43 research outputs found

    Effect of temporal resolution of wind data on wind erosion prediction with the Revised Wind Erosion Equation (RWEQ)

    Get PDF
    In wind erosion modelling and assessment, wind speed is a crucial variable. Available records for large regions of the world generally show relatively low temporal resolution. The effect of using wind data of different temporal resolutions in RWEQ discrete and continuous versions was assessed. Wind erosion was measured during 82 high-wind events occurring between 2005 and 2008. Simulated and measured erosion values were compared. For wind erosion simulation during discrete periods, the model was loaded with wind speeds averaged in 5 minutes and 1 hour- intervals. For continuous simulation, a weather file for RWEQ/ 97 was developed and Weibull factors were calculated using both hourly and daily wind speeds. When the discrete version of RWEQ was used with hourly wind speeds instead of five-minute averages, the total simulated soil loss was reduced by 44%. The model efficiency was not significantly affected by wind speed data resolution. RWEQ continuous version, loaded with monthly Weibull parameters using hourly wind speeds, calculated zero erosion. Monthly Weibull distribution scale factors calculated using daily wind speeds were reduced by 32% on average with respect to hourly data. Increasing the Weibull scale parameter by up to 50% slightly improved the monthly simulated erosion rates. Using low resolution wind speed data reduces the model outputs. This may be corrected but a large amount of field information is needed.Fil: Panebianco, Juan Esteban. Consejo Nacional de Invest.cientif.y Tecnicas. Instituto D/cs D/l/tierra y Ambientales D/l/pampa; Argentina;Fil: Buschiazzo, Daniel Eduardo. Consejo Nacional de Invest.cientif.y Tecnicas. Instituto D/cs D/l/tierra y Ambientales D/l/pampa; Argentina

    Prostorna i vremenska raspodela potencijalne ugroženosti područja Vojvodine procesima eolske erozije

    Get PDF
    Eolska erozija predstavlja značajan vid degradacije obradivih poljoprivrednih zemljišta. Prirodni i antropogeni faktori na području Vojvodine pogoduju nastanku i razvoju intenzivnih vetroerozionih procesa. Među brojnim uzročnim faktorima složenog procesa eolske erozije (reljef, klima, zemljište, vegetacija, način korišćenja zemljišta, organizacija zemljišne teritorije itd.) u ovom radu se analizira klima, kao agresivna komponenta erozije. Prvenstveno vetar, a zatim padavine i temperature, odnosno njihova nepovoljna koincidencija, direktno ili indirektno utiču na potencijalnu opasnost od pojave i razvoja eolske erozije. Stvarna realizacija procesa, tj. produkcija eolskog nanosa, zavisi i od svih ostalih relevantnih činilaca. Na osnovu definisanog klimatskog faktora izdvojena su područja i periodi sa različitim stepenom potencijalne ugroženosti i opasnosti od nastanka eolske erozije. Konstatovano je da prema klimatskom faktoru područje Banata može da se smatra 3 do 4 puta ugroženije od ostalih delova Vojvodine. Najintenzivniji erozioni procesi mogući su tokom ranog proleća (april) i jeseni (oktobar), posebno u izrazito sušnim godinama

    Soil threats in Europe

    Get PDF
    Although there is a large body of knowledge available on soil threats in Europe, this knowledge is fragmented and incomplete, in particular regarding the complexity and functioning of soil systems and their interaction with human activities. The main aim of RECARE is to develop effective prevention, remediation and restoration measures using an innovative trans-disciplinary approach, actively integrating and advancing knowledge of stakeholders and scientists in 17 Case Studies, covering a range of soil threats in different bio-physical and socio-economic environments across Europe. Existing national and EU policies will be reviewed and compared to identify potential incoherence, contradictions and synergies. Policy messages will be formulated based on the Case Study results and their integration at European level. A comprehensive dissemination and communication strategy, including the development of a web-based Dissemination and Communication Hub, will accompany the other activities to ensure that project results are disseminated to a variety of stakeholders at the right time and in the appropriate formats to stimulate renewed care for European soils.JRC.H.5-Land Resources Managemen

    Soil Functions & Ecosystem Services

    Get PDF
    In order to fulfil RECARE’s aim to quantify in a harmonized, spatially explicit way impacts of degradation and conservation on soil functions and ecosystem services, it is important to understand the concept and review the current scientific debate. This will lay the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ES) in decision-making, and a coherent approach to assess and value ES is still lacking (de Groot et al., 2010). There are many different, often context-specific, ES frameworks with their own definitions and understanding of terms. This chapter therefore aims to identify the state of the art and knowledge gaps in order to develop an operational framework of the ES concept for the RECARE project. It will provide an overview on existing soil functions and ES frameworks and on approaches to monitor and value ES, with a special focus on soil aspects. Furthermore, it will address the question how the ES concept is operationalized in research projects and land management in Europe so far. Based on this review, the chapter concludes with a suggestion of an adapted ES framework for RECARE and on how to operationalize it for practical application in preventing and remediating degradation of soils in Europe

    Soil Functions & Ecosystem Services

    Get PDF
    In order to fulfil RECARE’s aim to quantify in a harmonized, spatially explicit way impacts of degradation and conservation on soil functions and ecosystem services, it is important to understand the concept and review the current scientific debate. This will lay the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ES) in decision-making, and a coherent approach to assess and value ES is still lacking (de Groot et al., 2010). There are many different, often context-specific, ES frameworks with their own definitions and understanding of terms. This chapter therefore aims to identify the state of the art and knowledge gaps in order to develop an operational framework of the ES concept for the RECARE project. It will provide an overview on existing soil functions and ES frameworks and on approaches to monitor and value ES, with a special focus on soil aspects. Furthermore, it will address the question how the ES concept is operationalized in research projects and land management in Europe so far. Based on this review, the chapter concludes with a suggestion of an adapted ES framework for RECARE and on how to operationalize it for practical application in preventing and remediating degradation of soils in Europe

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements
    corecore