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Abstract

The aim of classical planning is to minimize the summed cost
of operators among those plans that achieve a fixed set of
goals. Oversubscription planning (OSP), on the other hand,
seeks to maximize the utility of the set of facts achieved by a
plan, while keeping the cost of the plan at or below some
specified bound. Here, we investigate the use of reformu-
lations that yield planning problems with two separate cost
functions, but no utilities, for solving OSP tasks. Such re-
formulations have also been proposed in the context of net-
benefit planning, where the planner tries to maximize the dif-
ference between the utility achieved and the cost of the plan.
One of our reformulations is adapted directly from that set-
ting, while the other is novel. In both cases, they allow for
easy adaptation of existing classical planning heuristics to the
OSP problem within a simple branch and bound search. We
validate our approach using state of the art admissible heuris-
tics in this framework, and report our results.

Introduction
The aim of classical planning is to find a sequence of ac-
tions that when applied in the initial state of the problem
results in a state in which all goals are true. Partial satis-
faction planning, on the other hand, aims to maximize the
utility of the goals achieved by the plan, and may choose to
ignore some subset of the goals if the cost of achieving them
is too high. Two distinct flavors of partial satisfaction plan-
ning have been studied in the past: In net-benefit planning,
action costs and goal utilities are comparable, and solution
quality is measured as the net difference between the utility
of the obtained end state and the solution cost (van den Briel
et al. 2004). In contrast, in oversubscription planning the so-
lution cost and state values are assumed to be incomparable
(Smith 2004). To take cost into account, a budget, or bound,
on plan cost is introduced, and the objective is to maximize
the utility of the final state under this constraint.

Heuristic search is among the most successful approaches
to classical planning, and many different heuristics have
been proposed for this purpose. These are typically classi-
fied into four families: abstractions, (e.g., (Culberson and
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Schaeffer 1998; Edelkamp 2001; Helmert et al. 2014; Katz
and Domshlak 2010a)), delete relaxations, (e.g., (Bonet
and Geffner 2001; Hoffmann and Nebel 2001; Keyder and
Geffner 2008; Domshlak, Hoffmann, and Katz 2015)), criti-
cal paths (Haslum and Geffner 2000), and landmarks, (e.g.,
(Richter, Helmert, and Westphal 2008; Karpas and Domsh-
lak 2009; Helmert and Domshlak 2009; Keyder, Richter,
and Helmert 2010)). The basic principle behind all of these
heuristics is the same – the task is relaxed until it satisfies
the requirements of some tractable fragment of the planning
problem, and a solution to this relaxed task is used as a guide
in the original problem space.

Heuristic search has also been very successful in the net-
benefit planning setting, when used in combination with a
transformation into classical planning (Keyder and Geffner
2009). Taking advantage of the fact that action costs and goal
utilities are assumed to be comparable, this transformation
encodes the decision to achieve or ignore an individual goal
as an explicit action, allowing informed heuristics to reason
about the tradeoffs between its cost and utility.

In optimal oversubscription planning, little previous work
has focused on heuristic search, and progress has been
somewhat slower than in the net-benefit setting. A signifi-
cant performance improvement was first reported by Mirkis
and Domshlak (2013). They exploited explicit abstractions
(Edelkamp 2001), which were tractable due to their small
size. The abstract oversubscription planning problems were
additively composed into informative admissible estimates
which are then used to prune states in a branch-and-bound
search. The approach turned out to work well in practice: in
some cases the search space was reduced by three orders of
magnitude compared to the baseline algorithm. Later, Mirkis
and Domshlak (2014) exploited the notion of landmarks for
task reformulation, enriching the task with reachability in-
formation. Katz and Mirkis (2016) characterized tractable
fragments of oversubscription planning tasks according to
causal graph structure and variable domain sizes, and de-
rived admissible estimates from these fragments. Unfortu-
nately, even the simplest fragment under this characteriza-
tion was found to be not solvable in polynomial time. Ad-
ditional restrictions are therefore required for tractability,
similarly to those that were previously exploited in deriv-
ing heuristics for classical planning. Value-driven landmarks
have recently been proposed to extend landmarks to over-
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subscription planning (Muller and Karpas 2018).
Our aim in this work is to lay the grounds for adapting

heuristics for classical planning to oversubscription plan-
ning. Toward this end, we propose a reformulation of the
oversubscription planning task as a classical planning task
with two cost functions on operators. The first of these cor-
responds to the original operator costs and ensures that we
restrict the set of solutions to those whose cost does not ex-
ceed the specified budget, while the second is an encoding of
the utilities in the problem. This encoding can be obtained
through the compilation used in the net-benefit setting by
Keyder and Geffner (2009), but we also propose a new re-
formulation in which action costs are given by the change
in utility that results from the application of an action. Us-
ing merge-and-shrink (Helmert et al. 2014) and LM-cut
(Helmert and Domshlak 2009) heuristics as examples, we
show how both reformulations can be solved using existing
heuristics. We evaluate both, and discuss directions for pos-
sible future improvements.

Another contribution of our work is a first attempt at stan-
dardizing the benchmark set for oversubscription planning.
For that, we introduce additional constructs to the PDDL
language to specify state-additive utility functions and a
cost budget. Further, we adapt the Fast Downward transla-
tor (Helmert 2006) to parse these problem descriptions, and
create a collection of oversubscription planning benchmarks
from the classical STRIPS domains used in past International
Planning Competitions.

Background
In line with the SAS formalism1 for deterministic planning
(Bäckström and Klein 1991), a planning task structure is
given by a pair 〈V,O〉, where V is a set of state variables,
and O is a finite set of operators. Each state variable v ∈ V
has a finite domain dom(v). A pair 〈v, ϑ〉 with v ∈ V and
ϑ ∈ dom(v) is called a fact. A partial assignment to V is
called a partial state. The subset of variables instantiated by
a partial state p is denoted by V(p) ⊆ V . Often it is conve-
nient to view partial state p as a set of facts with 〈v, ϑ〉 ∈ p
iff p[v] = ϑ. We say a partial state s is a state iff V(p) = V .
Partial state p is consistent with state s if s and p agree on all
variables in V(p). We denote the set of states of a planning
task structure 〈V,O〉 by S.

Each operator o is a pair 〈pre(o), eff(o)〉 of partial states
called preconditions and effects. We assume that all opera-
tors are in SAS format i.e. V(eff(o)) ⊆ V(pre(o)) for all
o ∈ O. An operator cost function is a mapping C : O → R.
While in classical planning the operator cost functions C are
typically assumed to be non-negative, we emphasize that in
general cost functions C can take negative values as well.

An operator o is applicable in a state s ∈ S iff s[v] =
pre(o)[v] for all v ∈ V(pre(o)). Applying o changes the
value of each v ∈ V(eff(o)) to eff(o)[v]. The resulting state
is denoted by sJoK. An operator sequence π = 〈o1, . . . , ok〉
is applicable in s if there exist states s0, · · · , sk such that (i)
s0 = s, and (ii) for each 1 ≤ i ≤ k, oi is applicable in si−1

1Not to be confused with the more commonly used SAS+ for-
malism (Bäckström and Nebel 1995).

and si = si−1JoiK. We denote the state sk by sJπK and call
it the end state of π.

Oversubscription Planning An oversubscription plan-
ning (OSP) task ΠOSP = 〈V ,O, sI , C , u,B〉 extends a plan-
ning task structure 〈V,O〉 with an initial state sI ∈ S,
a non-negative operator cost function C, a utility function
u : S → R0+, and a cost bound B ∈ R0+.

An operator sequence π is called an s-plan for ΠOSP if
it is applicable in sI , and

∑
o∈π C(o) ≤ B. We call an sI -

plan a plan for ΠOSP . The utility û(π) of a plan is given by
the utility of the end-state of π, that is, û(π) = u(sIJπK). A
plan π for ΠOSP is optimal if û(π) is maximal among all
plans. While the empty operator sequence is a valid plan for
any OSP task, the objective in oversubscription planning is
to find a plan with high utility, and optimal oversubscription
planning aims to find provably optimal plans only. In what
follows, we restrict our attention to additive utility functions,
computed as the total utility of the facts in the final state of
the plan: u(s) =

∑
f∈s u′(f), where u′ is a function map-

ping facts to non-negative real values. Slightly abusing no-
tation, we denote u′ by u in the following.

A heuristic for the OSP task ΠOSP = 〈V ,O, sI , C , u,B〉
over states S is a mapping h : S × R0+ → R0+, from
state-budget pairs to non-negative real values. The perfect
heuristic h∗ maps each state s ∈ S and bound b ∈ R0+

to the utility û(π∗) of an optimal plan π∗ for the OSP task
〈V,O, s, C, u, b〉. A heuristic h is admissible if h ≥ h∗. Note
that admissible heuristics overestimate the optimal utility in-
stead of underestimating the optimal plan cost as in classical
planning.

Multiple Cost Function Planning
We now present an (otherwise classical) planning formalism
that limits the set of feasible solutions using secondary cost
functions and bounds over these functions. The primary ad-
vantage of this formalism is that while it allows negative val-
ues in the primary cost function, it does not allow utilities.
We will show below how OSP problems can be naturally
expressed in this formalism, and indeed that negative values
for the primary cost function are not required, depending on
the choice of reformulation.
Definition 1. A multiple cost function (MCF) planning task
is a tuple ΠMCF = 〈V,O, sI , G, C0,C 〉, where 〈V,O〉 is a
planning task structure, sI is the initial state, and the partial
state G is the goal. A state consistent with G is a goal state.
Finally
• C0 is the primary cost function, and
• C = {〈Ci,Bi〉 | 1 ≤ i ≤ n} is a set of secondary cost

functions over the set of operators O, and bounds, both
non-negative.
An operator sequence π is a plan for ΠMCF if G is consis-

tent with sIJπK and
∑
o∈π Ci(o) ≤ Bi for 1 ≤ i ≤ n. A plan

is optimal if it has minimal primary cost among all plans for
ΠMCF. A heuristic for an MCF planning task with states S
is a mapping h : S × R|C | → R ∪ {−∞,∞}. The per-
fect heuristic h∗ maps a state s and a vector of bounds b to
the primary cost C0(π∗) of an optimal plan π∗ for the MCF
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Figure 1: Reformulation of operator sequences with state dependent utility functions (a) into operator sequences where the
cost function reflects the utility difference between two successive states (b). The additive utility function allows for a state-
independent cost function (c).

planning task 〈V,O, s,G, C0,C ′〉, with C ′ = {〈Ci,bi〉 |
〈Ci,Bi〉 ∈ C } or to∞ if no such plan exists. A heuristic h
is admissible if h ≤ h∗.

A classical planning task is an MCF planning task
Π = 〈V,O, sI , G, C0, ∅〉 with C0 being non-negative.
As the set of secondary cost functions only constrains
the set of plans, every plan for an MCF task ΠMCF =
〈V,O, sI , G, C0,C 〉 is also a plan for the classical planning
task Π = 〈V,O, sI , G, C0, ∅〉.

For this paper, we assume MCF tasks with at most one
secondary cost function, i.e., having |C | ≤ 1.

Reformulation of OSP into MCF
We now show how to reformulate an OSP task into an MCF
task. The key idea here is to compile the (additive) utility
function into the primary cost function of an MCF planning
task. This is achieved either through the straightforward ap-
plication of the reformulation previously used in the net-
benefit setting (Keyder and Geffner 2009), or through the
novel state-delta reformulation that we propose here.

In the following, we use umax(v) to denote the
maximum utility over the values of the variable v,
maxϑ∈dom(v) u(〈v, ϑ〉), and M to denote the finite upper
bound on the utility that can be obtained by a plan, given
by

M :=
∑
v∈V

umax(v).

We note that the upper bound M allows us to switch from
maximizing the original utility value u to minimizing the
value u : S → R0+ given by u(s) = M − u(s), and to
restate the objective of the task as finding a plan π minimiz-
ing the value M − û(π). The following two reformulations
both implicitly make use of this observation.

Soft Goals Reformulation
The soft goals reformulation (Keyder and Geffner 2009) al-
lows classical planning algorithms to be used to solve partial
satisfaction problems by requiring valid plans to make ex-
plicit whether or not they achieve each soft goal in the prob-
lem. In the STRIPS setting, this is done by augmenting the

goal with fluents that represent the fact that this choice has
been made, and by introducing FORGO and COLLECT ac-
tions that achieve them. The FORGO actions have no precon-
ditions but cost equal to the utility of the associated fluent,
while the COLLECT actions have cost 0 but require the asso-
ciated fact to have been achieved as a precondition. This re-
formulation has previously been adapted to the SAS+ setting
for net-benefit planning tasks (Katz and Mirkis 2016). Here,
we present a slight variant for the oversubscription planning
case.
Definition 2. Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an over-
subscription planning task. The soft goals reformulation
Πsg

MCF = 〈V ′, O′, sI , G′, C0, {〈C ′,B〉}〉 of ΠOSP is an MCF
planning task, where
• V ′ = {v′|v ∈ V }, with dom(v′) = dom(v) ∪ {vg},
• O′ = O ∪ {sg-actionv,ϑ = 〈{v = ϑ}, {v = vg}〉 | ϑ ∈
dom(v), v ∈ V, umax(v) > 0}

• G′ = {vg|v ∈ V, umax(v) > 0},

• C0(o) =

{
0 if o ∈ O,
umax(v)− u(ϑ) if o = sg-actionv,ϑ,

• C ′(o) =

{
C(o) if o ∈ O,
0 otherwise.

Note that since the additional actions have both precondi-
tion and effect defined on the same variable, this reformula-
tion is also valid for the SAS formalism.

For a plan π for ΠOSP, by πsg we denote a plan for its soft
goals reformulation can be obtained by appending the op-
erators sg-actionv,ϑ for 〈v, ϑ〉 ∈ sIJπK, in some predefined
order.
Theorem 1. Let ΠOSP be an oversubscription planning task
and Πsg

MCF its soft goals reformulation. If π is a plan for
ΠOSP with utility û(π), then πsg is a plan for Πsg

MCF with
cost C0(πsg) = M − û(π). Conversely, if π′ is a plan for
Πsg

MCF, removing the operators sg-actionv,ϑ results in a plan
π for ΠOSP with utility û(π) = M − C0(π′).

Proof. The proof follows from the proof of the equiva-
lent theorem in the net-benefit planning setting (Keyder and



Geffner 2009), and the fact that both planning formalisms
respect the bound specified by B. We omit the details due to
lack of space.

State-Delta Reformulation
The idea behind the state-delta reformulation, illustrated in
Figure 1, is to compute by how much each operator changes
the utility of a state when applied. In other words, for a state
s and an operator o applicable in s, we compute the value
u(s, o) := u(sJoK)− u(s).

Theorem 2. The value u(s, o) is independent of the state s.

Proof. By definition of SAS, V(eff(o)) ⊆ V(pre(o))
for every operator o ∈ O. For a variable v ∈ V \
V(eff(o)), we have s[v] = sJoK[v] and hence u(〈v, s[v]〉) −
u(〈v, sJoK[v]〉) = 0. Therefore, it suffices to consider vari-
ables v ∈ V(eff(o)):

u(s, o) = (M − u(sJoK))− (M − u(s))

=
∑
v∈V

u(〈v, s[v]〉)− u(〈v, sJoK[v]〉)

=
∑

v∈V(eff(o))

u(〈v, s[v]〉)− u(〈v, sJoK[v]〉)

=
∑

v∈V(eff(o))

u(〈v, pre(o)[v]〉)− u(〈v, eff(o)[v]〉).

Thus, we can define a (state-independent) cost function
over operators u : O → R as

u(o) =
∑

v∈V(eff(o))

u(〈v, pre(o)[v]〉)− u(〈v, eff(o)[v]〉).

When the operator changes the value of a variable to one
with lower utility, u(o) will be negative. Note that Theorem
2 requires that the task be in SAS rather than SAS+ form, as
this ensures that the value of each variable changed by the
operator is uniquely specified in the precondition. This prop-
erty is required in order to compute the utility change result-
ing from the operator independently of the state in which it
is applied.

Theorem 3. For a sequence of operators π applicable in
state s, u(s) +

∑
o∈π u(o) = u(sJπK).

The proof is straightforward from the definition of u on
operators. Thus, finding a sequence of operators leading to a
state with the minimal value u corresponds exactly to finding
a sequence of operators of a minimal summed cost u. We can
thus solve the OSP task as a classical planning problem with
multiple cost functions and an empty goal:

Definition 3. Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an over-
subscription planning task. The state-delta reformulation
Πsd

MCF = 〈V,O, sI , G, C0, {〈C,B〉}〉 of ΠOSP is the MCF
planning task, where

• G = ∅, and
• C0(o) =

∑
v∈V(eff(o))

u(pre(o)[v])− u(eff(o)[v]), for o ∈ O.

Theorem 4. Let ΠOSP be an oversubscription planning task
and Πsd

MCF its state-delta reformulation. If π is a plan of
ΠOSP with utility û(π) then π is a plan of Πsd

MCF with cost
C0(π) = u(sI)− û(π) and vice versa.

Proof. Operator applicability is defined in the same way for
ΠOSP and Πsd

MCF, so if π is a plan in one task, it is applicable
in the other and results in the same state.

The operator sequence π respects the bounds of ΠOSP iff∑
o∈π C(o) ≤ B iff π respects the bounds of the (only) sec-

ondary cost function of Πsd
MCF. Therefore, and because all

states are goal states in Πsd
MCF, π is a plan in ΠOSP iff it is a

plan in Πsd
MCF.

The primary cost of π is C0(π) =
∑
o∈π u(o), which is

equal to u(sIJπK) − u(sI) = u(sI) − û(π) according to
Theorem 3.

As u(sI) is constant, a plan π maximizes û(π) iff it mini-
mizes C0(π).

Discussion
The next corollary follows directly from Theorems 1 and 4:
Corollary 1. An oversubscription planning task, and its
state-delta and soft goals reformulations have the same op-
timal plans (modulo the removal of sg-actionv,ϑ operators
in the case of the soft goals reformulation).

Corollary 1 implies that the original oversubscription
problem can be solved optimally by finding an optimal so-
lution to either of the MCF planning tasks presented above.

The use of each the two reformulations we have presented
has potential advantages compared to the other. Though both
reformulations require a planning algorithm that is able to
take into account the bounds specified on the secondary cost
functions, the state-delta reformulation also requires plan-
ning algorithms that can handle negative action costs, which
may be computationally difficult. However, it does not add
any additional operators, variables, or values to variable do-
mains.

On the other hand, the soft goals reformulation does not
require support for negative costs, but the addition of new
operators and variables results in more information to rea-
son about and a larger state space. While this effect can be
curtailed by requiring that the goal-achieving actions are ap-
plied in a fixed order, this growth can still prove difficult to
handle for some approaches.

Heuristics for OSP via Reformulation
Having proposed two different reformulations of OSP as
MCF planning, we now show how to devise heuristics for
OSP from heuristics for MCF planning.

Soft Goals Reformulation
For the soft goals reformulation, admissible classical plan-
ning heuristics compute an underestimate of the difference
between the utility upper bound M and the utility obtained
by an optimal plan from a state s. An overestimate of the
utility that can be obtained from the state is therefore given
by M − hMCF(s, bs):



Definition 4. Let ΠOSP be an OSP task and ΠMCF its soft
goals reformulation. Let hMCF : S × R → R ∪ {−∞,∞}
be some heuristic for ΠMCF. The soft goals reformulation
heuristic of hMCF, is denoted by hsgMCF and has the value
hsgMCF(s, bs) = M − hMCF(s, bs) on every state s of ΠOSP.

The following lemma establishes the connection between
the informativeness of heuristics for OSP tasks and heuris-
tics for their soft goals reformulations.
Lemma 1. For an OSP task ΠOSP and its soft goals refor-
mulation ΠMCF = Πsg

MCF, h∗ΠOSP
= (h∗ΠMCF

)
sg .

The lemma is a direct outcome from Theorem 1. We use
it in order to show the following main result.
Theorem 5. Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an OSP
task, ΠMCF its soft goals multiple cost function reformu-
lation, and hMCF an admissible heuristic for ΠMCF. Then
hsgMCF is an admissible heuristic for ΠOSP.

Proof. Let h∗MCF be the perfect heuristic for ΠMCF and h∗OSP
the perfect heuristic for ΠOSP. With Definition 4, we can
rewrite h∗MCF(s, bs) as M − (h∗MCF)

sg
(s, bs), which is M −

h∗OSP(s, bs) according to Lemma 1.
From Definition 4 we have

hsgMCF(s, bs) = M − hMCF(s, bs),

and from admissibility of hMCF we have
hMCF(s, bs) ≤ h∗MCF(s, bs),

so
hsgMCF(s, bs) ≥M − h∗MCF(s, bs)

= M − (M − h∗OSP(s, bs))

= h∗OSP(s, bs).

State-Delta Reformulation
For the state-delta reformulation, admissible heuristics un-
derapproximate the difference between the utility of the state
u(s) and the best utility that can be obtained û(π∗). Thus,
the difference between the utility of a state and the heuristic
value is an overapproximation for the best utility that can be
obtained:
Definition 5. Let ΠOSP be an OSP task and ΠMCF its state-
delta reformulation. Let hMCF : S × R → R ∪ {−∞,∞}
be some heuristic for ΠMCF. The state-delta reformulation
heuristic of hMCF, is denoted by hsdMCF and has the value
hsdMCF(s, bs) = u(s)−hMCF(s, bs) on every state s of ΠOSP.

The following lemma establishes the connection between
the informativeness of heuristics for OSP tasks and heuris-
tics for their state-delta reformulations.
Lemma 2. For an OSP task ΠOSP and its state-delta refor-
mulation ΠMCF = Πsd

MCF, h∗ΠOSP
= (h∗ΠMCF

)
sd.

The lemma is a direct outcome from Theorem 4. We use
it in order to show the following main result.
Theorem 6. Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an OSP
task, ΠMCF its state-delta multiple cost function reformu-
lation, and hMCF an admissible heuristic for ΠMCF. Then
hsdMCF is an admissible heuristic for ΠOSP.

The proof is almost identical to the proof of Theorem 5.

Heuristics for MCF Planning
Having established how to exploit admissible heuristics for
MCF planning tasks to derive admissible estimates for OSP
tasks, we now turn our attention to obtaining heuristic esti-
mates for MCF planning tasks.

Admissible Heuristics for MCF Planning
Let ΠMCF be an MCF planning task, π be some plan of
ΠMCF and s be some state along π. Let πs denote the suf-
fix of π that starts with s. Observe that since the secondary
cost functions are non-negative, Bi is an upper bound on the
cost of πs according to the cost function Ci. Thus, the cost
of an optimal plan for ΠMCF(s) = 〈V,O, s,G, C0,C 〉, is an
admissible estimate for the state s. Further, we can increase
the bounds arbitrarily without forfeiting admissibility. Thus,
in particular, an admissible estimate for the classical plan-
ning task Π = 〈V,O, s,G, C0〉 is an admissible estimate for
the state s of the MCF planning task as well.

Abstraction Heuristics for MCF Planning
In classical planning, abstractions can be obtained by e.g.
projecting the problem on to a subset of its variables
(Edelkamp 2001), or through a merge-and-shrink process
(Helmert, Haslum, and Hoffmann 2007; Helmert et al.
2014). One of the strengths of abstraction heuristics in clas-
sical planning is their low per-node computation time dur-
ing search. For explicit abstractions, such as projections
and merge-and-shrink, the computation is basically a linear-
time lookup. For implicit abstractions (Katz and Domshlak
2010a), the computation is more complicated, but is still of
low polynomial time.

Abstractions for MCF planning generalize the defini-
tion for classical planning (Helmert, Haslum, and Hoff-
mann 2007) by additionally requiring reachable abstract
state distances under the secondary cost functions to be be-
low their respective bounds. Formally, a (labeled) transi-
tion system (with multiple cost functions) is a tuple Θ =
〈S,L, c, T, s0, S∗〉 where S is a finite set of states, L is a fi-
nite set of labels, c = 〈c0, · · · , cn〉 are functions ci : L→ R
(1 ≤ i ≤ n), T ⊆ S × L× S a set of labeled transitions, s0

the initial state and S∗ the goal states.
The induced transition system of an MCF task ΠMCF =

〈V,O, sI , G, C0,C 〉 is the transition system ΘΠMCF =
〈S′, L′, c′, T ′, s′0, S′∗〉where S′ are the states of ΠMCF, L′ =
O, ci(o) = Ci(o), (s, o, t) ∈ T ′ iff s is consistent with
pre(o) and t = sJoK, s′0 is the initial state of the planning
task and S′∗ are the goal states of the planning task. An ab-
straction is a mapping α : S′ → Sα where Sα are the states
of the transition system Θα = 〈Sα, L, c, Tα, sα0 , Sα∗ 〉 with
Tα = {〈α(s), o, α(t)〉 | (s, o, t) ∈ T}, sα0 = α(s0) and
Sα∗ = {α(s) | s ∈ S}. Θα is called the abstract transition
system.

We proceed now with an example of how to derive merge-
and-shrink heuristics for MCF planning tasks with (possi-
bly) negative primary cost functions. We start by introducing
a generic scheme for abstraction heuristics.

Definition 6. Let ΠMCF be an MCF task, α be an abstrac-
tion and Θα its abstract transition system. The heuristic



hαΘ : (S × Rn) → R ∪ {−∞,∞} is the MCF planning
abstraction heuristic of ΠMCF if it maps a state s ∈ S and
bounds b1, . . . bn to the cost of a path ρ in the abstract tran-
sition system Θα, such that

• for all 1 ≤ i ≤ n, Ci(ρ) ≤ bi, and
• ρ is cost-minimal among such paths according to the pri-

mary cost C0.

If no such path to an abstract goal state exists, the heuris-
tic value is ∞. Otherwise, if there exists such a path that
contains a cycle of a negative total cost under C0, then the
heuristic value is −∞.

For an MCF planning task with one secondary cost func-
tion, an abstraction heuristic hαΘ(s, b) can be computed us-
ing the following scheme:

(I) Construct abstract transition system Θα,

(II) Compute shortest path distances from α(sI) to all abstract
states in Θα according to the secondary cost function C1

and discard abstract states with abstract distances strictly
larger than b, and

(III) Compute shortest path distances from all remaining ab-
stract states to some abstract goal state, according to the
primary cost function C0.

There are essentially two challenges in turning this
scheme into an abstraction heuristic. First, since the pri-
mary cost function is potentially negative, there might be
reachable cycles of total negative cost in Θα resulting in
an uninformative heuristic. The concrete choice of meth-
ods for constructing Θα in step (I) should aim to prevent,
or at least alleviate, this problem. In this work, we use exist-
ing methods for constructing merge-and-shrink abstractions
(Sievers, Wehrle, and Helmert 2014), leaving techniques for
constructing abstractions that avoid negative cost cycles as
future work.

The second challenge lies in the runtime complexity of
heuristic computation. The reachable abstract states in step
(II) depend on the budget b, and for maximal informative-
ness, step (III) should be performed at every evaluated state,
taking into account the reachability of abstract states con-
sidering the remaining budget b at that search node. How-
ever, this opens up the possibility that a state may be redis-
covered during the search with a higher remaining budget,
which must be taken into account when considering whether
the behavior of the search algorithm remains optimal or not.
Additionally, the possibly negative cost function mandates
the use of a shortest path algorithm that supports negative
weights. Such algorithms are computationally more expen-
sive than the typically used shortest path algorithms for non-
negative weights. We alleviate this problem by performing
the computation in step (III) only once, for reachability de-
fined under the initial budget b0.

Experimental Evaluation
We first discuss the creation of a set of reference OSP prob-
lems to evaluate the performance of our proposed tech-
niques.

Creating a Benchmark Set for OSP
Since there is currently no publicly available benchmark set
for oversubscription planning, we have created one. We fol-
lowed a similar procedure to that described by Domshlak
and Mirkis (2015), based on the collection of classical Inter-
national Planning Competition (IPC) domains. In contrast
to the previous approach, we consider all planning tasks
for which any solution is known, not only a provably op-
timal one. Such upper bounds on solution costs can be ob-
tained from planning.domains (Muise 2016), a repository of
planning benchmarks to which researchers are contributing
meta-data on solved planning problems. We set the bounds
for oversubscription planning tasks to be either 25, 50, 75, or
100% of the best known solution cost for the classical plan-
ning task, resulting in four versions of each classical plan-
ning domain, which we refer to as suites. The problems are
generated by assigning each goal in the original problem a
utility of 10, and assigning to a randomly chosen 5% of the
facts in the problem a uniformly distributed integer utility in
the range [1, 5]. All other facts are assigned a utility of 0.

To accommodate cost bounds and utilities, we extended
PDDL with two additional sections in the problem file. The
first section (:BOUND contains the bound on the solution
cost, while the second section (:UTILITY contains a collec-
tion of function assignments of numeric values to grounded
predicates, e.g., (= (ON C B) 1). To translate the PDDL in-
stances to a multi-valued formalism, we adapted the trans-
lator of the Fast Downward planning system to handle
this syntax. The PDDL domain collection and the adapted
translator are available for download (Katz et al. 2019;
Winterer 2019).

Transforming SAS+ to SAS

Fast Downward translates PDDL into SAS+ representation,
which is more compact than SAS. While the soft goals refor-
mulation can work directly on the SAS+ representation, the
state-delta reformulation requires tasks to be in the SAS for-
mat. To achieve that, we need to modify operators with pre-
conditions not specified for some effect variables. We used
a procedure similar to the transition normalization (Pom-
merening and Helmert 2015) for this purpose. As the tran-
sition normalization increases the state space exponentially,
we propose an optimization to moderate that increase. Note
that our reformulation restricts the preconditions to be speci-
fied on effect variables only for variables with specified util-
ity on at least one value. Thus, we do not modify the vari-
ables whose values do not have utilities specified.

Comparison to a Baseline
In our experiments, we compare different heuristics within
a best-first branch-and-bound (BFBB) search, which we im-
plemented in Fast Downward planning system. BFBB uses
two heuristic functions. One is for choosing the next node to
expand (guidance heuristic), and another one for pruning the
nodes (pruning heuristic). We compare the following config-
urations differing in their pruning heuristic:

Bl Blind heuristic hBl(s, b) = M



25% 50% 75% 100%

Coverage Bl M&Ssd M&Ssg LMC Bl M&Ssd M&Ssg LMC Bl M&Ssd M&Ssg LMC Bl M&Ssd M&Ssg LMC
airport 27 18 18 25 22 18 18 21 21 18 18 19 21 18 18 18
depot 16 16 16 15 11 11 11 11 7 7 7 7 4 4 4 4
elevators08 30 30 30 29 25 25 25 24 23 22 22 22 17 17 17 17
elevators11 20 20 20 20 19 19 19 19 18 17 17 17 14 14 14 14
freecell 77 77 77 58 30 30 30 23 21 21 21 15 20 20 20 14
grid 5 5 5 4 3 3 3 3 2 2 2 2 1 1 1 1
hiking14 19 19 19 14 14 14 14 12 13 13 13 11 11 11 11 10
mprime 35 35 35 35 28 28 28 27 24 24 24 24 19 19 19 19
mystery 29 29 27 29 27 27 26 26 21 21 20 18 18 18 17 18
nomystery11 20 20 20 20 14 14 14 14 10 10 10 9 8 8 8 8
openstacks14 20 20 20 19 15 15 15 13 7 7 7 5 3 3 3 3
parcprinter08 17 17 17 15 13 13 13 12 11 11 11 11 11 10 11 11
parcprinter11 13 13 13 11 9 9 9 9 7 7 7 7 6 6 7 7
parking11 11 11 11 10 1 1 1 1 0 0 0 0 0 0 0 0
parking14 14 14 14 11 4 4 4 1 0 0 0 0 0 0 0 0
pipes-notank 45 18 18 45 30 18 18 29 22 17 17 20 15 14 14 14
pipes-tank 35 28 28 31 20 19 19 17 16 15 15 14 11 11 11 10
rovers 15 14 14 14 8 8 8 8 6 6 6 6 5 5 5 5
scanalyzer08 13 13 13 13 12 12 12 12 12 12 12 9 12 12 12 9
scanalyzer11 10 10 10 10 9 9 9 9 9 9 9 6 9 9 9 6
sokoban08 30 30 30 30 29 29 29 28 24 24 24 24 22 22 22 21
sokoban11 20 20 20 20 20 20 20 20 20 20 20 20 19 19 19 18
tetris14 17 2 2 17 14 2 1 12 11 2 2 9 9 1 2 6
tidybot11 20 1 1 20 20 1 1 19 18 1 1 13 13 1 1 7
tidybot14 20 0 0 20 18 0 0 16 14 0 0 7 6 0 0 0
transport08 17 17 17 15 15 15 15 14 12 11 11 11 11 11 11 11
transport11 15 15 15 15 11 11 11 11 8 7 7 7 6 6 6 6
transport14 13 13 13 12 9 9 9 9 9 9 9 8 7 7 7 6
trucks 13 13 13 11 8 8 8 6 6 6 6 5 5 5 5 4
woodwork08 25 25 25 24 15 15 15 14 10 10 10 10 7 7 9 7
woodwork11 18 18 18 16 10 10 10 8 5 5 5 4 2 2 2 2
Sum equal 511 511 511 511 414 414 414 414 361 361 361 361 339 339 339 339
Sum all 1190 1092 1090 1139 897 831 829 862 748 695 694 701 651 620 624 615

Table 1: Per-domain coverage comparison of the blind heuristic (Bl), two merge-and-shrink configurations (M&Ssd and
M&Ssg), and the LM-cut heuristic (LMC) for the four domain suites.

M&Ssd A merge and shrink approach to compute hαΘ(s,b)
for the state-delta reformulation. For step (I) we used the
bisimulation based shrinking, and as merge strategy SCC-
DFP (Sievers, Wehrle, and Helmert 2014) according to
secondary cost function C1. For step (III) we used the
Bellman-Ford algorithm (Shimbel 1954) to compute (pos-
sibly negative) shortest path distances. For better runtime
complexity, we do step (III) only once, with fixed budget
B0. The heuristic hαΘ(s,b) is reformulated into an OSP
heuristic according to Definition 5.

M&Ssg A merge and shrink approach to compute hαΘ(s,b)
for the soft goals reformulation. Here as well, for step (I)
we used the bisimulation based shrinking, and as merge
strategy SCC-DFP (Sievers, Wehrle, and Helmert 2014)
according to secondary cost function C1. For step (III) we
used the Dijkstra algorithm. For better runtime complex-
ity, we do step (III) only once, with fixed budget B0.

LM-cut An LM-cut heuristic for the soft goals reformula-
tion, ignoring the secondary cost function.

For a fair comparison, we set the guidance heuristic in all our
approaches to the blind heuristic. Unfortunately, we could
not compare to the recent work of Muller and Karpas (2018),
as the code was not available from the authors at the time
of this paper submission. To compare to previous state-of-
the-art approaches to OSP, much work is still needed to
adapt these techniques to work in an out-of-the-box fashion.
For instance, the planner of Mirkis and Domshlak (2013)
requires a specification of variable patterns to be used in
their PDB heuristic. Similarly, the approach described in
Mirkis and Domshlak (2014) also did not work out-of-the-
box, since it is based on the previous one. However, the per-
formance of these approaches is not too far from the sim-
ple blind heuristic, always returning the maximal utility, and
therefore we use the blind heuristic as our baseline.

The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @ 2.67GHz machines, with the time and
memory limit of 30min and 2GB, respectively.



0 0.5 10

0.5

1

blind

M
&

S+
Initial state heuristic value

0 0.5 10

0.5

1

blind

M
&

S+

Initial state heuristic value

0 0.5 10

0.5

1

blind

M
&

S+

Initial state heuristic value

0 0.5 10

0.5

1

blind

M
&

S+

Initial state heuristic value

(a) (b) (c) (d)

Figure 2: Comparison of the heuristic value in the initial state with the blind and the merge-and-shrink heuristics for different
problem suites, (a) 25%, (b) 50%, (c) 75%, and (d) 100%.

Results
Table 1 shows the number of problems solved optimally
for each domain, comparing our approach to the baseline.
On many domains, the performance of both approaches in
terms of coverage is the same, for all suites. These rows
are not shown in the table and are instead summarized in
the “Sum equal” row. Overall, the baseline almost always
achieves higher coverage, with the difference being smaller
for problem suites with higher cost bounds. Compared to
the best-performing non-baseline planner, blind BNB solves
51, 35, 47, and 27 more problems on the 25, 50, 75, and
100% suites respectively. Heuristics beat blind search in
only two cases: in the PARC-PRINTER11 and WOODWORK-
ING08 instances of the 100% suite, by at most 1 and 2
problems, respectively. We note that in the domains AIR-
PORT, TETRIS, TIDYBOT11, TIDYBOT14, PIPESWORLD-
NOTANKAGE, and PIPESWORLD-TANKAGE the construc-
tion of the merge-and-shrink abstraction often does not ter-
minate within the time bound.

In order to look beyond coverage and measure heuristic
informativeness, we also considered the heuristic estimates
computed in the initial states of our problems. Figure 2 de-
picts the results of this comparison for the soft goals refor-
mulation: each point corresponds to a single instance, with
the x-axis given by h∗/M , or the utility of the optimal plan
divided by the value of the blind heuristic, and the y-axis
given by h∗/M&Ssg . We observe that as the bound increases
(moving to the right), points move toward the upper right
of the graph, as both M&Ssg and the blind estimate become
closer to the actually achievable utility. As expected, M&Ssg

dominates M as a heuristic estimate, and all points lie either
on or above the diagonal, but there are no obvious patterns
regarding how the relative informativeness of M&Ssg and
the blind heuristic varies with the bound.

Conclusions and Future Work
We have introduced two reformulations of the oversubscrip-
tion planning task into equivalent classical planning tasks
with two cost functions, allowing existing heuristics for clas-
sical planning to be adapted to the oversubscription planning

setting. We have shown how to adapt the merge-and-shrink
and LM-cut heuristics to this problem. Our experimental
evaluation shows the feasibility of such an approach. In the
absence of a standard benchmark set and PDDL constructs
for describing oversubscription planning tasks, we have in-
troduced the required syntax and created a benchmark set for
our evaluation, making it available to the planning commu-
nity. By adapting the Fast Downward planning framework,
in which many classical planning heuristics are already im-
plemented, to oversubscription planning, we have simplified
the future use of classical planning heuristics for these tasks
via the suggested reformulations.

In future work we intend to investigate further heuristic
adaptations, including bound-aware heuristics that are able
to make use of the remaining budget at each search node to
obtain more informed heuristic estimates, as well as the use
of these heuristics in other search schemes that are closer in
spirit to the A* algorithm. One promising direction is further
investigation of the connections between the two reformula-
tions. Another possible subject of interest is the interaction
between the reformulation and heuristic additivity criteria,
such as action cost partitioning (Katz and Domshlak 2008;
2010b) or disjointness for pattern databases (Haslum et al.
2007). We would also like to integrate and automate the
approach of Mirkis and Domshlak (2013; 2014) and ex-
plore connections between their approach and our reformu-
lations. In addition, we would like to explore techniques
for node ordering in branch-and-bound search. Finally, we
would like to adapt existing search pruning techniques for
classical planning (Domshlak, Katz, and Shleyfman 2012;
Alkhazraji et al. 2012) to branch-and-bound search for over-
subscription planning tasks.
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