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The aim of this paper is to introduce Ekeland variational principle with variants for generalized vector equilibrium problems and
to establish some existence results of solutions of generalized vector equilibrium problems with compact or noncompact domain
as applications. Finally, some equivalent results of the established Ekeland variational principle are presented.

1. Introduction

AnEkeland variational principle [1] (also [2, 3]) appeared first
as an existence result of approximate minimizer for a lower
semicontinuous and bounded below function on complete
metric spaces. It subsequently developed an important tool
of many subjects, such as in nonlinear analysis (e.g., [4]),
optimization theory (e.g., [5–11]), game theory (e.g., [12]),
dynamical systems (e.g., [13]), and others (e.g., [14, 15]).
By reason of the fact that equilibrium problems contain
many problems as their special cases, such as optimiza-
tion problems, fixed-point problems, variational inequality
problems, complementary problems, and Nash equilibrium
problems (see [16]), a new direction of research on variational
principle for equilibriumproblems has arisen.The variational
principle for equilibrium problems (e.g., [17]) and for vector
equilibriumproblems (e.g., [18–23]) and/or their applications
or equivalent results were discussed. In terms of set-valued
objectivemappings, variational principle for vector optimiza-
tion problems was first introduced by Chen and Huang [5]
and was reported in many literatures (e.g., see [7, 9–11]) in
the sequel. In 2009, Zeng and Li [24] discussed Ekeland vari-
ational principle for vector equilibrium problems with set-
valued objective mappings (generalized vector equilibrium
problems).

One of the most important tools of obtaining variational
principle for vector problems is the scalarization functions
(see [5, 6, 21–24], for instance). While these scalarization
functions always involve single-valued mappings. Motivated
by the works mentioned above, we establish the Ekeland
variational principle for generalized vector equilibrium prob-
lems by applying a nonlinear scalarization function involving
set-valued mappings. It is worth noting that the generalized
vector equilibrium problems considered in this paper are
rather than those in [24].

Let R, R
+
and N be denoted by the sets of real numbers,

nonnegative real numbers and positive integers, respectively,
and let N(∗) be the collection of open neighborhoods of ∗,
where ∗ is a point or a set. A subset 𝐷 of a real topological
vector space 𝑌 is called a cone if 𝜆𝑥 ∈ 𝐷 for all 𝑥 ∈ 𝐷 and
𝜆 > 0. Let 𝐷 be a cone in 𝑌 and 𝐴 ⊂ 𝑌. 𝐷 is called proper if
𝐷 ̸=𝑌. 𝐴 is said to be𝐷-closed [25] if 𝐴+ cl𝐷 is closed; to be
𝐷-bounded [25] if, for each neighborhood 𝑈 ∈ N(0

𝑌
), there

exists 𝜆 > 0 such that 𝐴 ⊂ 𝜆𝑈 + 𝐷.
Throughout this paper, unless otherwise specified, let 𝑋

be aHausdorff topological space and𝑌 a real Hausdorff topo-
logical vector space, let 𝐷 ⊂ 𝑌 be a proper, closed, and
convex cone with nonempty interior and 𝑒 ∈ int𝐷, and
let 𝑓 : 𝑋 × 𝑋 → 2

𝑌 be a strict, set-valued mapping,
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𝑓
𝑥
(⋅) = 𝑓(𝑥, ⋅) for each 𝑥 ∈ 𝑋 and 𝑓𝑦(⋅) = 𝑓(⋅, 𝑦) for each

𝑦 ∈ 𝑋. A set-valued mapping is said to be strict if it has
nonempty values. Consider the following generalized vector
equilibrium problems:

to find 𝑥 ∈ 𝑋 such that 𝑓 (𝑥, 𝑦) ∩ (−𝐷) = 0,

∀𝑦 ∈ 𝑋,

(GVEP1)

to find 𝑥 ∈ 𝑋 such that 𝑓 (𝑥, 𝑦) ∩ (− int𝐷) = 0,

∀𝑦 ∈ 𝑋.

(GVEP2)

This paper is divided into five sections. In Section 2, some
preliminaries are provided. In Section 3, Ekeland variational
principle with variants for (GVEP1) is argued in complete
quasimetric spaces. In Section 4, some existence results of
solutions of (GVEP2) with compact or noncompact domain
are established as applications. Finally, in Section 5, some
equivalent results of the established Ekeland variational
principle are presented.

2. Preliminaries

Let 𝑋 be a nonempty set. “⪯” is called a quasiorder on 𝑋 if it
is of

(o1) reflexivity: 𝑥 ⪯ 𝑥, for all 𝑥 ∈ 𝑋;

(o2) transitivity: 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑧 ⇒ 𝑥 ⪯ 𝑧.

Here (𝑋, ⪯) is called a quasiorder space. An element 𝑥 ∈ 𝑋
is said to be amaximal element of a quasiorder space (𝑋, ⪯) if
there is no element 𝑦 ∈ 𝑋, other than 𝑥, such that 𝑥 ⪯ 𝑦, in
other words, 𝑥 ⪯ 𝑦 for some 𝑦 ∈ 𝑋 implies 𝑥 = 𝑦.

Let𝑋 and𝑌 be topological spaces. A real-valued function
𝑔 : 𝑋 → R is said to be upper semicontinuous on 𝑋 if
{𝑢 ∈ 𝑋 : 𝑔(𝑢) < 𝜆} is open for each 𝜆 ∈ R; to be lower
semicontinuous on 𝑋, {𝑢 ∈ 𝑋 : 𝑔(𝑢) > 𝜆} is open for each
𝜆 ∈ R. The following conceptions of continuity for a set-
valued mapping can be found in [4]. A set-valued mapping
𝐺 : 𝑋 → 2

𝑌 is said to be upper semicontinuous at 𝑢
0
∈ 𝑋

if, for any 𝑁 ∈ N(𝐺(𝑢
0
)), there exists 𝐵 ∈ N(𝑢

0
) such

that 𝐺(𝑢) ⊂ 𝑁 for all 𝑢 ∈ 𝐵; to be lower semicontinuous at
𝑢
0
∈ 𝑋, if for any 𝑦

0
∈ 𝐺(𝑢

0
) and any 𝑁 ∈ N(𝑦

0
), there

exists 𝐵 ∈ N(𝑢
0
) such that 𝐺(𝑢) ∩ 𝑁 ̸= 0 for all 𝑢 ∈ 𝐵; to be

upper semicontinuous (resp., lower semicontinuous) on 𝑋, if
𝐺 is upper semicontinuous (resp., lower semicontinuous) at
each 𝑢 ∈ 𝑋; to be continuous at 𝑢

0
∈ 𝑋 (resp., on 𝑋), if 𝐺 is

both upper semicontinuous and lower semicontinuous at 𝑢
0

(resp., on 𝑋); to be closed, if its graph Graph(𝐺) = {(𝑢, y) ∈
𝑋 × 𝑌 : 𝑦 ∈ 𝐺(𝑢)} is closed in𝑋 × 𝑌.

Lemma 1 (see [26]). Let 𝑋 and 𝑌 be Hausdorff topological
spaces and 𝑆 : 𝑋 → 2𝑌 a strict set-valued mapping. If 𝑋 is
compact and 𝑆 is upper semicontinuous with compact values,
then 𝑆(𝑋) = ∪{𝑆(𝑥) : 𝑥 ∈ 𝑋} is compact.

Definition 2. Let 𝑋 be a nonempty set. A function 𝑑 : 𝑋 ×

𝑋 → R
+
is said to be a quasimetric on𝑋 if

(d1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(d2) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.
𝑋 equipped a quasimetric 𝑑 is said to be a quasimetric

space, denoted by (𝑋, 𝑑). Furthermore, if 𝑑 also satisfies
(d3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝑋,

then (𝑋, 𝑑) is called a metric space, where 𝑑 is a metric on𝑋.

Let (𝑋, 𝑑) be a quasimetric space. 𝑥
𝑘

→ 𝑥 means
𝑑(𝑥
𝑘
, 𝑥) → 0. {𝑥

𝑘
} ⊂ 𝑋 is called a Cauchy sequence on

(𝑋, 𝑑) if, for any 𝜀 > 0, there exists𝐾 ∈ N such that 𝑑(𝑥
𝑘
, 𝑥
𝑙
) <

𝜀, ∀𝑙 > 𝑘 > 𝐾. (𝑋, 𝑑) is said to be complete if, for eachCauchy
sequence {𝑥

𝑘
} ⊂ 𝑋, there exists 𝑥 ∈ 𝑋 such that 𝑥

𝑘
→ 𝑥 as

𝑘 → +∞.

Definition 3 (see [27]). Let (𝑋, 𝑑) be a quasimetric space. A
function 𝑤 : 𝑋 × 𝑋 → R

+
is said to be a 𝑊-distance on

(𝑋, 𝑑) if
(w1) 𝑤(𝑥, 𝑧) ≤ 𝑤(𝑥, 𝑦) + 𝑤(𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋;
(w2) for each fixed 𝑥 ∈ 𝑋, 𝑦 󳨃→ 𝑤(𝑥, 𝑦) is lower

semicontinuous;
(w3) for any 𝜖 > 0, there exists 𝛿 > 0 such that 𝑤(𝑥, 𝑦) ≤ 𝛿

and 𝑤(𝑥, 𝑧) ≤ 𝛿 imply that 𝑑(𝑦, 𝑧) ≤ 𝜖.

The 𝑊-distance includes metric and quasimetric as its
special cases. But the converse fails to be true. Moreover,𝑊-
distance is not necessary to be symmetric. Some examples
and properties of a𝑊-distance in metric spaces are provided
by Kada et al. [27].

Lemma 4 (see [27]). Let 𝑤 be a𝑊-distance on a quasimetric
space (𝑋, 𝑑), let {𝑥

𝑘
}, {𝑦
𝑘
} ⊂ 𝑋 and {𝛼

𝑘
}, {𝛽
𝑘
} ⊂ R

+
with

𝛼
𝑘
, 𝛽
𝑘
→ 0 as 𝑘 → +∞, and let 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then the

following assertions are true:
(i) if 𝑤(𝑥

𝑘
, 𝑦) ≤ 𝛼

𝑘
and 𝑤(𝑥

𝑘
, 𝑧) ≤ 𝛽

𝑘
, ∀𝑘 ∈ N, then

𝑦 = 𝑧. In particular, if 𝑤(𝑥, 𝑦) = 0 and 𝑤(𝑥, 𝑧) = 0,
then 𝑦 = 𝑧;

(ii) if 𝑤(𝑥
𝑘
, 𝑥
𝑙
) ≤ 𝛼

𝑘
, ∀𝑙 > 𝑘, then {𝑥

𝑘
} is a Cauchy

sequence;
(iii) if 𝑡 > 0, then 𝑡𝑤 is also a𝑊-distance on (𝑋, 𝑑).

Let𝑋 be a topological space and𝑌 be a topological vector
space in the rest of this section.

Since each compact subset in 𝑌 is both 𝐷-closed and
𝐷-bounded by Definition 3.1 and Proposition 3.1 in [25],
the following general nonlinear scalarization function is well
defined in view of Lemma 3.1 in [28].

Definition 5. Let𝐺 : 𝑋 → 2
𝑌 be a strict and compact-valued

mapping. A generalized nonlinear scalarization function 𝜁
𝐺
:

𝑋 → R of 𝐺 is defined by

𝜁
𝐺
(𝑢) = min {𝜆 ∈ R : 𝐺 (𝑢) ∩ (𝜆𝑒 − 𝐷) ̸= 0} ,

∀𝑢 ∈ 𝑋.
(1)
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According to Proposition 3.1 in [28], we have the follow-
ing.

Lemma 6. Let 𝐺 : 𝑋 → 2𝑌 be a strict and compact-valued
mapping. The following assertions are true for each 𝜆 ∈ R and
𝑢 ∈ 𝑋:

(i) 𝜁
𝐺
(𝑢) < 𝜆 ⇔ 𝐺(𝑢) ∩ (𝜆𝑒 − int𝐷) ̸= 0.

(ii) 𝜁
𝐺
(𝑢) ≤ 𝜆 ⇔ 𝐺(𝑢) ∩ (𝜆𝑒 − 𝐷) ̸= 0.

Lemma 7. Let 𝐺 : 𝑋 → 2𝑌 be a strict and compact-valued
mapping.

(i) If 𝐺 is lower semicontinuous on 𝑋, then 𝜁
𝐺
is upper

semicontinuous on𝑋;

(ii) If 𝐺 is upper semicontinuous on 𝑋, then 𝜁
𝐺
is lower

semicontinuous on𝑋.

Proof. This proof is completed by letting 𝐺(𝑥) = 0, 𝐶(𝑥) =

𝐷, and 𝐸(𝑥) = {𝑒} for all 𝑥 ∈ 𝑋 in Corollary 3.1 in [28]
since upper (resp., lower) semicontinuity implies the𝐷-upper
(resp., lower) semicontinuity (see [29]).

Lemma 8. If

(a1) 𝑓 is compact valued;

(a2) 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑧) ⊂ 𝑓(𝑥, 𝑧) + 𝐷, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋,

then

𝜁
𝑓
𝑥

(𝑧) ≤ 𝜁
𝑓
𝑥

(𝑦) + 𝜁
𝑓
𝑦

(𝑧) , ∀𝑥, 𝑦, 𝑧 ∈ 𝑋. (2)

Proof. For each 𝑥, 𝑦, 𝑧 ∈ 𝑋, it follows from Definition 5 that
𝑢 ∈ 𝑓(𝑥, 𝑦)∩(𝜁

𝑓
𝑥

(𝑦)𝑒−𝐷) and V ∈ 𝑓(𝑦, 𝑧)∩(𝜁
𝑓
𝑦

(𝑧)𝑒−𝐷) can
be chosen.Then 𝑢+V ∈ 𝑓(𝑥, 𝑧)+𝐷 by (a2). Select𝑤 ∈ 𝑓(𝑥, 𝑧)

to satisfy 𝑤 ∈ 𝑢 + V − 𝐷. This deduces that

𝑤 ∈ (𝜁
𝑓
𝑥

(𝑦) 𝑒 − 𝐷) + (𝜁
𝑓
𝑦

(𝑧) 𝑒 − 𝐷)

− 𝐷 ⊂ (𝜁
𝑓
𝑥

(𝑦) + 𝜁
𝑓
𝑦

(𝑧)) 𝑒 − 𝐷.

(3)

Therefore,𝑓(𝑥, 𝑧)∩((𝜁
𝑓
𝑥

(𝑦)+𝜁
𝑓
𝑦

(𝑧))𝑒−𝐷) ̸= 0 by Lemma 6(ii)
and 𝜁
𝑓
𝑥

(𝑧) ≤ 𝜁
𝑓
𝑥

(𝑦) + 𝜁
𝑓
𝑦

(𝑧).

3. Ekeland Variational Principle for (GVEP1)

From now on, unless otherwise specified, suppose that (𝑋, 𝑑)
is a Hausdorff complete quasimetric space and that𝑤 is a𝑊-
distance on (𝑋, 𝑑).

Lemma 9. (i) If (a1)-(a2) and

(a3) 𝑓(𝑥, 𝑥) ∩ (− int𝐷) = 0, ∀𝑥 ∈ 𝑋

hold, then

𝑆 (𝑦) ⊂ 𝑆 (𝑥) , ∀𝑦 ∈ 𝑆 (𝑥) , ∀𝑥 ∈ 𝑋, (4)

where 𝑆 : 𝑋 → 2
𝑋 is defined by

𝑆 (𝑥) = {𝑦 ∈ 𝑋 : 𝑦 ̸= 𝑥, 𝑓 (𝑥, 𝑦) ∩ (−𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) ̸= 0} ,

∀𝑥 ∈ 𝑋.

(5)

(ii) Besides (a1)–(a3), if

(a4) for each 𝑥 ∈ 𝑋, 𝑓
𝑥
(⋅) is upper semicontinuous on𝑋;

(a5) for each 𝑥 ∈ 𝑋, 𝑓
𝑥
(𝑋) ∩ (𝑏 − 𝐷) = 0 for some 𝑏 ∈ 𝑌,

then, for each 𝑥 ∈ 𝑋 with 𝑆(𝑥) ̸= 0, there exists 𝑥 ∈ 𝑆(𝑥) such
that 𝑆(𝑥) = 0.

Proof. Obviously, by (a1) and Lemma 6(ii),

𝑆 (𝑥) = {𝑦 ∈ 𝑋 : 𝑦 ̸= 𝑥, 𝜁
𝑓
𝑥

(𝑦) + 𝑤 (𝑥, 𝑦) ≤ 0} . (6)

(i) For each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑆(𝑥), if 𝑆(𝑦) = 0, then the
conclusion holds trivially. Otherwise, for each 𝑧 ∈ 𝑆(𝑦),

𝜁
𝑓
𝑥

(𝑦) + 𝑤 (𝑥, 𝑦) ≤ 0, 𝜁
𝑓
𝑦

(𝑧) + 𝑤 (𝑦, 𝑧) ≤ 0, (7)

and so

𝜁
𝑓
𝑥

(𝑧) + 𝑤 (𝑥, 𝑧) ≤ 𝜁
𝑓
𝑥

(𝑦) + 𝜁
𝑓
𝑦

(𝑧) + 𝑤 (𝑥, 𝑦) + 𝑤 (𝑦, 𝑧) ≤ 0

(8)

according to Lemma 8. Moreover, by 𝑤(𝑥, 𝑦) ≥ 0 and
𝑤(𝑦, 𝑧) ≥ 0,

𝜁
𝑓
𝑥

(𝑦) ≤ 0, 𝜁
𝑓
𝑦

(𝑧) ≤ 0. (9)

Now claim that 𝑧 ̸= 𝑥. Otherwise, 𝜁
𝑓
𝑥

(𝑧) ≥ 0 by (a3) and
Lemma 6(i). Thus,

𝑤 (𝑥, 𝑦) = 0, (10)

since

𝑤 (𝑥, 𝑦) ≤ 𝜁
𝑓
𝑥

(𝑧) + 𝑤 (𝑥, 𝑦)

≤ 𝜁
𝑓
𝑥

(𝑦) + 𝑤 (𝑥, 𝑦) + 𝜁
𝑓
𝑦

(𝑧)

≤ 0

(11)

by (2) and (9). Similarly, 𝑤(𝑦, 𝑧) = 0, and so 𝑤(𝑥, 𝑧) = 0 by
(w1). This, together with 𝑤(𝑥, 𝑦) = 0, implies that 𝑦 = 𝑧 by
Lemma 4(i), which contradicts with 𝑧 ∈ 𝑆(𝑦). Thus 𝑧 ∈ 𝑆(𝑥),
and so 𝑆(𝑦) ⊂ 𝑆(𝑥), ∀𝑦 ∈ 𝑆(𝑥).

(ii) For 𝑏 ∈ 𝑌 given in (a5), 𝑏 ∈ 𝑟𝑒 + 𝐷 for some 𝑟 ∈ R

by Lemma 2.1 in [30], which leads to 𝑟𝑒 − 𝐷 ⊂ 𝑏 − 𝐷. This,
together with (a5), implies that𝑓

𝑥
(𝑋)∩(𝑟𝑒−𝐷) = 0. It follows

form Lemma 4(ii) that

V (𝑥) = inf {𝜁
𝑓
𝑥

(𝑦) : 𝑦 ∈ 𝑆 (𝑥)} > −∞, ∀𝑥 ∈ 𝑋. (12)

Then, for each 𝑥
0
= 𝑥 ∈ 𝑋,

V (𝑥
0
) = inf {𝜁

𝑓
𝑥
0

(𝑦) : 𝑦 ∈ 𝑆 (𝑥
0
)} > −∞. (13)
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For each 𝑘 ∈ N, let 𝑥
𝑘−1

satisfy that V(𝑥
𝑘−1

) > −∞ and take
𝑥
𝑘
∈ 𝑆(𝑥
𝑘−1

) such that

𝜁
𝑓
𝑥
𝑘−1

(𝑥
𝑘
) ≤ V (𝑥

𝑘−1
) +

1

2𝑘
. (14)

If 𝑆(𝑥
𝑘
) = 0 for some 𝑘 ∈ N, this conclusion holds by letting

𝑥 = 𝑥
𝑘
. Now consider 𝑆(𝑥

𝑘
) ̸= 0, ∀𝑘 ∈ N. The rest proof is

divided into four steps as follows.
(a) Show that 𝑥

𝑘
→ 𝑥 as 𝑘 → +∞ for some 𝑥 ∈ 𝑋.

Indeed, for each 𝑘 ∈ N, by (2),

V (𝑥
𝑘
) = inf {𝜁

𝑓
𝑥
𝑘

(𝑦) : 𝑦 ∈ 𝑆 (𝑥
𝑘
)}

≥ inf {𝜁
𝑓
𝑥
𝑘−1

(𝑦) − 𝜁
𝑓
𝑥
𝑘−1

(𝑥
𝑘
) : 𝑦 ∈ 𝑆 (𝑥

𝑘−1
)}

=V (𝑥
𝑘−1

) − 𝜁
𝑓
𝑥
𝑘−1

(𝑥
𝑘
) ≥ −

1

2𝑘
,

(15)

which implies that

𝑤 (𝑥
𝑘
, 𝑦) ≤ −𝜁

𝑓
𝑥
𝑘

(𝑦) ≤ −V (𝑥
𝑘
) ≤

1

2𝑘
, ∀𝑦 ∈ 𝑆 (𝑥

𝑘
) ,

(16)

and so

𝑤 (𝑥
𝑘
, 𝑥
𝑙
) ≤

𝑙−1

∑
𝑖=𝑘

𝑤 (𝑥
𝑖
, 𝑥
𝑖+1
) ≤

𝑙−1

∑
𝑖=𝑘

1

2𝑖
≤

1

2𝑘−1
, ∀𝑙 > 𝑘. (17)

Therefore, {𝑥
𝑘
} is a Cauchy sequence by Lemma 4(ii), and so

there exists 𝑥 ∈ 𝑋 such that 𝑥
𝑘
→ 𝑥 as 𝑘 → +∞ by the

completeness of (𝑋, 𝑑). In addition, according to (w2)

𝑤 (𝑥
𝑘
, 𝑥) ≤ lim inf

𝑙→+∞

𝑤 (𝑥
𝑘
, 𝑥
𝑙
) ≤

1

2𝑘−1
, ∀𝑘 ∈ N. (18)

(b) Show that 𝑥 ∈ ⋂+∞
𝑘=0

𝑆(𝑥
𝑘
). In fact, for each 𝑘 ∈ N,

𝜁
𝑓
𝑥
𝑘

(𝑥
𝑙
) + 𝑤 (𝑥

𝑘
, 𝑥
𝑙
) ≤

𝑙−1

∑
𝑖=𝑘

(𝜁
𝑓
𝑥
𝑖

(𝑥
𝑖+1
) + 𝑤 (𝑥

𝑖
, 𝑥
𝑖+1
)) ≤ 0

(19)

by (2). Since, for each 𝑥 ∈ 𝑋, 𝜁
𝑓
𝑥

(⋅) is lower semicontinuous
by (a1), (a4), and Lemma 7(ii),

𝜁
𝑓
𝑥
𝑘

(𝑥) + 𝑤 (𝑥
𝑘
, 𝑥) ≤ 0 (20)

by letting 𝑙 → +∞ in (19). Hence,

𝜁
𝑓
𝑥
𝑘

(𝑥) ≤ 0, ∀𝑘 ∈ N. (21)

Now it is enough to prove that𝑥
𝑘
̸= 𝑥, ∀𝑘 ∈ N by (20). Indeed,

if 𝑥
𝑘
0

= 𝑥 for some 𝑘
0
∈ N, then 𝜁

𝑓
𝑥
𝑘
0

(𝑥
𝑘
0

) = 𝜁
𝑓
𝑥
𝑘
0

(𝑥) ≥ 0 in
view of (a3) and Lemma 6(i). By applying (21) and adopting
the same argument of the proof of (10),

𝑤(𝑥
𝑘
0

, 𝑥
𝑘
0
+1
) = 0. (22)

Thus,

𝜁
𝑓
𝑥
𝑘
0

(𝑥
𝑘
0
+1
) = 𝜁
𝑓
𝑥
𝑘
0

(𝑥
𝑘
0
+1
) + 𝑤 (𝑥

𝑘
0

, 𝑥
𝑘
0
+1
) ≤ 0. (23)

It follows form 0 ≤ 𝜁
𝑓
𝑥
𝑘
0

(𝑥) ≤ 𝜁
𝑓
𝑥
𝑘
0

(𝑥
𝑘
0
+1
) + 𝜁
𝑓
𝑥
𝑘
0
+1

(𝑥) that
𝜁
𝑓
𝑥
𝑘
0
+1

(𝑥) ≥ −𝜁
𝑓
𝑥
𝑘
0

(𝑥
𝑘
0
+1
) ≥ 0. Hence, 𝑤(𝑥

𝑘
0
+1
, 𝑥
𝑘
0
+2
) = 0 by

(21) and the similar argument of (10), which, together with
𝑤(𝑥
𝑘
0

, 𝑥
𝑘
0
+2
) = 0, implies 𝑥

𝑘
0
+1
= 𝑥
𝑘
0
+2

in virtue of (22) and
Lemma 4(i).This contradicts with 𝑥

𝑘
0
+2
∈ 𝑆(𝑥
𝑘
0
+1
).Thus, 𝑥 ∈

𝑆(𝑥
𝑘
), ∀𝑘 ∈ N. Clearly, 𝑥 ∈ 𝑆(𝑥

0
).

(c) Show that ⋂+∞
𝑘=1

𝑆(𝑥
𝑘
) = {𝑥}. Indeed, for any 𝑥 ∈

⋂
+∞

𝑘=1
𝑆(𝑥
𝑘
), 𝑥 ̸= 𝑥

𝑘
, and 𝜁

𝑓
𝑥
𝑘

(𝑥) + 𝑤(𝑥
𝑘
, 𝑥) ≤ 0, ∀𝑘 ∈ N. As

a result,

𝑤 (𝑥
𝑘
, 𝑥) ≤ −𝜁

𝑓
𝑥
𝑘

(𝑥) ≤ −V (𝑥
𝑘
) ≤

1

2𝑘
, ∀𝑘 ∈ N, (24)

which, together with (18), implies that 𝑥 = 𝑥 by Lemma 4(i).
(d) Show that 𝑥 ∈ 𝑆(𝑥) and 𝑆(𝑥) = 0. As a matter of fact,

𝑥 ∈ 𝑆(𝑥) by (b). If 𝑆(𝑥) ̸= 0, then 𝑆(𝑥) = {𝑥} in view of (c).
This leads to a contradiction by the definition of 𝑆.

Theorem 10. Define 𝐴 : 𝑋 → 2𝑋 as

𝐴 (𝑥)

= {𝑦 ∈ 𝑋 : 𝑥 = 𝑦 or 𝑓 (𝑥, 𝑦) ∩ (−𝜀𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) ̸= 0} ,

∀𝑥 ∈ 𝑋.

(25)

If (a1)–(a5) hold, then, for any 𝜀 > 0 and for any 𝑥 ∈ 𝑋, there
exists 𝑥 ∈ 𝑋 such that

(i) 𝐴(𝑥) = {𝑥};
(ii) 𝑓(𝑥, 𝑦) ∩ (−𝜀𝑤(𝑥, 𝑦)𝑒 − 𝐷) = 0, ∀𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥;
(iii) 𝑓(𝑥, 𝑥) ∩ (−𝜀𝑤(𝑥, 𝑥)𝑒 − 𝐷) ̸= 0 if, further, 𝑆(𝑥) ̸= 0,

where 𝑆 : 𝑋 → 2𝑋 defined as

𝑆 (𝑥) = {𝑦 ∈ 𝑋 : 𝑥 ̸= 𝑦, 𝑓 (𝑥, 𝑦) ∩ (−𝜀𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) ̸= 0} ,

∀𝑥 ∈ 𝑋.

(26)

Proof. Since 𝑤
𝜀
(𝑥, 𝑦) = 𝜀𝑤(𝑥, 𝑦) is another 𝑊-distance by

Lemma 4(iii), without loss of generality, we set 𝜀 = 1. Then

𝐴 (𝑥) = {𝑦 ∈ 𝑋 : 𝑥 = 𝑦 or 𝑓 (𝑥, 𝑦) ∩ (−𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) ̸= 0} ,

∀𝑥 ∈ 𝑋,

(27)

and 𝑆 is identical to (5). Take 𝑥 = 𝑥 if 𝑆(𝑥) = 0. Otherwise,
there exists 𝑥 ∈ 𝑆(𝑥) such that 𝑆(𝑥) = 0 by Lemma 9(ii). All
in all, 𝐴(𝑥) = {𝑥}. The conclusion (i) is true. Also, 𝑦 ̸= 𝑥 is
equivalent to 𝑦 ∉ 𝐴(𝑥), and so the conclusion (ii) holds by
Lemma 6(ii). If, further, 𝑆(𝑥) ̸= 0, (i) implies that

𝑓 (𝑥, 𝑥) ∩ (−𝜀𝑤 (𝑥, 𝑥) 𝑒 − 𝐷) ̸= 0, (28)

by Lemma 6(ii).
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Corollary 11. If (a5) is replaced by

(a6) (𝑋, 𝑑) is compact

in Theorem 10, then the conclusions still hold.

Proof. It is easy to see that 𝑓
𝑥
(𝑋) is compact for each 𝑥 ∈ 𝑋

by (a1), (a4), (a6), and Lemma 1.The rest proof is divided into
three steps.

(a) For any 𝜆, 𝜇 ∈ R with 𝜆 < 𝜇,

𝜆𝑒 − 𝐷 ⊂ 𝜇𝑒 − (𝜇 − 𝜆) 𝑒 − 𝐷 ⊂ 𝜇𝑒 − int𝐷 − 𝐷 ⊂ 𝜇𝑒 − int𝐷.
(29)

(b) For any 𝑢 ∈ 𝑌, there exists 𝜆
𝑢
∈ R such that 𝑢 ∉ 𝜆

𝑢
𝑒 − 𝐷.

In fact, if 𝑢 ∈ 𝜆𝑒 −𝐷, ∀𝜆 ∈ R, then 𝑢 ∈ 𝜆𝑒 − int𝐷, ∀𝜆 ∈ R by
(a), which implies

{𝜆𝑒 − 𝑢 : 𝜆 ∈ R} = {−𝜆𝑒 − 𝑢 : 𝜆 ∈ R} ⊂ int𝐷. (30)

Since 𝑌 = ∪{𝜆𝑒 − 𝐷 : 𝜆 ∈ R} by Lemma 2.1 in [30], for
each V ∈ 𝑌, there exists 𝑑

0
∈ int𝐷 and 𝜇 ∈ R such that

−V = 𝜇𝑒−𝑑
0
.Then V = −𝜇𝑒+𝑑

0
= (−𝜇𝑒−𝑢)+𝑑

0
+𝑢 ∈ 𝑢+int𝐷.

Thus 𝑌 ⊂ 𝑢 + int𝐷 and a contradiction with properness if 𝐷
arises.

(c) For some 𝑟 ∈ R, 𝑓
𝑥
(𝑋) ∩ (𝑟𝑒 − 𝐷) = 0 and (a5) holds.

Indeed, for each 𝑢 ∈ 𝑓
𝑥
(𝑋), there exists 𝜆

𝑢
∈ R such that

𝑢 ∉ 𝜆
𝑢
𝑒 −𝐷, and so𝑁

𝑢
∩ (𝜆
𝑢
𝑒 −𝐷) = 0 for some𝑁

𝑢
∈ N(𝑢).

By the completeness of 𝑓
𝑥
(𝑋), there exists 𝑢

1
, . . . , 𝑢

𝑛
∈ 𝑓
𝑥
(𝑋)

such that 𝑓
𝑥
(𝑋) = ∪{𝑁

𝑢
𝑖

: 1 ≤ 𝑖 ≤ 𝑛}. Taking 𝑟 = min{𝜆
𝑢
𝑖

:

1 ≤ 𝑖 ≤ 𝑛}, we have 𝑓
𝑥
(𝑋) ∩ (𝑟𝑒 − 𝐷) = 0.

Apparently, we have the following by applying
Theorem 10.

Corollary 12. If

(a7) 𝑓(𝑥, 𝑥) ⊂ −𝜕𝐷, ∀𝑥 ∈ 𝑋, where 𝜕𝐷 is the topological
bound of𝐷

instead of (a3), hold in Theorem 10, then the conclusions are
true as well.

Remark 13. Under all the hypotheses in Theorem 10,
Corollary 11, or Corollary 12, for each 𝜀 > 0, there exists
𝑥
𝜀
∈ 𝑋 such that

𝑓 (𝑥
𝜀
, 𝑦) ∩ (−𝜀𝑤 (𝑥

𝜀
, 𝑦) 𝑒 − int𝐷) = 0, ∀𝑦 ∈ 𝑋. (31)

In fact, it is obvious that𝑓(𝑥
𝜀
, 𝑦)∩(−𝜀𝑤(𝑥

𝜀
, 𝑦)𝑒− int𝐷) =

0, ∀𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥
𝜀
. For 𝑦 = 𝑥

𝜀
, if

𝑓 (𝑥
𝜀
, 𝑥
𝜀
) ∩ (−𝜀𝑤 (𝑥

𝜀
, 𝑥
𝜀
) 𝑒 − int𝐷) ̸= 0, (32)

then 𝑓(𝑥
𝜀
, 𝑥
𝜀
) ∩ (− int𝐷) ̸= 0, which contradicts with (a3) or

(a7).

Remark 14. (a) The condition:

(a8) there exists 𝑏̃ ∈ 𝑌 such that 𝑓
𝑥
(𝑋) ∩ (𝑏̃ − int𝐷) = 0,

often appeared in the results on Ekeland variational principle
for (generalized) vector equilibrium problems, such asTheo-
rem 2.1 in [22]. Actually, (a8) is equivalent to (a5). As the case

stands, it is apparent that (a5) implies (a8). On the other hand,
taking 𝑏 ∈ 𝑏̃ − int𝐷, then 𝑏 − 𝐷 ⊂ 𝑏̃ − int𝐷 − 𝐷 ⊂ 𝑏̃ − int𝐷,
which guarantees (a5).

(b) The condition:

(a9) for each 𝑥 ∈ 𝑋, 0
𝑌
∈ 𝑓(𝑥, 𝑥) or 𝑓(𝑥, 𝑥) = {0

𝑌
},

instead of (a3) or (a7), is always required to prove varia-
tional principle for equilibrium problems inmany literatures,
such as in [20–24]. But this condition is unnecessary in
Theorem 10. See the following examples.

Example 15. Let 𝑋 = [0, 1], 𝑌 = R2, and 𝐷 = {(𝑥, 𝑦) : 𝑥 ∈

R, 𝑦 ≥ 0}, and let 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ 𝑋. Define 𝑓 :

𝑋 × 𝑋 → 2𝑌 as

𝑓 (𝑥, 𝑦) = {(𝑥,
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨) , (−𝑥,
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨)} , ∀𝑥, 𝑦 ∈ 𝑋. (33)

By computing simply, (a1)–(a5) hold. But (a9) is false since
0
𝑌
∉ 𝑓(𝑥, 𝑥) unless 𝑥 = 0.

Example 16. Let𝑋 = R, 𝑌 = R2, and𝐷 = {(𝑥, 𝑦) : 𝑥 ∈ R, 𝑦 ≥

0}, and let 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ 𝑋, and 𝑓 : 𝑋 × 𝑋 → 2𝑌

define as 𝑓(𝑥, 𝑦) = [1, 2] × {0}, ∀𝑥, 𝑦 ∈ 𝑋. It is clear that (a1)-
(a2), (a4)-(a5), and (a7) are satisfied, but (a9) does not hold.

It is effortless to obtain the following variant of vectorial
form of Ekeland variational principle byTheorem 10.

Theorem 17. Let 𝜀, 𝜆 > 0 be given. If, besides (a1)–(a5),
(a10) for some 𝑥 ∈ 𝑋 with 𝑆(𝑥) ̸= 0,

𝑓 (𝑥, 𝑦) ∩ (−𝜀𝑒 − 𝐷) = 0, ∀𝑦 ∈ 𝑋, (34)

where 𝑆 is defined as (26), then there exists 𝑥 ∈ 𝑋 such that

(i) 𝑓(𝑥, 𝑥) ⊂ 𝐷 if, further, 𝑓(𝑥, 𝑥) ⊂ 𝐷, ∀𝑥 ∈ 𝑋;
(ii) 𝑤(𝑥, 𝑥) ≤ 𝜆;
(iii) 𝑓(𝑥, 𝑦)∩(−(𝜀/𝜆)𝑤(𝑥, 𝑦)𝑒−𝐷) = 0, ∀𝑦 ∈ 𝑋with𝑦 ̸= 𝑥.

Proof. Let 𝑥 ∈ 𝑋 be the point provided by Theorem 10 with
𝜀/𝜆 instead of 𝜀. Then (iii) is obtained by the conclusion (ii)
in Theorem 10. In addition, in view of the conclusion (i) in
Theorem 10,

𝜁
𝑓
𝑥

(𝑥) +
𝜀

𝜆
𝑤 (𝑥, 𝑥) ≤ 0. (35)

It follows from (34)-(35), (a10), and Lemma 6(ii) that −𝜀 ≤

𝜁
𝑓
𝑥

(𝑥) ≤ −(𝜀/𝜆)𝑤(𝑥, 𝑥) and so the conclusion (ii) holds.
Moreover, according to the conclusion (iii) in Theorem 10,
there exists 𝑢̃ ∈ 𝑓(𝑥, 𝑥) such that

−𝑢̃ ∈
𝜀

𝜆
𝑤 (𝑥, 𝑥) + 𝐷. (36)

Taking 𝑥 = 𝑧 = 𝑥 and 𝑦 = 𝑥 in (a2), we have

𝑓 (𝑥, 𝑥) + 𝑓 (𝑥, 𝑥) ⊂ 𝑓 (𝑥, 𝑥) + 𝐷 ⊂ 𝐷. (37)

Then

𝑓 (𝑥, 𝑥) ⊂ −𝑢̃ + 𝐷 ⊂
𝜀

𝜆
𝑤 (𝑥, 𝑥) + 𝐷 + 𝐷 ⊂ 𝐷. (38)

Thereby, (i) holds.
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Remark 18. (a) If the solution set of (GVEP2) or (GVEP1) is
nonempty, then theremust exist a point 𝑥 ∈ 𝑋 satisfying (34).

(b) If, further,𝐷 is a point cone (that is,𝐷∩(−𝐷) = {0
𝑌
})

in Theorems 17, then the condition (a10) can be weakened as
follows: for some 𝑥 ∈ 𝑋 with 𝑆(𝑥) ̸= 0,

𝑓 (𝑥, 𝑥) ∩ (−𝜀𝑒 − 𝐷 \ {0
𝑌
}) = 0, ∀𝑥 ∈ 𝑋, (39)

where 𝑆 is defined as (5).
In fact, we only prove (ii) by the proof of Theorem 17. In

view of Theorem 10 (iii),

𝑓 (𝑥, 𝑥) ∩ (−
𝜀

𝜆
𝑤 (𝑥, 𝑥) 𝑒 − 𝐷) ̸= 0. (40)

Then there exist 𝑦
0
∈ 𝑓(𝑥, 𝑥) and 𝑑

0
∈ 𝐷 such that 𝑦

0
=

−(𝜀/𝜆)𝑤(𝑥, 𝑥)𝑒 − 𝑑
0
. By (39),

−
𝜀

𝜆
𝑤 (𝑥, 𝑥) 𝑒 − 𝑑

0
∉ −𝜀𝑒 − 𝐷 \ {0

𝑌
} , (41)

or equivalently,
𝜀

𝜆
(𝑤 (𝑥, 𝑥) − 𝜆) 𝑒 + 𝑑

0
∉ 𝐷 \ {0

𝑌
} . (42)

If 𝑤(𝑥, 𝑥) > 𝜆, then (𝜀/𝜆)(𝑤(𝑥, 𝑥) − 𝜆)𝑒 + 𝑑
0
∈ 𝐷 and so

(𝜀/𝜆)(𝑤(𝑥, 𝑥) − 𝜆)𝑒 + 𝑑
0
= 0
𝑌
, which implies that 𝑑

0
=

−(𝜀/𝜆)(𝑤(𝑥, 𝑥) − 𝜆)𝑒 ∈ − int𝐷. Thereupon, 𝑑
0
= 0
𝑌
by the

pointedness of𝐷, which contradicts with 𝑑
0
∈ − int𝐷.

4. Applications of Vectorial Form of Ekelend
Variational Principle for (GVEP1)

In this section, some existence results of solutions of (GVEP2)
are established as applications of Ekelend variational princi-
ple for (GVEP1).

Theorem 19. Let𝑋 admit a topology 𝜏 (possibly different from
the initial topology T induced by 𝑑). Besides (a1)-(a2), (a4)-
(a5) and (a7) in the sense ofT, if the following conditions hold:

(b1) 𝑋 is 𝜏-compact; namely, 𝑋 is compact with respect to
𝜏;

(b2) for each 𝑥 ∈ 𝑋, 𝑥
𝑘

𝜏

󳨀→ 𝑥 as 𝑘 → +∞ implies the
boundedness of {𝑑(𝑥

𝑘
, 𝑥) : 𝑘 ∈ N};

(b3) 𝑓𝑦 is 𝜏-lower semicontinuous on 𝑋 for each 𝑦 ∈ 𝑋,
then (GVEP2) has a solution.

Proof. If 𝑤 = 𝑑 and 𝜀 = 1/𝑘 in (31), then there exists 𝑥
𝑘
∈ 𝑋

such that

𝑓 (𝑥
𝑘
, 𝑦) ∩ (−

1

𝑘
𝑑 (𝑥
𝑘
, 𝑦) 𝑒 − int𝐷) = 0, ∀𝑦 ∈ 𝑋. (43)

Thus 𝜁
𝑓
𝑦(𝑥
𝑘
) ≥ −(1/𝑘)𝑑(𝑥

𝑘
, 𝑦) by Lemma 6(i). Without loss

of generality, let 𝑥
𝑘

𝜏

󳨀→ 𝑥 by (b1). Since 𝜁
𝑓
𝑦(⋅) is 𝜏-upper

semicontinuous for each 𝑦 ∈ 𝑋 by (b3) and Lemma 7(i),

𝜁
𝑓
𝑦 (𝑥) ≥ lim sup

𝑘→+∞

𝜁
𝑓
𝑦 (𝑥
𝑘
)

≥ lim sup
𝑘→+∞

−
1

𝑘
𝑑 (𝑥
𝑘
, 𝑦) = 0, ∀𝑦 ∈ 𝑋,

(44)

due to (b2).This deduces that𝑓(𝑥, 𝑦)∩(− int𝐷) = 0, ∀𝑦 ∈ 𝑋
by Lemma 6(i); that is, (GVEP2) has a solution.

Remark 20. It is worth noting that the condition (b2) cannot
be guaranteed by (b1). For instance, let 𝑋 = R and 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ 𝑋. For the trivial topology 𝜏 = {0, 𝑋}, 𝑋 is
𝜏-compact. For 𝑥

𝑘
= 𝑘, it is clear that 𝑥

𝑘

𝜏

󳨀→ 0, but {𝑑(𝑥
𝑘
, 0) :

𝑘 ∈ N} is unbounded.

Corollary 21. If (a1)-(a2), (a4), and (a6)-(a7) and

(a11) 𝑓𝑦 is lower semicontinuous on𝑋 for each 𝑦 ∈ 𝑋,

hold, then (GVEP2) has a solution.

Proof. Clearly, (a6) implies (a5). Taking 𝜏 = T in
Theorem 19, (b1) and (b3) hold by (a6) and (a11), respectively,
and (b2) holds trivially since 𝑑(𝑥

𝑘
, 𝑥) → 0 when 𝑥

𝑘
→ 𝑥.

Thus this conclusion is true byTheorem 19.

When the existence of solutions of equilibrium prob-
lems on a noncompact domain is discussed, some sufficient
assumptions, such as coercivity condition [31] and condition
𝐶
1
(𝑥
0
) [20], and so forth, must be required to be substitute

for compact domain. Motivated by these ideas, we obtain
the following existence results of solutions of (GVEP2) by
applyingTheorem 19.

Theorem 22. Let (a1)-(a2), (a4)-(a5), and (a7) hold in the
sense of T induced by 𝑑, and let 𝑋 admit a topological 𝜏
(possibly different from the initial topology T induced by 𝑑).
If (b3) is satisfied and the following hold:

(b4) eachT-closed bounded ball on𝑋 is 𝜏-compact,
(b5) for given point 𝑥 ∈ 𝑋, there exists a 𝜏-compact set 𝐶 ⊂

𝑋 satisfying that, for each 𝑥 ∈ 𝐶 and {𝑥
𝑘
} ⊂ 𝐶, 𝑥

𝑘

𝜏

󳨀→ 𝑥

implies the boundedness of {𝑑(𝑥
𝑘
, 𝑥) : 𝑘 ∈ N} and for

each 𝑥 ∈ 𝑋 \ 𝐶,

𝑑 (𝑦, 𝑥) < 𝑑 (𝑥, 𝑥) , 𝑓 (𝑥, 𝑦) ∩ (−𝐷) ̸= 0 (45)

for some 𝑦 ∈ 𝑋,
(b6) for each x ∈ X, L(x) = {y ∈ X : f(x, y) ∩ (−D) ̸= 0} is

𝜏-closed,
(b7) for each y ∈ X, d(⋅, y) is 𝜏-lower semicontinuous,

then (GVEP2) has a solution.

Proof. Define 𝐴 : 𝑋 → 2
𝑌 as

𝐴 (𝑥) = {𝑦 ∈ 𝑋 : 𝑑 (𝑦, 𝑥) ≤ 𝑑 (𝑥, 𝑥) , 𝜁
𝑓
𝑥

(𝑦) ≤ 0} . (46)

We see the following.

(a) For each 𝑥 ∈ 𝑋, 𝐴(𝑥) ̸= 0 since 𝑥 ∈ 𝐴(𝑥) by (a7).
(b) For each 𝑥 ∈ 𝑋, 𝑦 ∈ 𝐴(𝑥) implies that 𝐴(𝑦) ⊂ 𝐴(𝑥)

by the similar argument of the proof in Lemma 9.
(c) 𝐴(𝑥) is 𝜏-compact for each 𝑥 ∈ 𝑋 by (b4) and (b6).
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By regarding the 𝜏-compact set 𝐶 as 𝑋 in Theorem 19,
there exists 𝑥

𝐶
∈ 𝐶 such that

𝑓 (𝑥
𝐶
, 𝑦) ∩ (− int𝐷) = 0, ∀𝑦 ∈ 𝐶. (47)

Now argue the conclusion by contradiction. Assume that
there exists 𝑦 ∈ 𝑋 \ 𝐶 such that

𝑓 (𝑥
𝐶
, 𝑦) ∩ (− int𝐷) ̸= 0. (48)

Let

𝛼 = min {𝑑 (𝑦, x̂) : 𝑦 ∈ 𝐴 (𝑦)} . (49)

Now assert that

𝐴 (𝑦) ∩ 𝐶 = 0. (50)

In fact, if 𝑦 ∈ 𝐴(𝑦) ∩ 𝐶, then 𝑓(𝑦, 𝑦) ∩ (−𝐷) ̸= 0, which,
together with (48), deduces that 𝑓(𝑥

𝐶
, 𝑦) ∩ (− int𝐷) ̸= 0 in

view of (a2) and Lemmas 6 and 8. This contradicts with (47).
The minimum in (49) is attained since 𝐴(𝑦) is nonempty

𝜏-compact by (a) and (c), and 𝑑(⋅, 𝑥) is 𝜏-lower semicontinu-
ous. Take 𝑧

0
∈ 𝐴(𝑦) such that 𝑑(𝑧

0
, 𝑥) = 𝛼. Since 𝑧

0
∉ 𝐶 by

(50), 𝑧
1
can be chosen to satisfy that 𝑑(𝑧

1
, 𝑥) < 𝑑(𝑧

0
, 𝑥) = 𝛼

and 𝑓(𝑧
0
, 𝑧
1
) ∩ (−𝐷) ̸= 0 by (b5). Accordingly, the assertion

𝑧
1
∈ 𝐴(𝑧

0
) ⊂ 𝐴(𝑦) is absurd by the definition of 𝛼. Thereby,

𝑓(𝑥
𝐶
, 𝑦) ∩ (− int𝐷) = 0, ∀𝑦 ∈ 𝑋, or in other words, 𝑥

𝐶
is a

solution of (GVEP2).

Theorem 23. Suppose that (𝑋, ‖ ⋅ ‖) is a real reflexive Banach
space. Besides (a1)-(a2), (a4)-(a5) and (a7), if the following
conditions hold:

(b8) for each 𝑦 ∈ 𝑋, 𝑓𝑦 is weakly lower semicontinuous,

(b9) there exists 𝑟 > 0 such that for each 𝑥 ∈ 𝑋 \ 𝑋
𝑟
, 𝑦 ∈

𝑋 can be selected such that ‖𝑦‖ < ‖𝑥‖ and 𝑓(𝑥, 𝑦) ∩
(−𝐷) ̸= 0, where𝑋

𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟},

then (GVEP2) has a solution.

Proof. DenoteT and 𝜏 by the strong topology and the weak
topology on𝑋, respectively, and define 𝐴 : 𝑋 → 2

𝑋 as

𝐴 (𝑥) = {𝑦 ∈ 𝑋 :
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ ‖𝑥‖ , 𝜁𝑓𝑥 (𝑦) ≤ 0} , ∀𝑥 ∈ 𝑋. (51)

Letting 𝑥 = 0
𝑋
,𝐶 = 𝑋

𝑟
, and 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖, ∀𝑥, 𝑦 ∈ 𝑋, we

see that 𝐴(𝑥) is just equal to (46). (b3) and (b5) are satisfied
by (b8) and (b9), respectively. Also, (b4) and (b7) hold thanks
to weak compactness of each closed bounded ball and weak
lower semicontinuity of ‖⋅‖ in a real reflexive Banach space,
respectively. Besides, (b6) guarantees the weak compactness
of 𝐴(𝑥) in the proof of Theorem 22. While this property can
be guaranteed by the assertions that 𝑋

‖𝑥‖
is weakly compact

and {𝑦 ∈ 𝑋 : 𝜁
𝑓
𝑥

(𝑦) ≤ 0} is closed by (a4) and Lemma 7(ii),
this rest proof completes by the similar argument of the proof
inTheorem 22.

5. Several Equivalent Results of Vectorial
Form of Ekelend Variational Principle

In this section, we shall present several equivalent results of
the established Ekelend variational principle. Now Define ⪯
as follows:

𝑥 ⪯ 𝑦 ⇐⇒ 𝑥 = 𝑦 or 𝑓 (𝑥, 𝑦) ∩ (−𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) ̸= 0.

(52)

Then, under the conditions (a1)–(a3), ⪯ is a quasiorder on 𝑋
by Lemma 8(i). Also, (𝑋, ⪯) has a maximal element 𝑥 under
all assumptions of Theorem 10. Indeed, 𝐴(𝑥) = {𝑦 ∈ 𝑋 : 𝑥 ⪯

𝑦}, where 𝐴(𝑥) is defined as (27). Then there exists 𝑥 ∈ 𝑋

such that 𝐴(𝑥) = {𝑥} by Theorem 10(i), which implies that 𝑥
is a maximal element of (𝑋, ⪯).

Theorem 24. Let (a1)–(a3) hold and 𝑋 equip a quasiorder ⪯
defined as (52). Then the following assertions are equivalent.

(i) (Existence result of maximal element) (𝑋, ⪯) has a
maximal element 𝑥.

(ii) (Ekelend variational principle for (GVEP1)) There
exists 𝑥 ∈ 𝑋 such that

𝑓 (𝑥, 𝑦) ∩ (−𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) = 0, ∀𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥.

(53)

(iii) (Caristi-kirk fixe-point theorem) Let 𝑃 : 𝑋 → 2𝑋 be a
strict, set-valuedmapping such that, for any𝑥 ∈ 𝑋, 𝑥 ⪯
𝑦, ∀𝑦 ∈ 𝑃(𝑥).Then there exists 𝑥 ∈ 𝑋 such that 𝑃(𝑥) =
{𝑥}.

Proof. (i)⇒(iii) Let 𝑥 be a maximal element on (𝑋, ⪯). If
𝑃(𝑥) ̸= {𝑥}, then there exists 𝑦 ̸= 𝑥 such that 𝑦 ∈ 𝑃(𝑥) since
𝑃 is strict. By the assumption (iii), 𝑥 ⪯ 𝑦, which is absurd.
Thus 𝑃(𝑥) = {𝑥}.

(iii)⇒(ii) Let 𝑃 = 𝐴, where 𝐴(𝑥) is defined as (27). Then
for any 𝑥 ∈ 𝑋, 𝑥 ⪯ 𝑦, ∀𝑦 ∈ 𝑃(𝑥); that is, the assumption of
(iii) is satisfied. Consequently,𝑃(𝑥) = {𝑥} for some 𝑥 ∈ 𝑋 and
so (ii) holds.

(ii)⇒(i) Define 𝐴(𝑥) as (27). Then 𝐴(𝑥) = {𝑦 ∈ 𝑋 : 𝑥 ⪯

𝑦}, and there exists 𝑥 ∈ 𝑋 such that 𝐴(𝑥) = {𝑥} by (ii). This
implies that 𝑥 is a maximal element on (𝑋, ⪯).

Theorem 25. Let 𝑆 : 𝑋 → 2𝑋 be defined as (5) and 𝑥 ∈

𝑋 be any given point with 𝑆(𝑥) ̸= 0. Then the results below are
equivalent.

(i) (Ekelend variational principle for (GVEP1)) There
exists 𝑥 ∈ 𝑆(𝑥) such that (53) holds.

(ii) (Existence result of solutions of (GVEP1)) If, for any𝑥 ∈
𝑆(𝑥),

𝑓 (𝑥, 𝑦) ∩ (−𝐷) ̸= 0 for some𝑦 ∈ 𝑋 (54)

implies that there exists 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥 such that

𝑓 (𝑥, 𝑦) ∩ (−𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) ̸= 0, (55)

then (GVEP1) has a solution 𝑥 ∈ 𝑆(𝑥).
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(iii) (Caristi-kirk type fixe-point Theorem) Let 𝑃 : 𝑋 →

2𝑋 be a strict, set-valued mapping such that, for any
𝑥 ∈ 𝑆(𝑥), there exists 𝑦 ∈ 𝑃(𝑥) satisfying (54). Then
there exists 𝑥 ∈ 𝑆(𝑥) such that 𝑥 ∈ 𝑃(𝑥).

(iv) (Oettli-Théra type Theorem) Let Φ ⊂ 𝑋. If, for every
𝑥 ∈ 𝑆(𝑥) \ Φ, there exists 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥 such that
(54) holds, then 𝑆(𝑥) ∩ Φ ̸= 0.

Proof. (i)⇒(iv) Let 𝑥 ∈ 𝑆(𝑥) satisfy (53). If 𝑥 ∉ Φ, then there
exists 𝑦 ∈ 𝑋with 𝑦 ̸= 𝑥 such that𝑓(𝑥, 𝑦)∩(−𝑤(𝑥, 𝑦)𝑒−𝐷) ̸= 0

holds by the hypothesis of (iv). This is absurd by (53) and so
𝑥 ∈ 𝑆(𝑥) ∩ Φ.

(iv)⇒(i) Let (iv) hold and define Φ = {𝑥 ∈ 𝑋 : 𝑆(𝑥) = 0}.
If 𝑥 ∉ Φ, then 𝑆(𝑥) ̸= 0; that is, there exists 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥

such that (54) holds; that is, the assumption of (iv) is satisfied.
Thus, 𝑆(𝑥) ∩ Φ ̸= 0. By taking 𝑥 ∈ 𝑆(𝑥) ∩ Φ, 𝑥 satisfies (53);
that is, (i) is true.

(ii)⇒(iv) This conclusion is argued by contradiction.
Assume that 𝑆(𝑥) ∩ Φ = 0. If 𝑥 ∈ 𝑆(𝑥), then 𝑥 ∉ Φ and
so there exists 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥 such that (54) holds by the
hypothesis of (iv). Thus the assumption (ii) is satisfied and so
there exists 𝑥 ∈ 𝑆(𝑥) such that

𝑓 (𝑥, 𝑦) ∩ (−𝐷) = 0, ∀𝑦 ∈ 𝑋, (56)

which implies that

𝑓 (𝑥, 𝑦) ∩ (−𝑤 (𝑥, 𝑦) 𝑒 − 𝐷) = 0, ∀𝑦 ∈ 𝑋 (57)

by 𝑤(𝑥, 𝑦) ≥ 0 and 𝑒 ∈ int𝐷. This contradicts with (54).
(iv)⇒(ii) Let Φ = {𝑥 ∈ 𝑋 : 𝑓(𝑥, 𝑦) ∩ (−𝐷) = 0, ∀𝑦 ∈ 𝑋}.

By the assumption of (ii), for any 𝑥 ∈ 𝑆(𝑥)\Φ, there exists 𝑦 ∈
𝑋 with 𝑦 ̸= 𝑥 such that (54) holds. This is just the assumption
of (iv). Choosing 𝑥 ∈ 𝑆(𝑥) ∩ Φ, we have that 𝑥 ∈ 𝑆(𝑥) and
𝑓(𝑥, 𝑦) ∩ (−𝐷) = 0, ∀𝑦 ∈ 𝑋.

(iii)⇒(iv) Define 𝑃 : 𝑋 → 2𝑋 as 𝑃(𝑥) = {𝑦 ∈ 𝑋 :

𝑦 ̸= 𝑥}. Argue this by contradiction. If 𝑆(𝑥) ∩ Φ = 0, then the
assumption of (iii) holds by the assumption of (iv). Hence, 𝑃
has a fixed point on𝑋, which is absurd by the definition of 𝑃.

(iv)⇒(iii) LetΦ = {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝑃(𝑥)}. The assumption of
(iv) is deduced straight by the assumption of (iii). Resultingly,
𝑆(𝑥) ∩ Φ ̸= 0; that is, 𝑥 ∈ 𝑃(𝑥) for some 𝑥 ∈ 𝑆(𝑥).

Remark 26. Suppose that 𝑓 is a single-valued mapping.
Theorem 25 reducesTheorem 5.1 in [21] if 𝑓(𝑥, 𝑥) = 0

𝑌
, ∀𝑥 ∈

𝑋 hold instead of (a3), and if, further, (a4) hold and 𝑓
𝑥
is

(𝑒, 𝐷)-lower semicontinuous for each 𝑥 ∈ 𝑋 (namely, {𝑦 ∈

𝑋 : 𝑓(𝑥, 𝑦) ∈ 𝑟𝑒 − 𝐷} is closed for each 𝑟 ∈ R and each
𝑥 ∈ 𝑋).
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