11 research outputs found

    Book of abstracts:5th International Conference on Smart Energy Systems in Copenhagen, on 10-11 September 2019.

    Get PDF

    Adaptive Health Monitoring Using Aggregated Energy Readings from Smart Meters

    Get PDF
    Worldwide, the number of people living with self-limiting conditions, such as Dementia, Parkinson’s disease and depression, is increasing. The resulting strain on healthcare resources means that providing 24-hour monitoring for patients is a challenge. As this problem escalates, caring for an ageing population will become more demanding over the next decade, and the need for new, innovative and cost effective home monitoring technologies are now urgently required. The research presented in this thesis directly proposes an alternative and cost effective method for supporting independent living that offers enhancements for Early Intervention Practices (EIP). In the UK, a national roll out of smart meters is underway. Energy suppliers will install and configure over 50 million smart meters by 2020. The UK is not alone in this effort. In other countries such as Italy and the USA, large scale deployment of smart meters is in progress. These devices enable detailed around-the-clock monitoring of energy usage. Specifically, each smart meter records accurately the electrical load for a given property at 10 second intervals, 24 hours a day. This granular data captures detailed habits and routines through user interactions with electrical devices. The research presented in this thesis exploits this infrastructure by using a novel approach that addresses the limitations associated with current Ambient Assistive Living technologies. By applying a novel load disaggregation technique and leveraging both machine learning and cloud computing infrastructure, a comprehensive, nonintrusive and personalised solution is achieved. This is accomplished by correlating the detection of individual electrical appliances and correlating them with an individual’s Activities of Daily Living. By utilising a random decision forest, the system is able to detect the use of 5 appliance types from an aggregated load environment with an accuracy of 96%. By presenting the results as vectors to a second classifier both normal and abnormal patient behaviour is detected with an accuracy of 92.64% and a mean squared error rate of 0.0736 using a random decision forest. The approach presented in this thesis is validated through a comprehensive patient trial, which demonstrates that the detection of both normal and abnormal patient behaviour is possible

    4th International Symposium on Ambient Intelligence (ISAmI 2013)

    Get PDF
    Ambient Intelligence (AmI) is a recent paradigm emerging from Artificial Intelligence (AI), where computers are used as proactive tools assisting people with their day-to-day activities, making everyone’s life more comfortable. Another main concern of AmI originates from the human computer interaction domain and focuses on offering ways to interact with systems in a more natural way by means user friendly interfaces. This field is evolving quickly as can be witnessed by the emerging natural language and gesture based types of interaction. The inclusion of computational power and communication technologies in everyday objects is growing and their embedding into our environments should be as invisible as possible. In order for AmI to be successful, human interaction with computing power and embedded systems in the surroundings should be smooth and happen without people actually noticing it. The only awareness people should have arises from AmI: more safety, comfort and wellbeing, emerging in a natural and inherent way. ISAmI is the International Symposium on Ambient Intelligence and aiming to bring together researchers from various disciplines that constitute the scientific field of Ambient Intelligence to present and discuss the latest results, new ideas, projects and lessons learned, namely in terms of software and applications, and aims to bring together researchers from various disciplines that are interested in all aspects of this area

    Student Expectations: The effect of student background and experience

    Get PDF
    CONTEXT The perspectives and previous experiences that students bring to their programs of study can affect their approaches to study and the depth of learning that they achieve Prosser & Trigwell, 1999; Ramsden, 2003). Graduate outcomes assume the attainment of welldeveloped independent learning skills which can be transferred to the work-place. PURPOSE This 5-year longitudinal study investigates factors influencing students’ approaches to learning in the fields of Engineering, Software Engineering, and Computer Science, at two higher education institutes delivering programs of various levels in Australia and New Zealand. The study aims to track the development of student approaches to learning as they progress through their program. Through increased understanding of students’ approaches, faculty will be better able to design teaching and learning strategies to meet the needs of an increasingly diverse student body. This paper reports on the first stage of the project. APPROACH In August 2017, we ran a pilot of our survey using the Revised Study Process Questionnaire(Biggs, Kember, & Leung, 2001) and including some additional questions related to student demographics and motivation for undertaking their current program of study. Data were analysed to evaluate the usefulness of data collected and to understand the demographics of the student cohort. Over the period of the research, data will be collected using the questionnaire and through focus groups and interviews. RESULTS Participants provided a representative sample, and the data collected was reasonable, allowing the questionnaire design to be confirmed. CONCLUSIONS At this preliminary stage, the study has provided insight into the student demographics at both institutes and identified aspects of students’ modes of engagement with learning. Some areas for improvement of the questionnaire have been identified, which will be implemented for the main body of the study

    A new strategy for active learning to maximise performance in intensive courses

    Get PDF
    This paper describes an innovation in the delivery of an introductory thermodynamics course offered to students studying towards an engineering qualification. The course was delivered in intensive format, across three weeks of study. Students find it challenging to engage with complex engineering topics in a short period of time, and there is no sizeable study break for pre-exam study. This means that students cannot afford to delay in learning and applying content. Every class must be an opportunity to interact with the content immediately. The innovation described here involved implementing a new daily structure for the course that attempted to mimic the standard process by which students learn material, apply it, study it and practice it in across a traditional-length semester. The new structure involved integrating the lecture and recitation components to the course to increasing the active learning during material delivery, then allowing students to engage in guided study and open-book formative assessment. This paper describes the implementation of this innovation. A brief review of the literature on intensive courses is provided, followed by a description of the approach used in this particular class. The results are then presented, and evaluated in the context of the research and the instructor’s own critical reflection

    Chair a session/Integration of theory and practice in the learning and teaching process

    Get PDF
    The theme for AAEE-2017 is “Integrated Engineering”, which covers a range of sub-themes, such as: Integration of theory and practice in the learning and teaching process Interdisciplinary and cross-disciplinary engineering programs and learning environments Integration of teaching and research in the engineering training process The role and impact of engineering students and educators in the wider community Systems perspectives on engineering education. Integration is also about connections, e.g. between students and teachers, between students in learning together, and between educational institutions and industry and wider society in the engineering education process
    corecore