47 research outputs found

    Oversubscription Planning as Classical Planning with Multiple Cost Functions

    Get PDF
    The aim of classical planning is to minimize the summed cost of operators among those plans that achieve a fixed set of goals. Oversubscription planning (OSP), on the other hand, seeks to maximize the utility of the set of facts achieved by a plan, while keeping the cost of the plan at or below some specified bound. Here, we investigate the use of reformulations that yield planning problems with two separate cost functions, but no utilities, for solving OSP tasks. Such reformulations have also been proposed in the context of net-benefit planning, where the planner tries to maximize the difference between the utility achieved and the cost of the plan. One of our reformulations is adapted directly from that setting, while the other is novel. In both cases, they allow for easy adaptation of existing classical planning heuristics to the OSP problem within a simple branch and bound search. We validate our approach using state of the art admissible heuristics in this framework, and report our results

    Using the relaxed plan heuristic to select goals in oversubscription planning problems

    Get PDF
    Oversubscription planning (OSP) appears in many real problems where nding a plan achieving all goals is infeasi- ble. The objective is to nd a feasible plan reaching a goal sub- set while maximizing some measure of utility. In this paper, we present a new technique to select goals \a priori" for problems in which a cost bound prevents all the goals from being achieved. It uses estimations of distances between goals, which are com- puted using relaxed plans. Using these distances, a search in the space of subsets of goals is performed, yielding a new set of goals to plan for. A revised planning problem can be created and solved, taking into account only the selected goals. We present experiments in six di erent domains with good results.This work has been partially supported by MICIIN TIN2008-06701-C03-03 and CCG10-UC3M/TIC-5597 projects.Publicad

    Goal reasoning for autonomous agents using automated planning

    Get PDF
    Mención Internacional en el título de doctorAutomated planning deals with the task of finding a sequence of actions, namely a plan, which achieves a goal from a given initial state. Most planning research consider goals are provided by a external user, and agents just have to find a plan to achieve them. However, there exist many real world domains where agents should not only reason about their actions but also about their goals, generating new ones or changing them according to the perceived environment. In this thesis we aim at broadening the goal reasoning capabilities of planningbased agents, both when acting in isolation and when operating in the same environment as other agents. In single-agent settings, we firstly explore a special type of planning tasks where we aim at discovering states that fulfill certain cost-based requirements with respect to a given set of goals. By computing these states, agents are able to solve interesting tasks such as find escape plans that move agents in to safe places, hide their true goal to a potential observer, or anticipate dynamically arriving goals. We also show how learning the environment’s dynamics may help agents to solve some of these tasks. Experimental results show that these states can be quickly found in practice, making agents able to solve new planning tasks and helping them in solving some existing ones. In multi-agent settings, we study the automated generation of goals based on other agents’ behavior. We focus on competitive scenarios, where we are interested in computing counterplans that prevent opponents from achieving their goals. We frame these tasks as counterplanning, providing theoretical properties of the counterplans that solve them. We also show how agents can benefit from computing some of the states we propose in the single-agent setting to anticipate their opponent’s movements, thus increasing the odds of blocking them. Experimental results show how counterplans can be found in different environments ranging from competitive planning domains to real-time strategy games.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidenta: Eva Onaindía de la Rivaherrera.- Secretario: Ángel García Olaya.- Vocal: Mark Robert

    Goal Reasoning: Papers from the ACS workshop

    Get PDF
    This technical report contains the 11 accepted papers presented at the Workshop on Goal Reasoning, which was held as part of the 2013 Conference on Advances in Cognitive Systems (ACS-13) in Baltimore, Maryland on 14 December 2013. This is the third in a series of workshops related to this topic, the first of which was the AAAI-10 Workshop on Goal-Directed Autonomy while the second was the Self-Motivated Agents (SeMoA) Workshop, held at Lehigh University in November 2012. Our objective for holding this meeting was to encourage researchers to share information on the study, development, integration, evaluation, and application of techniques related to goal reasoning, which concerns the ability of an intelligent agent to reason about, formulate, select, and manage its goals/objectives. Goal reasoning differs from frameworks in which agents are told what goals to achieve, and possibly how goals can be decomposed into subgoals, but not how to dynamically and autonomously decide what goals they should pursue. This constraint can be limiting for agents that solve tasks in complex environments when it is not feasible to manually engineer/encode complete knowledge of what goal(s) should be pursued for every conceivable state. Yet, in such environments, states can be reached in which actions can fail, opportunities can arise, and events can otherwise take place that strongly motivate changing the goal(s) that the agent is currently trying to achieve. This topic is not new; researchers in several areas have studied goal reasoning (e.g., in the context of cognitive architectures, automated planning, game AI, and robotics). However, it has infrequently been the focus of intensive study, and (to our knowledge) no other series of meetings has focused specifically on goal reasoning. As shown in these papers, providing an agent with the ability to reason about its goals can increase performance measures for some tasks. Recent advances in hardware and software platforms (involving the availability of interesting/complex simulators or databases) have increasingly permitted the application of intelligent agents to tasks that involve partially observable and dynamically-updated states (e.g., due to unpredictable exogenous events), stochastic actions, multiple (cooperating, neutral, or adversarial) agents, and other complexities. Thus, this is an appropriate time to foster dialogue among researchers with interests in goal reasoning. Research on goal reasoning is still in its early stages; no mature application of it yet exists (e.g., for controlling autonomous unmanned vehicles or in a deployed decision aid). However, it appears to have a bright future. For example, leaders in the automated planning community have specifically acknowledged that goal reasoning has a prominent role among intelligent agents that act on their own plans, and it is gathering increasing attention from roboticists and cognitive systems researchers. In addition to a survey, the papers in this workshop relate to, among other topics, cognitive architectures and models, environment modeling, game AI, machine learning, meta-reasoning, planning, selfmotivated systems, simulation, and vehicle control. The authors discuss a wide range of issues pertaining to goal reasoning, including representations and reasoning methods for dynamically revising goal priorities. We hope that readers will find that this theme for enhancing agent autonomy to be appealing and relevant to their own interests, and that these papers will spur further investigations on this important yet (mostly) understudied topic

    Conflict-driven learning in AI planning state-space search

    Get PDF
    Many combinatorial computation problems in computer science can be cast as a reachability problem in an implicitly described, potentially huge, graph: the state space. State-space search is a versatile and widespread method to solve such reachability problems, but it requires some form of guidance to prevent exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search ingredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any solution, learning from them knowledge to avoid similar conflicts in the remainder of the search. This thesis adapts the conflict-driven learning methodology to more general classes of reachability problems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical planning and in planning under uncertainty. The canonical form of "conflicts" in this context are dead-end states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learning sound and generalizable dead-end knowledge from conflicts encountered during forward state-space search. This embraces the following core contributions: When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy the goal property with absolute certainty. The natural planning objective then is MaxProb, maximizing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning are severely underexplored. We close this gap by developing a large design space of probabilistic state-space search methods, contributing new search algorithms, admissible state-space reduction techniques, and goal-probability bounds suitable for heuristic state-space search. We systematically explore this design space through an extensive empirical evaluation. The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-reachability overapproximations. We design three complementary families of such unsolvability detectors, building upon known techniques: critical-path heuristics, linear-programming-based heuristics, and dead-end traps. We develop search methods to identify conflicts in deterministic and probabilistic state spaces, and we develop suitable refinement methods for the different unsolvability detectors so to recognize these states. Arranged in a depth-first search, our techniques approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict. We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques yield state-of-the-art performance for finding plans for solvable classical planning tasks, proving classical planning tasks unsolvable, and solving MaxProb in probabilistic planning, on benchmarks where dead-end states abound.Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeitsprobleme in einem implizit dargestellten, potenziell riesigen, Graphen - dem Zustandsraum - verstehen. Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen. Die Effizienz dieser Methode hĂ€ngt aber maßgeblich von der Verwendung strikter Suchkontrollmechanismen ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente fĂŒr das Lösen von Constraint-Satisfaction-Problemen (wie dem ErfĂŒllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also Fehlern in der Suche, neue Kontrollregeln lernt, die Ă€hnliche Konflikte zukĂŒnftig vermeiden. In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im klassischen und probabilistischen Planen, einem Teilbereich der KĂŒnstlichen Intelligenz, auftauchen. Die kanonische Form von „Konflikten“ in diesem Kontext sind sog. Sackgassen, ZustĂ€nde, von denen aus die Zielbedingung nicht erreicht werden kann. Wir prĂ€sentieren Methoden, die es ermöglichen, wĂ€hrend der Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen ĂŒber Sackgassen zu erlernen. Unsere Arbeit umfasst folgende BeitrĂ€ge: Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sackgassen dazu fĂŒhren, dass die Zielbedingung nicht unter allen UmstĂ€nden erfĂŒllt werden kann. Die naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrscheinlichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen fĂŒr MaxProb sind jedoch wenig erforscht. Um diese LĂŒcke zu schließen, erstellen wir einen umfangreichen Bausatz fĂŒr Suchmethoden in probabilistischen ZustandsrĂ€umen, und entwickeln dabei neue Suchalgorithmen, Zustandsraumreduktionsmethoden, und AbschĂ€tzungen der Zielerreichbarkeitswahrscheinlichkeit, wie sie fĂŒr heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden Gestaltungsraum systematisch in einer breit angelegten empirischen Studie. Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetektoren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken: Kritische-Pfad Heuristiken, Heuristiken basierend auf linearer Optimierung, und Sackgassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistischen ZustandsrĂ€umen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsdetektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen unsere Techniken Ă€hnliche Eigenschaften auf wie das konfliktgesteuerte Lernen fĂŒr Constraint-Satisfaction-Problemen. Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von PlĂ€nen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Planungsproblemen, und Lösen von MaxProb im probabilistischen Planen, fĂŒhren kann
    corecore