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Abstract
Nonzero-sum stochastic differential games with impulse controls offer a realistic and
far-reaching modelling framework for applications within finance, energy markets,
and other areas, but the difficulty in solving such problems has hindered their pro-
liferation. Semi-analytical approaches make strong assumptions pertaining to very
particular cases. To the author’s best knowledge, the only numerical method in the
literature is the heuristic one we put forward in Aïd et al (ESAIM Proc Surv 65:27–45,
2019) to solve an underlying system of quasi-variational inequalities. Focusing on
symmetric games, this paper presents a simpler, more precise and efficient fixed-point
policy-iteration-type algorithm which removes the strong dependence on the initial
guess and the relaxation scheme of the previous method. A rigorous convergence
analysis is undertaken with natural assumptions on the players strategies, which admit
graph-theoretic interpretations in the context of weakly chained diagonally dominant
matrices. A novel provably convergent single-player impulse control solver is also
provided. The main algorithm is used to compute with high precision equilibrium
payoffs and Nash equilibria of otherwise very challenging problems, and even some
which go beyond the scope of the currently available theory.

Keywords Stochastic differential games · Nonzero-sum games · Impulse control ·
Nash equilibrium · Quasi-variational inequality · Howard’s algorithm · Fixed point
policy iteration · Weakly chained diagonally dominant matrix

Introduction

Stochastic differential games model the interaction between players whose objective
functions depend on the evolution of a certain continuous-time stochastic process. The
subclass of impulse games focuses on the case where the players only act at discrete
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(usually random) points in time by shifting the process. In doing so, each of them
incurs into costs and possibly generates “gains” for the others at the same time. They
constitute a generalization of the well-known (single-player) optimal impulse control
problems [33, Chpt.7-10], which have found a wide range of applications in finance,
energy markets and insurance [5,9,13,23,31], among plenty of other fields.

From a deterministic numerical viewpoint, an impulse control problem entails the
resolution of a differential quasi-variational inequality (QVI) to compute the value
function and, when possible, retrieve an optimal strategy. Policy-iteration-type algo-
rithms [4,15,16] undoubtedly occupy an ubiquitous place in this respect, especially in
the infinite horizon case.

The presence of a second player makes matters much more challenging, as one
needs to find two optimal (or equilibrium) payoffs dependent on one another, and the
optimal strategies take the form of Nash equilibria (NEs). And while impulse controls
give a more realistic setting than “continuous” controls in applications such as the
aforementioned, they normally lead to less tractable and technical models.

It is not surprising then, that the literature in impulse games is limited and mainly
focused on the zero-sum case [8,17,21]. The more general and versatile nonzero-sum
instance has only recently received attention. The authors of [1] consider for the first
time a general two-player gamewhere both participants act through impulse controls,1

and characterize certain type of equilibrium payoffs and NEs via a system of QVIs by
means of a verification theorem. Using this result, they provide the first example of an
(almost) fully analytically solvable game, motivated by central banks competing over
the exchange rate. The result is generalized to N players in [10], which also gives a
semi-analytical solution (i.e., depending on several parameters found numerically) to
a concrete cash management problem.2 A different, more probabilistic, approach is
taken in [24] to find a semi-analytical solution to a strategic pollution control problem
and to prove another verification theorem.

The previous examples, and the lack of others,3 give testimony of how difficult it
is to explicitly solve nonzero-sum impulse games. The analytical approaches require
an educated guess to start with and (with the exception of the linear game in [1])
several parameters need to be solved for in general from highly-nonlinear systems
of equations coupled with order conditions. All of this can be very difficult, if not
prohibitive, when the structure of the game is not simple enough. Further, all of them
(as well as the majority of concrete examples in the impulse control literature) assume
linear costs. In general, for nonlinear costs, the state to which each player wants to
shift the process when intervening is not unique and it depends on the starting point.
This effectively means that infinite parameters may need to be solved for, drastically
discouraging this methodology.

While the need for numerical schemes able to handle nonzero-sum impulse games
is obvious, unlike in the single-player case, this is an utterly underdeveloped line of

1 [18,39] also consider nonzero-sum impulse games but assume the intervention times of the players are
known from the outset.
2 [10] also studies the mean field limit game.
3 [1] also gives semi-analytical solutions to modifications of the linear game when changing the payoffs in
a non-symmetric way. To the best of the author’s knowledge, these are the only examples available at the
time of writing.
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research. Focusing on the purely deterministic approach, solving the system of QVIs
derived in [1] involves handling coupled free boundary problems, further complicated
by the presence of nonlinear, nonlocal and noncontractive operators. Additionally,
solutions will typically be irregular even in the simplest cases such as the linear game.
Moreover, the absence of a viscosity solutions framework such as that of impulse
control [37] means that it is not possible to know whether the system of QVIs has
a solution (not to mention some form of uniqueness) unless one can explicitly solve
it. This is further exacerbated by the fact that even defining such a system requires a
priori assumptions on the solution (the unique impulse property). This is also the case
in [24].

To the author’s best knowledge, the only numericalmethod available in the literature
is our algorithm in [3],which tackles the systemofQVIs by sequentially solving single-
player impulse control problems combined with a relaxation scheme. Unfortunately,
the choice of the relaxation scheme is not obvious in general and the convergence of
the algorithm relies on a good initial guess. It was also observed that stagnation could
put a cap on the accuracy of the results, without any simple solution to it. Lastly, while
numerical validation was performed, no rigorous convergence analysis was provided.

Restricting attention to the one-dimensional infinite horizon two-player case, this
paper puts the focus on certain nonzero-sum impulse gameswhich display a symmetric
structure between the players. This class is broad enough to include many interesting
applications; no less than the competing central banks problem (whether in its linear
form [1] or others considered in the single bank formulation [4,19,30,32]), the cash
management problem [10] (reducing its dimension by a simple change of variables)
and the generalization of many impulse control problems to the two-player case.

For this class of games, an iterative algorithm is presented which substantially
improves [3, Alg.2] by harnessing the symmetry of the problem, removing the strong
dependence on the initial guess and dispensing with the relaxation scheme altogether.
The result is a simpler and more intuitive, precise and efficient routine, for which a
convergence analysis is provided. It is shown that the overall routine admits a repre-
sentation that strongly resembles, both algorithmically and in its properties, that of
the combined fixed-point policy-iteration methods [14,26], albeit with nonexpansive
operators. Still, a certain contraction property can still be established.

To perform the analysis, we impose assumptions on the discretization scheme used
on the systemofQVIs and the discrete admissible strategies. These naturally generalize
those of the impulse control case [4] and admit graph-theoretic interpretations in
terms of weakly chained diagonally dominant (WCDD) matrices and their recently
introduced matrix sequences counterpart [7]. We establish a clear parallel between
these discrete type assumptions, the behaviour of the players and the Verification
Theorem.

Section 1 deals with the analytical problem. Starting with an overview of the model
(Sect. 1.1), we recall the Verification Theorem of [1] and the system of QVIs we
want to solve (Sect. 1.2). We then give a precise definition of the class of symmetric
nonzero-sum impulse games and establish some preliminary results (Sect. 1.3).

Section 2 considers the analogous discrete problem. Section 2.1 specifies a general
discrete version of the system of QVIs, such that any discretization scheme compli-
ant with the assumptions to be imposed will enjoy the same properties. Section 2.2
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presents the iterative algorithm, and shows how the impulse control problems that
need to be sequentially solved have a unique solution that can be handled by policy
iteration. Additionally, Sect. 2.3 provides an alternative general solver for impulse
control problems. It consists of an instance of fixed-point policy-iteration that is non-
compliant with the standard assumptions [26] and, as far as the author knows, was not
used in the context of impulse control before, other than heuristically in [3]. We prove
its convergence under the present framework.

Section 2.4 characterizes the overall iterative algorithm as a fixed-point policy-
iteration-type method, allowing for reformulations of the original problem and results
pertaining to the solutions. The necessary matrix and graph-theoretic definitions and
results needed are collected in Appendix A for the reader’s convenience. Section 2.5
carries on with the overall convergence analysis and shows to which extent differ-
ent sets of reasonable assumptions are enough to guarantee convergence to solutions,
convergence of strategies and boundedness of iterates. Sufficient conditions for con-
vergence are proved. Discretization schemes are provided in Sect. 2.6.

Section 3 presents the numerical results. In Sect. 3.1, a variety of symmetric
nonzero-sum impulse games, many seemingly too complicated to be handled ana-
lytically, are explicitly solved for equilibrium payoffs and NE strategies with great
precision. This is done on a fixed grid, while considering different performance met-
rics and addressing practical matters of implementation. In the absence of a viscosity
solutions framework to establish convergence to analytical solutions as the grid is
refined, Sect. 3.2 performs a numerical validation using the only examples of sym-
metric solvable games in the literature. Section 3.3 addresses the case of gameswithout
NEs. Section 3.4 tackles games beyond the scope of the currently available theory,
displaying discontinuous impulses and very irregular payoffs. The latter give insight
and motivate further research into this field.

1 Analytical Continuous-Space Problem

In this section we start by reviewing a general formulation of two-player nonzero-
sum stochastic differential games with impulse controls, as considered in [1], together
with the main theoretical result of the authors: a characterization of certain NEs via a
deterministic system of QVIs. The indices of the players are denoted i = 1, 2. We will
generally use i to indicate a given player and j to indicate their opponent. Since no
other type of games is considered in this paper, we will often speak simply of “games”
for brevity. Afterwards we shall specialize the discussion in the (yet to be specified)
symmetric instance.

Throughout the paper, we restrict our attention to the one-dimensional infinite-
horizon case. (A similar review is carried out in [3, Sect.1].) Some of themost technical
details concerning the well-posedness of the model are left out for brevity and can be
found in [1, Sect.2].
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1.1 General Two-Player Nonzero-Sum Impulse Games

Let (�,F , (Ft )t≥0, P) be a filtered probability space under the usual conditions sup-
porting a standard one-dimensional Wiener process W . We consider two players that
observe the evolution of a state variable X , modifying it when convenient through
controls of the form ui = {(τ k

i , δk
i )}∞k=1 for i = 1, 2. The stopping times (τ k

i ) are their
intervention times and the Fτ k

i
-measurable random variables (δk

i ) are their interven-

tion impulses. Given controls (u1, u2) and a starting point X0− = x ∈ R, we assume
X = X x;u1,u2 has dynamics

Xt = x +
∫ t

0
μ(Xs)ds +

∫ t

0
σ(Xs)dWs +

∑
k: τ k

1 ≤t

δk
1 +

∑
k: τ k

2 ≤t

δk
2, (1.1.1)

for some given drift and volatility functions μ, σ : R → R, locally Lipschitz with
linear growth.4

Equation (1.1.1) states that X evolves as an Itô diffusion in between the intervention
times, and that each intervention consists in shifting X by applying an impulse. It is
assumed that the players choose their controls by means of threshold-type strategies
of the form ϕi = (Ii , δi ), where Ii ⊆ R is a closed set called intervention (or
action) region and δi : R → R is an impulse function assumed to be continuous.
The complement Ci = Ic

i is called continuation (or waiting) region.5 That is, player i
intervenes if and only if the state variable reaches her intervention region, by applying
an impulse δi (Xt−) (or equivalently, shifting Xt− to Xt−+δi (Xt−)). Further,we impose
a priori constraints on the impulses: for each x ∈ R there exists a set ∅ 	= Zi (x) ⊆ R

(further specified in Sect. 1.3) such that δi (x) ∈ Zi (x) if x ∈ Ii .6 We also assume the
game has no end and player 1 has the priority should they both want to intervene at the
same time. (The latter will be excluded later on; see Definition 1.3.1 and the remarks
that follow it.)

Given a starting point and a pair strategies, the (expected) payoff of player i is given
by

Ji (x;ϕ1, ϕ2) := E

[∫ ∞

0
e−ρi s fi (Xs)ds −

∞∑
k=1

e−ρi τ
k
i ci

(
X(τ k

i )− , δk
i

)

+
∞∑

k=1

e−ρi τ
k
j gi

(
X(τ k

j )
− , δk

j

)]
,

with X = X x;u1,u2 = X x;ϕ1,ϕ2 . For player i , ρi > 0 represents her (subjective)
discount rate, fi : R → R her running payoff, ci : R

2 → (0,+∞) her cost of

4 See [1, Def.2.2] for a precise recursive definition in terms of the strategies.
5 In [1], strategies are described in terms of continuation regions instead.
6 In [1], Zi (x) is the same for every x ∈ R. The generalization in this paper is a standard one in impulse
control and will prove useful in the sequel. The results in [1] still hold with the same proofs.
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intervention and gi : R
2 → R her gain due to her opponent’s intervention (not

necessarily non-negative). The functions fi , ci , gi are assumed to be continuous.
Throughout the paper, only admissible strategies are considered. Briefly, (ϕ1, ϕ2) is

admissible if it giveswell-defined payoffs for all x ∈ R, ‖X‖∞ has finitemoments and,
although each player can intervene immediately after the other, infinite simultaneous
interventions are precluded.7 As an example, if the running payoffs have polynomial
growth, the “never intervene strategies” ϕ1 = ϕ2 = (∅,∅ ↪→ R) are admissible and
the game can be played.

Given a game, we want to know whether it admits some Nash equilibrium and how
to compute it. Recall that a pair of strategies (ϕ∗

1 , ϕ
∗
2 ) is a Nash equilibrium (NE) if

for every admissible (ϕ1, ϕ2),

J1(x;ϕ∗
1 , ϕ

∗
2 ) ≥ J1(x;ϕ1, ϕ

∗
2 ) and J2(x;ϕ∗

1 , ϕ
∗
2 ) ≥ J2(x;ϕ∗

1 , ϕ2),

i.e., no player can gain from a unilateral change of strategy. If one such NE exists, we
refer to (V1, V2), with Vi (x) = Ji (x;ϕ∗

1 , ϕ
∗
2 ), as a pair of equilibrium payoffs.

1.2 General System of Quasi-Variational Inequalities

To present the system of QVIs derived in [1], we need to define first the intervention
operators. For any V1, V2 : R → R and x ∈ R, the loss operator of player i is defined
as8

Mi Vi (x):= sup
δ∈Zi (x)

{Vi (x + δ) − ci (x, δ)}. (1.2.1)

When applied to an equilibrium payoff, the loss operator Mi gives a recomputed
present value for player i due to the cost of her own intervention. Given the optimality
of the NEs, one would intuitively expect thatMi Vi ≤ Vi for equilibrium payoffs and
that the equality is attained only when it is optimal for player i to intervene. Under
this logic:

Definition 1.2.1 We say that the pair (V1, V2) has the unique impulse property (UIP)
if for each i = 1, 2 and x ∈ {Mi Vi = Vi }, there exists a unique impulse, denoted
δ∗

i (x) = δ∗
i (Vi )(x) ∈ Zi (x), that realizes the supremum in (1.2.1).9

If (V1, V2) enjoys the UIP, we define the gain operator of player i as

Hi Vi (x):=Vi (x + δ∗
j (x)) + gi (x, δ∗

j (x)), for x ∈ {M j V j = Vj } (1.2.2)

When applied to equilibrium payoffs, the gain operatorHi gives a recomputed present
value for player i due to her opponent’s intervention.

7 More precisely, these would be R-admissible strategies. See [1, Def.2.5] for more details.
8 Although we could have Mi Vi (x) = +∞, this will be excluded when enforcing the system of QVIs
(1.2.3).
9 We do not require the UIP to hold outside of {Mi Vi = Vi }, as this is not the case for equilibrium payoffs
in many examples, such as the linear game with constant costs/gains. Proofs in [1] carry through unaltered.
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Finally, let us denote byA the infinitesimal generator of X when uncontrolled, i.e.,

AV (x):=1

2
σ 2(x)V ′′(x) + μ(x)V ′(x),

for any V : R → R which is C2 at some open neighborhood of a given x ∈ R. We
assume this regularity holds whenever we compute AV(x) for some V and x . The
following Verification Theorem, due to [1, Thm.3.3], states that if a regular enough
solution (V1, V2) to a certain systemofQVIs exists, then itmust be a pair of equilibrium
payoffs, and a corresponding NE can be retrieved. We state here a simplified version
that applies to the one-dimensional infinite-horizon games at hand.10

Theorem 1.2.2 (General system of QVIs) Given a game as in Sect. 1.1, let V1, V2 :
R → R be pair of functions with the UIP, such that for any i, j ∈ {1, 2}, i 	= j :

⎧⎪⎨
⎪⎩
M j V j − Vj ≤ 0 on R

Hi Vi − Vi = 0 on {M j V j − Vj = 0}=:I∗
j

max
{AVi − ρi Vi + fi ,Mi Vi − Vi } = 0 on {M j V j − Vj < 0}=:C∗

j
(1.2.3)

and Vi ∈ C2(C∗
j \∂C∗

i ) ∩ C1(C∗
j ) ∩ C(R) has polynomial growth and bounded second

derivative on some reduced neighbourhood of ∂C∗
i . Suppose further

(
(I∗

i , δ∗
i )

)
i=1,2

are admissible strategies.11

Then, (V1, V2) are equilibrium payoffs attained at a NE
(
(I∗

i , δ∗
i )

)
i=1,2.

The first equation of system (1.2.3) states that at an equilibrium, a player cannot
increase her own payoff by a unilateral intervention. One therefore expects that the
equality M j V j = Vj will only hold when player j intervenes, or in other words,
when the value she gains can compensate the cost of her intervention. Consequently,
the second equation says that a gain results from the opponent’s intervention. Finally,
the last one, means that when the opponent does not intervene, each player faces a
single-player impulse control problem.

We conclude this section with some final observations that will be relevant in the
sequel:

Remark 1.2.3 An immediate consequence of assuming strictly positive costs is that
intervening at any state with a null impulse reduces the payoff of the acting player
and is therefore suboptimal. This is also displayed in system (1.2.3): if at some state
x , M j V j (x) was realized for δ = 0, then M j V j (x) = Vj (x) + c j (x, 0) < Vj (x).
At the same time, allowing for vanishing costs often leads to degenerate games in the
current framework [1, Sect.4.4]. Hence, assuming c j > 0 is quite reasonable.

10 Unlike in [1], there is no terminal condition in the system of QVIs and the assumption that ∂C∗
i be

a Lipschitz surface is trivially satisfied for an open C∗
i ⊆ R, as it is a countable union of disjoint open

intervals.
11 For consistencywith the strategies’ definition, one should assume that δ∗ has been continuously extended
to R. The conclusion is unaffected by the choice of the extension.
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Remark 1.2.4 Consider the case of nonegative impulses and cost functions being
strictly concave in the impulse as in [17,21]. That is, ci (x, δ + δ̄) < ci (x, δ) + ci (x +
δ, δ̄) for all x ∈ R, δ, δ̄ ≥ 0. This models the situation in which simultaneous inter-
ventions are more expensive than a single one to the same effect. In such cases, it
is easy to see that in the context of Theorem 1.2.2, player i will only shift the state
variable towards her continuation region.12

1.3 Symmetric Two-Player Nonzero-Sum Impulse Games

Wewant to focus our study on games which present a certain type of symmetric struc-
ture between the players, generalising the linear game [1] and the cash management
game [10].13

Notation The type of games presented in Sect. 1.1 are fully defined by setting the drift,
volatility, impulse constraints, discount rates, running payoffs, costs and gains. In other
words, any such game can be represented by a tuple G = (μ, σ,Zi , ρi , fi , ci , gi )i=1,2.

Definitions 1.3.1 We say that a game G = (μ, σ,Zi , ρi , fi , ci , gi )i=1,2 is symmetric
(with respect to zero) if

(S1) μ is odd and σ is even (i.e., μ(x) = −μ(−x) and σ(x) = σ(−x) for all x ∈ R).
(S2) −Z2(−x) = Z1(x) ⊆ [0,+∞) for all x ∈ R and Z1(x) = {0} = Z2(−x) for

all x ≥ 0.
(S3) ρ1 = ρ2, f1(x) = f2(−x), c1(x, δ) = c2(−x,−δ) and g1(x,−δ) = g2(−x, δ),

for all δ ∈ Z1(x), x ∈ R.

We say that the game is symmetric with respect to s (for some s ∈ R), if the s-shifted
game (μ(x + s), σ (x + s),Zi (x + s), ρi , fi (x + s), ci (x + s, δ), gi (x + s, δ))i=1,2
is symmetric. We refer to x = s as a symmetry line of the game.

Condition (S1) is necessary for the state variable to have symmetric dynamics.
In particular, together with (S3), it guarantees symmetry between solutions of the
Hamilton–Jacobi–Bellman (HJB) equations of the players when there are no inter-
ventions, i.e.,

V = V ∗(x) solves AV − ρ1V + f1 = 0 if and only if

V = V ∗(−x) solves AV − ρ2V + f2 = 0.

Examples 1.3.2 The most common examples of Itô diffusions satisfying this assump-
tion are the scaled Brownian motion (symmetric with respect to zero) and the
Ornstein–Uhlenbeck (OU) process (symmetric with respect to its long term mean).

12 Let x ∈ I∗
i and suppose y∗

i :=x + δ∗
i (x) ∈ I∗

i . Set y∗∗
i :=y∗

i + δ∗
i (y∗

i ). Then, by the UIP, the definitions
of δ∗

i (x) and I∗
i , and the concavity of the cost: Vi (y∗∗

i )−ci (x, δ∗
i (x)+δ∗

i (y∗
i )) ≤ Vi (y∗

i )−ci (x, δ∗
i (x)) =

Vi (y∗∗
i ) − ci (y∗

i , δ∗
i (y∗

i )) − ci (x, δ∗
i (x)) < Vi (y∗∗

i ) − ci (x, δ∗
i (x) + δ∗

i (y∗
i )) , which is a contradiction.

13 The latter can be reduced to one dimension with the change of variables x = x1 − x2. Additionally, we
will restrict attention to unidirectional impulses, as these yield the “most relevant” NE found in [10].
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Condition (S3) is self-explanatory, while (S2) is only partly so. Indeed, although
symmetric constraints on the impulsesZ1(x) = −Z2(−x) should clearly be a require-
ment, the rest of (ii) is in fact motivated by the numerical method to be presented and
the type of problems it can handle. On the one hand, the third equation of the QVIs
system (1.2.3) implies that a stochastic impulse control problem for player i needs
to be solved on C∗

j . The unidirectional impulses assumption is a common one for the

convergence of policy iteration algorithms in impulse control.14 However, it is often
too restrictive for many interesting applications,15 such as when the controller would
benefit the most from keeping the state variable within some bounded interval instead
of simply keeping it “high” or “low” (see, e.g., [9] and [4, Sect.6.1]). Interestingly
enough, assuming unidirectional impulses turns out to be less restrictive when there
is a second player present, with an opposed objective. Indeed, it can happen that each
player needs not to intervene in one of the two directions, and can instead rely on her
opponent doing so, while capitalising a gain rather than paying a cost. See examples
in Sect. 3.1 with quadratic and degree four running payoffs.

On the other hand,Z1(x) = {0} = Z2(−x) for all x ≥ 0 means that we can assume
without loss of generality that the admissible intervention regions do not cross over the
symmetry line; i.e., I1 ⊆ (−∞, 0) and I2 ⊆ (0,+∞) for every pair of strategies. (See
Remark 1.2.3.) This guarantees in particular that the players never want to intervene
at the same time and the priority rule can be disregarded.

There are different reasons why the last mentioned condition is less restrictive than
it first appears to be. It is not uncommon to assume connectedness of either intervention
or continuation regions (or other conditions implying them) both in impulse control
[22] and nonzero-sum games [20, Sect.1.2.1]. The same can be said for assumptions
that prevent the players from intervening in unison [20, Sect.1.2.1],[17, Rmk.6.5].16

In the context of symmetric games and payoffs (see Lemma 1.3.7) such assumptions
would necessarily imply the intervention regions need to be on opposed sides of the
symmetry line. Additionally, without any further requirements, strategies such that
I1 ⊇ (−∞, 0] and I2 ⊇ [0,+∞) would be inadmissible in the present framework,
as per yielding infinite simultaneous impulses.

Definitions 1.3.3 Given a symmetric game, we say that
(
(Ii , δi )

)
i=1,2 are symmetric

strategies (with respect to zero) ifI1 = −I2 and δ1(x) = −δ2(−x). Given a symmetric
game with respect to some s ∈ R, we say that

(
(Ii , δi )

)
i=1,2 are symmetric strategies

with respect to s if
(
(Ii − s, δi (x + s))

)
i=1,2 are symmetric, and we refer to x = s as

a symmetry line of the strategies.

Definition 1.3.4 We say that V1, V2 : R → R are symmetric functions (with respect
to zero) if V1(x) = V2(−x). We say that they are symmetric functions with respect to

14 See this assumption in [15, Sect.4] or [33, Sect.10.4.2], its graph-theoretic counterpart in [4, Asm.(H2)
and Thm.4.3], and a counterexample of convergence in its absence in [4, Ex.4.9].
15 See [34,35] for a novel, globally convergent, combined policy iteration and penalization scheme for
general impulse control HJBQVIs.
16 In [17, Rmk.6.5], assumptions are given to guarantee the zero-sum analogous to Mi Vi ≤ Hi Vi ,
with a strict inequality if such assumptions are slightly strengthened. These inequalities, in the context of
Theorem 1.2.2, imply that the equilibrium intervention regions cannot intersect.
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s (for some s ∈ R) if V1(x + s), V2(x + s) are symmetric, and we refer to x = s as a
symmetry line for V1, V2.

Remark 1.3.5 Definition 1.3.3 singles out strategies that share the same symmetry line
with the game. For the linear game, for example, the authors find infinitely many NEs
[1, Prop.4.7], each presenting symmetry with respect to some point s, but only one
for s = 0 (hence, symmetric in the sense of Definition 1.3.3). At the same time, the
latter is the only one for which the corresponding equilibrium payoffs V1, V2 have a
symmetry line as per Definition 1.3.4. The same is true for the cash management game
[10].

Remark 1.3.6 Throughout the paper we will work only with games symmetric with
respect to zero, to simplify the notation. Working with any other symmetry line
amounts simply to shifting the game and results back and forth.

Lemma 1.3.7 For any symmetric game, strategies (ϕ1, ϕ2) and functions V1, V2 :
R → R:

(i) If V1, V2 are symmetric, then M1V1,M2V2 are symmetric.
(ii) If V1, V2 are symmetric and have the UIP, then δ∗

1(x) = −δ∗
2(−x) and

H1V1,H2V2 are symmetric.
(iii) If (ϕ1, ϕ2) are symmetric, then J1(·;ϕ1, ϕ2), J2(·;ϕ1, ϕ2) are symmetric.
(iv) If V1, V2 are as in Theorem 1.2.2 and (ϕ∗

1 , ϕ
∗
2 ) is the corresponding NE of the

theorem, then (ϕ∗
1 , ϕ

∗
2 ) are symmetric if and only if V1, V2 are symmetric.

Proof (i) and (ii) are straightforward from the definitions.
To see (iii), one can check with the recursive definition of the state variable [1,

Def.2.2] that X−x;ϕ1,ϕ2 has the same law as −X x;ϕ1,ϕ2 (recall that the continuation
regions are simply disjoint unions of open intervals). Noting also that intervention
times and impulses are nothing but jump times and sizes of X , one concludes that
J1(x;ϕ1, ϕ2) = J2(−x;ϕ1, ϕ2), as intended.

Finally, (iv) is a consequence of (i), (ii) and (iii). ��
Convention 1.3.8 In light of Lemma 1.3.7, for any symmetric game we will often lose
the player index from the notations and refer always to quantities corresponding to
player 1,17 henceforth addressed simply as “the player”. Player 2 shall be referred to
as “the opponent”. Statements like “V has the UIP” or “V is a symmetric equilibrium
payoff” are understood to refer to (V (x), V (−x)). Likewise, “(I, δ) is admissible” or
“(I, δ) is a NE” refer to the pair (I, δ(x)), (−I,−δ(−x)).

Due to their general lack of uniqueness, it is customary in game theory to restrict
attention to specific type of NEs, depending on the problem at hand (see for instance
[29] for a treatment within the classical theory). Motivated by Lemma 1.3.7 (iii)
and (iv), and by Remark 1.3.5, one can arguably state that symmetric NEs are the
most meaningful for symmetric games. Furthermore, Lemma 1.3.7 implies that for
symmetric games, one can considerably reduce the complexity of the full system of
QVIs (1.2.3) provided the conjectured NE (or equivalently, the pair of payoffs) is
symmetric. Using Convention 1.3.8, Theorem 1.2.2 and Lemma 1.3.7 give:

17 Note that g will denote g(x, δ):=g1(x, −δ), as δ ≥ 0 for player 1, yet g1 depends on the (negative)
impulse of player 2.
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Corollary 1.3.9 (Symmetric system of QVIs) Given a symmetric game as in Defini-
tion 1.3.1, let V : R → R be a function with the UIP, such that:

{
HV − V = 0 on − {MV − V = 0}=: − I∗

max
{AV − ρV + f ,MV − V } = 0 on − {MV − V < 0}=: − C∗

(1.3.1)
and V ∈ C2(−C∗\∂C∗)∩C1(−C∗)∩C(R) has polynomial growth and bounded sec-
ond derivative on some reduced neighbourhood of ∂C∗. Suppose further that (I∗, δ∗)
is an admissible strategy.

Then, V is a symmetric equilibrium payoff attained at a symmetric NE (I∗, δ∗).

Note that system (1.3.1) also omits the equationMV −V ≤ 0 as per being redundant.
Indeed, by Definition 1.3.1 and Remark 1.2.3, at a NE the player does not intervene
above 0, nor the opponent below it. Thus,MV − V ≤ max

{AV − ρV + f ,MV −
V } = 0 on −C∗ ⊃ (−∞, 0] and MV − V < 0 on [0,+∞).

System (1.3.1) simplifies a numerical problem which is very challenging even in
cases of linear structure [3]. In light of the previous, we will focus our attention on
symmetric NEs only and numerically solving the reduced system of QVIs (1.3.1).

2 Numerical Discrete-Space Problem

In this section we consider a discrete version of the symmetric system of QVIs (1.3.1)
over a fixed grid, and propose and study an iterative method to solve it. As it is often
done in numerical analysis for stochastic control, for the sake of generality we proceed
first in an abstract fashion without making reference to any particular discretization
scheme. Instead, we give some general assumptions any such scheme should satisfy
for the results presented to hold. Explicit discretization schemes within our framework
are presented in Sect. 2.6 and used in Sect. 3.

2.1 Discrete System of Quasi-variational Inequalities

From now on we work on a discrete symmetric grid

G : x−N = −xN < · · · < x−1 = −x1 < x0 = 0 < x1 < · · · < xN .

R
G denotes the set of functions v : G → R and S : R

G → R
G denotes the sym-

metry operator, Sv(x) = v(−x). In general, by an “operator” we simply mean some
F : R

G → R
G , not necessarily linear nor affine unless explicitly stated. We shall

identify grid points with indices, functions in R
G with vectors and linear operators

with matrices; e.g., S = (Si j ) with Si j = 1 if xi = −x j and 0 otherwise. The (partial)
order considered in R

G and R
G×G is the usual pointwise order for functions (elemen-

twise for vectors and matrices), and the same is true for the supremum, maximum and
arg-maximum induced by it.
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We want to solve the following discrete nonlinear system of QVIs for v ∈ R
G :

{
Hv − v = 0 on − {Mv − v = 0}=: − I ∗

max
{

Lv + f , Mv − v} = 0 on − {Mv − v < 0}=: − C∗,
(2.1.1)

where f ∈ R
G and L : R

G → R
G is a linear operator. The nonlinear operators

M, H : R
G → R

G are as follows: let ∅ 	= Z(x) ⊆ R be a finite set for each
x ∈ G, with Z(x) = {0} if x ≥ 0. Set Z :=∏

x∈G Z(x) and for each δ ∈ Z let
B(δ) : R

G → R
G be a linear operator, c(δ) ∈ (0,+∞)G and g(δ) ∈ R

G , the three
of them being row-decoupled in the sense of [4,11] (i.e., row x of B(δ), c(δ), g(δ)

depends only on δ(x) ∈ Z(x)). Then

Mv:=max
δ∈Z

{
B(δ)v − c(δ)

}
, Hv = H(δ∗)v:=SB(δ∗)Sv + g(Sδ∗) (2.1.2)

and δ∗ = δ∗(v):=max
(
argmax

δ∈Z

{
B(δ)v − c(δ)

})
. (2.1.3)

Some remarks are in order. Firstly, in the same fashion as the continuous-space case,
the sets I ∗, C∗ form a partition of the grid and represent the (discrete) intervention and
continuation regions of the player, while−I ∗,−C∗ are such regions for the opponent.

Secondly, the general representation of M follows [4,15]. For the standard choices
of B(δ), our definition of H is the only one forwhich a discrete version of Lemma 1.3.7
holds true (see Sect. 2.6). However, since B and g are row-decoupled, SB(δ∗)S and
g(Sδ∗) cannot be, as each row x depends on δ∗(−x). For this reason and the lack
of maximization over −I ∗, there is no obvious way to reduce problem (2.1.1) to a
classical Bellman problem:

sup
ϕ

{ − A(ϕ)v + b(ϕ)
} = 0, (2.1.4)

like in the impulse control case [4], to apply Howard’s policy iteration [11, Ho-1].
Furthermore, unlike in the control case, even with unidirectional impulses and good
properties for L and B(δ), system (2.1.1) may have no solution as in the analytical
case [1].

Thirdly, we have defined δ∗ in (2.1.3) by choosing one particular maximizing
impulse for each x ∈ G. The main motivation behind fixing one is to have a well
defined discrete system of QVIs for every v ∈ R

G . (This is not the case for the ana-
lytical problem (1.3.1) where the gain operator H is not well defined unless V has
the UIP.) Being able to plug in any v in (2.1.1) and obtain a residual will be useful
in practice, when assessing the convergence of the algorithm (see Sect. 3). Whether a
numerical solution verifies, at least approximately, a discrete UIP (and the remaining
technical conditions of the Verification Theorem) becomes something to be checked
separately a posteriori.

Remark 2.1.1 Choosing the maximum arg-maximum in (2.1.3) is partly motivated
by ensuring a discrete solution will inherit the property of Remark 1.2.4. (The proof
remains the same, for the discretizations of Sect. 2.6.) We will also motivate it in terms
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of the proposed numerical algorithm in Remark 2.6.4. Note that in [3] the minimum
arg-maximum is used instead for both players.Nevertheless, the replication of property
(ii), Lemma 1.3.7, dictates that it is only possible to be consistent with [3] for one of
the two players (in this case, the opponent).

2.2 Iterative Algorithm for Symmetric Games

This section introduces the iterative algorithmdeveloped to solve system (2.1.1),which
builds on [3, Alg.2] by harnessing the symmetry of the problem and dispenses with
the need for a relaxation scheme altogether. It is presented with a pseudocode that
highlights the mimicking of system (2.1.1) and the intuition behind the algorithm;
namely:

• The player starts with some suboptimal strategy ϕ0 = (I 0, δ0) and payoff v0, to
which the opponent responds symmetrically, resulting in a gain for the player (first
equation of (2.1.1); lines 1, 2 and 4 of Algorithm 2.2.1).

• The player improves her strategy by choosing the optimal response, i.e., by solving
a single-player impulse control problem through a policy-iteration-type algorithm
(second equation of ( 2.1.1); line 5 of Algorithm 2.2.1).

• This procedure is iterated until reaching a stopping criteria (lines 6–8 of Algo-
rithm 2.2.1).

Notation 2.2.1 In the following: G<0 and G≤0 represent the sets of grid points which
are negative and nonpositive respectively, and 
 the set of (discrete) strategies


:={ϕ = (I , δ) : I ⊆ G<0 and δ ∈ Z}. (2.2.1)

Set complements are taken with respect to the whole grid, Id : R
G → R

G is the
identity operator; and given a linear operator O : R

G → R
G � R

G×G , v ∈ R
G and

subsets I , J ⊆ G, vI ∈ R
I denotes the restriction of v to I and OI J ∈ R

I×J the
submatrix/operator with rows in I and columns in J .

Algorithm 2.2.1 Iterative algorithm for symmetric games
Set tol, scale > 0.
1: Choose initial guess: v0 ∈ R

G

2: Set I 0 = {Lv0 + f ≤ Mv0 − v0} ∩ G<0 and δ0 = δ∗(v0)

3: for k = 0, 1, . . . do

4: vk+1/2 =
{

H(δk )vk on − I k

vk on (−I k )c

5: (vk+1, I k+1, δk+1) = SolveImpulseControl(vk+1/2, (−I k )c)

6: if ‖(vk+1 − vk )/max{|vk+1|, scale}‖∞ < tol then
7: break from the iteration
8: end if
9: end for
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The scale parameter in line 5 of Algorithm 2.2.1, used throughout the literature
by Forsyth, Labahn and coauthors [4,25–27], prevents the enforcement of unrealistic
levels of accuracy for points x where vk+1(x) ≈ 0. Additionally, note that having
chosen the initial guess for the payoff v0, the initial guess for the strategy is induced
by v0. (The alternative expression for the intervention region gives the same as

{
Mv0−

v0 = 0
}
for a solution of (2.1.1).)

Line 5 of Algorithm 2.2.1 assumes we have a subroutine SolveImpulseControl
(w, D) that solves the constrained QVI problem:

max{Lv + f , Mv − v} = 0 on D, subject to v = w on Dc (2.2.2)

for fixed G≤0 ⊆ D ⊆ G (approximate continuation region of the opponent) and
w ∈ R

G (approximate payoff due to the opponent’s intervention). Although we only
need to solve for ṽ = vD , the value of vDc = wDc impacts the solution both when
restricting the equations and when applying the nonlocal operator M . Hence, the
approximate payoff vk+1/2 fed to the subroutine serves to pass on the gain that resulted
from the opponent’s intervention and as an initial guess if desired (more on this on
Remark 2.3.3).

The remaining of this section consists in establishing an equivalence between prob-
lem (2.2.2) and a classical (unconstrained) QVI problem of impulse control. This
allows us to prove the existence and uniqueness of its solution. In particular, we will
see that SolveImpulseControl can be defined, if wanted, by policy iteration (see
the next section for an alternative method and remarks on other possible ones). Let us
suppose from here onwards that the following assumptions hold true (see Appendix A
for the relevant Definitions A.1.1):

(A0) For each strategy ϕ = (I , δ) ∈ 
 and x ∈ I , there exists a walk in graphB(δ)

from row x to some row y ∈ I c.
(A1) −L is a strictly diagonally dominant (SDD) L0-matrix and, for each δ ∈ Z ,

Id−B(δ) is a weakly diagonally dominant (WDD) L0-matrix.

Remark 2.2.2 (Interpretation) Assumptions (A0), (A1) are (H2),(H3) in [4]. For an
impulse operator (say, “B(δ)v(x) = v(x + δ)”), (A0) asserts that the player always
wants to shift states in her intervention region to her continuation region through
finitely many impulses. (This does not take into account the opponent’s response.) On
the other hand, if problem (2.2.2) was rewritten as a fixed point problem, (A1) would
essentially mean that the uncontrolled operator is contractive while the controlled ones
are nonexpansive (see [15] and [4, Sect.4]).

Theorem 2.2.3 Assume (A0), (A1). Then, for every G≤0 ⊆ D ⊆ G and w ∈ R
G, there

exists a unique v∗ ∈ R
G that solves the constrained QVI problem (2.2.2). Further, v∗

D
is the unique solution of

max
{

L̃ ṽ + f̃ , M̃ ṽ − ṽ
}

= 0, (2.2.3)

where L̃:=L DD, f̃ := fD +L DDcwDc , Z̃ :=∏
x∈D Z(x), c̃(δ̃):=c(δ̃)− B(δ̃)DDcwDc

and B̃(δ̃):=B(δ̃)DD for δ̃ ∈ Z̃; and M̃ ṽ:=max
δ̃∈Z̃

{
B̃(δ̃)ṽ − c̃(δ̃)

}
for ṽ ∈ R

D.
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Additionally, for any initial guess, the sequence (ṽk) ⊆ R
D defined by policy

iteration [4, Thm.4.3] applied to problem (2.2.3), converges exactly to v∗
D in at most

|
̃| iterations, with 
̃:={ϕ̃ = (I , δ̃) : I ⊆ G<0 and δ̃ ∈ Z̃} the set of restricted
admissible strategies.18

Proof The equivalence between problems (2.2.2) and (2.2.3) is due to simple algebraic
manipulation and B(δ), c(δ) being row-decoupled for every δ ∈ Z . B(δ̃), c(δ̃) are
defined in the obvious way for each δ̃ ∈ Z̃ .

The rest of the proof is mostly as in [4, Thm.4.3]. Let Ĩd = IdDD . Each intervention
region I can be identified with its indicator ψ̃ = 1I ∈ {0, 1}D since D ⊇ I . In turn,
each ψ̃ can be identified with the diagonal matrix �̃ = diag(ψ̃) ∈ R

D×D . Then,
problem (2.2.3) takes the form of the classical Bellman problem

max
ϕ̃∈
̃

{ − A(ϕ̃)v + b(ϕ̃)
} = 0, (2.2.4)

if we take

A(ϕ̃) = −(Ĩd − �̃)L̃ + �̃(Ĩd − B̃(δ̃)) and b(ϕ̃) = (Ĩd − �̃) f̃ − �̃ c̃.

Note that 
̃ can be identified with the Cartesian product


̃ =
( ∏

x∈G<0

{0, 1} × Z(x)
)

×
( ∏

x∈D\G<0

{0} × Z(x)
)

and A(ϕ̃), b(ϕ̃) are row-decoupled for every ϕ̃ ∈ 
̃. Since 
̃ is finite, all we need to
show is that the matrices A(ϕ̃) are monotone (Definitions A.1.1 and [11, Thm.2.1]).
Let us check the stronger property (Theorem A.1.4 and Proposition A.1.3) of being
weakly chained diagonally dominant (WCDD) L0-matrices (see Definitions A.1.1).

If (A0) and (A1) also held true for the restricted matrices and strategies, the con-
clusion would follow. While (A1) is clearly inherited, (A0) may fail to do so, but only
in non-problematic cases. To see this, let ϕ̃ = (I , δ̃) ∈ 
̃, x ∈ I ⊆ D and let δ ∈ Z
be some extension of δ̃. Note that row x of A(ϕ̃) is WDD. We want to show that there
is a walk in graphA(ϕ̃) from x to an SDD row.

By (A0) theremust exist somewalk x = y0 → y1 → · · · → yn ∈ I c in graphB(δ).
If this is in fact a walk from x to I c ∩ D in graphB̃(δ̃), then it verifies the desired
property (just as in [4, Thm.4.3]). If not, then there must be a first 0 ≤ m < n such
that the subwalk x → · · · → ym is in graphB̃(δ̃) but ym+1 /∈ D. Since ym → ym+1
is an edge in graphB(δ), we have B(δ)ym ,ym+1 	= 0 and the WDD row (by (A1)) ym

of Ĩd − B̃(δ̃) is in fact SDD. Meaning that the subwalk x → · · · → ym verifies the
desired property instead. ��
Remark 2.2.4 (Practical considerations) 1. While convergence is guaranteed to be
exact, floating point arithmetic can bring about stagnation [27]. A stopping criteria
like that ofAlgorithm2.2.1 should beused in those cases,with a tolerance� tol. 2. The

18 |A| denotes the cardinal of set A.
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solution of system (2.2.3) does not change if one introduces a scaling factor λ > 0:
max

{
L̃ ṽ + f̃ , λ

(
M̃ ṽ − ṽ

)} = 0 [4, Lem.4.1]. This problem-specific parameter is
typically added in the implementation to enhance performance [4,26]. It can intuitively
be thought as a units adjustment.

2.3 Iterative Subroutine for Impulse Control

Due to Theorem 2.2.3, a sensible choice for SolveImpulseControl is the classical
policy iteration algorithm [4, Thm.4.3] applied to (2.2.3) (i.e., [11, Ho-1] applied
to (2.2.4)), adding an appropriately chosen scaling factor λ to improve efficiency
(Remark 2.2.4 2). One possible drawback of such choice is the following: at each
iteration, one needs to solve the system −A(ϕ̃k)vk+1 + b(ϕ̃k) = 0 for some ϕ̃k ∈

̃. While the matrix L̃ typically has a good sparsity pattern in applications (often
tridiagonal), the presence of B̃(δ̃k) prevents A(ϕ̃k) from inheriting the same structure
in general, and makes the resolution of the previous system more costly. (See [26]
where this issue is addressed for HJB problems with jump diffusions and regime
switching, among others.)

Motivated by the previous observation, this section considers an alternative choice
for SolveImpulseControl: an instance of a very general class of algorithms known
as fixed-point policy iteration [14,26]. As far as the author knows, this application to
impulse control was never done in the past other than heuristically in [3]. Instead of
solving −A(ϕ̃k)vk+1 + b(ϕ̃k) = 0 at the k-th iteration, we will solve

(
(Ĩd − �̃k)L̃ − �̃k

)
︸ ︷︷ ︸

−Ã(ϕ̃k )

vk+1 + �̃k B̃(δ̃k)︸ ︷︷ ︸
B̃(ϕ̃k )

vk + b(ϕ̃k)︸ ︷︷ ︸
C̃(ϕ̃k )

= 0, (2.3.1)

(scaled by λ) where the previous iterate value vk is given and �̃k is the diagonal
matrix withψk as diagonal. In other words, we split the original policy matrix A(ϕ̃) =
Ã(ϕ̃) − B̃(ϕ̃) and we apply a one-step fixed-point approximation,

Ã
(
ϕ̃k)ṽk+1 = B̃

(
ϕ̃k)ṽk + C̃

(
ϕ̃k), (2.3.2)

at each iteration of Howard’s algorithm. The resulting method can be expressed as
follows (tol and scale are as in Algorithm 2.2.1):
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Subroutine 2.3.1 (v, I , δ) = SolveImpulseControl(w, D)

Inputs w ∈ R
G and solvency region G≤0 ⊆ D ⊆ G

Outputs v ∈ R
G , I ⊆ G<0, δ ∈ Z

Set scaling factor λ > 0 and 0 < t̃ol � tol.
// Restrict constrained problem

1: L̃:=L DD, f̃ := fD + L DDc wDc

2: Z̃ :=∏
x∈D Z(x), c̃(δ̃):=c(δ̃) − B(δ̃)DDc wDc , B̃(δ̃):=B(δ̃)DD for δ̃ ∈ Z̃

3: M̃ ṽ:=max
δ̃∈Z̃

{
B̃(δ̃)ṽ − c̃(δ̃)

}
for ṽ ∈ R

D, Ĩd:= IdDD

// Solve restricted problem
4: Choose initial guess: ṽ0 ∈ R

D , I 0 ⊆ G<0
5: for k = 0, 1, 2, . . . do

6: L̃k
i j =

{
L̃i j if xi ∈ D\I k

−Ĩdi j if xi ∈ I k f̃ k =
{

f̃ on ∈ D\I k

M̃ ṽk on I k

7: ṽk+1 solution of L̃k ṽ + f̃ k = 0
8: I k+1 = {

L̃ ṽk+1 + f̃ ≤ λ
(
M̃ ṽk+1 − ṽk+1)}

9: if ‖(ṽk+1 − ṽk )/max{ṽk+1, scale}‖∞ < t̃ol then

10: v =
{

ṽk+1 on D

wDc on Dc , I = I k+1, δ = δ∗(v) and break from the iteration

11: end if
12: end for

Lines 1–3 of Sect. 2.3.1 deal with restricting the constrained problem, while the
rest give a routine that can be applied to any QVI of the form (2.2.3). Starting from
some suboptimal ṽ0 and I 0, one computes a new payoff ṽ1 by solving the coupled
equations M̃ ṽ0 − ṽ1 = 0 on I 0 and L̃ ṽ1 + f̃ = 0 outside I 0. A new intervention
region I 1 = {

L̃ ṽ1 + f̃ ≤ λ
(
M̃ ṽ1 − ṽ1

)}
is defined and the procedure is iterated.

Algorithmically, the difference with classical policy iteration is that ṽk+1 is com-

puted in Line 7 with a fixed obstacle M̃v
k
, changing a quasivariational inequality for

a variational one. The resulting method is intuitive and simple to implement, and the
linear system (2.3.1) (Line 7) inherits the sparsity pattern of L̃ . For example, for an
SDD tridiagonal L̃ , the system can be solved (exactly in exact arithmetic or stably in
floating point one) in O(n) operations, with n = |D| [28, Sect.9.5]. The matrix-vector
multiply B̃(δ̃k)ṽk can take at most O(n2) operations, but will reduce to O(n) for
standard discretizations of impulse operators.

It is alsoworthmentioning that Sect. 2.3.1 differs from the so-called iterated optimal
stopping [16,33] in that the latter solves max

{
L̃ ṽk+1 + f̃ , M̃ ṽk − ṽk+1

} = 0 exactly
at the k-th iteration (by running a full subroutine of Howard’s algorithm with fixed
obstacle), while the former only performs one approximation step.

To establish the convergence of Sect. 2.3.1 in the present framework, we add the
following assumption:

(A2) B(δ) has nonnegative diagonal elements for all δ ∈ Z .

Remark 2.3.1 (A2) and the requirement of (A1) that Id−B(δ) be a WDD L0-matrix
are equivalent to B(δ) being substochastic (see Appendix A). This is standard for
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impulse operators (see Sect. 2.6) and other applications of fixed-point policy iteration
[26, Sect.4-5].

Theorem 2.3.2 Assume (A0)–(A2) and set I 0 = ∅. Then, for every G≤0 ⊆ D ⊆ G and
w ∈ R

G, the sequence (ṽk) defined by SolveImpulseControl(w, D) is monotone
increasing for k ≥ 1 and converges to the unique solution of (2.2.3).

Proof We can assume without loss of generality that λ = 1. Sect. 2.3.1 takes the form
of a fixed-point policy iteration algorithm as per (2.3.2). Assumptions (A0), (A1)
ensure (2.2.3) has a unique solution (Theorem 2.3.1) and that this scheme satisfies
[26, Cond.3.1 (i),(ii)]. That is, Ã(ϕ̃) and Ã(ϕ̃) − B̃(ϕ̃) are nonsingular M-matrices
(see proof of Theorem 2.3.1 and Appendix A) and all coefficients are bounded since

̃ is finite. In [26, Thm.3.4] convergence is proved under one additional assumption of
‖ · ‖∞-contractiveness [26, Cond.3.1 (iii)], which is not verified in our case. However,
the same computations show that the scheme satisfies

Ã(ϕ̃k)(ṽk+1 − ṽk) ≥ B̃(ϕ̃k−1)(ṽk − ṽk−1) for all k ≥ 1. (2.3.3)

Since I 0 = ∅, and due to (A1) and (A2), B̃(ϕ̃0) = 0 and B̃(ϕ̃k) ≥ 0 for all k. Thus,
(ṽk)k≥1 is increasing by monotonicity of Ã(ϕ̃k). Furthermore, it must be bounded,
since for all k ≥ 1:

Ã
(
ϕ̃k)ṽk+1 = B̃

(
ϕ̃k)ṽk + C̃

(
ϕ̃k) ≤ B̃

(
ϕ̃k)ṽk+1 + C̃

(
ϕ̃k),

which gives ṽk+1 ≤ (Ã(ϕ̃k) − B̃(ϕ̃k))−1
C̃
(
ϕ̃k

) ≤ maxϕ̃∈
̃(Ã(ϕ̃) − B̃(ϕ̃))−1
C̃
(
ϕ̃
)
.

Hence, (ṽk) converges. That the limit solves (2.2.3) is proved as in [26, Lem.3.3]. ��
Remark 2.3.3 In light of Theorem 2.3.2, moving forward we will set I 0 = ∅ in
Sect. 2.3.1. (Note that the value of ṽ0 is irrelevant in this case, since B̃

(
ϕ̃0

) = 0.)
It is natural however to choose ṽ0 = wD and I 0 = {

L̃ ṽ0 + f̃ ≤ λ
(
M̃ ṽ0 − ṽ0

)}
.

The experiments performed with the latter choice displayed faster but non-monotone
convergence, but this is not proved here. Additionally, exact convergence was often
observed.

Remark 2.3.4 For the experiments in Sect. 3, SolveImpulseControl was chosen
as Sect. 2.3.1 instead of classical policy iteration, since the former displayed overall
lower runtimes when compared to the latter. However, it should be noted that the
games considered have relatively large costs, with many parameter values taken from
previous works [1,3,10]. For smaller costs often occurring in practice, and especially
for large-scale problems, the convergence rate of Sect. 2.3.1 can become very slow,
as it happens with iterated optimal stopping [34, Rmk.3.1]. This is not so for policy
iteration, which converges superlinearly (see [11, Thm.3.4] and [34, Sect.5]), making
it a better suited choice in this case (in terms of runtime as well). Furthermore, it
has been demonstrated in [35][Sect.7] that the number of steps required for penalized
policy iteration to converge remains bounded as the grid is refined. While penalized
methods are not considered in the present work, such mesh-independence properties
are desirable and could prove paramount in further studies of Algorithm 2.2.1 (see
end of Sect. 2.5 and Sect. 3).
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2.4 Overall Routine as a Fixed-Point Policy-Iteration-TypeMethod

The system of QVIs (2.1.1) cannot be reduced in any apparent way to a Bellman for-
mulation (2.1.4) (see comments preceding equation). Notwithstanding, we shall see
that Algorithm 2.2.1 does take a very similar form to a fixed-point policy iteration
algorithm as in (2.3.2) for some appropriateA, B, C. Further, assumptions resembling
those of the classical case [26] will be either satisfied or imposed to study its conver-
gence. The matrix and graph-theoretic definitions and properties used throughout this
section can be found in Appendix A.

Notation 2.4.1 We identify each intervention region I ⊆ G<0 with its indicator func-
tion ψ = 1I ∈ {0, 1}G and each ψ with the diagonal matrix � = diag(ψ) ∈ R

G×G .
The sequences (vk) and (ϕk), with ϕk = (ψk, δk), are the ones generated by Algo-
rithm 2.2.1. SolveImpulseControl is defined as either Sect. 2.3.1 or Howard’s
algorithm (Theorem 2.2.3), setting the outputs I , δ as done for the former subrou-
tine. We consider v∗ ∈ R

G fixed and ϕ∗ = (ψ∗, δ∗(v∗)) the induced strategy with
ψ∗:={Lv∗ + f ≤ Mv∗ − v∗} ∩ G<0.

Proposition 2.4.2 Assume (A0)–(A2). Then,

A
(
ϕk, ϕk+1)vk+1 = B

(
ϕk)vk + C

(
ϕk, ϕk+1), where: (2.4.1)

(i) ψk = 1{Lvk+ f ≤Mvk−vk }∩G<0
and δk ∈ argmaxδ∈Z

{
B(δ)vk − c(δ)

}
.

(ii) A
(
ϕ, ϕ

):= Id−(
Id−� − S�S

)
(Id+L) − � B(δ) is a WCDD L0-matrix, and

thus a nonsingular M-matrix.
(iii) B

(
ϕ
):=S�B(δ)S = diag(Sψ)SB(δ)S is substochastic.

(iv) C
(
ϕ, ϕ

):=(
Id−� − S�S

)
f − �c(δ) + S�Sg(Sδ).

Proof Using that (vk+1, I k+1, δk+1) = SolveImpulseControl(vk+1/2, (−I k)c)

solves the constrained QVI problem (2.2.2) for D = (−I k)c and w = vk+1/2 (The-
orems 2.2.3 or 2.3.2), the recurrence relation (2.4.1) results from simple algebraic
manipulation.

Given ϕ, ϕ ∈ 
, (A0) and (A1) ensure A
(
ϕ, ϕ

)
is a WCDD L0-matrix, while (A1)

and (A2) imply B
(
ϕ
)
is substochastic.

The following corollary is immediate by induction. It gives a representation of the
sequence of payoffs in terms of the improving strategies throughout the algorithm.

Corollary 2.4.3 Assume (A0)– (A2). Then,19

vk+1 =
⎛
⎝ 0∏

j=k

A
−1

B
(
ϕ j , ϕ j+1)

⎞
⎠ v0+

k∑
n=0

⎛
⎝n+1∏

j=k

A
−1

B
(
ϕ j , ϕ j+1)

⎞
⎠A

−1
C
(
ϕn, ϕn+1).

(2.4.2)

19 For any index i ≤ k,
∏i

j=k A j :=Ak Ak−1 . . . Ai .
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Wenow establish some properties of the strategy-dependent matrix coefficients that
will be useful in the sequel. Given a WDD (resp. substochastic) matrix A ∈ R

G×G ,
we define its set of “non-trouble states” (or rows) as

J [A] :={x ∈ G : row x of A is SDD} (resp. Ĵ [A]
:={x ∈ G : row x of A sums less than one}),

and its index of connectivity conA (resp. index of contraction ĉonA) by computing for
each state the least length that needs to be walked on graphA to reach a non-trouble
one, and then taking the maximum over all states (more details in Appendix A). This
recently introduced concept gives an equivalent charaterization of theWCDDproperty
for a WDDmatrix as conA < +∞, and can be efficiently checked for sparse matrices
in O(|G|) operations [7]. On the other hand, if A is substochastic then ĉonA < ∞ if
and only if its spectral radius verifies ρ(A) < 1 (Theorem A.1.6). The proof of the
following lemma can be found in Appendix A.

Lemma 2.4.4 Assume (A0)– (A2). Then for all ϕ, ϕ ∈ 
, A
−1

B
(
ϕ, ϕ

)
is substochas-

tic, (A−B)
(
ϕ, ϕ

)
is a WDD L0-matrix and ĉon

[
A

−1
B
(
ϕ, ϕ

)] ≤ con
[
(A−B)

(
ϕ, ϕ

)]
.

As previously mentioned, system (2.1.1) may have no solution. The matrix coef-
ficients introduced in this section allow us to algebraically characterize the existence
of such solutions through strategy-dependent linear systems of equations.

Proposition 2.4.5 Assume (A0)– (A2). Then the following statements are equivalent:

(i) v∗ solves the system of QVIs (2.1.1).
(ii) A

(
ϕ∗, ϕ∗)v∗ = B

(
ϕ∗)v∗ + C

(
ϕ∗, ϕ∗).

As mentioned in Remark 2.2.2, Assumption (A0) constrains the type of strategies
the player can use, but without taking into account the opponent’s response. This is
enough for the single-player constrained problems to have a solution and, therefore,
for Algorithm 2.2.1 to be well defined. But we cannot expect this restriction to be
sufficient in the study of the two-player game and the convergence of the overall
routine.

In order to improve the result of Proposition 2.4.5 let us consider the following
stronger version of (A0) reflecting the interaction between the player and the opponent.

(A1’) For each pair of strategies ϕ, ϕ ∈ 
, and for each x ∈ I ∪ (−I ), there exists a
walk in graph

(
� B(δ) + S�B(δ)S

)
from row x to some row y ∈ C ∩ C , where

C = I
c
, C = I c.

Remark 2.4.6 (Interpretation) If ϕ,−ϕ are the strategies used by the player and the
opponent respectively,20 then (A1’) asserts that states in their intervention regions
will eventually be shifted to the common continuation region. This precludes infinite
simultaneous interventions and emulates the admissibility condition of the continuous-
state case. Fixing I = ∅we recover (A0). Additionally, (A1’) together with (A1) imply

20 The slight abuse of notation −ϕ stands for the strategy symmetric to ϕ, i.e., −ϕ = (−I , −δ(−x)).
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that (A − B)(ϕ, ϕ) is a WCDD L0-matrix,21 hence an M-matrix. This is another one
of the assumptions of the classical fixed-point policy iteration [26].

Under this new assumption, the ϕ∗ = ϕ∗(v∗)-dependent systems of Proposi-
tion 2.4.5 will admit a unique solution. Then solving the original problem (2.1.1)
amounts to finding v∗ ∈ R

G that solves its induced linear system of equations.

Proposition 2.4.7 Assume (A1’), (A1), (A2). In the context of Proposition 2.4.5, the
following statements are also equivalent:

(iv) v∗ = (A − B)−1
C
(
ϕ∗, ϕ∗).

(v) v∗ = (Id−A
−1

B)−1
A

−1
C
(
ϕ∗, ϕ∗) = ∑

n≥0

(
A

−1
B
)n

A
−1

C
(
ϕ∗, ϕ∗). (cf. equa-

tion (2.4.2).)

Proof Both expressions result from rewriting and solving the systems of Propo-
sition 2.4.5. Assumptions (A1’), (A1) guarantee that (A − B)

(
ϕ∗, ϕ∗) is WCDD

(Remark 2.4.6) and, in particular, nonsingular. Then (v) is due to Lemma 2.4.4, The-
orem A.1.6 and the matrix power series expansion (Id−X)−1 = ∑

n≥0 Xn , when
ρ(X) < 1. ��

2.5 Convergence Analysis

We now study the convergence properties of Algorithm 2.2.1. Henceforth, the UIP
refers to the obvious discrete analogous of Definition 1.2.1, where we replace the
domain R, the impulse constraints Z and the operator M by their discretizations
G, Z and M respectively.

The obvious first question to address is whether when Algorithm 2.2.1 converges,
it does so to a solution of the system of QVIs (2.1.1). Unlike in the classical Bellman
problem (2.1.4), problem (2.1.1) is intrinsically dependent on the particular strategy
chosen by the player (see Propositions 2.4.5 and 2.4.7). Accordingly, we start with a
lemma addressing what can be said about the convergence of the strategies (ϕk) when
the payoffs (vk) converge.

Notation 2.5.1 ∂ I ∗:={Lv∗ + f = Mv∗ − v∗} ∩ G<0 denotes the “border” of the
intervention region {Lv∗ + f ≤ Mv∗ − v∗} ∩ G<0 defined by v∗.

Lemma 2.5.2 Assume (A0)– (A2) and suppose vk → v∗. Then:

(i) ψk → ψ∗ in (∂ I ∗)c and Mvk → Mv∗.
(ii) If ψ, δ are any two limit points of (ψk), (δk) resp.,22 then

δ ∈ argmax
δ∈Z

{
B(δ)v∗ − c(δ)

}
, ψ = 0 on G>=0 and ψ ∈ argmax

i∈{0,1}
{

Oiv
∗} on G<0,

21 (A1) guarantees theWDDL0-property (see proof ofLemma2.4.4)with SDD i-th row for any xi ∈ C∩C ,
as it coincides with the i-th row of −L . Since (A − B)(ϕ, ϕ) and Id−(

�B(δ) + S�B(δ)S
)
agree for any

row indexed in I ∪ (−I ) and graph
(
Id−(

�B(δ) + S�B(δ)S
))

is equal to graph
(
� B(δ) + S�B(δ)S

)
except possibly for self loops, adding (A1’) means that any WDD row of (A − B)(ϕ, ϕ) is connected to
some SDD row.
22 By “limit point” we mean the limit of a convergent subsequence.
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with O0v = Lv + f and O1v = Mv − v.
(iii) If v∗ has the UIP, then δk → δ∗(v∗) and Hvk → Hv∗.

Proof That Mvk → Mv∗ is clear by continuity of the operators B(δ) and finiteness
of Z .

Let x ∈ (∂ I ∗)c and suppose Lv∗(x) + f (x) < Mv∗(x) − v∗(x) (the other case
being analogous). By continuity of L and M there must exist some k0 such that
Lvk(x)+ f (x) < Mvk(x)−vk(x) for all k ≥ k0, which impliesψk(x) = 1 = ψ∗(x)

for k ≥ k0.
The statement about ψ, δ is proved as before by considering appropriate sub-

sequences. Consequently, if v∗ has the UIP, then necessarily δk → δ∗(v∗) and
Hvk → Hv∗. ��

As a corollary we can establish that, should the sequence (vk) converge, its limit
must solve problem (2.1.1). If convergence is not exact however (i.e., in finite iter-
ations), then we will ask that v∗ verifies some of the properties of the Verification
Theorem in Corollary 1.3.9. Namely, the UIP and a discrete analogous of the con-
tinuity in the border of the opponent’s intervention region. We emphasise that our
main motivation in solving system (2.1.1) relies in Corollary 1.3.9 and its framework.
Additionally, in most practical situations and for fine-enough grids, one can intuitively
expect the discretization of an equilibrium payoff as in Corollary 1.3.9 to inherit the
UIP. Lastly, we note that the exact equality Lv∗ + f = Mv∗ − v∗ will typically not
be verified for any point in the grid in practice, giving ∂ I ∗ = ∅.
Corollary 2.5.3 Assume (A0)– (A2) and suppose vk → v∗. Then:

(i) If the convergence is exact, then v∗ solves the system of QVIs (2.1.1).
(ii) If v∗ has the UIP and Lv∗ + f = Hv∗ − v∗ on −∂ I ∗, then v∗ solves (2.1.1).

Proof (i) is immediate from the definition of Algorithm 2.2.1.
In the general case, since {0, 1}G is finite, there is a subsequence of

(
ψk, ψk+1

)
that converges to some pair (ψ,ψ). Passing to such subsequence, by Lemma 2.5.2,
the UIP of v∗ and equation (2.4.1), we get that v∗ solves the system A

(
ϕ, ϕ

)
v∗ =

B
(
ϕ
)
v∗ + C

(
ϕ, ϕ

)
for ϕ = (

ψ, δ∗(v∗)
)
, ϕ = (

ψ, δ∗(v∗)
)
and ψ,ψ coincide with ψ∗

except possibly on ∂ I ∗. Thus, it only remains to show that v∗ also solves the equations
of the system (2.1.1) for any x ∈ ∂ I ∗ ∪ (−∂ I ∗).

For x ∈ ∂ I ∗, the previous is true by definition. Suppose now x ∈ −∂ I ∗ ⊆ I
c
.

We have ψ∗(−x) = 1. If ψ(−x) = 1, there is nothing to prove. If ψ(−x) = 0, then
x ∈ I

c ∩ (−I )c and 0 = Lv∗(x) + f (x) = Hv∗(x) − v∗(x), where the last equality
holds true by assumption. ��

Lemma 2.5.2 shows to what extent the convergence of the payoffs imply the con-
vergence of the strategies. The following theorem, of theoretical interest, establishes a
reciprocal under the stronger assumption (A1’). In general, since the set of strategies

 is finite, the sequence of strategy-dependent coefficients of the fixed-point equa-
tions (2.4.1) will always be bounded and with finitely many limit points. However, if
the approximating strategies are such that the former coefficients convergence, then
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Algorithm 2.2.1 is guaranteed to converge. Further, instead of looking at the con-
vergence of

(
A, B, C

)(
ϕk, ϕk+1

)
, we can instead consider the weaker condition of(

A
−1

B, A
−1

C
)(

ϕk, ϕk+1
)
converging.

Theorem 2.5.4 Assume (A1’), (A1), (A2). If
(
A

−1
B
(
ϕk, ϕk+1

))
and

(
A

−1
C
(
ϕk, ϕk+1

))
converge, then (vk) converges.

Proof Set b = limk A
−1

C
(
ϕk, ϕk+1

)
. Since 
 is finite, there must exist k0 ∈ N and

ϕ, ϕ ∈ 
 such that A−1
B
(
ϕk, ϕk+1

) = A
−1

B
(
ϕ, ϕ

)
and A

−1
C
(
ϕk, ϕk+1

) = b for all
k ≥ k0. Moreover, under our assumptions, (A−B)

(
ϕ, ϕ

)
is aWCDDL0-matrix. Then

Lemma2.4.4 andTheoremA.1.6 imply thatA−1
B
(
ϕ, ϕ

)
is contractive for somematrix

norm. Lastly, note that the sequence of payoffs (vk)k≥k0 now satisfies the classical
(constant-coefficients) contractive fixed-point recurrence vk+1 = A

−1
B
(
ϕ, ϕ

)
vk + b,

which converges to the unique fixed-point of the equation. ��
The classical fixed-point policy-iteration framework [14,26] assumes uniform con-

tractiveness in ‖ · ‖∞ of the sequence of operators. This is a natural norm to consider
in a context where matrices have properties defined row by row, such as diagonal
dominance.23 However, the authors mention convergence in experiments where only
‖ · ‖∞-nonexpansiveness held true. The latter is the typical case in our context, for
the matrices A

−1
B
(
ϕk, ϕk+1

)
, which is why Theorem 2.5.4 relies on the fact that a

spectral radius strictly smaller than one guarantees contractiveness in some matrix
norm.

It is natural to ask whether there is some contractiveness condition that may account
for the observations in [14,26] and that can be generalized to our context to further
the study of Algorithm 2.2.1. Imposing a uniform bound on the spectral radii would
not only be hard to check, but also difficult to manipulate, as the spectral radius is not
sub-multiplicative.24 Instead, we can consider the sequential indices of contraction
and connectivity, which naturally generalize those of the previous section by means
of walks in the graph of a sequence of matrices (see Appendix A for more details).
As before, they can be identified with one another (see Lemma A.1.5) and, given
substochastic matrices, the sequential index of contraction tells us how many we need
to multiply before the result becomes ‖ · ‖∞-contractive (Theorem A.1.7). Thus, let
us consider a uniform bound on the following sequential indices of connectivity:

(A0”) There exists m ∈ N0 such that for any sequence of strategies (ϕk) ⊆ 
,

con
[(

(A − B)
(
ϕk, ϕk+1))] ≤ m.

Remark 2.5.5 Given ϕ, ϕ ∈ 
, by considering the sequence ϕ, ϕ, ϕ, ϕ, . . . , we see
that (A0”) implies (A1’). In fact, (A0”) can be interpreted as precluding infinite simul-
taneous impulses even when the players can adapt their strategies (cf. Remark 2.4.6)
and imposing that the number of shifts needed for any state to reach the common
continuation region is bounded.

23 Recall that this norm can be computed as the maximum absolute value row sum.
24 ρ(AB) ≤ ρ(A)ρ(B) does not hold in general when the matrices A and B do not commute.
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Under this stronger assumption, we have:

Proposition 2.5.6 Assume (A0”), (A1), (A2). Then (vk) is bounded.

Proof In a similar way to Lemma 2.4.4, one can check that under (A0”), (A1), (A2)
we have the following uniform bound for the sequential indices of contraction:

ĉon
[(

A
−1

B
(
ϕk, ϕk+1))] ≤ m,

for any sequence of strategies (ϕk) ⊆ 
. In other words, not only is any product of
the previous substochastic matrices also substochastic (i.e., ‖ · ‖∞-nonexpansive), but
it is also ‖.‖∞-contractive when there are at least m + 1 factors. Furthermore, since

m+1 is finite, there must be a uniform contraction constant C1 < 1. Let C2 > 0 be
a uniform bound for A

−1
C. By the representation (2.4.2)25

‖vk+1‖∞ ≤ ‖v0‖∞ + C2

k∑
n=0

C

[
k−n
m+1

]
1 ≤ ‖v0‖∞ + (m + 1)C2

∞∑
n=0

Cn
1 < +∞.

��
Given n0 ∈ N and k > (m + 1)n0, the same argument of the previous proof shows

that one can decompose (vk) as vk+1 = uk + F(ϕk−(m+1)n0 , . . . , ϕk)+wk, for a fixed
function F , ‖uk‖∞ ≤ C [k/(m+1)]

1 ‖v0‖ → 0 and ‖wk‖∞ ≤ (m + 1)C2
∑∞

n=n0 Cn
1 .

The latter is small if n0 is large. Hence, one could heuristically expect that the trailing
strategies are often the ones dominating the convergence of the algorithm. In fact, in
all the experiments carried out with a discretization satisfying (A0”), (A1), (A2), a
dichotomous behaviour was observed: the algorithm either converged or at some point
reached a cycle between a few payoffs. In the latter case, and restricting attention to
instances in which one heuristically expects a solution to exist (more details in Sect. 3),
it was possible to reduce the residual to the QVIs and the distance between the iterates
by refining the grid.

The previous motivates the study of Algorithm 2.2.1 when the grid is sequentially
refined, instead of fixed. Such an analysis however, would likely entail the need of
a viscosity solutions framework as in [2,12], which does not currently exist in the
literature of nonzero-sum stochastic impulse games. Consequently, this analysis and
the stronger convergence results that may come out of it are inevitably outside the
scope of this paper.

2.6 Discretization Schemes

Let us conclude this sectionby showinghowone candiscretize the symmetric systemof
QVIs (1.3.1) to obtain (2.1.1) in away that satisfies the assumptions present throughout
the paper. Recall that we work on a given symmetric grid G : x−N = −xN < · · · <

x−1 = −x1 < x0 = 0 < x1 < · · · < xN .

25 For any x ∈ R, [x] denotes its integer part.
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Firstly, we want a discretization L of the operatorA−ρ Id such that−L is an SDD
L0-matrix as per (A1). A standard way to do this is to approximate the first (resp.
second) order derivativeswith forward and backward (resp. central) differences in such
a way that we approximate the ordinary differential equation (ODE) 1

2σ
2V ′′ +μV ′ −

ρV + f = 0 with an upwind (or positive-coefficients) scheme. More precisely, for
each x = xi ∈ G we approximate the first derivative with a forward (resp. backward)
difference if its coefficient in the previous equation is nonegative (resp. negative) in
xi ,

V ′(xi ) ≈ V (xi+1) − V (xi )

xi+1 − xi
if μ(xi ) ≥ 0 and

V ′(xi ) ≈ V (xi ) − V (xi+1)

xi − xi+1
if μ(xi ) < 0

and the second derivative by

V ′′(xi ) ≈ V (xi+1) − V (xi )

(xi+1 − xi )(xi+1 − xi−1)
− V (xi ) − V (xi−1)

(xi − xi−1)(xi+1 − xi−1)
.

In the case of an equispaced grid with step size h, this reduces to26

V ′(x) ≈ V
(
x + sgn(μ(x))h

) − V (x)

sgn(μ(x))h
and

V ′′(x) ≈ V (x + h) − 2V (x) + V (x − h)

h2 .

For the previous stencils to be defined in the extreme points of the grid, we consider
two additional points x−N−1, xN+1 and replace V (x−N−1), V (xN+1) in the previous
formulas by some values resulting from artificial boundary conditions. A common
choice is to impose Neumann conditions to solve for V (x−N−1), V (xN+1) using the
first order differences from before. For example, in the equispaced grid case, given
LBC,RBC ∈ R we solve for V (x−N − h) (resp. V (xN + h)) from the Neumann
condition

LBC = V ′
(

x−N − h1{
μ(x−N )≥0

}) (resp. RBC = V ′
(

xN + h1{
μ(xN )<0

})),

yielding V (x−N − h) ≈ V (x−N ) − LBCh (resp. V (xN + h) ≈ V (xN ) + RBCh).
The choice of LBC,RBC is problem-specific and intrinsically linked to that of xN ,
although it does not affect the properties of the discrete operators. See more details in
Sect. 3.

The described procedure leads to a discretization of the ODE as Lv + f = 0, with
L satisfying the properties we wanted (with strict diagonal dominance due to ρ > 0).
Note that the values of f at x−N , xN need to be modified to account for the boundary
conditions.

26 sgn denotes the sign function, sgn(x) = 1 if x ≥ 0 and −1 otherwise.
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Remark 2.6.1 One could increase the overall order of approximation by using central
differences as much as possible for the first order derivatives, provided the scheme
remains upwind (see [25,38] formore details). This is not done here in order to simplify
the presentation.

We now approximate the impulse constraint sets Z(x) (x ∈ R) by finite sets ∅ 	=
Z(x) ⊆ [0,+∞) (x ∈ G), such that Z(x) = {0} if x ≥ 0, and define the impulse
operators

B(δ)v(x) = v[[x + δ(x)]], for v ∈ R
G , δ ∈ Z , x ∈ G,

where v[[y]] denotes linear interpolation of v on y using the closest nodes on the grid,
and v[[y]] = v(x±N ) if±y > ±x±N (i.e., “no extrapolation”). This univocally defines
the discrete loss and gain operators M and H as per (2.1.2), as well as the optimal
impulse δ∗ according to (2.1.3). The set of discrete strategies
 is defined as in (2.2.1).

This general discretization scheme satisfies assumptions (A0)– (A2) and one can
impose some regularity conditions on the setsZ(x) and Z(x) such that the solutions of
the discrete QVI problems (2.2.2) converge locally uniformly to the unique viscosity
solution of the analytical impulse control problem, as the grid is refined.27 See [2,6]
for more details.

Example 2.6.2 In the case where Z(x) = [0,+∞) for x < 0, a natural and most
simple choice for Z(x) is Z(xi ) = {0, xi+1 − xi , . . . , xN − xi } for i < 0. In this case,
B(δ)v(x) = v(x +δ(x)) and Hv(x) = v(x −δ∗(−x))+g(x,−δ∗(−x)). This choice,
however, does not satisfy (A1’).

In order to preclude infinite simultaneous interventions it is enough to constrain
the size of the impulses so that the symmetric point of the grid cannot be reached.
That is, Z(x) ⊆ [0,−2x) for any x ∈ G<0. In this case, the scheme satisfies the
stronger conditions (A0”), (A1), (A2) (and in particular, (A1’)). Intuitively, each pos-
itive impulse will lead to a state which is at least one node closer to x0 = 0, where no
player intervenes. Practically, it makes sense to make this choice when one suspects
(or wants to check whether) there is a symmetric NE with no “far-reaching impulses”,
in the previous sense.

Proof To check that (A0”) is indeed satisfied, consider some arbitrary ϕ = (I , δ), ϕ =
(I , δ) and xi ∈ G. Note first that if xi belongs to the common continuation region
I

c ∩ (−I )c (as it is the case for x0 = 0), then the i-th row of (A − B)
(
ϕ, ϕ

)
is equal

to the i-th row of −L , which is SDD by (A1). We claim that, in general, either the
i-th row of (A − B)

(
ϕ, ϕ

)
is SDD or there is an edge in its graph from xi to some x j

with | j | < |i |. This immediately implies that (in the notation of (A0”)) one can take

m = N , as there will always be a walk in graph
(
(A−B)

(
ϕk, ϕk+1

))
from xi to some

SDD row, with length at most N . (The longest that might need to be walked is all the
way until reaching the 0-th row, with the distance decreasing in one unit per step.)

27 Additional technical conditions include costs bounded away from zero and a comparison principle for
the analytical QVI.
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To prove the claim, suppose first that xi ∈ I (i.e., the intervention region of the
player). Hence, i < 0. If δ = 0, then the i-th row of (A − B)

(
ϕ, ϕ

)
is again equal

to the i-th row of Id, thus SDD. If 0 < δ < −2xi , then there exist an index k and
α, β ≥ 0 such that i < k ≤ |i |, α + β = 1 and xi + δ = αxk−1 + βxk . Accordingly,

[
(A − B)

(
ϕ, ϕ

)]
i j = 1{i= j} − α1{ j=k−1} − β1{ j=k}, for all j .

If xi < xi + δ ≤ x|i |−1, then we can assume without loss of generality that β > 0 and
take j = k. (If β = 0, simply relabel k − 1 as k.) If x|i |−1 < xi + δ < −xi = x|i |,
then α > 0 and we can take j = k − 1.

The case of xi ∈ −I is symmetric and can be proved in the same manner. ��
Example 2.6.3 If Z(x) = [0,+∞) for x < 0, the analogous of Example 2.6.2 is now
Z(xi ) = {0, xi+1 − xi , . . . , x−i−1 − xi } for i < 0.

Remark 2.6.4 Consider Example 2.6.3 in the context of Remark 2.1.1. As in Propo-
sition 2.5.6 and due to Theorem A.1.7, the less impulses needed between the two
players to reach the common continuation region, the faster that the composition of
the fixed-point operators of Algorithm 2.2.1 becomes contractive. Hence, one could
intuitively expect that when close enough to the solution, the choice of the maximum
arg-maximum in (2.1.3) improves the performance of Algorithm 2.2.1. This is another
motivation for such choice.

3 Numerical Results

This section presents numerical results obtained on a series of experiments. See Intro-
duction and Sect. 1.3 for the motivation and applications behind some of them. We
do not assume additional constraints on the impulses in the analytical problem. All
the results presented were obtained on equispaced grids with step size h > 0 (to be
specified) and with a discretization scheme as in Sect. 2.6 and Example 2.6.3. The
extreme points of the grid are displayed on each graph.

For the games with linear costs and gains of the form c(x, δ) = c0 + c1δ and
g(x, δ) = g0 + g1δ, with c0, c1, g0, g1 constant, the artificial boundary conditions
were taken as LBC = c1 and RBC = g1 for a sufficiently extensive grid. They
result from the observation that on a hypothetical symmetric NE of the form ϕ∗ =(
(−∞, x], δ∗(x) = y∗ − x

)
, with x < 0, x < y∗ ∈ R, the equilibrium payoff verifies

V (x) = V (y∗) − c0 − c1(y∗ − x) for x < x and V (x) = V (−y∗) + g0 + g1(x + y∗)
for x > −x . For other examples, LBC, RBC and the grid extension were chosen by
heuristic guesses and/or trial and error. However, in all the examples presented the
error propagation from poorly chosen LBC,RBC was minimal.

The initial guess was set as v0 = 0 and its induced strategy in all cases. SolveIm-
pulseControl was chosen as Sect. 2.3.1 (see Remark 2.3.4) with t̃ol = 10−15 and
λ = 1.28 Its convergence was exact however, in all the examples. Instead of fixing

28 For very fine grids, one should increase the value of t̃ol to avoid stagnation (see, e.g, Remark 2.2.4).
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a terminal tolerance tol beforehand, we display the highest accuracy attained and
number of iterations needed.

Section 3.1 considers a fixed grid and games where the results point to the existence
of a symmetric NE as per Corollary 1.3.9. Not having an analytical solution to compare
with, results are assessed by means of the percentage difference between the iterates

Diff:=
∥∥∥(vk+1 − vk)/max{|vk+1|, scale}

∥∥∥∞ ,

with scale = 1 as in [4], and the maximum pointwise residual to the system of QVIs
(2.1.1), defined for v ∈ R

G by setting I = {Lv + f ≤ Mv − v} ∩ G<0, C = I c and

maxResQVIs(v):= ‖max{Lv + f , Mv − v}1−C + (Hv − v)1−I ‖∞ .

Section 3.2 considers the only symmetric games in the literaturewith (semi-) analytical
solution: the central bank linear game [1] and the cash management game [10], and
computes the errors made by discrete approximations, showing in particular the effect
of refining the grid. Not considered here is the strategic pollution control game [24],
due to its inherent non-symmetric nature. Section 3.3 comments on results obtained
for games without NEs. Finally, Sect. 3.4 shows results that go beyond the scope of
the currently available theory for impulse games.

3.1 Convergence to Discrete Solution on a Fixed Grid

Throughout this section the grid step size is fixed as h = 0.01, unless otherwise stated
(although results where corroborated by further refinements). Each figure specifies
the structure, G = (μ, σ, ρ, f , c, g), of the symmetric game solved and shows the
numerical solutions at the terminal iteration for the equilibrium payoff, vk , and NE.
Graphs plot payoff versus state of the process. The intervention region is displayed in
red over the graph of the payoff for presentation purposes.

We focus on games with higher costs than gains, as the opposite typically leads
to players attempting to apply infinite simultaneous impulses [1] (i.e., inducing a
gain from the opponent’s intervention is “cheap”) leading to degenerate games. The
following games resulted in exact convergence in finite iterations, which guarantees
a solution of (2.1.1) was reached (Corollary 2.5.3), although very small acceptable
errors were reached sooner.
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The following is an example in which the accuracy stagnates. At that point, the iter-
ates start goingback and forth between a fewvalues.Althoughwecannot guarantee that
we are close to a solution of (2.1.1), the results seem quite convincing, with both Diff
and maxResQVIs reasonably low. In fact, simply halving the step size to h = 0.005
produces a substantial improvement of Diff=9.16e-11% and maxResQVIs=9.19e-11
in k =33 iterations.

The previous games have a state variable evolving as a scaled Brownian motion.
We now move on to a mean reverting OU process with zero long term mean. (Recall
that any other value can be handled simply by shifting the game.) In general, the exper-
iments with these dynamics converged exactly in a very small number of iterations.
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Note how all the games treated in this section exhibit a typical feature known to
hold for simpler symmetric games [1,3,10]: the equilibrium payoff of the player is
only C1 at the border of the intervention region ∂I∗ = {AV − ρV + f = MV −
V } ∩ R<0, and only continuous at the border of the opponent’s intervention region
−∂I∗. In floating point arithmetic, the former makes the discrete approximation of
∂I∗ particularly elusive, while the latter can lead to high errors when close to −∂I∗.
As a consequence, Sect. 2.3.1 (or any equivalent) will often misplace a few grid nodes
between intervention and continuation regions, which will in turn make the residual
resQVIs “spike” on the opponent’s side. Thus, a large value of maxResQVIs can at
times be misleading, and further inspection of the pointwise residuals is advisable.

As a matter of fact, halving the step size to h = 0.005 in the last example results
in exact convergence with terminal maxResQVIs= 2510, but the residuals on all grid
nodes other than the “border” of the opponent’s intervention region and a contiguous
one are less than1.43e-11.This is an extreme example propitiated by the almost vertical
shape of the solution close to such border. Thus, while it is useful in practice to consider
a stopping criteria for Algorithm 2.2.1 based onmaxResQVIs, this phenomenon needs
to be minded.

The last example also shows how impulses at a NE can lead to different endpoints
depending on the state of the process. This is often the case when costs are nonlinear.
In fact:

Lemma 3.1.1 Let (I∗, δ∗) and V be a symmetric NE and equilibrium payoff as in
Corollary 1.3.9. Assume that Z(x) = [0,+∞) for x < 0 and c = c(x, δ) ∈ C2

(
R ×

(0,+∞)
)
, and consider the re-parametrization c = c(x, y):=c(x, y − x). Suppose

that y∗:=x + δ∗(x) is constant for all x ∈ (I∗)◦.29 Then cxy(x, y∗) ≡ 0 on (I∗)◦.

29 A◦ denotes the interior of the set A ⊆ R.
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The result is immediate since MV(x) = supy>x {V (y) − c(x, y)} = V (y∗) −
c(x, y∗) on (I∗)◦ and V ∈ C1

( − C∗). (y∗ /∈ −I∗ or there would be infinite simulta-
neous impulses.) While the sufficient condition cxy(x, y∗) ≡ 0 for some y∗ is verified
for linear costs, it is not in general and certainly not for c(x, δ) = 10 + 20

√
δ as in

the last example.

3.2 Convergence to Analytical Solution with Refining Grids

A convergence analysis from discrete to analytical solution with refining grids is
outside the scope of this paper, and seems to be far too challenging when a viscosity
solutions framework is yet to be developed. Instead, we present here a numerical
validation using the solutions of the linear and cash management games. We focus
first and foremost in the former, as it has an almost fully analytical solution, with only
one parameter to be found numerically as opposed to four for the latter. The structure
of the game is defined with parameter values used in [1] (also in [3]). To minimize
rounding errors from floating point arithmetic, we proceed as in [4] considering grids
made up entirely of machine numbers.30 The results are displayed in Table 1.

For each step size, Algorithm 2.2.1 either converged or was terminated upon stag-
nation. Regardless, we can see the errors made when approximating the analytical
solution are quite satisfactory in all cases, and overall decrease as h → 0. Moreover,
we see once again how the “spiking” of the residual can be misleading (the highest
value was always at the “border” of the opponent’s intervention region).

An exact symmetric NE for this game (up to five significant figures) is given
by the intervention region I∗ = (−∞,−2.8238] and impulse function δ∗(x) =
1.5243 − x , while the approximation given by Algorithm 2.2.1 with h = 1/64 is(
(−∞,−2.8125], 1.5313 − x

)
, with absolute errors on the parameters of no more

than the step size.
The cash management game [10] with unidirectional impulses can be embedded

in our framework by reducing its dimension with the change of variables x = x1 −
x2, changing minimization by maximization and relabelling the players. With the
parameter values of [10, Fig.1b], it translates into the game: μ = 0, σ = 1, ρ =
.5, f = −|x |, c = 3 + δ, g = −1. The authors found numerically a symmetric
NE approximately equal to

(
(−∞,−5.658], 0.686 − x

)
, while Algorithm 2.2.1 with

xN = 8 and h = 1/64 gives
(
(−∞,−5.6563], 0.6875 − x

)
. The absolute difference

on the parameters is once again below the grid step size.

3.3 GamesWithout Nash Equilibria

It is natural to ask how Algorithm 2.2.1 behaves on games without symmetric NEs,
and whether anything can be inferred from the results. For the linear game, two cases
without NEs (symmetric or not) are addressed in [1]: “no fixed cost” and “gain greater
than cost”. Both of them yield degenerate “equilibria” where the players perform infi-

30 By machine numbers we mean those that can be represented exactly in IEEE standard floating-point
number system.
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Table 1 Convergence to
analytical solution when refining
equispaced symmetric grid with
step size h and endpoint xN = 4

h %error Its. maxResQVIs

1 6.67% 17 8.88e-16

1/2 8.33% 13 5.33e-15

1/4 0.23% 4 13.2

1/8 0.21% 8 15.1

1/16 0.16% 8 30

1/32 0.07% 21 21.2

1/64 0.0043% 37 0.343

Game: μ = 0, σ = .15, ρ = .02, f = x + 3, c = 100 + 15δ, g =
15δ. %error :=‖(v − V )/V ‖∞, with V exact solution and v discrete
approximation after Its iterations. ‖ · ‖∞ is computed over the grid

nite simultaneous interventions. When tested for several parameters, Algorithm 2.2.1
converged in finitely many iterations (although rather slowly) and yielded the exact
same type of “equilibria”.31 For a fine enough grid, the previous can be identified
heuristically by some node in the intervention region that would be shifted to its sym-
metric one (infinite alternated interventions), or to its immediate successor over and
over again, until reaching the continuation region (infinite one-sided interventions).32

In thefirst case,we recovered the limit “equilibriumpayoffs” of [1, Props.4.10,4.11].
Intuitively, the players in this game take advantage of free interventions, whether by
no cost or perfect compensation, in order to shift the process as desired. Note that
when c = g, the impulses that maximimize the net payoff are not unique.

In the second case, grid refinements showed the discrete payoffs to diverge towards
infinity at every point. This is again consistent with the theory: each player forces the
other one to act, producing a positive instantaneous profit. Iterating this procedure
infinitely often leads to infinite payoffs for every state.

Tested games inwhichAlgorithm 2.2.1 failed to converge (and not due to stagnation
nor a poor choice of the grid extension) were characterized by iterates reaching a cycle,
typically with high values of Diff and maxResQVIs regardless of the grid step size. In
many cases, the cycles would visit at least one payoff inducing infinite simultaneous
impulses. While this might, potentially and heuristically, be indicative of the game
admitting no symmetric NE, there is not much more than can be said at this stage.

3.4 Beyond theVerification Theorem

We now present two games in which the solution of the discrete QVIs system (2.1.1)
found with Algorithm 2.2.1 (by exact convergence) does not comply with the continu-
ity and smoothness assumptions of Corollary 1.3.9. However, the results are sensible
enough to heuristically argue they may correspond to NEs beyond the scope of the

31 There were also cases of stagnation, improved by refining the grid as in Sect. 3.1.
32 More precisely, due to our choice of Z(x) a node can be shifted at most to that immediately preceding
its symmetric one.
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Verification Theorem. In both cases h = 0.01. Finer grids yielded the same qualitative
results.

The first game considers costs convex in the impulse. When far enough from her
continuation region, it is cheaper for the player to apply several (finitely many) simul-
taneous impulses instead of one, to reach the state she wishes to (cf. Remark 1.2.4). In
this game, the optimal impulse δ∗ becomes discontinuous, and its discontinuity points
are those in the intervention region where the equilibrium payoff is non-differentiable.
These, in turn, translate into discontinuities on the opponent’s intervention region (one
degree of smoothness less, as with the border of the regions).

The second game considers linear gains, quadratic running payoffs and costs
concave on the impulse. The latter makes the player shift the process towards her
continuation region (cf. Remark 1.2.4). However, when far enough from the border,
instead of shifting the process directly to her “preferred area”, the player chooses to
pay a bit more to force her opponent’s intervention, inducing a gain and letting the
latter pay for the final move. Once again, this causes δ∗ to be discontinuous and leads
to a non-differentiable (resp. discontinuous) point for the equilibrium payoff in the
intervention (resp. opponent’s intervention) region.

Under the previous reasoning, one could intuitively guess that setting g = 0 in this
game should remove the main incentive the player has to force her opponent to act.
This is in fact the case, as shown below. As a result, δ∗ becomes continuous and the
equilibrium payoff falls back into the domain of the Verification Theorem.
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We remark that, should the previous solutions correspond indeed to NEs, then the
alternative semi-analytical approach of [24] could not have produced them either, as
that method can only yield continuous equilibrium payoffs.

4 Concluding Remarks

This paper presents a fixed-point policy-iteration-type algorithm to solve systems
of quasi-variational inequalities resulting from a Verification Theorem for symmet-
ric nonzero-sum stochastic impulse games. In this context, the method substantially
improves the only algorithm available in the literature while providing the conver-
gence analysis that we were missing. Graph-theoretic assumptions relating to weakly
chained diagonally dominant matrices, which naturally parallel the admissibility of
the players strategies, allow to prove properties of contractiveness, boundedness of
iterates and convergence to solutions. A result of theoretical interest giving sufficient
conditions for convergence is also proved. Additionally, a novel provably convergent
impulse control solver is provided.

Equilibrium payoffs and Nash equilibria of games too challenging for the available
analytical approaches are computed with high precision on a discrete setting. Numer-
ical validation with analytical solutions is performed when possible, with reassuring
results, but it is noted that grid refinements may be needed at times to overcome stag-
nation. Thus, formalising the approximating properties of the discrete solutions as
well as deriving stronger convergence results for the algorithm may need a viscosity
solutions framework currently missing in the theory. This is further substantiated by
the irregularity of the solutions, particularly those found which escape the available
theoretical results. This motivates further research while providing a tool that can
effectively be used to gain insight into these very challenging problems.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
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A Matrix and Graph-Theoretic Definitions and Results

For the reader’s convenience, this appendix summarizes some important algebraic and
graph-theoretic definitions and results used throughout the paper. More details can be
found in the references given below. Henceforth, A ∈ R

N×N is a real matrix, Id ∈
R

N×N is the identity, ρ(·) denotes the spectral radius and R
N , R

N×N are equipped
with the elementwise order. We talk about rows and “states” interchangeably.

Definitions A.1.1(D1) A is a Z-matrix if it has nonpositive off-diagonal elements.
(D2) A is an L-matrix (resp. L0-matrix) if it is a Z-matrix with positive (resp. non-

negative) diagonal elements.
(D3) A is an M-matrix if A = s Id−B for some matrix B ≥ 0 and scalar s ≥ ρ(B).
(D4) A is monotone if it is nonsingular and A−1 ≥ 0. Equivalently, A is monotone

if Ax ≥ 0 implies x ≥ 0 for any x ∈ R
N .

(D5) The i-th row of A is weakly diagonally dominant (WDD) (resp. strictly diago-
nally dominant or SDD) if |Aii | ≥ ∑

j 	=i |Ai j | (resp. >).
(D6) A is WDD (resp. SDD) if every row of A is WDD (resp. SDD).
(D7) The directed graph of A is the pair graphA:=(V , E), where V :={1, . . . , N } is

the set of vertexes and E ⊆ V × V is the set of edges, such that (i, j) ∈ E iff
Ai j 	= 0.

(D8) A walk ω in graphA = (V , E) from vertex i to vertex j is a nonempty finite
sequence (i, i1), (i1, i2), . . . , (ik−1, j) ⊆ E , which we denote by ω : i →
i1 → · · · → ik−1 → j . |ω|:=k is called the length of the walk ω.

(D9) A is weakly chained diagonally dominant (WCDD) if it is WDD and for each
WDD row of A there is a walk in graphA to an SDD row (identifying vertexes
and rows).

(D10) A is (right) substochastic or sub-Markov (resp. stochastic or Markov) if A ≥ 0
andeach rowsumsatmost one (resp. exactly one). Equivalently, A is substochas-
tic if A ≥ 0 and ‖A‖∞ ≤ 1. (Recall that ‖A‖∞ is the maximum row-sum of
absolute values.)

(D11) If A is a WDD (resp. substochastic) matrix, its set of “non-trouble states” (or
rows) is J [A]:={i : the i-th row of A is SDD} (resp. Ĵ [A]:={i : ∑

j Ai j <

1}). For each i , we write Pi [A]:={walks in graphA from i to some j ∈ J [A]}
(resp. we define P̂i [A] analogously). The index of connectivity (resp. index of
contraction) of A [7] is33

conA:=
(

sup
i /∈J [A]

{
inf

ω∈Pi [A] |ω|
})+

(resp. we define ĉonA analogously).

It is clear that SDD �⇒ WCDD �⇒ WDD, and by definition, L-matrix �⇒ L0-
matrix �⇒ Z-matrix. Also by definition, if A is WDD then: A is WCDD ⇐⇒
conA < +∞.

Proposition A.1.2 (e.g., [36] or [4, Lem.3.2]) Any WCDD matrix is nonsingular.

33 (·)+ denotes positive part, inf ∅ = +∞ and sup ∅ = −∞. The index is the least length that needs to be
walked on graphA to reach the non-trouble states when starting from an arbitrary trouble one.
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Proposition A.1.3 (e.g., [7, Prop.2.15 and 2.17])
Nonsingular M-matrix ⇐⇒ monotone L-matrix ⇐⇒ monotone Z-matrix.

Theorem A.1.4 (e.g., [7, Thm.2.24]) WCDD L0-matrix ⇐⇒ WDD nonsingular M-
matrix.34

Proposition A.1.5 (see proof of [7, Lem.2.22]) A is substochastic if and only if Id−A
is a WDD L0-matrix and A has non-negative diagonal elements. In such case, Ĵ [A] =
J [Id−A], they have the same directed graphs (except possibly for self-loops i → i )
and ĉonA = con[Id−A].

For the following theorem, recall the characterization of the spectral radius ρ(A) =
inf{‖A‖ : ‖ · ‖ is a matrix norm} and Gelfand’s formula ρ(A) = limn→+∞ ‖An‖1/n ,
for any matrix norm ‖ · ‖. Note also that if A is substochastic, then An is also sub-
stochastic for any n ∈ N0, ‖An‖∞ ≤ 1 and ρ(A) ≤ 1.

Theorem A.1.6 ([7, Thm.2.5 and Cor.2.6]) Suppose A is substochastic. Then

ĉonA = inf{n ∈ N0 : ‖An+1‖∞ < 1}.

In particular, ĉonA < +∞ if and only if ρ(A) < 1.

The indices of contraction and connectivity can be generalized in a natural way to
sequences (Ak) ⊆ R

N×N by considering walks i1 → i2 → . . . such that ik → ik+1
is an edge in graphAk (see [7, App.B] for more details). Theorem A.1.6 extends in the
following way:

Theorem A.1.7 ([7, Thm.B.2]) Suppose (Ak) are substochastic matrices and consider
the sequence of products (Bk), where Bk :=A1 . . . Ak. Then,

ĉon
[
(Ak)

] = inf{k ∈ N0 : ‖Bk+1‖∞ < 1}.

Equivalently,1 = ‖B0‖∞ = · · · = ‖Bα‖∞ > ‖Bα+1‖∞ ≥ . . . , for α = ĉon
[
(Ak)

]
.35

Proof of Lemma 2.4.4 For briefness,we omit the dependence onϕ, ϕ from the notation.
It follows from Proposition 2.4.2 that A

−1
B ≥ 0, since B ≥ 0 and A is monotone.

To see that its rows sum up to one, let 1 ∈ R
G be the vector of ones. It is easy to check

using A and B explicit expressions and (A1)– (A2), that AA
−1

B1 = B1 ≤ A1, which
implies A

−1
B1 ≤ 1. This proves that A

−1
B is substochastic.

The WDD L0-property of A − B is due to (A1). To verify this, note first that by
straightforward computations, if amatrix A0 has the previous property then S A0S must
also have it. Then simply observe that the i-th row of A − B is equal to the i-th row
of Id−B(δ) (if xi ∈ I ), or −L (if xi ∈ I

c ∩ (−I )c) or Id−SB(δ)S = S(Id−B(δ))S
(if xi ∈ −I ), all of which are WDD L0-matrices by (A1).

34 [7, Thm.2.24] is formulated in terms of L-matrices instead. However, it is trivial to see that: WCDD
L0-matrix ⇐⇒ WCDD L-matrix.
35 The equivalence is due to (Ak ) being substochastic matrices, which implies that ‖Bk‖∞ ≤ 1 for all k.
Note that the case α = +∞ reads ‖Bk‖∞ = 1 for all k.
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We prove now the last statement, ĉon
[
A

−1
B
] ≤ con

[
A − B

]
. Note that by Propo-

sition A.1.5, A
−1

B and Id−A
−1

B share the same sets of non-trouble rows, directed
graphs (except possibly for self loops) and ĉon

[
A

−1
B
] = con

[
Id−A

−1
B
]
. Thus, we

want see that for any non-SDD row of Id−A
−1

B, if an SDD row of A − B can be
reached by a walk in the graph of the latter, then there must be a shorter walk to an
SDD row in the graph of the former. We proceed by showing several results:

(i) There is a walk from xi to x j in graphA if and only if A
−1
i j > 0.36 In particular,

A
−1 has strictly positive diagonal elements.(More in general, both statements are true

for any WCDD L0-matrix, with the same proof)
Recall first that A is a WCDD L0-matrix and so it must have positive diagonal

elements, or there would be a null row disconnected from every SDD row. Thus,
xi → xi is always in graphA and we must show that A

−1
i i > 0. If A

−1
i i = 0, then by

monotonicity and L0-property, it would be 1 = [
AA

−1
]

i i = ∑
j 	=i Ai j A

−1
j i ≤ 0.

Suppose now i 	= j and that xi is connected to x j by a walk in graphA. We proceed
by induction in the length of thewalk. If the length is one, suppose by contradiction that
A

−1
i j = 0. Then 0 = [

AA
−1

]
i j = ∑

k 	=i AikA
−1
k j ≤ Ai j A

−1
j j < 0 by assumption and

the diagonal case. For an arbitrary walk xi → y1 → · · · → yn = x j , assume without
loss of generality that it has no closed subwalks. Then y1 = xh for some h 	= i, j . Once
again if A

−1
i j = 0, this would give 0 = [

AA
−1

]
i j = ∑

k 	=i AikA
−1
k j ≤ AihA

−1
h j < 0

by induction.
For the reciprocal, assume now that j 	= i and A

−1
i j > 0. By the adjoint for-

mula of the inverse and Leibniz (or permutations) formula of the determinant, there
must exist some permutation σ : {−N , . . . , N }\{ j} → {−N , . . . , N }\{i} such that∏

k 	= j A
−1
kσ(k) 	= 0. Hence, xi → xσ(i) → xσ 2(i) → ... → x j is a walk in graphA.

(ii) Id−A
−1

B has no less SDD rows than A − B. Further, J
[
A − B

] ⊆
J
[
Id−A

−1
B
]
:

Consider some xi ∈ J
[
Id−A

−1
B
]c, i.e.,

∑
j [Id−A

−1
B]i j = 0. We want to see

that
∑

j [A − B]i j = 0. We have 0 = ∑
j

[
Id−A

−1
B
]

i j = ∑
j

[
A

−1(A − B)
]

i j =∑
k A

−1
ik

∑
j

[
A − B

]
k j . Since A

−1
ik and

∑
j

[
A − B

]
k j are non-negative for all k

(monotonicity and L0 WDD property, respectively), one of the two must be zero for
each k. But A

−1
i i > 0 by (i), giving what we wanted.

(iii) If xi ∈ −I and there is an edge xi → x j in graph
(
A − B

)
for some j 	= i ,

then this is also an edge in graph
(
Id−A

−1
B
)
:[

Id−A
−1

B
]

i j = −[
A

−1
B
]

i j = −∑
k A

−1
ik Bk j ≤ −A

−1
i i Bi j = A

−1
i i

[
A − B

]
i j <

0, where the last equality is due to xi ∈ −I and j 	= i , and the strict inequality is by
assumption and (i).

(iv) If there is a walk in graph
(
A − B

)
, xi = y0 → · · · → yn → x j ∈ J

[
A − B

]
,

with ym ∈ I for all m, then xi ∈ J
[
Id−A

−1
B
]
:

Since A−B and A agree for every row indexed in I , A−1
i j > 0 by (i). It follows that∑

k

[
Id−A

−1
B
]

ik = ∑
k

[
A

−1(A−B)
]

ik = ∑
h A

−1
ih

∑
k

[
A−B

]
hk ≥ A

−1
i j

∑
k

[
A−

B
]

jk > 0.

36 The reciprocal implication is shown merely for the sake of completeness.

123



Applied Mathematics & Optimization

(v) If there is a walk in graph
(
A − B

)
, xi = y0 → · · · → yn → x j → xh , with

ym ∈ I for all m, x j ∈ −I and h 	= i, j , then xi → xh is an edge ingraph
(
Id−A

−1
B
)
:

Using that A − B ≤ A, with equality for rows in I , and A
−1
i j

[
A − B

]
jh < 0 by

assumption and (i), we have
[
Id−A

−1
B
]

ih = [
A

−1(A − B)
]

ih = ∑
k 	= j A

−1
ik

[
A −

B
]

kh + A
−1
i j

[
A − B

]
jh <

∑
k 	= j A

−1
ik Akh = [

A
−1

A
]

ih = 0, where we have used that
A jh = Id jh = 0 for x j ∈ −I , j 	= h.

We turn now to the original claim. Let xi ∈ J
[
Id−A

−1
B
]c such that there is a

walk ω from xi to J
[
A − B

]
in graph

(
A − B

)
. Assume without loss of generality

that ω has no closed subwalks. We want to find a shorter walk to J
[
Id−A

−1
B
]
in

graph
(
Id−A

−1
B
)
.

Due to (ii), it must be either xi ∈ I or xi ∈ −I , since states in I
c ∩ (−I )c

correspond to SDD rows. In the first case, (iv) implies that ω must have the form
ω : xi = y0 → · · · → yn → x j → xh → . . . for some x j ∈ (−I ) ∩ J

[
A − B

]c,
ym ∈ I for all m and h 	= j, i (recall that ω has no closed subwalks). Then (v)
tells us that one can skip states and walk from xi to xh with a single step, through
graph

(
Id−A

−1
B
)
. Afterwards, one can continue with the same path for states in

−I (if any), in light of (iii). The latter subwalk will either reach J
[
A − B

]
(hence,

J
[
Id−A

−1
B
]
as per (ii)) or go back to I and repeat the same procedure. Since there

are finitely many states, J
[
A − B

]
must eventually be reached in this way.

The case of xi ∈ −I follows with the same reasoning. ��
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