37,715 research outputs found

    An open-system approach for the characterization of spatio-temporal chaos

    Full text link
    We investigate the structure of the invariant measure of space-time chaos by adopting an "open-system" point of view. We consider large but finite windows of formally infinite one-dimensional lattices and quantify the effect of the interaction with the outer region by mapping the problem on the dynamical characterization of localized perturbations. This latter task is performed by suitably generalizing the concept of Lyapunov spectrum to cope with perturbations that propagate outside the region under investigation. As a result, we are able to introduce a "volume"-propagation velocity, i.e. the velocity with which ensembles of localized perturbations tend to fill volumes in the neighbouring regions.Comment: Submitted to J.Stat.Phys. - 26 pages, 7 eps-figures included. Keywords: High-dimensional Chaos; Fractals; Coupled map lattices; Numerical simulations of chaotic model

    Production of three-body Efimov molecules in an optical lattice

    Full text link
    We study the possibility of associating meta-stable Efimov trimers from three free Bose atoms in a tight trap realised, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov effect in three-body energy spectra. Our predictions on the energy levels and wave functions of three pairwise interacting 85Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates that it is the lowest energetic Efimov trimer state that can be associated in an adiabatic sweep of the field strength. We show that the binding energies and spatial extents of the trimer molecules produced are comparable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular state follows Efimov's scenario when the pairwise attraction of the atoms is strengthened by tuning the magnetic field strength.Comment: 21 pages, 8 figures (final version

    Positive Feedback, Memory and the Predictability of Earthquakes

    Full text link
    We review the "critical point" concept for large earthquakes and enlarge it in the framework of so-called "finite-time singularities". The singular behavior associated with accelerated seismic release is shown to result from a positive feedback of the seismic activity on its release rate. The most important mechanisms for such positive feedback are presented. We introduce and solve analytically a novel simple model of geometrical positive feedback in which the stress shadow cast by the last large earthquake is progressively fragmented by the increasing tectonic stress. Finally, we present a somewhat speculative figure that tends to support a mechanism based on the decay of stress shadows. This figure suggests that a large earthquake in Southern California of size similar to the 1812 great event is maturing.Comment: PostScript document of 18 pages + 2 eps figure

    Noise-guided evolution within cyclical interactions

    Get PDF
    We study a stochastic predator-prey model on a square lattice, where each of the six species has two superior and two inferior partners. The invasion probabilities between species depend on the predator-prey pair and are supplemented by Gaussian noise. Conditions are identified that warrant the largest impact of noise on the evolutionary process, and the results of Monte Carlo simulations are qualitatively reproduced by a four-point cluster dynamical mean-field approximation. The observed noise-guided evolution is deeply routed in short-range spatial correlations, which is supported by simulations on other host lattice topologies. Our findings are conceptually related to the coherence resonance phenomenon in dynamical systems via the mechanism of threshold duality. We also show that the introduced concept of noise-guided evolution via the exploitation of threshold duality is not limited to predator-prey cyclical interactions, but may apply to models of evolutionary game theory as well, thus indicating its applicability in several different fields of research.Comment: to be published in New J. Phy

    Calibration of Smearing and Cooling Algorithms in SU(3)-Color Gauge Theory

    Get PDF
    The action and topological charge are used to determine the relative rates of standard cooling and smearing algorithms in pure SU(3)-color gauge theory. We consider representative gauge field configurations on 163×3216^3\times 32 lattices at β=5.70\beta=5.70 and 243×3624^3\times 36 lattices at β=6.00\beta=6.00. We find the relative rate of variation in the action and topological charge under various algorithms may be succinctly described in terms of simple formulae. The results are in accord with recent suggestions from fat-link perturbation theory.Comment: RevTeX, 25 pages, 22 figures, full resolution jpeg version of Fig. 22 can be obtained from http://www.physics.adelaide.edu.au/cssm/papers_etc/SmearingComp.jp

    Autonomous Energy Transducer: Proposition, Example, Basic Characteristics

    Full text link
    We propose a concept of autonomous energy transducer at a molecular scale, where output is produced with small input energy, of the same order of the thermal energy, without restriction of magnitude or timing of input, and without any control after the input. As an example that satisfies these requisites, a dynamical systems model with several degrees of freedom is proposed, which transduces input energy to output motion on the average. It is shown that this transduction is robust and the coupling between the input and output is generally loose. How this transducer works is analyzed in terms of dynamical systems theory, where chaotic dynamics of the internal degrees of freedom, as well as duration of active state which is self-organized with the energy flow, is essential. We also discuss possible relationships to enzyme dynamics or protein motors.Comment: 14 pages, 12 figure

    Surface code fidelity at finite temperatures

    Full text link
    We study the dependence of the fidelity of the surface code in the presence of a single finite-temperature massless bosonic environment after a quantum error correction cycle. The three standard types of environment are considered: super-Ohmic, Ohmic, and sub-Ohmic. Our results show that, for regimes relevant to current experiments, quantum error correction works well even in the presence of environment-induced, long-range inter-qubit interactions. A threshold always exists at finite temperatures, although its temperature dependence is very sensitive to the type of environment. For the super-Ohmic case, the critical coupling constant separating high- from low-fidelity decreases with increasing temperature. For both Ohmic and super-Ohmic cases, the dependence of the critical coupling on temperature is weak. In all cases, the critical coupling is determined by microscopic parameters of the environment. For the sub-Ohmic case, it also depends strongly on the duration of the QEC cycle.Comment: 13 pages, 6 figure

    Summary: Working Group on QCD and Strong Interactions

    Full text link
    In this summary of the considerations of the QCD working group at Snowmass 2001, the roles of quantum chromodynamics in the Standard Model and in the search for new physics are reviewed, with empahsis on frontier areas in the field. We discuss the importance of, and prospects for, precision QCD in perturbative and lattice calculations. We describe new ideas in the analysis of parton distribution functions and jet structure, and review progress in small-xx and in polarization.Comment: Snowmass 2001. Revtex4, 34 pages, 4 figures, revised to include additional references on jets and lattice QC
    corecore