there is-a € ¢B with

(Qr+a)ynflanl/ = 0.

The Extremal Principle. Let T be a local extremal point of the set system {01,002} in
the Asplund space X, and let both (4 and 3 be locully closed around . Then for anye > 0
there are z; € U N (Z +eB) and 2] € N(:cz, ) +eB*, i=1,2, such that

23]l + [j=3]l = 1, 2]+ 23 =0.



3 Variational principles for set-valued mappiﬁgs

In this section we derive two major variational principles that are extensions of the varia-
tional principles discussed in Section 1 from scalar functions to vector-valued and set-valued
mappings. Let us start with an appropriate extension of the Ekeland variational principle,
which is of undoubted interest for its own sake and is used in what follo_ws' for deriving

- a required extension of the subdifferential variational principle to set-valued mappings in
terms of the subdifferential constructions introduced in Section 2.

It is well understood that the conventional proof of the classical Ekeland variational
principle for extended-real-valued functions (see [6, 7] and also [17, Theorem 2.26]) cannot
be directly extended to the vector and set-valued mappings with merely partially ordered
(while not totally ordered) range spaces. Several approaches to vector/set-valued extensions
of this fundamental result and its proof are suggested in the literature (based on certain
vector metrics, scalarization techniques, etc.—compare {2, 5, 8, 10, 12, 13, 15] for more
details, discussions, and references), but unfortunately they do not allow us to arrive at all
the conclusions needed for our purposes; see below. Our proof is based on a new iterative

- procedure, which does not involve any scalarization techmque and deals directly with the
set /vector-valued setting under consideration. -

To formulate a set-valued extension of the Ekeland varlatlonal prmmple, we first recall
some relevant notions from set-valued optimization mainly following the book by Jahn [14].

Let (X, d} be a complete metric space; and let Z be a partially ordered linear topological
space, where the partial order “<” is generated by a closed and convex cone © via (2.7). In
what follows we always assume that the ordering cone © is pointed, i.e., © N {—0) = {0}. -

Given'a set A C Z and a point Z € A, we say that Z is a minimal point of A if

AN(z+0) ={z}.
" The collection of minimum points to A can be equivalently described by
Min A = {z'e Alz—z¢® whenever e AN {2},
If int © # 0, we similarly consider weak minimal poinis % of A defined by
| AN(z+ it 0) =

A set-valued mapping F': X = Z is epiclosed if its epigraph with respect to the ordering
cone © is closed in X x Z. This mapping is level-closed if for all z € Z its z-level set

L{z) = {z € X| 3¢ € P(z) with ¢ <z}

is closed in X. It is clear that every epiclosed mapping is level-closed but not vice versa.

We say that F' is ©-bounded from below if there exists a bounded subset M C Z such that
FX)cM-0,
and that F' is bounded from below if the set M above can be chosen as a singleton.

Now having a mapping F': X = Z from a complete metric space (X, d) to a partially
ordered linear topological space Z with the ordering cone @, we consider the set-valued
 optimization problem.

minimize F(z) subject to =€ X _ (3.1)
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with no explicit constraints on z, although they are hidden by
zedomF :={ze€Z|Flz)#0}.

In this paper we study the folloWing.notions of exact and approximate minimizers to
set-valued and vector-valued mappings. : '

Definition 3.1 (minimizers and approximate minimizers in set-valued optimiza-
tion). Given a mapping F: X =3 Z toking values in a partially ordered space with the
ordering cone ©, we consider the set-valued minimization problem (3.1) and say that:

(i) (z,2) € gph F is @ MINIMIZER to (3.1)—or just to the mapping F'—if € F(Z) is a
minimal point of the image set F(X ) = Ugex Fa), de.,

(Z+O)NF(X)={z}. (3.2)

- (i) (Z,2) is @ WEAK MINIMIZER to (3.1) if 2 € F(Z) is a weak minimum point of the -
set F(X), i.e., (3.2) holds with the replacernent of @ by int © # @ and {Z} by .
(iii) Given ¢ > 0 and £ € —© \ {0}, we say that (Z,2) € gph F' is an APPROXIMATE
- &£-MINIMIZER to (3.1) 4f ' :

z+ef £7 forall z€ Fz) with x # Z.

(iv) (%,%Z) € gphF is o STRICT APPROXIMATE £§-MINIMIZER. to (3.1) if there is a
- positive number £ < £ such that (T, Z) is an approzimate €€ -minimizer to this problem.

Now we are ready to formulate and prove our set-valued extension of the Ekeland vari-
ational principle.

Theorem 3.2 (Ekeland variational principle for set-valued mappings). Let (X,d)
be a complete metric space, and let Z be a partiolly ordered linear topological space with
order (2.7) generated by a convez, closed, and pointed cone © # {0}, Consider a set-valued
mapping F: X = Z and assume that F is ©-bounded from below, level-closed, and that

~ forevery z€ X ond z € F(z) there is Z € Min F(z) with Z < z, {3.3)

"where. the minimum set Min F (z) is closed. Then for aﬁ.y e>0, A>0, & € -0 with
€]l =1, and (zq, 20) € gph F there is a point (Z,Z) € gph F' satisfying the relationships

7 — 2+ —d(Z,0)¢ <0, - (3.4)

z— Z—i—_;dl(li, z)¢ £ 0 for all (z,2) € gph F' with (z,2} # (%, 2). © (3.5)

If (io, zp) is an approzimate £E-minimizer to I, then Z can be chosen such that in addition
to (3.4) end (3.5) we have '

- d(#,20) < M - (3.6)

11



Proof. Note first that it is sufficient to prove the theorem in the case of € = A = 1. Indeed,
the general case can be easily reduced to this special case by applying the latter to the
mapping F(z) := e~1F(z) on the metric space (X, d) with d{z,y) := A" d(z, ).

Having this in mind, introduce a set-valued mapping T : X x Z = X by

T(z,2) = {ye X|3 v e F(y) with v—z+ d(z,y)€ < 0} o (3.7)
and observe that T has the following pr-operties:
. The sets T(.T, z) are nohempty for all z € F(x), since z € T(z, 2). |
e The sets T(x, 2) are closed for all z € F(x), since the mapping F is level-closed.

e The sets T(:c,;z) are uniformly boﬁnded for all z € F'(z), since the mapping F' is
© ©®-bounded from helow. Indeed, one has

T(z,zy C {y€X| d(z,y)¢ € z— M + 0},

where the bounded set M is taken from the above definition of ©-boundedness of F
from below.

* One has the inclusion Ty, v) C Tz, z) for all y € T(z,2) and v € F(y) with
v—z+d(z,y) <0

Indeed, pick u € T'(y,v) and by construction of T in (3.7) find w € F(u) satisfying
the inequality w — v + d(y, u}¢ < 0. Summing the last two inequalities and taking into
-account that d{z,y)+ d(y,u) > d(z,u), £ € —0, and © + © C O, we have

w—z+ d(z,u)é. = (w— v+ d(y, u)E) + (v —z+d(z, y)E) + (d(gj, w) — d(y,v)
~d(z,9))6€©+O0+0C 8, . |

which implies that u € T'(z, 2).

Let us inductively construct a sequence of pairs {( (zx,21)} C gphF by the following iter-
ative procedure: starting with (o, z9) given in theorem and having the k-iteration (:.v:k, Zk),
we select the next one (zy41, 2k+1) by

T+1 € T(xg, 2),

1 . '
dlee, zpet) 2 sup Ak 2) ~ (3.8)

€T (zk,21)
Zir1 € F(Tpy1),  zo1 — 2 + d(2h, Te1)6 < 0.

It is clear from the construction and properties of T'(z, z) in (3.7) that the iterative procedure
(3.8) is well defined. Summing up the last inequality in (3.8) from k = 0 to m, we get .

(Zd($ka$k+l))§ €20— 241 +OC20~M-+0
k=0

and, by passing to the limit as ¥ — oo and using the ©-boundedness of the mapping F° from
below and the pointedness of the ordering cone © with 0 # £ ¢ ©, arriveat the conclusions

(Zd mk,a:k_,_l))f Cz20—-M+0 and Zd(.’sk,:ﬂk_,_l) < 00
k=0 k=0

12



Taking then into account that d1amT(a:k+1, 2p41) < diam T(mk, z) and the choice of zgi1,
we have the estlmate :

| 1
diam T(zg, zx) <2 sup  d(z,z) <2 d(mk,:ck+1) +
o ( 1)

and hence diam T(zy, z;) | 0 as k — oco. Due to the completeness of X we conclude that
the sets T(zy, 2) shrink to a singleton:

o0
ﬂ.T(mk,zk): {z} withsome Z € X. - (3.9)
~ Let us next justify the existence of Z € F(z) such that (m Z) satisfies relatlonshlps (3 4)
‘and (3.5). For each z; € Z from (3.8) define the set B
Rz, ) = {z € MmF(m)] 2~ 2 + d(ap, B)E < 0} k=01,.... (3.10)
Then we have the following preperties:

o The set R(xk, z1) is nonempty and closed for any k = 0, 1,. .. by the assumptions made
in the theorem. Indeed, it is easily implied by the last line in (3.8) that whenever
m > 1 one has Tpim € Lz — d{zx, T)E) for the level set of F, which is assumed to
be closed. Hence T € L(zy, — d(zk, T)E), i.e., there is 7 € F(Z) satisfying

Z— 1z + d{zk, f)f <0

Furthermore, by condition (3.3) there is 2 € Min F(z) with 7 < 2. Taking into account
the previous inequality, we get Z € R(zy, z), i.e., R(zk, z) # 9. The closedness of
R(zy, z1,) follows directly from that of Min F'(Z) by construction (3.10).

¢ The set sequence {R(fck,zk)} is nonincreasing, i:e; R(Tpi1, zkt1) C Rk, 2) for all
k=0,1,.... To justify this, pick any z € R(Zx41,2k+1) and observe that

z — Zgy1 + d{Tpt1, £)€ <0.

Adding the latter inequality to the one in (3.8), we have z — z; + d{zy, Z)€ < 0, ie.,
2 € R(zg, z) forall k=0,1,.... :

It follows from the above properties that

0 # () Rlzx, ) C Min F(z).

=0

Take an arbitrary vector Z from the above intersection and show that the pair (Z,Z) € gph F
satisfies relationships (3.4) and (3.5). Indeed, the one in (3. 4)'immediaté1y follows from -
Z € R(zg, z0) and the construction of R(-,-) in (3. 10) To justify (3.5), suppose that it does
not hold and then find a point

(z,2) € gph F with (x,z) # (Z,2) a.ﬁd z—Z+d(z,7)<0. (3.11)

If z = # in (3.11), then we obviously have z < %, which contradicts the minimality of Z on
the set F(Z). If z # Z, then it follows from (3.11) and the construction of Z that

2 Z24+d(Z,2)6 0, Z— 2+ d(F,xx)€ <0, and thus Z € R(zy, z), k=0,1,....
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Summing up the last two inequalities and combing this with the triangle one, we get,
z—zp+d(z, )€ 0, Le, x €T (zg,2) forall k=0,1,....

This means then z from (3.11) belongs to the set intersection in (3.9). Thus z = z by (3.9),
which justifies (3.5).

To complete the proof of the theorem, it remains to estimate the distance d(z, mo) when
(z0, z0) is an approximate ef-minimizer to F. Arguing by contradiction, suppose that (3.6)
does not hold, i.e., d(Z,z¢) > A. Since Z € T(xo, 20), we have

Z—2 +5§ LEZ—z+ Ed(ﬂ_r’l'lmﬂ)g S O:

A
which contradicts the approximate minimum assumptlon on (:’L‘g, zp). Thus (3.6) holds, and
the proof of the theorem is finished. g ' A

Note that, by the order definition (2.7), conclusion (3.4) of Theorem 3.2 immediately
implies that Z < zp. When F = f: X — Z is single/vector-valued, we have the follow-
“ing corollary {and simplification) of Theorem 3.2, which agrees with the classmal Ekeland
va,rlatlonal pnnmple for scalar functions.

Corollary 3.3 (Ekeland variational principle for vector-valued mappings). Let
(X,d), Z, and © be ds in Theorem 3.2, and let f: X — Z be a single-valued mapping,
which is level-closed and ©-bounded from below. Tuke any e > 0, A > 0, £ € —© with
Il =1, and zo € X that is assumed to be an approrimate e€-minimizer to f, i.e., '

flz) +e€ £ f(xo) whenever exXy {:cg}. '
- Then there is an approzimate e&-minimizer T such that d(Z,zo) < A, f(Z) < f(z0), and |
@) — (@) + ;d(a‘:, D) L0 for all 2 X\ {z).

Proof. It follows directly from Theorem 3.2 by observing that Min f(z) # # whenever
x € X for single-valued mappings. In this case the part in the proof of Theorem 3.2 related = -
to considering the sets R(z, z) in (3.9) is not needed. , A

Remark 3.4 (comparison with other extensions of the Ekeland principle). Note.
that the proof of Theorem 3.2 (and its important Corollary 3.3), based on the iteration tech-
nique (3.8) invelving the mapping T'(z,z) in (3.7), does not use any scalarization and/or

“vector TietTic as i {5;8; 712,713, 15]emd—does not-impose-any-assumnptions-on nonempty — -
interior, upper semicontinuity/demicontinuity, compactness, boundedness from below (in- o
stead of ©-boundedness from below), etc. as in many previous results. The principal new
feature of Theorem 3.2 is condition (3.5), which can be equivalently written as

z¢z+ ;d(a‘:,m)g +© forall (z,2z) € gph F with (z,2) # (&, 2).

In comparison we observe that the corresponding condition of [13] can be written in our
setting as ' ‘

¢z §d(a-c, 2)¢+ O forall (z,7) € gph F with « # Z, (3.12)
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while the one in {9] is equivalent to
F@) ¢ F(z) + ;d(i,:r:)f 4+ forall z€ X with 2#3. (3.13)

We can easily see that (3.5)=> (3. 13) =>(3 12). Furthermore, (3.5) is strictly better than
both (3.12) and (3.13). Indeed, considering F': IR =2 IR given by

_ | [-1,1] for =0,
F(m)—{ 0 = otherwise

with @ = IR_, we see that Z = 0 satisfles (3.13) and (%, Z) = (0, 0) satisfies (3.12) while not
(3.5). We finally emphasize that the new condition (3.5) plays a crucial role in the proof
of the following Theorem 3.5: it allows us to organize an extremal system of sets (see the
proof), which does not seem to be possible by using conditions (3.12) and (3.13).

. Next we establish a new set-valued extension of the subdifferential variational principle
from [17, 19] by using the Fréchet subdifferential of set-valued/vector-valued mappings
introduced in Definition 5.4. Previous versions of this result, which either follow from our
theorem or different from it in both assumptlons and conclusions, can be found in [9, 10 11]

Theorem 3.5 (subdlﬂ'erentlal variational principle for set—valued mappings). Let
F:X = Z be a set-valued mapping between Asplund spaces that is epiclosed, ©-bounded
from below and satisfies (3.3), where the ordering cone © of Z satisfies the assumptions -
of Theorem 3.2. Teke anye > 0, A > 0, £ € —O with ||€ff = 1 and consider a strict
approzimate e€-minimizer (g, 20) € gph F to the mapping F'. Then there is (T,Z) € gph F
such that ||Z ~ ccg|| < X and the subdifferential condition

8F(mz)ﬂ—B*7E[D - (314)

is satisfied. If fm'thermore E € —mtE-) then the pair (Z, ) above can be selected as an
approrimate e€-minimizer to F.

_ Proof. Since (zo, 2p) is a strict approximate e§-minimizer to F, there is a positive number
£ < € such that (zg, 20) is an approximate £¢-minimizer to . Define the number

g+¢&

Xi= A with 0< X< A (3.15)

and .apply to the mapping F and its approximate £-minimizer {(zo,20) the Vgeneralized

Ekeland variational principle-from Theorem 3.2 with the parameters (£, A).- Then-we find .~
by (3.4)~(3.6) a point (@, 7) € gph F satisfying the conditions

-2+ ;;-umo ~alléeo, |m—al <3, | (3.16)

2=+ %Hm ~ e g o forall (z,2) €gphF with (z,2) # (6,5).  (3.17)
Define further a set-valued mapping G: X =% Z by

G(z) =7 — %Hw —g¢+ @ , (3.18)
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and consider the following two closed subsets of the product space- X x Z (which is “well
known to be Asplund; see, e.g., [21]):

0 i=epiF' and Qg :=gphG. - (3.19)

Let us check that (@, 7) is an eztremal point of the set system {1,Q2} from (3.19) in the
sense of [17, Definition 2.1]. Indeed, we obviously have (@, v) € 1 N 1y, and thus the
extremahty of this system follows from the fact that

910(92+(0 k77¢)) =0 forall k €NV, (3.20)

where ¢ # 0 is an arbitrary fixed element of the cone ©. Suppose that (3.20) does not hold
for some fixed k € IN. By the constructions of J; and g in (3.19) and the fact that -

epi F = {(z,w) e X x Z| 22 € Z, e O with w= z—19, (z,%) € gph F}
our assumption means that there are (:c -9, 2) # (4, ﬁ) and 9 € © such that
(z,z —1) EepilF and (m,z—ﬁ—k_IC) € gph G. 7
By the structure of G in (3.18) and the éonvexity of the cone © we have

: C — — — — ! C
S . _Ee— - Ellg — g
z—9 € 3\,”3: uflé +. © and h-e.nce z—U+ ~A||_a: all€ € 9+ A

+0Ccoe
for the point (z, z) € gph F' under consideration, which implies by (3.17) that (z, z) = (z, ). -
Since 5 — ¥ = z ~ 9 € F(z) = F(@), we get from (3.17) that -9 -5 = —9 < 0, and
s0 ¥ = 0. This clearly contradicts the above relationship (z — ¥, 2) (u 1)) and Just1fies
therefore the extremality of the system (3.19) at (@, 7).

~ Thus we can apply the (approximate). extremal principle from [17, Theorem .2.20] to
* the extremal system {1,822, (@, %)} of the closed sets (3.19) at (&,9) in the Asplund-space

X x Z with the norm ||(z, )|} := ||z|| + ||2}| for (z,2) € X x Z. Observe the corresponding

dual normon X* x Z* is ‘ ‘

G®, 2 = max {Jlz*[l, |2*||} for (=%,2") € X* x Z%.

Employing the extremal principle, for any v > 0 we find (zi, zi, 28, 2 z) e XX Z x X* x AT

with i = 1,2 satisfying the relationships . ‘

(2, z) € % D, Joi—al+ -9l <v, i=1,2,
(.’BI, zi) e N((m“zz) ), i=1,2,

1 .
‘ z—u<max{ll$*|| lzE |} < 4+V i=1,2,

l max {||lz5 + z3, {25 + 23/} <v. -

Observe that (23, 23) # 0 whenever v > 0 is sufficiently small in (3.21). It also follows from
* the second line in (3.21), the graphical structure of the set € in (3.19), and the coderivative
construction (2.4) as £ = 0 that ‘

o € D*G(zg, 20)(—23). - (3.22)

To proceed further with (3.21) and (3.22), let us check that the set-valued mapping G
is Lipschitz continuous on X with the (global) Lipschitz constant £ := £/}, i.e.,

G(z) C G(y) + £||z — y||B whenever z,y € X. {3.23)

16

(3.21) .



To justify (3.23), take any 2 € G(z) and find by (3.18) and the definition of £ such { € ®
that z = — {|lz — || + {. Then we have the following relationships:

2z o= oLz —afé+¢
= 17—‘3”9—ﬁl|f+‘3||5’3—y||5‘.|'45'(||~’€—ﬂ""NCQ""'EH“ iz~ yll) +¢
C —Ly—afi¢+Lz—yllE+©O+¢ '
c o—Lly - ull¢+© +2|z - yll§ = G(y) + £]l= -y,

where the first inclusibn holds due to
lle —afl = lly — &l —|lz —yll <0 and £ € -6

and the second one holds due to the convexity of ©. Since ||€]| = 1, we arrive at (3.23).
Employing now the coderivative estimate for Lipschitzian mappings from (17, Theo-
rem 1.43], we get from (3.22) that

llz5]l < £||z3]] and hence ||23| # O, |||| E” <{ (3.24)

‘by the thifd. line in (3.21) for ¢ = 2. Furthermore, it gives

pnzm 3 (G-} 529

. This inequality together with the last line of (3.21) ensure that 2z} # 0 whenever v is
sufficiently small. Then by the structure of Q; and- the second line of (3.21) for i = 1
we have (z¥,23) € N((z1,2));epi F), which implies—by the construction of the Fréchet
normal cone in (2.1} and the structure of epi F—that there is Z; € F(z1) and ¢ € © with

Zi=zn+9, (z],2]) € ﬁ((ml,'z”l);epiF), and —zf € N(0;0).
Takmg (2.4) and (2. 8) into account, we thus have

e D*Sp(wl, zl)( ) Wlth (z1,71) € gph F. _ (3.26)

||21|| [Eagl

It follows from (3. 25) that v/ ||z2|| — 0 as v | 0 and that, by the above estimates,
el sl _ ol v vy e
= + 1- e < T
EINEEE (l|22|l ”22”)/( ||Zz||) A

forallv >0 sufﬁmently small. Observe also that

ller = zoll < i~ zol| + lz1 — @l < X+v<h

for all small v > O~by the second inequality in (3.16), the first line in (3.21) for ¢ == 1,
and the choice of A in (3.15). Denoting (%,%) = (z1,%1) and taking into account the
subdifferential construction (2.9), we get from (3.26) and the subsequent estlmates that the
desired relationship (3.14) is satisfied with ||Z — zol| < A.

To complete the proof of the theorem, it remains to justify that (Z,z) = (:J:I,El) is a
e&-minimizer to F provided that £ € —int©. In thls case —(e — €)€ € int©, and for all
v > 0 sufficiently small we obviously have

vBC(e—8E+0. ‘ - (3.27)
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It follows from the first line of (3. 21) that ||z; — @|| < v. By (3.27) we find ¢ € © such that
7n—t=(—-8t+( U (21, zl) is not an approximate e¢-minimizer to F, then there is
(m z) € gph F' satisfying

Z+€§€A1+9—z1+9+®—v+(s—§)§+<_j+9+@
Since ¥ € 20 + © by (3.16); we get in this case that
Z+EE € zp+ 0,

which contradicts the strict apprdximat_e eé-minimality of the initial pair (mg,zg) to F' and
thus ends the proof of the theorem. _ A

4 Existence of optimal solutions to multiob jéctive problems

In this section we study the existence of optimal solutions to the constrained multiobjective
(set-valued and vector-valued) optimization problem:

minimize F(z) subject to = €2, - - (4.1)

where F': X = Z is a mapping from a complete metric space (X, d) to a partially ordered
linear topological space Z with the ordering cone © C Z assumed to be closed, convex, and
pointed. Our goal in this section is to establish efficient conditions for the existence of weak
minimizers to (4.1), and thus we impose the interiority requirement on the ordering cone:
int © # 0. The afore-mentioned assumptions are standing throughout this section.

In what follows we present three results for the existence of weak minimizers to (4.1).
‘The first two results unified in one theorem employ our basic construction in the proof of
Theorem 3.2—an extension of the Ekeland variational principle to set-valued mappings. We
start with the compactness requirement on the constraint set  and then replace it by a
certain coercivity condition imposed on the cost mapping. The third existence result is based
on the application of the subdifferential variational principle from Theorem 3.5 combined
with an appropriate subdifferential extension of the Palais-Smale condztzon and generahzed_ ‘
differential calculus rules developed in [17].

Theorem 4.1 (existence of weak minimizers under either compactness of con-
straint sets or coercivity of cost mappings). Consider the constrained multiobjective
optimization problem (4.1} under the standing assumptions made in this section. Then this
-problem admits.a weak minimizer in each of the following cases:

(i) Let the constraint set Q) be compact, and let the cost mapping F' satisfy the LIMITING
MONOTONICITY CONDITION a5 k — 00 : ‘

' [mk — Z, 2z € Fxy) with 41 < 2] = [32 € Min F(z) with z < zk] {4.2)

for all k € IN; the latter is implied by condition (3 3) of Theorem 3.2 pmmded that F 1s
level-closed.

(ii) Let the cost mapping F' satisfy (4.2) and the COERCIVITY CONDITION there is a
compact set = C X such that

[z € X\E, z€ F(z)] = [3(y,v) €gph F with y€ = and v < z]. (4.3)
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Proof. Since (2 is a closed subset of the eomplete metric space (X, d), the space (2, d) is
complete metric as well. Consider the unconstrained mapping Fn: X = Z defined by

0eZ ifzeQ,

#  otherwise. (4.4)

Fo(z) = F(z) + A(z; Q) with A(z;Q) = {
Modify sequentially the mapping T(x, z) from (3.7) in the proof of Theorem 3.2 by
Tu(z,2) i={y € .X\ v € Fy(y) with v—z+n7'd(z, y)g < 0} nelN.  (4.5)

Fixing n € IN and followmg the proof of Theorem 3.2 with T defined in (4. 5), we find a
sequence {(wg, 2)} satisfying

($k+1,;k+1) €gphF, zp,€Q, 2p11— 2k + n"ld(mk+l,mk)€ <0 (4.6)

for all ¥ =0,1,.... Furthermore, we get # € Q (depending onneN)by
[\ Tu(zk, 21) = {Z} for any fixed ne N. (4.7)

Since (4.6) obviously implies that 21 < 2z, we find by assumption (4.2) such z € Min F(%)
that z < z; for all k = 0,1,.... It is not hard to observe, arguing by contradiction and

- employing (4.6) and (4.7) together with the triangle inequality for the metric d(-, ), that

To(Z,2) = {a:} for all ne V..

Since the pair (%, Z) constructed above depends on n € IN, we denote it by (z,,z,) and
hence have a sequence {(%n, 2n}} satlsfymg

Tn €8, 2z, € F(:nn), Zn+1 < Zn, scn,zn) {:cn} - (4. 8)

for all n € IN. By the compacitness of O, we suppose without loss of generahty that z, — &
as n — oo for some ¥ € . Then conditions (4.2) and (4.8) ensure the existence of Z
satisfying the relationships '

 F€MinF(&) and Z— 2, €© forall ne V. (4.9)

We claim that the pair (%, Z) is a weak minimizer to the multiobjective problem (4.1).
Indeed, taking an arbitrary (z,z) € gph F' with z € Q and (z,2) # (%,%) and employing

(4.8) and (4.9), We have | b—*leme“tmma‘tmns—mau
z—Z+4 n_ld(mn+1,:c)§ € Zpyl — z+ Z\©
for all n € IV, Wlﬁch easily implies that
z—Z+n'd(zpt1,2)6 € —O+Z\ O and hence z—Z +n 'd(Tns1, T € Z\ O
due to the convexity of the cone ©. Now passing to the limit in the last inclusion as n — 00,
we get z — 7 € Z \ (int ®), which justifies the weak minimality of (Z,7) to (4.1).

To complete the proof of assertion (i), it remains to justify that the limiting monotonic--
ity condition (4.2) is implied by condition (3.3) of Theorem 3.2, where the minimum set
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Min F (%) is assumed to be closed. Indeed, havmg the sequence {(zk, 2)} from the left-hand
gide of (4.2), define the sets ‘

Qlzy) == minF(i) N(zx+©), ke N

wh1ch are obviously nonempty, closed, and nomncreasmg Q(zry1) C @ :nk) by the mono-
tonicity P+l € 21+ ©as ke N in (4 2) Hence

ﬂ Qlzx) # 8,

k=0
and any Z from the above intersection satisfies z < z;, for all k € IV.

~ Let us next proceed with the proof of assertion (ii). Having the compact set = from the
coercivity condition (4.3), we consider the auxiliary problem: -

minimize F(:r) subject to = € E. . (4.10)

By assertion (i) of the theorem applied to (4.10) there is Z € E and z € F(Z) such that
{Z,Z) is a weak minimizer to problem (4.10). We claim that {Z,z) is a weak minimizer to
- F over 2 as well. Arguing by contradiction, suppose it does not hold and then find x ¢ =
and z € F(z) with z € zZ + int ©. By the coercivity condition (4.3), there are y € E and
v € F(y) such that v < z, i.e,, v € z 4+ ©. The last two inclusions give

vEz+OCZ+MtO+OCZ+intO,

Wlnch means that (Z, ) is not a weak minimizer to F over =. This contradlctmn completes
the proof of (i) and of the whole theorem. ' A

Note that for scalar cost functions the coercivity condition of Theorem 4.1(ii) agrees with
those from [2, 3]; see also the references therein. Observe also that the limiting monotonicity
condition (4.2) in Theorem 4.1 is strictly better than condition (3.3) in Theorem 3.2. We
illustrate this by the mapping F': IR? = IR? defined as -

PRI O (TN it (e1,20) #0,
Flw) = F(z1,m2) = { gBi{(—Zl)O (0,-1)} otherlwis2e.

It is easy to check that the 11m1t1ng monotonicity condition (4.2} and relatlonshlps in (3.3)
are satisfied, while the minimum set Min F'(0) is not closed.

Our next result establishes the emistence of weak minimizers to the constraine.d multi-

objective problem (4.1) under a new subdifferential extension of the classical Palais-Smale
condition to set-valued (and vector-valued) mappings. To formulate this.condition, we use:
the normal subdifferential (2.11) for set-valued mappings with values in partially ordered
spaces introduced in Section 2. Note that new Palais-Smale condition and its application
to the proof of the existence theorem rely on the subdifferential variational principle for
set-valued mappings established in Theorem 3.5 and on the basic intersection rule for the
limiting normal cone (2.3) derived in {17, Chapter 3].

Recall that the classical Palais-Smale condition for differentiable real- valued function
@w: X — IR asserts that if a sequence {zx} C X is such that {¢(zx)} is bounded and
|Ve(zy)l — 0 as k — oo for the corresponding derivative sequence, then {z;} contains a
convergent subsequence. Our subdifferential extension for set-valued mappings is as follows.
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Definition 4.2 (subdifferential Palais-Smale condition for set-valued mappirigs).
A set-valued mapping F: X =3 Z from a Banach space X to a partially ordered Banach space
Z with the ordering cone © C Z satisfies the SUBDIFFERENTIAL PALAIS-SMALE CONDITION
if any sequence {zx} C X such that

there are 2z € F{xy) and xf € BNF(:ck,zkj with ||zl =0 as k& — oo (4.11)
contains a convergent subsequence, where {z} is selected to be ©-bounded from below.

The subdifferential Palais-Smale condition introduced clearly reduces to the classical
one for smooth functions F' = ¢. The next theorem employs the subdifferential Palais-
Smale condition to establish the existence of weak minimizers via advanced techniques
of variational analysis and generalized differentiation. For simplicity and without loss of
generality we consider the (formally) unconstrained case of @ = X in (4.1). As in the
proof of Theorem 4.1, the general constrained case of (4.1) can be obviously reduced to the
unconstrained one via the restriction Fq of F to (0 defined in (4.4). - '

. Theorem 4.3 (existence of weak minimizers uﬁder the subdifferential Palais-
Smale condltlon) Let oll the assumptions of Theorem 3.5 be satzsﬁed together with the
subdifferential Palais-Smale condition (4.11). Then F admits a weak minimizer.

Proof. Asin the proof of Theorem 4.1, define the mapping Tr,: X X Z =3 X by (4.5) with
Fo = F and d(z,y) = ||z -~ y||; then construct a sequence {(xx, zn)} satisfying relationships
(4.8), where the condition z, € © can be omitted. Following the proof of assertion (i)
in Theorem 4.1, we establish the eristence of weak minimizers to F provided. that the
above sequence {z,} contains a convergent subsequence. Let us justify the latter by using
the subdifferential Palais-Smale condition of Definition 4.2, the subdifferential variational
- principle from Theorem 3.5, and the basic intersection rule from [17, Theorem 3.4].

To proceed, consider for each n € IV the set-valued mapping F,: X = Z given by

Fo(z) == F(z) + gn(z) with gn(z) :=n"Yz = z,||¢ a (4.12)

" and conclude from (4.8) and from the structure of T}, in (4.5) that (z,,z,) is a strict
approzimate n~2€-minimizer to F,. Fix n € IN and apply Theorem 3.5 to F,, and its
strict approximate ef-minimizer (z,,z,) with ¢ = n~ 2 and A = n~!. Taking into ac-
count the structure of F), in (4.12) and the subdifferential construction (2. 9) we find
(Zny B, Tn, Ty Z0) € X X Z % Z % X* % Z* satisfying the relationships

(85, ~2) € N{(Tny 20 + Tu)iepi F), 25 € N(0;0), |23 t =1, [@l<n™ (419)
Define now the following two subsets of the product space X X Z x Z, which is Asplund:

9.1‘:‘=' {(:L",z,v)EXxZX_Z] (z,2) € epi F'}; _ - (4.15)

Qy = {(z,2,v) EXXZXZI (z,v) € epign}. ' (4.16)
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It is easy to see that (Z,, Zs, %) € 21 Nl and both sets O, ¢ = 1, 2 are locally closed
around this point by the epiclosedness of F' and the L1psch1tz continuity of g,. Observe
also that the 1mphcat10n :

(z,2,0) €M NQy => 2 € F(z) — O, v € gnlz) - O,

which ensures therefore that (z, z + v) € epi F),. Thus we have from (4.14) that

fmeup S = 220 (8 % 0) = (Em Zny Bn))

(2,2,8)—(Frs B Tn) (z, 2,0) = (Zn; Zn, To) |-
(,2,0)€1M02 . :

< liﬁ sup <i;’ Z,), (2, 2) = (Zny Zn + ’En))

D0 T i D) <,
(z,2)—~(Er,En+Tn) ”(-'L'r Z) - (mm Zn + vﬂ)” ‘
(z,z)cepi By ’ ’
which implies the inclusions
(@, —75, —2%) € N((@ny Zn, Bn); 0 N o) C N((Em Zn, Tn); S N Q). (4.17)

Next we are going to express basic normals to the set intersection in (4.17) via basic
normals to 1 and 2 and the_n—by taking into account the structures of these sets—to
arrive at the desired conclusions in terms of the mapping F' under consideration. To apply
the basic intersection rule from [17, Theorem 3.4] to the intersection 5 N, let us first
check that the set system {{21, {3} satisfies the limiting qualification condition'at (Tn, Zn, Un)
required in the afore-mentioned theorem. The latter means that for any sequences

(x1k121k7 U'l-k) Q' (CL‘n,Zn,’Un) and ( ik ’tk’ zk) "_) (Ez? Z, Y ) as k — o0
with (23, 25, v%) € N((Zn, 2, 2); %), k € IV, i = 1,2, one has the implication
(= Ths 200, vik) + (250, 250 V8] — 0 @8 b = o0] = (2, 2{,0]) =0 (4.18)

for i = 1,2 To proceed, we observe from the structures of ; in (4 15) and (4.16) that - -
v}, = z4, = 0 for all k € IN, and hence (4 18) reduces to.

[t + 254 — 0, Hzlkll 0, 3yl - 0] == 2] = wj = 27 = v; = 0. (4.19)

Since the conclusions 2§ = v3 = 0 are obvious, it remains to show that ] = :1:2 =0. To

“this end; observe similarly to the proof of estima r,e_(:n 24 ﬁ i Theorem-$-5=based-on- {17,

Theorem 1.43]—that
(@3 Uk) € N ((3ks gnl22x))s€Pign) => [zt ll < n= ||l for all k € IV,

since the mapping gn: X — Z from (4.12) is Lipschitz continuous with modulus £ = n—1. 7
This gives ||z3.|| — O and hence ||z],] — 0 as & — oo by (4.19), which justifies the
fulfillment of the limiting qualification condition for {21,202} at (Zn, Zn, Tn).

~To apply the intersection rule from [17, Theorem 3.4}, we need also to check that §; is
strongly PSNC at (%, 2., Ur) with respect to the last component Z in the product X x Zx Z
and that Qg is PSNC at this point with respect to X x Z. The former is obvious from the
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structure of (4.15), while the latter follows from (4.16) due to the Lipschitz contlnulty of
gn; see [17, Corolla.ry 1.69(1)]. Thus we have

- Tt follows from (4.17), (4.20), and the structures of £); that there are uy, pj, € X* satisfying
(uny —22) € N{(Zn, Za)iepi ), (Pl —21) € N ((Zn, 9a(Zn)); ePign) (4.21)

and such that 2, = u + p;,. By the condition on 2} in (4.14) and definition (2. 11) of the
normal subdlfferenma.l we get from (4.21) the relationships

U € ONF (@, %), P € Ongn(Fn), st pl =ik - O (4.22)

It is easy to observe from the form of g, in (4. 12) with ||&] = 1 that |[pn|| < n7L, and
thus—by using the last estimate in {4.14)—one has

| IiuZII =z — gall S Nzhli+ pill < 7t bt = 207

Summatizing the above derivation, we have a sequence of triples {(Z,, Z Ens ut)} C X XZxX*
satisfying the relatlonshlps

(ZTn, Zn) € gph F, ) € ONF(Zpn,Z,), and |lup] — 0 as n — oo. (4.23)

" Furthermore, the sequence {Z,} in (4.23} is'©-bounded from below due to this assumption
on F induced by Theorem 3.5. Thus the sequence {Z,} contains a convergent subsequence
as n — co by the subdifferential Palais-Smale-condition from Definition 4.2. Employing the
estimate ||z, — Z,|| < n~! from (4.13), we conclude that the initial sequence {z,} selécted

~ in the beginning of the proof of this theorem also contains a convergent subsequence. This

completes the proof of the theorem. ' _ A

5 Necessary bptirriality and suboptimality conditions for con-
strained multiobjective problems

In the concluding section of the paper we employ the variational principles established in
Section 3 and the fools of generalized differentiation from Section 2 to deriving new neces-
sary optimality conditions and suboptimality conditions for general constrained problems of
multiobjective optimization. The necessary optimality conditions established below concern

—————minimizers-(not-just-weak-minimizers) to-multiobjective-problems—without-gny—interiorily — —

requirements imposed on the ordering cone © of Z. The (strong) suboptimality condi-
tions are derived in this section for arbitrary aepprozimate e€-minimizers to multiobjective
_ problems defined by ordering cones with possible empty interiors.

For simplicity we mainly focus in what follows on the class of constrained multiobjective
problems given in the form:

minimize f(z) subjectto z € o (51)

with a single-valued cost ma.pping f: X — Z between Asplund spaces and with geometric
constraints described by a closed subset €2 of X. The results obtained can be extended
to more general problems of set-valued optimization with various constraints (of operator,
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functional, and equélibrium types) based on the extremal and variational principles and -
on the corresponding generalized differential and SNC calculus rules (the latter caleulus is
needed only in infinite dimensions)—similarly to the developments and applications in-[17,
18] for other classes of optimization and equilibrium problems. To illustrate this approach,
we present some necessary optimality and suboptimality conditions derived in this way for
multiobjective problems with functionel constraints given by finitely many equolities and
- inequalities via (generally nonsmooth) real-valued functions.

Let us start with necessary optimality conditions for local minimizers to problem (5.1),
where an optimal solution (minimizer) is understood in the sense of Definition 3.1(i) with the
usual neighborhood localization. Recall that the corresponding subdifferential constructions
and SNC properties used in the theorem are defined and discussed in Section 2.

T.heofem 5.1 (necessary optimality conditions for multiobjective problems with
geometric constraints). Let # be o local minimizer to problem (5.1) with z == f(Z),
where the ordering cone © C Z satisfies the standing converity, closedness and pointedness
assumptions, where f is locally epiclosed around (%, Z), and where Q is locally closed around
I. Suppose also that © is SNC at the origin, that either £ is SNC at Z or f is partzally
SNEC at.(%,Z), and that the qualification condition

8°f(E) N (=~ N&:) = (0} (5.2)

is satisfied. Then one has the incl’usfan
| 0 € 65/ (Z) + N(%Q). | (5.3)
Proof. Consider the restriction fq of the mapping f to the set Q given by | _ | |
S fal@) == f(z) + Az; Q), -  (54)

where the indicator mapping A(-; Q) of Q is defined in (4.4). Taking any £ € —© with

€]l = 1 and any k € IN, observe that (%, %) is a (local) strict approximate k=!¢-minimizer

to fo in the sense of Definition 3.1(iv). It is easy to see that fu satisfies (locally) all the

assumptions required by Theorem 3.5 except that of § € —int ©, which is not needed in what
follows. Employing the latter theorem and relationships (3.21) of the extremal principle in -
its proof, we find sequences {(zx,z})} € Q x X* such that

2t € Bfalzr), |(zm 2) = (& 2] < k7L, and lzk|| < k=1 for all k e V. (5:5)

Passing to the limit as & — oo in (5.5) and taking into account the construction of the
limiting subdifferential in (2.10), we get 0 € dr, fo(Z), which implies by Theorem 2.2 (since

©is assumed to be SNC at the origin) and the structure of fo In (5.3) that

0 € Onfal(Z) =On{Ff + A D)](Z). ' ' (5.6)
- It follows from (2.11) and (5.6) |
(0,—z*) € N((E,Zj;epif N2 x Z)) for some z*€ N(0;0), . |z*]=1. (5.7)

Employing now in (5.7) the basic intersection rule from [17, Theorem 3.4] vrvhdée‘requlre-
ments are satisfied due to the qualification condition (5.2) and the SNC assumptions of this
- theorem, we get from (5.7) that -

(0,~2") € N((&, 2)iepi ) + N(2:0) x {0} with = € N(0;6), | =1,
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which is obviously equivalent to (5.3). This completes the proof of the theorem. A

It occurs that the qualification condition (5.2) and the partial SNEC condition of Theo-
retn 5.1 are automatically fulfilled for a major class of epz—Lapschztz—lzke (ELL) cost mappings
[ X—2Z descrlbed in Section 2.

Corollary 5.2 (necessary optimality conditions for multiob jeétive problems with

Lipschitzian costs). Let Z be o local minimizer to (5.1), where the ordering cone © satisfies -

the assumptions of Theorem 5.1, where the constraint set Q is locally closed around Z, and
where the cost mapping [ is epiclosed and ELL around (Z,2) with Z = f(Z). Then the
necessary optimality condition (5.3) is satisfied.

Proof. This follows from Theorem 5.1 due to Proposition 2.3 ensuring Simultanedusly the

partial SNEC property and the qualification condition (5.2) for ELL mappings. A
Next we present a specification of Theorem 5.1 for multiobjective problems (5.1) with

functional constraints given in the conventional form of mathematical programming:

N={reX|px) <0, i=1...,m; @z)=0, i=m+1,...,m+r} (58

For simplicity we assurme that all the functions ;: X — IR are locally L’ipschitzian around
the reference point; more general non-Lipschitzian settings can be also considered based on
the caleulus rules of {17]. The following consequence of Theorem 5.1 holds.

- Corollary 5.3 (necessary optimality conditions in multiobjective mathematical
programming). Let T be a local minimizer to problem (5.1) with the constraint set Q

given by (5.8), where the ordering cone © satisfies the assumptions of Theorem 5.1, where
the cost mapping f is epiclosed around (%, 2) with Z = (%), and where all the functzons w;
are locally -Lipschitzian a,?"ound Z. Impose the two qﬂalzﬁcatzons conditions

m--r

[ OEZ‘A.;a%(m 3 Xi(00i(®) U d(—pi)(3)),

i=1 j=m+1 (59) o

20 for i=1,...,m+7r, Npi(Z)=0 for i=1""’m]
= MN=0 forall i=1,...,m+r;

[ —an(;"e)a-m*eZ,\ia%(w' Z Ai(Bpi(Z) U 8(— i) (3)) with

1. .
=1 =T

M>0 esi=1,...,m, Ngi(E)=0asi=1,...,m ]-f—,* ¥ =0

Jormulated via the basic subdifferential [17] of Lipschitzian functions @;. Then there are
A= 0 fori=1,...,m+r such that \;p;(Z)=00asi=1,...,m and '

. m m4r '
0€anf(E@) + D MNpi(E) + D Mi(8wi() UA(—ipi) (2)). (5.11)
=1 immetl '
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Proof. First observe that the basm normal cone N{:; Q) to the constraint set {1 given in
(5.8) satisfies the inclusion

m--r
N(f;mc{ S A0n@+ > A(opia Uol- %)(m))i |
i=1 i=m-1 (512) .

MN>0asi=1,....m+7r, Aitpi(cﬁ)=0 as i=1,...,m

provided the fulfillment of the qualification condition (5.9); see, e.g., [17, Corollary 4.36].
Substituting (5.12) into (5.2) and: (5.3), we get the qualification condition (5.10) and opti-
- mality condition (5.11), respectlvely Finally, the qualification condition (5 9) ensures the
SNC property of the constraint set (5.8) at Z; this follows from [17, Theorem 3.86]. Thus
we meet all the requirements of Theorem 5.1 and complete the proof of the corollary VAN

Note that the qua,hﬁca,tlon condition (5 9) reduces to the classical M angasarien-Fromovitz
constraint qualification when the functions ; are strictly differentiable at Z (in particular, -
when ¢; € C! around Z); in this case 8p(Z) = {Vp(Z}}. Note furthermore that, by Corol-

‘lary 5.2, the qualification condition (5.10) is automatic if the cost mapping f is ELL around
7. For the latter class we also have the partial SNEC property of f at (Z,z), which is
not needed in the framework of Corollary 5.3 under the generalized Ma.ngasa.rian Fromovitz
constraint quahﬁcatlon (5. 9)

QOur final result concerns suboptzmahty condztwns for problem (5.1) apphed to.its ap-
prozimate solutions—the exact minimizers may not even exist.

Theorem 5.4 (suboptimality COIldlthIlS in multlobJectlve optimization). Let T
be a local approzimate e€-minimizer to problem (5.1) in the sense of Definition 3.1(ii) with
€ > and 0 # £ € -0, let A > 0, and let the ordering cone © C Z satisfy the requirements of
Theorem 5.1. Suppose furthermore that for any approzimate e€-minimizer x € QN (Z+nB)
with some n > A and with z := f(z) < f(Z) =: Z the following assumptions hold:

—£} is locally closed around x and f is epiclosed around (x, z);

—either Q0 is SNC at x, or f is partially SNEC at (z, z);

—one has the gualification condition -

o°f@)n (- Nz) ={0y. - (313)

Then there is o local approzimate e~-minimizer T € §} to problem (5.1) with [|$ -z <N
and f(Z) < f(Z) satisfying the suboptimality relationships

#F+ 2| <Z for some T} € anf(@) and zH E N(:c Q). - (514
Proof. Employing Corollary 3.3 with zg := Z to the restrlcted mapping fg in (5 4), we find
Z e Qn(x+ AB) with f(Z) £ f(Z), which is obviously a local approximate ££-minimizer
to f on £}; furthermore, it provides an ezact local minimum to the perturbed mapping
£ R . ‘
g(z) = flz) + X”:E —~Z||& over z € Q. . © (5.15)
: Applying now Theorem 5.1 to (5.15), we get the optimality condition

0 € Oyg(@) + N(F Q) N (5:16)
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under the assumptions of the latter theorem imposed on g. It follows from definition (2.12) -
of the singular subdifferential, the Lipschitz continuity of the perturbation in (5.15), and
the mixed coderivative sum rule from [17, Theorem 3.10] that 8%g(z) = 9°°f(Z), and
thus the qualification condition (5.2) for g is equivalent to (5.13) at z = %. Taking into
~ account the SNC calculus result of [17, Theorem 3.88], we easily conclude from (5.15)

.that the. SNEC requirement on g agrees with that on f at Z. Finally, it follows from the
normal subdifferential construction (2.11) a,nd from the normal coderivative sum rule in [17,
Theorem 3.10] that

. o E | |
Ong(Z) C OnF(Z) + XB*' : - (5.17)
Substituting (5.17) into (5.16), we arrive at the suboptimality relationships in (5.14) and
thus finish the proof of theorem o A

Similarly to Corollaries 5.2 and 5.3, we can esteblieh the corresponding consequences of
Theorem 5.4 that provide suboptimality conditions fo multiobjective problems with Lips-
chitzian costs and with functional constraints.
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