21 research outputs found

    Tauberian theorem for value functions

    Full text link
    For two-person dynamic zero-sum games (both discrete and continuous settings), we investigate the limit of value functions of finite horizon games with long run average cost as the time horizon tends to infinity and the limit of value functions of λ\lambda-discounted games as the discount tends to zero. We prove that the Dynamic Programming Principle for value functions directly leads to the Tauberian Theorem---that the existence of a uniform limit of the value functions for one of the families implies that the other one also uniformly converges to the same limit. No assumptions on strategies are necessary. To this end, we consider a mapping that takes each payoff to the corresponding value function and preserves the sub- and super- optimality principles (the Dynamic Programming Principle). With their aid, we obtain certain inequalities on asymptotics of sub- and super- solutions, which lead to the Tauberian Theorem. In particular, we consider the case of differential games without relying on the existence of the saddle point; a very simple stochastic game model is also considered

    Asymptotic Control for a Class of Piecewise Deterministic Markov Processes Associated to Temperate Viruses

    Full text link
    We aim at characterizing the asymptotic behavior of value functions in the control of piece-wise deterministic Markov processes (PDMP) of switch type under nonexpansive assumptions. For a particular class of processes inspired by temperate viruses, we show that uniform limits of discounted problems as the discount decreases to zero and time-averaged problems as the time horizon increases to infinity exist and coincide. The arguments allow the limit value to depend on initial configuration of the system and do not require dissipative properties on the dynamics. The approach strongly relies on viscosity techniques, linear programming arguments and coupling via random measures associated to PDMP. As an intermediate step in our approach, we present the approximation of discounted value functions when using piecewise constant (in time) open-loop policies.Comment: In this revised version, statements of the main results are gathered in Section 3. Proofs of the main results (Theorem 4 and Theorem 7) make the object of separate sections (Section 5, resp. Section 6). The biological example makes the object of Section 4. Notations are gathered in Subsection 2.1. This is the final version to be published in SICO

    Advances in Zero-Sum Dynamic Games

    Get PDF
    International audienceThe survey presents recent results in the theory of two-person zero-sum repeated games and their connections with differential and continuous-time games. The emphasis is made on the following(1) A general model allows to deal simultaneously with stochastic and informational aspects.(2) All evaluations of the stage payoffs can be covered in the same framework (and not only the usual Cesàro and Abel means).(3) The model in discrete time can be seen and analyzed as a discretization of a continuous time game. Moreover, tools and ideas from repeated games are very fruitful for continuous time games and vice versa.(4) Numerous important conjectures have been answered (some in the negative).(5) New tools and original models have been proposed. As a consequence, the field (discrete versus continuous time, stochastic versus incomplete information models) has a much more unified structure, and research is extremely active

    A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games

    Get PDF
    Nonzero-sum stochastic differential games with impulse controls offer a realistic and far-reaching modelling framework for applications within finance, energy markets, and other areas, but the difficulty in solving such problems has hindered their proliferation. Semi-analytical approaches make strong assumptions pertaining to very particular cases. To the author’s best knowledge, the only numerical method in the literature is the heuristic one we put forward in Aïd et al (ESAIM Proc Surv 65:27–45, 2019) to solve an underlying system of quasi-variational inequalities. Focusing on symmetric games, this paper presents a simpler, more precise and efficient fixed-point policy-iteration-type algorithm which removes the strong dependence on the initial guess and the relaxation scheme of the previous method. A rigorous convergence analysis is undertaken with natural assumptions on the players strategies, which admit graph-theoretic interpretations in the context of weakly chained diagonally dominant matrices. A novel provably convergent single-player impulse control solver is also provided. The main algorithm is used to compute with high precision equilibrium payoffs and Nash equilibria of otherwise very challenging problems, and even some which go beyond the scope of the currently available theory

    Optimal market making under partial information and numerical methods for impulse control games with applications

    Get PDF
    The topics treated in this thesis are inherently two-fold. The first part considers the problem of a market maker who wants to optimally set bid/ask quotes over a finite time horizon, to maximize her expected utility. The intensities of the orders she receives depend not only on the spreads she quotes, but also on unobservable factors modelled by a hidden Markov chain. This stochastic control problem under partial information is solved by means of stochastic filtering, control and piecewise-deterministic Markov processes theory. The value function is characterized as the unique continuous viscosity solution of its dynamic programming equation. Afterwards, the analogous full information problem is solved and results are compared numerically through a concrete example. The optimal full information spreads are shown to be biased when the exact market regime is unknown, as the market maker needs to adjust for additional regime uncertainty in terms of P&L sensitivity and observable order ow volatility. The second part deals with numerically solving nonzero-sum stochastic differential games with impulse controls. These offer a realistic and far-reaching modelling framework for applications within finance, energy markets and other areas, but the diffculty in solving such problems has hindered their proliferation. Semi-analytical approaches make strong assumptions pertaining very particular cases. To the author's best knowledge, there are no numerical methods available in the literature. A policy-iteration-type solver is proposed to solve an underlying system of quasi-variational inequalities, and it is validated numerically with reassuring results. In particular, it is observed that the algorithm does not enjoy global convergence and a heuristic methodology is proposed to construct initial guesses. Eventually, the focus is put on games with a symmetric structure and a substantially improved version of the former algorithm is put forward. A rigorous convergence analysis is undertaken with natural assumptions on the players strategies, which admit graph-theoretic interpretations in the context of weakly chained diagonally dominant matrices. A provably convergent single-player impulse control solver, often outperforming classical policy iteration, is also provided. The main algorithm is used to compute with high precision equilibrium payoffs and Nash equilibria of otherwise too challenging problems, and even some for which results go beyond the scope of all the currently available theory
    corecore