529 research outputs found

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Proyecciones cónicas de rectas en sistemas catadióptricos para percepción visual en entornos construidos por el hombre

    Get PDF
    Los sistemas de visión omnidireccional son dispositivos que permiten la adquisición de imágenes con un campo de vista de 360º en un eje y superior 180º en el otro. La necesidad de integrar estas cámaras en sistemas de visión por computador ha impulsado la investigación en este campo profundizando en los modelos matemáticos y la base teórica necesaria que permite la implementación de aplicaciones. Existen diversas tecnologías para obtener imágenes omnidireccionales. Los sistemas catadióptricos son aquellos que consiguen aumentar el campo de vista utilizando espejos. Entre estos, encontramos los sistemas hiper-catadióptricos que son aquellos que utilizan una cámara perspectiva y un espejo hiperbólico. La geometría hiperbólica del espejo garantiza que el sistema sea central. En estos sistemas adquieren una especial relevancia las rectas del espacio, en la medida en que, rectas largas son completamente visibles en única imagen. La recta es una forma geométrica abundante en entornos construidos por el hombre que además acostumbra a ordenarse según direcciones dominantes. Salvo construcciones singulares, la fuerza de la gravedad fija una dirección vertical que puede utilizarse como referencia en el cálculo de la orientación del sistema. Sin embargo el uso de rectas en sistemas catadióptricos implica la dificultad añadida de trabajar con un modelo proyectivo no lineal en el que las rectas 3d son proyectadas en cónicas. Este TFM recoge el trabajo que se presenta en el artículo "Significant Conics on Catadioptric Images for 3D Orientation and Image Rectification" que pretendemos enviar a "Robotics and Autonomous Systems". En él se presenta un método para calcular la orientación de un sistema hiper-catadióptrico utilizando las cónicas que son proyecciones de rectas 3D. El método calcula la orientación respecto del sistema de referencia absoluto definido por el conjunto de puntos de fuga en un entorno en que existan direcciones dominantes

    Real Time UAV Altitude, Attitude and Motion Estimation form Hybrid Stereovision

    Get PDF
    International audienceKnowledge of altitude, attitude and motion is essential for an Unmanned Aerial Vehicle during crit- ical maneuvers such as landing and take-off. In this paper we present a hybrid stereoscopic rig composed of a fisheye and a perspective camera for vision-based navigation. In contrast to classical stereoscopic systems based on feature matching, we propose methods which avoid matching between hybrid views. A plane-sweeping approach is proposed for estimating altitude and de- tecting the ground plane. Rotation and translation are then estimated by decoupling: the fisheye camera con- tributes to evaluating attitude, while the perspective camera contributes to estimating the scale of the trans- lation. The motion can be estimated robustly at the scale, thanks to the knowledge of the altitude. We propose a robust, real-time, accurate, exclusively vision-based approach with an embedded C++ implementation. Although this approach removes the need for any non-visual sensors, it can also be coupled with an Inertial Measurement Unit
    corecore