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ABSTRACT 

Worldwide, the number of people living with self-limiting conditions, such as Dementia, 

Parkinson’s disease and depression, is increasing. The resulting strain on healthcare resources 

means that providing 24-hour monitoring for patients is a challenge. As this problem 

escalates, caring for an ageing population will become more demanding over the next decade, 

and the need for new, innovative and cost effective home monitoring technologies are now 

urgently required. The research presented in this thesis directly proposes an alternative and 

cost effective method for supporting independent living that offers enhancements for Early 

Intervention Practices (EIP). In the UK, a national roll out of smart meters is underway. 

Energy suppliers will install and configure over 50 million smart meters by 2020. The UK is 

not alone in this effort. In other countries such as Italy and the USA, large scale deployment 

of smart meters is in progress. These devices enable detailed around-the-clock monitoring of 

energy usage. Specifically, each smart meter records accurately the electrical load for a given 

property at 10 second intervals, 24 hours a day. This granular data captures detailed habits 

and routines through user interactions with electrical devices. 

The research presented in this thesis exploits this infrastructure by using a novel approach 

that addresses the limitations associated with current Ambient Assistive Living technologies. 

By applying a novel load disaggregation technique and leveraging both machine learning and 

cloud computing infrastructure, a comprehensive, nonintrusive and personalised solution is 

achieved. This is accomplished by correlating the detection of individual electrical appliances 

and correlating them with an individual’s Activities of Daily Living. By utilising a random 

decision forest, the system is able to detect the use of 5 appliance types from an aggregated 

load environment with an accuracy of 96%. By presenting the results as vectors to a second 

classifier both normal and abnormal patient behaviour is detected with an accuracy of 92.64% 

and a mean squared error rate of 0.0736 using a random decision forest. The approach 

presented in this thesis is validated through a comprehensive patient trial, which demonstrates 

that the detection of both normal and abnormal patient behaviour is possible. 
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GLOSSARY 

 6 Item Cognitive Impairment Test (6CIT): The 6CIT is employed as a dementia 

screening tool in Primary Care. Various clinicians, which include GPs, consultants and 

nurses, use 6CIT as set of predefined questions to measure the response of the patient. By 

utilising a scoring system, the patient’s answers ascertain their level of cognitive function.  

 Activities of Daily Living (ADLs): ADL is a healthcare term that refers to a person’s 

daily set of actions. These activities are used as a measurement of functional status and 

the overall wellbeing of a patient. ADLs are used by healthcare professionals to assess a 

patient’s ability or inability to maintain their independence. 

 Advanced Metering Infrastructure (AMI): AMI is an advanced integrated system of 

smart meters, communication gateways and data storage systems. This infrastructure 

offers bidirectional communication between the consumer and utilities. It replaces the 

traditional requirement for energy and gas usage readings to be collected manually. 

 Alzheimer’s Disease: Alzheimer’s is a neurological condition and a progressive disease, 

during which, proteins build up in the brain to form structures called 'plaques' and 

'tangles'. This leads to the loss of connections between nerve cells, eventually resulting in 

the death of the cell and a reduction of brain tissue. As a consequence, this leads to severe 

cognitive impairment and memory loss. 

 Ambient Assistive Living: Are concepts, products and services which utilise the 

deployment of information communication technology (ICT) to improve and extend the 

quality of life of the user. 

 Ambient Intelligence: A collection of devices used to create a smart home, which is 

sensitive and responsive to the presence of the occupant. The main objective of these 

devices is to facilitate and support the occupant in carrying out their activities of daily 

living. 

 Appliance Load Monitoring (ALM): ALM is the process of identifying the usage of 

individual electrical devices from their energy consumption characteristics. 

 Assistive Technologies: Devices or systems that support a person to maintain or improve 

their independence, safety and wellbeing in their own home. 

 Automated Meter Readings (AMR): AMR is the process, by which, the automatic 

collection of amenity consumption is obtained and reported to utilities. Other information, 

such as diagnostic and status data, is collected and transferred to a central database. 
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 Consumer Access Device (CAD): Consumers are able to pair other devices that operate 

the ZigBee Smart Energy Profile (SEP) to the network; such devices are typically known 

as Consumer Access Devices. A CAD is able to access updated consumption and tariff 

information directly from a smart meter. 

 Dementia: is a term which is used to define the set of symptoms that occur when the 

brain is affected by specific diseases. These include Alzheimer’s, Parkinson’s, 

Huntington's disease and Lewy body. 

 Depression: This is a mood disorder which, results in a variety of different emotions. 

Depression affects people in diverse that is unique to the sufferer. However, common 

trends range from lasting feelings of unhappiness and hopelessness, to losing interest in 

previously enjoyable activates. It often presents as nervous ailments that affects the 

person both mentally and physically. 

 Disaggregation: energy disaggregation, is the process for identifying electrical devices 

from the aggregated data acquired from a single point of measurement. Typically the use 

of machine learning is used to classify the appliance used within the premise.  

 Early Intervention Practice (EIP): EIP is used by many services to intervene and take 

action as soon as possible to limit the effects of an event. These events could be in the 

form of a fall or the identification of a deterioration in an existing health condition.  

 Home Area Network (HAN): A HAN is a secure network, which enables the smart 

meter to communicate with other smart devices around the home. Specifically, the HAN 

utilises ZigBee to connect with trusted devices up to a maximum range of 15 meters. 

 Intrusive Load Monitoring (ILM): ILM is regarded as a distributed sensing method, as 

it uses multiple individual sensors. One sensor is installed for each electrical device being 

monitored. 

 Mini Mental State Examination (MMSE): MMSE is used to test patients with 

complications accosted with memory or other mental abilities. Specifically, it is used by 

clinicians to assist in the diagnoses of dementia, while helping to assess its progression 

and severity. 

 Non-Intrusive Load Monitoring (NILM): NILM is a single point sensing method for 

the identification of electrical devices from aggregated load readings. Typically, the 

sensor analyses the energy consumption for a given property, deducing the appliances 

used in the premise, as well as, their individual energy utilisation. 
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 Parkinson’s Disease: This is a progressive neurological condition, which is caused by a 

reduction of nerve cells in the part of the brain called the substantia-nigra. This results in 

a decreased amount of a chemical called Dopamine. Without the presence of dopamine 

patients can find that their movements become slower so it takes longer to undertake 

certain daily activities. In addition to affecting movement, people with Parkinson's exhibit 

symptoms of tiredness, pain and depression, which can have a severe impact on their 

daily life. 

 Profiling: The recording and analysis of an individual’s psychological and behavioural 

characteristics is known as profiling. Profiles are used to detect any changes or alterations 

in a person’s behaviour.  

 Quality Adjusted Life Year (QALY): QALY is a generic measurement of disease 

burden, which ascertains and quantifies both the quality and quantity of life. It is utilised 

to establish the overall effectiveness of an intervention metric. 

 Smart Meters: Smart meters are in premise gas, electricity and water monitors, which 

provide consumers with reliable and accurate readings. They offer real time analysis, at 

granular intervals, for both the consumer and all of the smart grid stakeholders. 

 Web Services: Are a collection of open protocols and standards, which can be used for 

exchanging data between applications or systems. Applications, which can be written in 

programming languages (such as Java, C# and Python), are hosted on different platforms 

(such as Windows, IOS and Linux) to exchange data over networks such as the internet.  

 ZigBee Cluster Library (ZCL): ZCL is a repository for cluster functionality, which is 

developed and maintained by the ZigBee Alliance. A developer can utilise the ZCL when 

developing a new application profile by leveraging certain features and functionality of 

the various clusters. The ZCL consists general purpose clusters and specialised clusters, 

which are designed to perform specific functions within the ZigBee framework. 

 ZigBee Smart Energy Profile (SEP): SEP is an agreed wireless standard that all UK 

smart meters adhere to. This enables interoperable devices to communicate directly with a 

smart meter, ensuring compatibility with certified ZigBee smart energy products. 
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CHAPTER 1 INTRODUCTION 

1.1 PREAMBLE 

In the UK around one in five adults are registered disabled. More than one million of these 

are currently living alone [1]. Additionally, the number of people in the UK living with 

dementia is currently estimated to be 850,000 and forecasted to exceed two million by 2051 

[2]. Providing a safe and secure living environment places a considerable strain on social and 

healthcare resources. Effective around the clock monitoring of these conditions is a 

significant challenge and adversely affects the level of care provided. However, a safe and 

independent living environment is hard to achieve, yet vital for early intervention. 

Community mental health groups, crisis and home resolution teams all play a key role in 

preventing costly inpatient admissions. Current public policy enables sufferers to live 

independently in their homes for as long as possible. Yet present monitoring services are 

expensive and are often met with patient resistance due to their complexity and intrusiveness. 

As demonstrated through this research, substantial research gaps in non-invasive and cost 

effective monitoring technology exist [3] specifically, for safe and effective monitoring 

solutions that are beneficial to the patient and healthcare providers alike.  

As such, the challenge addressed through this research is how to develop a system which 

analyses the data collected by smart meters for health monitoring applications. The system 

depends entirely on a single discrete sensor which interfaces with the patient’s smart meter to 

facilitate a highly accurate and personalised monitoring service for a variety of different 

conditions. Electricity readings are taken at 10 second intervals [4] and relate to interactions 

with electrical devices; specifically, operation time and duration of use. ADLs are imperative 

in determining a patient’s overall health and enabling an accurate evaluation of any changes 

in their condition [5]. By focusing on the patient’s ability to undertake normal ADLs, both 

normal and abnormal behaviours can be identified while detecting deviations in routine. 

In this chapter the research within this thesis is introduced, along with the motivation and the 

aims and objectives of the work. This is followed by a discussion on our contributions to 

knowledge, the methodology used, and the overall structure of the thesis is outlined. 
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1.2 ADVANCED METERING INFRASTRUCTURE 

The Advanced Metering Infrastructure brings many benefits over the traditional energy grid. 

In order to maximise its true potential, different applications need to be considered beyond 

the traditional uses of electricity and gas generation, distribution and consumption. The 

bidirectional communication capabilities provided are a core part of the Advanced Metering 

Infrastructure (AMI) and forms part of the smart grid. This provides an attractive opportunity 

for service providers and other vendors, as it enables access to a fully maintained and highly 

accurate sensing network [6]. Providers are able to utilise this resource by integrating their 

own frameworks through an agreed communication standard, as discussed in detail in chapter 

2. The AMI, in particular the smart meter, is an integral part of our system and approach. 

1.3 MOTIVATION 

The following provides a description of the motivation behind this research, which will be 

elaborated on throughout the remainder of this thesis.  

 Health and Social Challenges: Each year the number of people living with self-limiting 

conditions such as Dementia, Parkinson’s disease and mental health problems, is 

increasing [7]. Furthermore, there are an increasing number of people living alone with 

such medical conditions. This is placing significant demand on health care and social 

services and already stretched resources [8]. As this problem escalates, caring for an 

ageing population will become increasingly more challenging over the next decade. That 

said, duty of care is a legal obligation for governments, and arguably, an ethical and 

moral duty for any modern society.  

For many countries the emergence of an ageing population is fast becoming an increasing 

public health concern. Although an international issue, the UK in particular faces 

considerable challenges due to historical birth trends [9]. The origins of this ageing 

demographic can be partially attributed to the baby boom. During the mid-1950s up until 

the early 1970s the UK birth rate was above 850,000 per year [10]. In 2012, the number 

of people aged 65 and over surpassed 10 million for the first time. In addition to a 

maturing population, a vastly improved life expectancy is set to increase pressures 

further. Longer life expectancy is widely regarded to be one of the greatest challenges of 

the next century. Typically, a man born in 1981 has an estimated life expectancy of 84 

years. However, for a baby born in the present day, this increases to 89 years with future 

increases predicted in upcoming years [11]. In contrast, when the NHS was founded in 

1948, 48 percent of the population died before the age of 65 [12]. The success of modern 



Page | 3  
 

medicine has completely transformed our health and care requirements. The impact on 

NHS resources also has a strong association with the following problem areas: 

 An ageing population may suffer from multiple health issues and illness. This group 

of patients often relay on a wide variety of support including family, friends, social 

care and other third party organisations. 

 An increasing prevalence of chronic and complex health conditions such as Dementia, 

Parkinson’s, Alzheimer’s, arthritis, kidney disease, and mental health problems. These 

ailments often result in frequent hospital admissions or the requirement of long term 

care. 

 Higher numbers accessing outpatient or emergency care due to frailty, falls and 

secondary complications [13]. 

 Absence of effective early intervention practice. The lack of EIP is a major 

contributor to increased hospital admissions, higher treatment costs and escalating 

secondary complications [14]. 

 Bed blocking, where a patient is medically ready to be discharged but is delayed 

because of inadequate care, support and rehabilitation services outside hospitals [15]. 

Ultimately health and social care has failed to adequately adapt to this dramatic 

demographic shift. The challenge is to explore alternative, sustainable, ways of 

supporting independent living within ageing populations. However, the development of 

an effective and reliable monitoring solution presents challenges, which need to be 

addressed. 

 Current Limitations of Assistive Technologies: The use of smart technologies in 

primary care delivery is increasing in an effort to meet the challenges described [16]. In 

recent years, there has been rapid development in monitoring technologies for 

independent living, early intervention services and in-patient condition management. 

However, research in non-invasive and cost effective monitoring technology lag far 

behind. Affordability and associated costs with existing technologies mean they cannot be 

implemented on a large scale. This leaves many solutions inaccessible to NHS trusts, 

councils and social services in the UK. Furthermore, most technologies are considered too 

intrusive [17]. For example, the use of sensors and cameras around the living 

environment raise many privacy and protection concerns and this leads to a general 

reluctance to use the technology.  
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Often technical solutions are tailored to a specific application and do not meet the 

ongoing changing requirements of a patient. Many current technologies and services are 

limited to the monitoring of physical ailments and are not feasible for monitoring the 

mental wellbeing of the patient. A detailed review of current assistive technologies and 

their feasibility is therefore discussed in chapter 3. 

 Absence of Condition Knowledge, Personalisation and Behavioural Pattern 

Recognition: Existing telehealth solutions fail to include and exploit the use of clinical 

knowledge in their approach. As a result, one of the research motivations is to find an 

approach to include both clinical knowledge and personalisation into a solution. Being 

able to detect and predict changes in activities requires a detailed understanding of the 

symptoms and behaviours that are expected for each condition. The capacity of any 

patient monitoring system can be dramatically enhanced with the inclusion of medical 

insight [18]. An example scenario is as follows: A dementia patient has started to exhibit 

increased activity in the evening. For most systems this behaviour would be identified as 

normal as the patient is undertaking activities. However, if medical insight is applied to 

the observed behaviour, we recognise that for dementia patients this is a potentially 

concerning behavioural trait and could signify disease progression [19]. This however 

introduces significant challenges as any behavioural changes need to be assessed for 

medical importance and meaning. 

1.4 DISCUSSION 

The research in this thesis is motivated by the significant challenges that face health and 

social care, both in the UK and internationally. More importantly the motivation is drawn 

from the patients themselves and their family and friends who work tirelessly every day to 

manage these serious illnesses. 

Having a dramatically ageing population means more people than ever before wish to live 

independently in their own home. Unfortunately, it is a choice that many of us will have to 

make in the future, either for ourselves or on behalf of a loved one. In many cases this could 

be one of their last major independent choices. Yet, there is currently no accurate, affordable 

and scalable monitoring system to support people in their own homes and alert relatives, 

friends or health professionals if there is a problem or a worsening of a condition. 

The introduction of the smart meter provides an extraordinary opportunity to create an 

accurate, cost effective and personalised patient monitoring system. Although the intended 

use for these devices is to modernise the metering infrastructure, they also provide an 
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accurate and cost effective gateway into consumers’ homes for a variety of different 

applications. Arguably one of the most significant uses for these devices is to facilitate the 

monitoring of various illnesses, both physical and mental. 

1.5 AIMS AND OBJECTIVES 

In the following section both the overreaching aim and key objectives of the research are 

presented. The key aim of this thesis is as follows: 

 To research a novel approach for the assessment of both the physical and mental 

wellbeing of a person, by analysing only the electricity readings obtained from their smart 

meter. The solution must 1) address the current limitations that are associated with 

existing technologies to facilitate a nonintrusive and personalised monitoring system; 2) 

Identify Activities of Daily Living (ADLs) to facilitate early intervention, while applying 

medical knowledge to the obtained results; 3) Employ specific behavioural indicators, 

such as prolonged and reoccurring instances of activity or inactivity to assess the patient’s 

ability to undertake normal ADLs and monitor their state of health. 4) Commission a 

clinical trial to evaluate whether the approach can support vulnerable people living 

independently with ongoing healthcare needs. 

Interoperating and analysing the vast amounts of data generated by smart meters is a 

significant challenge; this is especially true for the novel health-monitoring application 

proposed in this research. Additionally there are many challenges associated with machine 

learning, all of which have been studied by a variety of disciplines over many years [20]. 

In order to fulfil the aims of this project, the key objectives of this research are as follows: 

 The development of novel algorithms that facilitates a personalised patient monitoring 

solution.  

 The deployment of energy monitors for the collection of granular energy readings (10 

second intervals). These are obtained from an assortment of patients provided by Mersey 

Care NHS Trust. This is undertaken to simulate the deployment of a consumer access 

device to ensure that the models are trained on accurate data. 

 Identify a variety of behavioural patterns and trends by investigating patient behaviours 

while applying medical knowledge to the results. This establishes the individual 

conditions and applications that can be accurately monitored by using a patient’s energy 

usage data. 
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 Deploy aggregated load monitoring techniques to classify individual device interactions 

to aid in the overall assessment of the patient. The identification of individual devices is 

imperative requirement for determining and identifying the patient’s activities of daily 

living.  

 Propose a novel method for the identification of concerning behaviour and routine 

alteration. The system must accommodate predefined thresholds to classify the 

importance of the observed behaviours while acting accordingly. The system must learn 

and adjust to misclassifications to reduce future false alarms and adequately adapt to 

disease progression. 

1.6 NOVEL CONTRIBUTIONS 

As previously discussed, current assistive technologies are not adequate for the monitoring of 

self-limiting conditions. They are largely incapable of monitoring both the physical and 

mental welfare of a patient and cannot aid in early intervention practice and the prediction of 

progression. 

As such, a novel approach and solution for this problem is put forward, in the form of a 

system which analyses smart meter data for healthcare applications. The following outlines 

the specific novel contributions offered through this research: 

 The analysis of energy usage data obtained from smart meters for remote patient 

monitoring and healthcare applications. 

 A novel approach for smart meter load disaggregation by interfacing directly with the 

smart meter using a CAD. 

 A novel method for the disaggregation and classification of type 1 (on / off), 2 (multi-

state) and 3 (continuously variable) electrical devices using only smart meter data. 

 A method for generating electrical device signatures using a reduced observation period 

for device classification. 

 A method which supports remote in-home health monitoring that is both accurate and 

scalable. The approach removes the requirement for expensive distributed sensors and 

intrusive wearable monitoring equipment. Thus using a single non-intrusive sensor that 

can be modified for different monitoring applications [21]. 
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 The creation of a novel behavioural algorithm that learns the distinct attributes and 

routines of the patient through the detection of device interactions. The system can 

correctly identify both normal and abnormal patient behaviour based on the frequency of 

events with a specified observation period [22]. 

 A novel approach for assessing the correlation of electrical device usage with the 

expected activities of daily living that is specific to the patient’s condition [23]. 

 Integration with NHS services through a common API that uses energy usage to enhance 

patient care plans and intervention strategies. 

1.7 THESIS STRUCTURE 

The remaining sections in this thesis are organised as follows: 

Chapter 2 – Background: In this chapter the advanced metering infrastructure and its 

various components are examined. The chapter discusses the role of smart grids and 

highlights their various benefits and the motivation behind their deployment. Additionally, 

the chapter discuss the numerous communication standards and infrastructures, which are 

used within the Advance Metering Infrastructure (AMI) and smart grid. The chapter also 

provides a detailed background on smart meters and their associated technologies. Particular 

focus is given to the UK smart meter implementation program. We define the specific 

technology standards and features that are used in our approach. In this chapter different the 

load monitoring techniques are discussed in detail while paying particular attention to their 

different advantages and disadvantages. In addition, the chapter also introduces the concept 

of cloud computing, highlighting its many benefits and its role within the wider smart grid. 

The chapter is concluded with a discussion regarding machine learning and its associated 

considerations and concepts. In addition the application of cloud computing for machine 

learning is discussed. The chapter also introduces the concept of edge computing and its 

applications and benefits. Here a comparison between edge and cloud computing is presented 

while highlighting the limitations of each technology.   

Chapter 3 – Related Work: This chapter presents a critical review of the current assistive 

technologies and research areas. In particular, the chapter focuses on their various limitations 

and inadequacies, which provides the motivation for the approach presented in this research. 

The chapter introduces the concept Ambient Assistive Living (AAL) and the wide variety of 

disciplines that support its ongoing development. Finally, 6 specific areas have been 

identified, which directly impede both the deployment and adoption of any existing solution, 
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which will also be discussed in this chapter. Furthermore, the chapter discusses the illness 

and behavioural characteristics of a person that are monitored by the system. 

Chapter 4 – Personalised Intelligent Health Monitoring using Smart Meters (PIMS): 

This chapter presents the design of the proposed patient monitoring system. Here a 

breakdown of the various components and processes are presented, while highlighting their 

specific functions and interactions. The chapter provides a complete end-to-end framework, 

discussing the processes that are required to interface with a smart meter. Additionally, the 

data processing functions that are required to identify individual electrical devices are also 

described. Additionally, the chapter provides a detailed description of the alert process and 

how it integrates with the monitoring applications of the system. The chapter is concluded 

with a description of how the framework integrates with existing medical systems to exploit 

additional functionality. 

Chapter 5 – NHS Case Study: This chapter presents a case study of an ongoing patient trial 

that is being conducted in partnership with Mersey Care NHS Trust. By using the PIMS 

framework, data is collected from three different dementia patients with the aspiration of 

validating the algorithms used in the approach. Both the collected data and obtained 

knowledge is used in the implementation of the PIMS framework and its evaluation. In 

addition the individual sensors which are installed in the patient’s property are introduced.   

Chapter 6 – Implementation: This section, introduces the data collection methods that were 

used to generate both the device and behavioural training data. The data is analysed using 

statistical methods to substantiate the techniques used in our approach. In addition the PIMS 

implementation is presented along with the associated technologies used to create the system. 

Here the both the on premise and cloud technologies are deployed to facilitate the real time 

detection of both normal and abnormal patient behaviour. Additionally the chapter presents 

the machine learning algorithms used and how they are configured to classify both the 

individual electrical appliances and patient behaviours.   

Chapter 7 – Results and Discussion: In this chapter, the results from the PIMS implantation 

are presented. The evaluation involves a detailed analysis of the classification results to 

ascertain the optimal configuration for the PIMS framework. Both the device and behavioural 

models are assessed to determine their suitability using the data collected from the deployed 

energy monitor. Here the classification challenges are highlighted while discussing the 

relationships between the different device classes. An assessment between the use of the raw 
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data and the generated statistical features is presented along with the number of observations 

used in the classification process. 

Chapter 8 – Conclusion and Future Work: In the final chapter of the thesis, the findings of 

the research are summarised. The future work and direction of the research is discussed 

outlining potential tasks, which could be undertaken based on the proposed methodology and 

the results of this work. The thesis is concluded by summarising both the work presented and 

the various challenges it has overcome. 
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CHAPTER 2 SMART GRID METERING INFRASTRUCTURE 

2.1 INTRODUCTION 

This chapter discusses the areas of work examined to provide a fundamental insight into the 

components and considerations that are utilised in our approach. Here, the advanced metering 

infrastructure and the different components that reside within its framework are outlined. 

Particular focus is given to the smart meter and its associated technologies. The chapter also 

provides an overview of the main drivers behind the smart meter implementation program 

while highlighting its benefits and aspirations. The chapter discusses the particulars of the 

UK smart meter implementation highlighting the specific technological standards. 

Additionally, this chapter introduces the process for interfacing with the smart meter, which 

is achieved through the utilisation of the ZigBee Smart Energy Profile.  

The chapter also provides a detailed insight into the various load monitoring methods that are 

available for the purpose of device identification. Two primary methods are discussed, which 

include intrusive and non-intrusive load monitoring. Additionally, the chapter discusses the 

concept of cloud computing highlighting its various, benefits, platforms and applications. We 

discuss how cloud computing has been utilised to mitigate some of the challenges that are 

associated with the smart gird implementation. In addition the concept of machine learning 

and its associated considerations are discussed. The chapter is concluded with a discussion 

surrounding cloud computing, and its utilisation in the machine learning paradigm.   

2.2 SMART GRIDS AND THE ADVANCED METERING INFRASTRUCTURE 

The motivation behind the smart grid concept is attributed to different factors. Arguably the 

main objective for the smart grid is to balance grid load effectively [24]. According to the 

latest projections from the International Energy Agency (IEA), smart grid technologies are an 

essential grid component in order to meet future energy requirements [25]. Additionally, the 

IEA expects worldwide energy demands to increase at an annual rate of 2.2 percent, 

eventually doubling the global energy demand by 2040 [26]. Energy companies and 

governments must also consider the ever increasing environmental impact caused by C02 

emissions. These emissions are projected to accelerate faster than the increased demand for 

energy, forcing many countries to deploy smart grid technologies rapidly to help them 

achieve their C02 reduction obligations. The increasing social awareness of such issues has 

resulted in mounting pressure for governments and organisations to tackle these challenges 

[27]. 
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2.2.1 SMART GRID 

Smart grids fundamentally change the way in which we generate, distribute and monitor our 

electricity and gas. It dramatically improves the efficiency, flexibility and reliability of the 

existing utility infrastructure [28]. The smart grid is also essential for the integration of 

renewable and locally generated energy. Through this approach, it improves the efficiency 

and sustainability of the grid and its services [29]. However, the smart grid is regarded as 

more than just an infrastructure for the generation of smarter electricity and its distribution 

and consumption. There are social and consumer benefits associated with the smart grid. 

These include lower costs, improved customer service, decreased outage times and increased 

reliability. Additionally, the smart gird has been designed to accommodate and integrate new 

technologies over time. This is achieved by utilising diverse interoperable protocols and 

communication standards. This openness provides a gateway for additional social 

opportunities, which can be used to directly benefit the consumer and other organisations.  

2.2.2 ADVANCED METERING INFRASTRUCTURE FRAMEWORK  

A smart grid is a complex modern utility system [30]. It uses sensors, monitoring, 

communications, and automation, to improve grid infrastructure and services. A robust 

automatic reporting system with greater granularity of readings is offered [31]. 

One of the key differences over the existing grid is the introduction of the Advanced 

Metering Infrastructure (AMI) [32]. The AMI is not a single piece of technology, but a 

complex infrastructure which integrates with a variety of different technologies [33]. This 

framework contains many new components, such as the smart meter and the communication 

gateways that provide energy usage information to all of the grids stakeholders in real time. 

One of the most important components of AMI is the smart meter [34]. It fundamentally 

changes the way in which electricity and gas consumption is monitored and reported. These 

smart devices provide new possibilities for a variety of different applications that where 

impossible using a traditional grid topology. 

As part of the larger smart grid, the AMI can be broken down into three specific areas, each 

with their own unique roles and functions; these include the Home Area Network (HAN), 

Wide Area Network (WAN) and the Data and Communication (DCC) Service users. The 

HAN is housed inside consumer premises and is made up of a collection of different devices. 

Firstly, the In-Home Display Unit (IHD) is the most visible and accessible part of the AMI. 

Essentially, it provides the consumer with information in real time on electricity and gas 

usage, as well as the units of energy that are being consumed. This information is obtained 
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directly from the smart meter using a wireless communication technology called ZigBee [35]. 

The WAN handles the communication between the HAN and the utility companies. The 

WAN is responsible for sending all polled meter data to the utility companies and other grid 

stakeholders, using a robust backhaul network, such as Carrier Ethernet, GSM, CDMA or 3G 

[36].  

The geographical location of the consumer’s premise dictates the type of WAN technologies 

required, due to the constraints associated with certain communication protocols. The Data 

Aggregator Unit (DAU) is a communication device that is used to collect the energy usage 

data form the home gateway or the smart meter. The acquired data is transmitted, using one 

of the communication technologies mentioned above, to the control centre. Figure 1 

highlights the UK AMI layout. 

 

Figure 1: UK Advanced Metering Infrastructure1 

However, the AMI is not limited to the distribution and monitoring of electricity. It facilitates 

the supply and billing of gas usage too. Other readings that are obtained from the various 

sensors, which are distributed throughout the entire grid, are also collected. All of the 

acquired data is sent to the Meter Data Management System (MDMS), which is responsible 

for storing, managing and analysing the data [37]. The MDMS sits within the data and 

communications layer of the AMI. This component is an advanced software platform, which 

deploys data analytics while facilitating the various AMI applications and objectives. These 

                                                           
1 https://www.smartdcc.co.uk/about-dcc/ 
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applications include: managing metered consumption data, outage management, demand and 

response, remote connect / disconnect, and smart meter events and billing [38]. This 

information can be shared with consumers, partners, market operators and regulators. Figure 

2 provides an overview of the MDMS. 
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Figure 2: Overview of MDMS Framework 

The MDMS is considered the central management system for the entire AMI. It has the 

capabilities to react to real time events and emergencies, while providing a reactive service to 

consumers through demand and response. In order to achieve this aim, open network 

protocols have been introduced in each layer of the framework [39]. The communication 

layer of the AMI is one of the most crucial elements in the system [40]. It facilitates the 

integration of components that reside within its framework by providing the communication 

link between each of the following layers: 

 The consumers home: is the outer boundary of the AMI and is the most visible and 

accessible part of the entire smart grid. This section of the infrastructure is referred to as 

the Home Area Network (HAN). The HAN is a secure wireless network that utilises 

ZigBee Smart Energy to support real time data transfer between the smart meter and the 



Page | 14  
 

In-Home Display (HID) [41]. ZigBee is based on the wireless IEEE 802.15.4 standard 

and is technologically similar to Bluetooth [42]. Supplementary devices, which are 

known as Consumer Assess Devices (CAD), can join the HAN network and provide 

additional services to the consumer. Additionally, the smart meter utilises the HAN to 

collect energy usage readings and other parameters in real time. The energy usage 

readings are transmitted to the MDMS through a communications gateway, which can be 

a standalone entity or integrated into smart meter devices. 

 The Wide Area Network (WAN): utilises GPRS communication technologies to send 

and receive data from the AMI. Essentially the WAN provides secure bidirectional 

connectivity to the public utility, customer premises, power generators, and transmission, 

and distribution subsystems. It enables the smart meter to securely communicate outside 

of the HAN using the mobile network. 

Currently, there is no agreed standard for in-home communication in the market. Each 

country deploys different communication technologies depending on the technical 

requirements of their own regulations and supporting infrastructure. However, ZigBee, and 

ZWave, are the most commonly used solutions. In the UK, the Department of Energy and 

Climate Change (DECC) has opted for the exclusive use of ZigBee Smart Energy [43].The 

various roles and communication technologies utilised for the HAN and WAN are illustrated 

in figure 3. 
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Figure 3: AMI HAN and WAN architecture and communication protocols 

Each of the above components satisfies the specific requirements of the smart grid. The 

creation of a HAN provides third party access to the smart meter using agreed 

communication standards. 
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2.2.3 DATA CHALLENGES 

With the deployment of the AMI and intelligent Supervisory Control and Data Acquisition 

(SCADA) systems, the collection and storage of data is becoming a significant challenge. In 

order to manage the data flow, smart meters in the UK collect and transmit energy usage 

information to the MDMS every 30 minutes [44]. Although, lower sampling rates are 

technically possible, processing such quantities is costly for the utility company. The sources 

of data that contribute to the overall data size are highlighted in Table 1 [45]: 

Table 1: Sources of data within the smart gird 

Data Type Technology  Description 

AMI Smart Meters Consumption data that is generated from smart 

meters at a predefined frequency. 

Distribution 

and 

Automation 

Grid Equipment The distribution automation system, which collects 

data from the various sensors that are distributed 

throughout the entire grid. These sensors can 

generate up to 30 readings per second per sensor 

[46]. 

Third - 

Party 

External Data Sets The integration of 3rd party data, such as demand and 

response. 

Asset 

Management 

OS / Firmware Communication between the MDMS and the various 

smart technologies. This involves the management 

of the various smart devices including their software 

and firmware. 

 

Managing, processing and analysing vast quantities of data require the deployment of 

specialist hardware and software tools. As such, the MDMS relies on the following 

infrastructures to store, analyse, and process the acquired data [45]: 

 Data centre: This is a dedicated facility to host the data collected from the systems and 

supporting infrastructure. These systems include: high speed fibre channels, redundant 

Uninterruptible Power Supply (UPS / generator) systems, ventilation and cooling 
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systems, and security access. Typically, data centres are paired for replication to ensure 

high service availability. Historically, most data centres are hosted locally at the 

company’s premises, however with the introduction of cloud platforms, an increasing 

numbers of services are being hosted off site.  

 Servers: Typically, servers consist of specialist hardware, which are used for the 

purposes of data handling and processing. These systems can be run independently or 

within a cluster for increased performance. Typically, servers are categorised in terms of 

their individual roles. Common roles include web servers, application servers, proxy 

servers and file servers. Most servers run in a client server model whereby the server 

waits and handles incoming requests from the client.  

 Storage system: These are block-based, file-based, or object storage systems, such as 

Enterprise Virtual Arrays (EVAs). They contain a variety of hardware for storing data and 

connecting with other hardware. This specialist platform can host hundreds of servers, 

while processing large volumes of data.  

 Database system: The database system is a specialised software system, which is used 

for data management and analysis. Stored information is structured and organised so it 

can be accessed, managed and updated using a query language. The most common type of 

database is a relational database.  

 Virtualisation systems: A standard virtualisation system facilitates more efficient use of 

discrete storage and computing resources. Multiple operating systems (guests) can be 

hosted on a single piece of hardware using a hypervisor. In addition, the use of 

virtualisation facilitates easy migration of guests from one host to another. 

The acquired data ensures that the MDMS can facilitate the optimisation of the smart grid, 

utility management and the accommodation of customer engagement. The introduction of the 

AMI significantly increases the overall quality and availability of the acquired data [47]. 

However, the collection and accessibility of such information does not provide any 

significant value. Essentially it remains ineffective without the deployment of software tools 

and indeed the expertise to exploit it. As a result, the application of data analytics has become 

a major focus for smart gird research [48]. The main focus of such studies is to compile 

sources of data and extract meaningful information for decision making and service offerings 

for industry and society as a whole. 
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2.3 SMART METERS 

Fundamentally, smart meters are a new generation of gas and electricity meter [49]. They 

deliver vast amounts of additional information that cannot be obtained from a conventional 

analogue energy meter [50]. The main aim of the smart meter is to facilitate real time energy 

usage readings at granular intervals, to both the consumer and smart grid stakeholders [51]. In 

order to achieve this aim, load information is obtained from consumer electrical devices 

while measuring the total aggregated energy consumption for the given property. Additional 

information, such as home generated electricity is provided to the utility company and/or 

system operator for enhanced monitoring and accurate billing. This is achieved by monitoring 

the performance and the energy usage characteristics of the load on the grid. Some of these 

roles and benefits include: 

 Accurate recording, transmitting and storing of information for defined time periods (to a 

minimum of 10 seconds). All UK smart meters must store energy usage readings for a 

maximum of 13 months providing a unique insight into energy consumption. 

 Offer two way communications to and from the meter so that, for example, suppliers can 

read meters remotely [52], facilitate demand and response and upgrade tariff information. 

 Enable customers to collect and use energy usage data by creating a Home Area Network, 

to securely support data access devices [53]. Smart meters must accommodate third party 

access to energy usage data and other parameters through an agreed communication 

standard.   

 Support time-of-use tariffs, under which the price varies depending on the time of day 

electricity is used [54]. Energy prices are more expensive during peak times. 

Consequently, billing consumers by time, as well as usage, encourages them to change 

their consumption habits. Additionally, this type of information enables the detection of 

both on and off peak usage for establishing consumer routines. 

 Support future management of energy supply to help distribution companies manage 

supply and demand across their networks [55]. This is achieved automatically through 

previously agreed Demand Response (DR) actions. 

The smart meter implementation has largely been driven as a result of the European Union 

Energy Efficiency (EE) Directive (2012/27/EU) which was adopted on the 25 October 2012 

[ref]. The EE directive was introduced to provide legislation to facilitate the EU’s target of a 
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20% reduction in C02 by 20202. This is archived by ensuring that each smart meter can 

provide consumer tailored real time energy consumption information and advice. 

The smart meter project represents more than just a simple replacement from the traditional 

analogue meter to a digital substitute. Instead a comprehensive understanding of current and 

future needs has been considered.  

Between now and 2020 UK energy suppliers will be responsible for replacing over 53 million 

traditional gas and electricity meters [56]. This replacement programme requires visits to 

over 30 million homes and small businesses throughout the UK. The UK government 

estimates that the installation of smart meters will provide £6.2 billion net benefits to the 

United Kingdom [56] while monitoring 51% of the UK’s electricity usage. Figure 4 

highlights the current smart meter installation figures for the UK. 

 

Figure 4: Quarterly domestic installation figures for the UK [56] 

There are various data parameters and features that are available from the smart meter. 

Without considering adequately the different attributes and data values it would be 

challenging to obtain or extract meaning from the acquired data. This ensures that the correct 

data analytics approach is undertaken, while identifying any limitations in the technology or 

acquired data. 

                                                           
2 https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficiency-directive 
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In order for utilities to install smart meters in the UK, each device must adhere to a set of 

minimum requirements. Smart Metering Equipment Technical Specifications (SMETS) sets 

out these prerequisites and consist of two variants SMETS 1 and SMETS 2. SMETS 1 meters 

were primarily installed during the foundation stage and continue to be installed up until 

August 2017, when the main installation phase commences. During the main installation 

stage, SMETS 2 meters will be used until the roll out is complete. As some smart meter 

specifications are not yet fully defined, and while some feature are not yet fully available, 

researchers must make assumptions regarding data accusation and anticipated secondary 

functions. However, SMETS 2 meters are able to record energy usage, voltage and demand; 

and perform the following functions is shown in Table 2 [57]. 

Table 2: Smart meter SMETS 2 capability 

Category Description of Electricity Smart Metering Capability 

Power and 

Energy Use  

 Able to record energy import/export (kWh) on each of the 731 previous 

days.  

 Able to record half hourly data (kWh) for:  

1. Three months of Consumption;  

2. Three months of Active Energy Exported;  

3. Three months of Reactive Energy Imported; and  

4. Three months of Reactive Energy Exported.  

 Able to record maximum energy use measured over a half hour period 

(since last reset).  

 Able to compare active power to configurable thresholds (‘Low-

Medium’, ‘Medium-High’ and ‘Load-limit’).  

 Able to record status of energy use as ‘Low’, ‘Medium’ or ‘High’ 

respectively.  

Voltage 

Monitoring  

 Able to compare measured voltage to 6 configurable thresholds (3 high, 

3 low); Root Mean Square (RMS) over/under voltage detection, 

‘Extreme’ over/under voltage detection and voltage sag/swell detection. 

Done across 4 configurable time frames RMS period, ‘Extreme’ period, 

sag and swell periods).  

 Able to record events and send alerts when the voltage rises above high 

thresholds or falls below low thresholds for the related timeframe.  
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 Able to record supply interruptions. Sends supply restoration notification 

if interruption is over 3 minutes.  

Demand 

response  

 Time of use pricing; Able to store 48 half-hourly prices (beginning at 00 

or 30 minutes past the hour).  

 Able to calculate an ‘instantaneous cost’ based on active power and 

tariff.  

 Able to read status of and send commands to 5 HAN connected auxiliary 

load control switches.  

 Able to store a set of ‘time-of-use switching’ rules (in a ‘calendar’) for 

load switching (with a randomised offset); for changes in state across 

half-hours, days and dates.  

 Able to request, ad-hoc, following receipt of a command, that one or 

more HAN connected auxiliary load control switches change state.  

 Able to, on receipt of a command, disable or enable the supply.  

 Capable of supply disablement if power rises above ‘Load-limit’ 

threshold.  

 

In addition to a smart meter, all domestic consumers are offered an In-Home Display (IHD) 

as part of the smart meter roll-out that connects to the smart meter using the ZigBee Smart 

Energy profile. The IHD is a small electrical device, which has a number of unique 

functionalities that include displaying energy usage, and real time costing. Figure 5 highlights 

the different functions provided by a standard IHD unit. 
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Figure 5: IHD functionalities and interface 

2.3.1 AUTOMATIC METER READINGS 

The specific function of the traditional meter, and indeed the smart meter, is to accurately 

measure and report energy consumption in Kilowatt Hours (KWh), as highlighted in table 3. 

These include the Coordinated Universal Time (UTC) date and time, at the end of the 30-

minute period, to which the data relates in the Profile Data Log. Generally smart meter data is 

in the form of time series.  

Table 3: Smart Meter System Data Set 

Data Item Description 

Total 

generated 

kWh 

Supports the high level list of functional requirements for domestic smart 

meters. It provides the capacity to communicate with a measurement 

device within a micro generator, and receive, store, communicate total 

generation for billing. 

Generated 

interval data 

kW 

Half hourly interval data held on meter for 13 months – average kW 

demand over half hour period. 
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Generated 

interval data 

KWh 

Half hourly interval readings held on meter for 13 months. 

Generated 

Kilovolt-

Ampere-

Reactance 

(kVAr) 

Reactive power measurement, in half hourly intervals, held on meter for 

13 months – Specifically, Average Kilo Volt-Ampere Reactive (kVAr) 

demand over half hour period. 

Generation 

Technology 

Type  

e.g. Solar Photovoltaic (PV), micro Combined Heat and Power  (CHP), 

wind, hydro, Anaerobic Digestion  

Total 

consumption 

(net demand) 

kW  

Provides the total consumption by adding both the imported and 

generated Kw and subtracting the export.  

Import 

demand kW  

Load being drawn from grid  

Export kW  kW being exported to grid.  

Generated 

kW  

kW being generated by micro-generation unit.  

Total 

consumption 

today (kWh)  

The total daily consumption by adding both the imported and generated 

Kw and subtracting the export.  

Total Import 

today (kWh)  

Load drawn from Grid today (kWh).  

Exported 

energy today 

(kWh)  

Exported energy today (kWh).  

Generated Generated energy today (kWh).  
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energy today 

(kWh)  

Total CO2 

rate (kg/hr) 

and CO2 

today (kg)  

This is based on generated energy to give customers an indication of the 

amount saved through the implementation if a micro generation unit.  

Cost of 

energy 

imported 

(£/hr) and £ 

today  

Provides the net cost of imported energy less value of generated 

exported energy to the grid. These costs are calculated from meter 

consumption using cost rates entered on display, which is pushed to the 

IHD via ZigBee Smart Energy.  

2.3.1 CONSUMER ACCESS DEVICE  

In order to overcome the default reading limitation of every 30 minutes and obtain readings at 

higher sampling rates, the installation of a Consumer Access Device (CAD) is necessary. 

Smart meters utilise the ZigBee Smart Energy profile, which can be used to pair such devices 

using the ZigBee protocol. ZigBee has an operating range up to 70 meters with a data 

transmission speed of 250kbs. In addition, the UK DECC have declared SMETS2, which 

cites the use of ZigBee Smart Energy 1.x. Currently, there are two types of CAD, each with 

their own functions and limitations: 

 Type 1 CAD Devices: Type 1 devices perform low level tasks. These include Interface 

Commands, which set specific variables, such as tariffs, thresholds, perform commands 

(e.g. auxiliary load switch control) and read data. Type 1 devices are restricted to energy 

suppliers and other authorised parties.  

Type 2 CAD Devices: The Type 2 CAD connects to the SM HAN in the same way as the 

IHD. Typically, the device collects the live energy data from the smart meter in the home. 

The obtained data is used for two main functions; the management of smart appliances in 

the home; transmission of data to the cloud through a broadband connection.  

The ongoing development of the ZigBee Smart Energy profile has resulted in multiple CAD 

paring methods [58]. Currently, locally initiated CAD pairing is not possible. Instead 

consumers and service providers must initiate remote CAD pairing. The consumer provides 

connection information to authorised third parties in order for their devices to be paired 
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remotely. Later versions of the SEP will introduce a means of allowing consumers to pair a 

CAD without needing the involvement of a DCC3. Therefore, a consumer will be able to 

initiate pairing of a CAD by using a function on their smart meter. Figure 6 highlights the 

CAD remote pairing procedure. 

Consumer provides 
their address, CAD 

ID and consent

Energy Supplier
or 

Other DCC User

Service provider 
verifies consumer 
details and issues 

service request

DCC forwards 
command to join a 

CAD

DCC forwards 
command to join a 

CAD

Coms Hub

Smart Electricity 
Meter

Smart Gas 
Meter

CAD starts to 
receive 

Consumption and 
tariff data

Cloud Storage / 
Analytics

 

Figure 6: Remote CAD Pairing Procedure SMETS 1 

The data collected from the CAD includes the date and time of the reading, the aggregated 

energy load in watts and the node ID. The process, by which the CAD operates, is shown in 

figure 7. 

 

Smart Meter ZigBee Smart Energy 
1.x

(Smart Energy 
Profie)

Feed

Handshake Query Energy 
Consumption 

(Sample Period 10 
seconds) 

Coms 
Hub

(HAN)

DATETIME
ENERGY USAGE (Watts)
NODE ID

 

Figure 7: CAD Reading process when paired with a smart meter 

This is archived through a ZigBee Smart Energy module, which contains dedicated hardware 

to support the lower layers of the ZigBee stack. Here a processor facilitates the functions of 

                                                           
3 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/591322/09022017_-

_Smart_Meters__Data__Growth_DR_-_updated.pdf 
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the higher layers of the ZigBee SE application. The software stack within the CAD uses a 

high-level smart metering API, which contains a set of data items and functions that are 

available to the CAD when paired in the SMHAN. 

The ZigBee Cluster Library (ZCL) specification provides functions to obtain and collect data 

from ZigBee devices using a command format. The ZigBee alliance uses application profiles, 

which contain a set of supported functions, datatypes and operations. An example of an 

application profile is the ZigBee SE profile, which contains a number of unique functions and 

features. Figure 8 highlights the layers of the ZigBee stack and how they are combined to 

support the application.  

ZigBee Cluster Library 
(ZCL)

Application Profile

General Cluster Smart Metering Cluster

DATETIME ENERGY USAGE (Watts)

 

Figure 8:  ZigBee stack cluster combination 

The ZigBee SE profile uses a set of clusters from the library, which are specific to the SE 

cluster. However, the ZigBee Alliance has standardised a number of general clusters, which 

are available to any application profile4. For example, a CAD uses the time cluster from the 

ZCL, while combining it with the Simple Metering Cluster. The Simple Metering Cluster is 

specific to the ZigBee SE profile to provide functions which are unique to the Smart 

Metering Cluster. These two individual clusters are pooled to ascertain the time of the 

                                                           
4 ZigBee Interoperability: http://www.zigbee.org/zigbeealliance/white-papers/ 
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reading and the energy value. Table 4 highlights the general and specific clusters in the ZCL, 

which are accessed by the CAD. 

Table 4: General and Smart Energy clusters 

Category Cluster Function 

General Clusters 

Time The time cluster provides a set of 

functions which facilitates access to a 

real time clock. The cluster includes 

local time zones and daylight time 

saving functionality.  

Alarms Alarms can be used for sending alarm 

notifications to other clusters in the 

ZCL.  

Basic The basic cluster provides a number 

of properties, which include software 

firmware versions.  

Over the Air Upgrade 

(OTA) 

The OTA cluster provides the ability 

to upgrade the software on the ZigBee 

device remotely.  

Smart Energy 

Clusters 

Price  The Price cluster provides the 

communication functions that enable 

the updating of pricing and tariff 

information from the AMI. 

Demand-Response and 

Load Control 

These clusters facilitate the 

integration of smart devices, which 

support load control. Specifically, the 

functions enable the CAD to receive 

instructions from the utility company, 

which enable grid load balancing 

operations.  
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Simple Metering The simple meter cluster provides the 

collection of consumption data.   

Messaging  The messaging cluster enables 

communication between devices. 

 

2.3.2 SMART METER DATA COLLECTION AND FREQUENCY 

Smart meters in the UK collect and transmit energy usage data at 30 minute intervals using 

their default setting. However, smart meters are able to report energy usage as low as 10 

second intervals through the use of a CAD; even though this is not currently deployed due to 

the vast amount of data it would generate [59]. Table 5 highlights the data volume difference 

based on the sampling resolution5. 

Table 5: Smart meter data volume by resolution 

Data Type Resolution  Source  Approximate maximum 

data volumes (whole city, 

1 year)  

Smart meter data 30 minutes DCC 400 Gigabytes 

Smart meter data 10 seconds CAD 80 Terabytes 

Existing NILM 0.001 seconds CT 400 Petabytes 

 

Table 6 illustrates a data sample from obtained from a smart meter during a single period. 

This sample highlights the granularity of the data collected compared to traditional meters, 

where the readings are submitted collectively over a much larger period (for example 

monthly, quarterly or yearly). It displays the data parameters obtained at each 30-minute 

interval; totalling 48 individual readings in a 24 hour period (for illustrative purposes only 10 

readings are presented). Customer Key identifies the individual smart meter device within the 

AMI; Time of Reading indicates the time and date of the reading; while General Supply 

highlights the amount of on peak electricity being used in KWH. 

 

 

                                                           
5 Bristol Smart Energy Collaboration (2016), https://bristol-smart-energy.cse.org.uk/ 
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Table 6: Single Smart Meter 30 Minute Data Sample 

CUSTOMER_KEY Time of 

Reading 

General Supply (KWH) 

8150103 05:59:59 0.042 

8150103 06:29:59 0.088 

8150103 06:59:59 0.107 

8150103 07:29:59 0.040 

8150103 07:59:59 0.042 

8150103 08:29:59 0.041 

8150103 08:59:59 0.049 

8150103 09:29:59 0.189 

8150103 09:59:59 0.051 

8150103 10:29:59 0.050 

 

Figure 9 highlights a data sample of a single smart meter. It represents half hourly readings 

over a 24 hour period totalling 48 individual readings. The data illustrates the total energy 

consumption in Kwh.  

 

Figure 9: 48 individual readings highlighting a single 24-hour period 

The default reading frequency of a smart meter impedes the level of information that can be 

obtained from the acquired data. Increasing the reading frequency is essential when trying to 

identify individual devices and their duration of use.  Figure 10 highlights the additional 

information that can be obtained by increasing the reading frequency. 
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Figure 10: Information obtained by increasing the reading interval 

At 30 minute intervals it is possible to detect occupancy within the premise and main periods 

of electricity usage. When the reading frequency is increased to 1 minute intervals the use of 

type 1 electrical devices is identified. Type 1 devices refer to appliances that only operate in 

two states either on or off. A reading frequency of 1 sample every 10 seconds, which is the 

reading frequency for a smart meter when paired with a CAD, is able to identify type 2 

electrical devices. These types of devices operate in multiple states. Increasing the reading 

frequencies facilitates the identification of individual device utilisation. This approach is 

demonstrated in figure 11. The y-axis highlights the energy usage in Watts, while the x-axis 

shows the reading time. 

 

Figure 11:  Real time energy readings obtained from an aggregated load 

Obtaining energy readings at 1 to 10 second intervals provides energy signatures for each 

device. This is achieved by identifying the amount of energy being consumed, as 



Page | 30  
 

demonstrated in figure 12; this enables background noise from certain devices, such as fridge 

oscillations, air conditioning and standby electricity usage, to be filtered out. This leaves clear 

usage signatures for devices that are being used.  

 

Figure 12: Energy signature for a kettle 

2.4 LOAD MONITORING 

Our proposed method utilises Appliance Load Monitoring (ALM) to provide detailed 

appliance identification. The concept of ALM is not new [60]. Typically, ALM methods are 

divided into two distinct categories: firstly, Non-Intrusive Load Monitoring (NILM) and 

secondly Intrusive Load Monitoring (ILM). NILM is typically described as a single point 

sensing method, as it requires the use of a single sensor such as a smart meter. In contrast 

ILM is regarded as a distributed sensing method and requires the use of multiple individual 

sensors [61]. Normally, one sensor is installed for each electrical device being monitored. 

There are different advantages and disadvantages with each method. The ILM is regarded as 

a more accurate method as readings are obtained directly from the device [62]. However, this 

type of monitoring is both costly and complex. ILM also has the risk of sensors being 
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removed or transferred onto different devices. While NILM is regarded as less accurate, it 

requires the use of a single nonintrusive sensor, which is cost effective.  

NILM introduces challenging issues that are not present with ILM approaches. NILM signal 

analysis involves identifying multiple electrical devices that can be used simultaneously or in 

quick succession. Although the identification of individual devices is possible using 

disaggregation algorithms, their performance is largely dependent on the appliance type, 

sampling rates and device usage [63]. 

ILM has benefited from increased popularity due to decreased sensor costs. Additionally, 

technical improvements, such as improved sensor communications, ensure that ILM can be 

used in a variety of different applications. These applications include local energy 

consumption analysis, appliance recognition, device failure identification and human activity 

recognition [64]. Figure 13 provides a high level overview of a typical ILM environment. 

Here, each device of significance is fitted with a smart plug, to identify when a particular 

device is being operated. The smart plug wirelessly transmits consumption data to the home 

router using a predefined sampling rate. Energy readings are transmitted remotely to analysis 

services using ADSL. 

Smart 
Plug 1

Home 

Router

Energy Analysis

Smart 
Plug 2

Smart 
Plug 3

 

Figure 13: Distributed sensing method 

The data obtained from aggregated loads is different to that of disaggregated monitoring. 

Table 7 provides a data sample, which was obtained from a typical ILM environment. The 

read time, plug name and the amount of energy being consumed in KWh is shown. In terms 

of monitoring, smart plugs have limitations and restrictions.  
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Table 7: Smart plug readings 

Half Hour Period 

End 

Plug Name Reading Time Total KWH 

17/09/2013 07:29 Air conditioning 17/09/2013 07:08 5.141 

17/09/2013 07:29 Dishwasher 17/09/2013 07:08 1.04 

17/09/2013 07:29 Hot Water System 17/09/2013 07:08 8.156 

17/09/2013 07:29 Kitchen 17/09/2013 07:08 2.154 

17/09/2013 07:29 Microwave 17/09/2013 07:08 12.849 

17/09/2013 07:29 Oven 17/09/2013 07:08 2.447 

17/09/2013 07:29 Washing 17/09/2013 07:08 10.97 

17/09/2013 07:59 Air conditioning 17/09/2013 07:38 5.141 

17/09/2013 07:59 Dishwasher 17/09/2013 07:38 1.04 

17/09/2013 07:59 Hot Water System 17/09/2013 07:38 8.156 

17/09/2013 07:59 Kitchen 17/09/2013 07:38 2.154 

17/09/2013 07:59 Microwave 17/09/2013 07:38 12.85 

17/09/2013 07:59 Oven 17/09/2013 07:38 2.447 

17/09/2013 07:59 Washing 17/09/2013 07:38 10.97 

As a result, an ILM approach increases the overall financial costs for a system using this 

approach. Additionally, residents may move or remove sensors used for ILM which 

introduces misclassification.  

NILM, which is sometimes referred to as load disaggregation, focuses on the development of 

algorithms to disaggregate specific devices that are utilised on a metered power line [65]. 

NILM was first proposed by Heart et al., as a method for identifying appliance power 

signatures from within aggregated load readings, by detecting the on / off states of the 

appliance [66]. Data is obtained from the smart meter directly, which is mathematically 

defined as: 

𝑃(𝑡) =  𝑝1(𝑡) + 𝑝2(𝑡) + ⋯ + 𝑝𝑛(𝑡)                                                      (1) 

Where p is the power consumption of the individual device that is contributing to the total 

aggregated measurement, and n is the total number of devices within the time period t. Figure 

14 highlights a typical NILM environment, where the smart meter is responsible for the 

identification of device usage.  
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Smart Meter

 

Figure 14:  Appliance identification through a smart meter 

Historical load monitoring techniques involve the deployment of financially expensive and 

complex hardware with simple data processing techniques. In NILM solutions hardware is 

deployed but more complex software tools are required for device identification. Typically, 

NILM consists of four stages; data acquisition (using a sensor transformer clip (CT) fastened 

around the main feed), event detection, appliance feature extraction and finally, device 

classification. Figure 15 highlights the NILM stages, along with the considerations for each 

stage. 

 

Data Acquisition 
(Load Monitoring)

Event Detection
Appliance Feature 

Extraction
Classification

Steady State 
Features

Transient Features

Supervised Learning

Unsupervised Learning

Appliance Types

 

Figure 15: NILM process and considerations 

There are considerations with an NILM approach, which include the following: 
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 Electrical sampling rates: is one of the most important considerations as it impacts 

directly the overall accuracy of the method [67]. Typically, lower sampling rates 

introduce more errors in device identification due to event triggers being overlooked. 

There are two groups of sampling used in NILM; high frequency (greater than 60Hz) and 

low frequency, (less than 60Hz) [68]. In order to obtain higher sampling rates, the 

deployment of specialist hardware is required. These devices measure electrical load a 

few thousand times a second, which greatly improves the overall accuracy of the 

approach. However, the installation and maintenance of such equipment has a cost and 

data storage requirement. With the introduction of smart meters, with low frequency 

sampling of 1 sample every 10 seconds, NILM has now to become the main focus of 

research [69].  

 Electrical features: The most widely used feature selection methods for device 

identification include: event detection, whereby devices are detected by their state on/off; 

steady-state, which identifies devices based on variations in their steady state signatures; 

transient methods, which extract more complex features, such as frequency harmonics. 

However, transient methods require high sampling rates and additional reading 

parameters, which are beyond the specifications of a smart meter [70]. Typically, most 

load monitoring devices provide parameters that include voltage, current, real power (P), 

power factor, phase angle and reactive power (Q). These additional parameters enable the 

generation of more advance features using signal analysis and harmonics. 

Recently more humble approaches have become the main research focus, such as real power 

measurements. The main reason for using only real power readings is because of the ever-

increasing availability of smart meters. As smart meters only collect real power readings, 

severe feature extraction constraints exist. As a result, extracting more complex features is 

unmanageable, as neither the voltage nor phase angle is present. Many research approaches 

have been suggested to combat such limitations. Kim H et.al., utilise real power 

measurements for disaggregation. Their approach found identifying individual appliances, 

which were of the steady state class difficult, but had more success with steady state changes. 

In conclusion, they stated that additional features would be required to improve accuracy 

[71]. Likewise, George C et.al., propose a novel load disaggregation algorithm using only 

smart meter power readings. They use the obtained power readings to generate a set on 

discrete pulses, which were associated to a registered appliance. They claim that that the 
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algorithm accounts for external factors, such as appliance signatures and human behaviour. 

Overall, accuracy of the algorithm is in 85% in total [69]. 

2.4.1 EVENT DETECTION AND APPLIANCE TYPES 

Event detection is the method by which device identification can occur [72]. However, this 

approach is complicated by the various devices that are present in a home Modern electrical 

appliances run in multiple modes other than on and off. Many devices have low power 

requirements or standby modes, while appliances, such as ovens, operate in a number of 

different states. Such devices introduce additional complexity to the classification task. 

Understanding the different device categories is vital for NLIM as they provide information 

on electrical usage characteristics. Device categories are explained as follows: 

 Type 1: devices refer to appliances that only operate in two states either on or off and are 

their detection from an aggregated load is rudimentary. Examples of such devices include 

kettles, toasters and lighting. Figure 16 shows a power reading for a type 1 device; a 

kettle. 

 

Figure 16: Type 1 electrical device (on / off) 

 Type 2: devices are commonly known as Multi-State Devices (MSD) or finite state 

appliances. Such appliances can operate in multiple states and include washing machines, 

dryers and dishwashers. As these devices can exist in multiple states they add further 

complexity for device identification. Figure 17 shows a power sample for a type 2 

electrical device; an electric oven. 
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Figure 17: Type 2 electrical device (multi-state) 

 Type 3: devices are known as Continuously Variable Devices (CVD). Typically, their 

power draw has no fixed state. As type 3 devices have no repeatability in their 

characteristics they are particularly problematic for NILM. Examples of such devices 

include power tools. Figure 18 shows multiple type 3 electrical devices. 

 

Figure 18: Type 3 electrical device (continuously variable) 

 Type 4: are fairly new in terms of device category, at the time of writing this thesis. They 

remain active for long periods and consume electricity at a constant rate [72]. As these 

devices are always on there are no major events to detect other than small fluctuations, 

which are too small for event detection. Such devices include smoke detectors and 

intruder alarms. Figure 19 shows multiple type 4 electrical devices. 
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Figure 19: Type 4 electrical device (constant rate) 

2.4.2 APPLIANCE CONSIDERATIONS 

Electrical devices in the home are a key resource for the identification and modelling of the 

occupant’s routine and habits. However, the range of domestic appliances within a modern 

dwelling is complex [73]. Careful consideration is required when selecting which set of 

appliances to detect. However, selecting too many appliances introduces additional 

complexity and results in supplementary training and model creation. This scenario 

ultimately introduces greater resource requirements.  

The study presented by the Department of Energy and Climate Change interviewed a total of 

2616 households to ascertain the types of appliances present [74]. Table 8 highlights the 

appliance type and ownership. 

 

 

Table 8: Appliance type and ownership 

Appliance Percentage of households (%) 

Washing Machine 97% 

Tumble Dryer 62% 

Refrigerators and Freezers 99% of households own a refrigerator (either 

as a separate unit or combined with a 

freezer) 

Dishwasher 41% 

Oven 95% 



Page | 38  
 

Hob 93% 

Microwave 82% 

Televisions Just under 2% of households report that they 

do not have a television. Just over 83% of 

households have three or fewer televisions. 

Portable Fans 43% 

Air conditioning  Less than 3% 

 

Although both televisions and refrigeration show a prevalence in excess of 98%, they cannot 

be disaggregated using a CAD. However washing machines (97%), Microwaves (82%) and 

ovens (95%) which exhibit a high presence can be disaggregated using a CAD device.  

2.5 CLOUD COMPUTING AND INFRASTRUCTURE 

The data generated from the smart grid means that cloud processing platforms are now 

required to process and extract meaning from the acquired data while ensuring a robust 

energy delivery network. As such, this section introduces the concept of cloud computing and 

its adoption for both smart grid data processing applications. There are numerous advantages 

that are associated with cloud computing platforms, which can be applied to the smart 

metering infrastructure to support its various objectives [75]. 

 

2.5.1 THE USE OF CLOUD COMPUTING WITHIN SMART GRIDS 

Cloud computing is an ever developing computational platform, which combines hardware, 

storage and high bandwidth networking to provide scalable solutions to third party 

organisations. There are many benefits to cloud computing; which are increasingly exploited 

to overcome both the data processing and scalability challenges associated with the smart 

grid. The smart grid requires a fault tolerant, efficient data processing and communications 

infrastructure in order to deliver a reliable and affordable power distribution network [76]. 

The emergence of smart grids brings many benefits but also various challenges in terms of 

data management and integration. This infrastructure relies on information technology to run 

more efficiently while ensuring that grid load and demand is balanced. However, the smart 

grid by its very nature is a complex platform with vast storage, communication and 
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computational requirements. In order to facilitate these requirements smart grids can leverage 

the following cloud computing benefits:  

 Cloud computing is both flexible and scalable ensuring adequate resource allocation and 

provisioning [77]. As smart grid components are deployed on a large scale, cloud 

computing can be used to overcome scalability problems by provisioning additional 

resources as required. 

 Cloud services maintain the underlying computational hardware and software. Smart 

grids are regarded as a critical infrastructure, which supplies essential utilities to the 

consumer. Any down time in services can have a detrimental impact on service users. As 

most cloud components are virtualised, guests can be migrated from one host to another 

while maintenance is undertaken. This removes the need for downtime and minimises 

service disruption [78].  

 Many cloud providers are geographically distributed, which not only ensures low latency 

but also provides service replication. Essentially, services are mirrored in one or more 

additional data centres to prevent service disruption in the event of an outage. 

There are three service levels offered to smart grid utilities which are Infrastructure as a 

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Each category 

provides different levels of management which are highlighted in figure 20. 
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Figure 20: Cloud computing platforms and management 

IaaS provides fundamental computing resources that are required to run any hosted service 

[79]. These resources consist of servers, storage, virtualisation and networking, and hardware, 

which are directly managed by the cloud provider. In this scenario, smart grid utilities 

manage the operating systems and any services that reside further up the stack. This model 

facilitates the smart grids demand and response requirements by provisioning additional 

resources as demand increases. 

PaaS provides a managed platform to the customer enabling them to develop, manage and 

run their services. Typically, utilities have full control of their application and can access 

various programming models through the cloud to execute their programs. Using this model, 

smart grid utilities can develop in house applications without considering the development 

environment. Similarly, PaaS includes servers, storage and networking. In addition, PaaS also 

provides middleware, development tools and services. 

In the case of SaaS the utility uses an application or service, but does not have any control or 

management of it or its underlying stack. SaaS provides a complete solution that is usually 

purchased as a pay as you go or licencing model. Each of the smart grids service users are 

licenced to use the platform through a common API. All of the underlying infrastructure 

which includes, middleware, software and data are hosted and managed exclusively by the 

service provider. 
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Additionally, smart grid utilities are able to run their services using a hybrid environment. 

Here a mix of both on premise services and cloud resources are managed in conjunction. 

Using this approach enables workloads and demands to move seamlessly between private and 

cloud services. Organisations have the ability to flex out resources during periods of high 

demand without the requirement to purchase new hardware while contracting services when 

utilisation subsides. For smart gird utilities this may be a favourable approach to alleviate 

concerns regarding the location of data. As cloud computing can be geographically 

distributed the replication of both sensitive data and data management is vital for the security 

of grid applications [80]. By running a grid infrastructure in a hybrid model, sensitive data 

can be confined to the utilities data warehouse.  

As discussed, the various challenges and opportunities associated with the smart grid can be 

effectively managed through the use of cloud computing. Therefore, researchers have 

proposed the utilisation and adoption of the cloud infrastructure and services in an attempt to 

mitigate many of these issues. The various aspirations and benefits of the smart grid 

introduce the following key challenges [81]: 

 Demand and response. 

 Peak demand and dynamic pricing.  

 Real time monitoring. 

 Communication and information management. 

 Smart meter data collection and analysis. 

One of the biggest challenges associated with the smart grid is demand and response whereby 

consumers can actively participate in balancing grid load [82]. However, the introduction of 

real time energy management and dynamic pricing further increases the demand for resources 

especially during peak times; as the cloud computing model provides flexible dynamic 

bandwidth and resources, these issues can be effectively addressed. Research undertaken by 

Rusitschka et al., proposed such a model for smart grid data management [83]. Here the 

cloud’s distributed computing resources are leveraged to undertake real time data access and 

analysis.  

As smart grids become more sophisticated the need for higher bandwidth and computational 

resources is an ever growing requirement. Within the smart grid smart meters are deployed to 
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collect, process, and exchange data between utilities and consumers in real time. This vast 

infrastructure introduces big data which many traditional data management solutions fail to 

accommodate. As such, cloud computing models are equipped to process such vast amounts 

of data and have become the focus of many research studies. 

2.6 MACHINE LEARNING 

Many data-centre domains utilise machine learning to derive meaning from the acquired 

sensory data. The vast majority of technologies deploy a supervised machine learning 

approach which relies on labelled data for training [84]. As such, the following section 

provides an introduction to the various machine learning approaches, while highlighting their 

function. 

 Artificial Neural Networks: An Artificial Neural Network (ANN) is a machine learning 

technique that simulates the way in which the human brain operates. It is able to solve 

complicated problems by simulating the complex interconnected processing elements 

(neurons) of the brain. ANNS learn by example, and previous training, which can be used 

to extract patterns and detect trends within the collected data.  

Typically, there are two main forms of ANNS which include, Feed Forward and 

Feedback Networks. With Feed Forward Networks, signals travel in one direction, where 

each unit transmits information to a corresponding unit but does not receive any return 

information. These types of networks are typically used for pattern recognition and 

classification. Units are able to transmit information bi-directionally using a loop. 

Although Feedback Networks are extremely powerful, they are often complex. Figure 22 

highlights a Feedforward Neural Network and its various layers.   

 

Figure 21: Multilayer Feedforward artificial neural network 
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ANNS are able to detect complex nonlinear relationships between dependent and 

independent variables. They also have the ability to detect all possible interactions 

between predictor variables and utilise various training algorithms [85]. 

However, there are disadvantages that are associated with ANNS. Firstly, there is a 

requirement for sufficient amounts of training data to facilitate a wide range of 

possibilities and predict the output. Additionally, ANNS work as black boxes, where they 

do not provide a descriptive model that depicts why a particular decision has been derived 

[85]. 

 Bayesian Networks: Bayesian networks belong to the family of probabilistic graphical 

models, which represent relationships between a set of random variables. A Bayesian 

network is a type of graph called a Directed Acyclic Graph (DAG). Essentially they 

model variables, dependencies and their probabilistic relationships. Bayesian Networks 

use a concept known as Bayes’ theorem of probability theory [86]. This is used to 

propagate information between nodes. Bayes’ theorem describes how prior knowledge 

about hypothesis H is updated by observed evidence E. Each node in the DAG represents 

a set of features such as parameters, values or states. Edges or links represent the relations 

between the various features where the direction of the edge indicates causality. Bayesian 

networks can be used for a wide range of tasks including prediction, anomaly detection, 

diagnostics, time series prediction and decision making. A Bayesian network is defined as 

follows [87]: 

𝑃 (ℎ|𝑒) =  
𝑝(𝑒|ℎ).𝑝(ℎ)

𝑝(𝑒)
                                                  (2) 

Where 𝑝 (ℎ) is the prior probability of the proposed hypothesis; 𝑝(𝑒) is the prior 

probability of evidence 𝑒; 𝑝(𝑒|ℎ) is the probability of 𝑒 given ℎ, while 𝑃(ℎ|𝑒) is the 

probability of ℎ given 𝑒. 

One the main advantages of a Bayesian network is that it can effectively handle missing 

data. Because of this feature, Bayesian networks are considered for use in our own 

system, in order to mitigate concerns surrounding periods of missing data. 

 Support Vector Machines: Support Vector Machines (SVMs) are a supervised learning 

model, which functions by identifying the best hyperplane that separates all data points of 

one class from those of the other class. The superlative hyperplane for an SVM means the 

one with the largest margin between the two classes. The hyperplane can be linear, 

quadratic or polynomial depending on the kernel and complexity of the problem. Figure 
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23 highlights a linear SVM and its separating hyperplane. SVMs are used principally for 

classification, regression and outlier detection. 

 

Figure 22: SVM with hyperplane 

SVMs were originally designed for binary classification tasks. However, methods have been 

proposed to facilitate multiclass operations [88], which include one against one or one verse 

all approach. The use of SVMs are considered in our approach, as their kernel could be 

altered to match the complexity of the acquired smart meter data. Reducing the complexity of 

the hyperplane meant that computational requirements are reduced, as much as possible, 

resulting in decreased processing costs. In order to train an SVM, a distribution-free learning 

process is employed [89] and is defined as follows. 

D =  {(X𝑖 , 𝑌𝑖) ∈ 𝑋 𝑥 𝑌}, 𝑖 = 1, 𝑙                                                       (3) 

Where l is the number of training data pairs and is equal to the size of the training data set D. 

Yi is the desired target value [90]. 

Decision Trees: Decision trees have been used for a number of years by a variety of 

researchers and are commonly used for classification tasks [91]. They have been applied to 

many research areas, such as detecting abnormalities, image classification and regression 

tasks. The Multiclass Decision forest functions by building multiple decision trees and the 

‘voting’ on the most popular class. Voting is a form of aggregation, in which each tree in a 

classification decision forest outputs a non-normalised frequency histogram of labels. The 

aggregation process sums these histograms and normalises the result to get the “probabilities” 

for each label [92]. 
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A tree consists of a set of individual nodes that are organised in hierarchical structure. Figure 

23 highlights the structure of a typical decision tree, where the various internal nodes are 

represented as circles while the leaf nodes are represented by squares. 

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Root Node

Internal 

Node

Leaf Node
 

Figure 23: Random decision tree 

Each internal node stores a test function, which is applied to the data; consequently each leaf 

node contains the predicted class. Decision forests are both scalable and flexible and can be 

adjusted for each classification task. For simple problems, they enable the user to select each 

of the individual node parameters manually. For tasks that are more complex the tree 

structure and parameters can be learned automatically by using training data. Decision 

Forests have a number of features and benefits [91] which include: 

 They are naturally suited to classification tasks where multiple classes are present. 

 They are efficient in computational tasks reducing the demand on both memory and the 

processor during training and predication. 

 They support data with varied distributions. 

 They provide much higher accuracy on previously unseen data (generalisation). 

A Multiclass Decision Forest is configured with a variety of parameters. For example a 

parameter to determine how labelled training data is sampled. Randomness is introduced to 

the trees during the training phase by utilising a method known as bootstrap aggregating or 

bagging [93]. Bagging belongs to an ensemble method, which combines multiple predictions 

to generate an accurate model. Therefore: 

𝑓 =  
1

𝐵
 ∑ 𝑓𝑏

𝐵
𝑏=1 (𝑥′)                                                                    (4) 
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Where, fb is the decision tree, B is the number of times bagging takes place and x is the 

training set. Each tree is trained on a new sample, which is generated by randomly sampling 

the training data; essentially each tree utilises a different training subset. Each output 

(prediction) is combined to generate an accurate prediction by majority voting or by 

averaging the results in order to obtain the greatest outcome. The main advantage of bagging 

is increased training speed and efficiency, while decreasing the variance of the model, 

without increasing the bias. 

The machine learning pipeline includes the following:  

 Data Processing: Preparing data for classification is used to remove any potential issues 

in the data. This includes missing data and unbalanced data sets. Missing data values are a 

common occurrence in real world dataset. Missing data can adversely affect the 

performance of the classifier which ultimately leads to unreliable results [94]. In addition, 

the use of a balanced data set is required for the classification process [95]. Imbalanced 

data typically refers to a problem in classification where the classes are not represented 

equally [96]. As a result the classifier does not have adequate examples of the positive 

class to learn from. This scenario can have a significant impact on the classification 

process, as classifiers are more prone to detecting the majority class. Many datasets are 

unbalanced; this is especially true for medical data as the number of observations 

belonging to each class can vary greatly [97]. This scenario is common and often 

introduces bias outcomes [98].  

 In order to address this issue, the Symmetric Minority Over-Sampling Technique 

(SMOTE) technique can be used during model training. SMOTE functions by increasing 

the number of observations for the minority class. New instances are generated 

synthetically by taking samples of the feature space for each target class and its nearest 

neighbours. New examples are generated that combine features of the target case with 

features of its neighbours [99]. SMOTE has been used in variety of studies to effectively 

solve issues associated with imbalanced datasets and is defied in algorithm 1 [100]. 
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Algorithm 1: SMOTE 

1. Input: Minority data 𝐷(𝑡) = {𝑥𝑖  ∈  𝑅𝑑}, ǀ = 1,2,…, T number of minority instances (T), SMOTE 
percentage (N), number of nearest neighbours (k).  
 

2.  For i = 1, …, T, 

 

3.     Find the k nearest (minority class) neighbours of 𝑥𝑖 

 

4.     �̂� =  [
𝑁

100
]. 

 

5.     While �̂�  ≠ 0 

 

6.        Select one of the k neatest neighbours, 𝑥.̅ 
 

7.        Select a random number 𝛼 ∈  [0, 1] 
 

8.        �̂� =  𝑥𝑖 +  α(�̅� – 𝑥𝑖) 

 

9.        Append �̂� to S 

 

10       �̂� =  �̂�  − 1 

 

11.    End While 

 

12.  End For 

 

13.  Output: Return synthetic data S 

 

Fergus et.al., use SMOTE to address a class imbalance in their dataset. They note an 

overall improvement in classifier performance (sensitivity); however the models exhibit a 

10% decrease in specificity. While the researchers note that using SMOTE is not ideal, it 

is an accepted technique in overcoming skewed datasets [100].       

 Feature engineering, selection and reduction: Typically data undergoes multiple stages 

of transformation. These transformations are used to reduce the dimensionality of the data 

buy reducing the number of features to avoid overfitting. This is vital for building an 

effective predictive analytics system. Different dimensionality reduction techniques exist, 

the selection of the correct method depends on the data distribution. Selecting the correct 

method can have a direct impact on the accuracy of the classifier [101]. The accuracy of 

any classifier is dependent on the variables that are presented for classification. There are 

many domains where a high degree of dimensionality exists, for example time series and 

sensing networks [102]. This scenario adversely affects the performance of the classifier 

[103].  

Principle Component Analysis (PCA) can be used to achieve dimensionality reduction on 

the obtained data. PCA functions by identifying directions in the data that have the largest 
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variance thus archiving a lower dimensional dataset [104]. Examples of dimensionality 

reduction techniques beyond PCA include Fisher Linear Discriminant Analysis (FLDA) 

and a filter based technique called Spearman Correlation. FLDA achieves a more optimal 

result if variances between groups are similar and if the data has a normal distribution.  

FLDA obtains a linear combination of features that determines the direction the classes 

are separated most accurately. When considering various classes, the distance between 

the means of the classes is calculated in order to find a linear combination of features. 

This is defined as: 

 𝑓(𝑦) =  𝑊^𝑇 𝑋 +  𝛼                                                                           (5) 

 

Where α is the bias, W is calculated using Fishers LDA, and X is the training data without 

class labels. For a multiclass approach, a one-against-many method is employed. This is 

defined by Farag et al., as follows [105]: 

∑ =𝑊 ∑ ∑ (𝑥𝑘 − 𝜇𝑖)(𝑥𝑘∈𝑋𝑖

𝐶
𝑖=1 𝑥𝑘 − 𝜇𝑖)

𝑡                                                  (6) 

 

Where C refers to the quantity of classes, Xi is the set of points in class i, μi is the mean of 

class i, and Xk is the kth point of Xi. The subsequent scatter matrix is the correlation of 

class means defined by Rao et al., as follows [106]: 

∑ =𝐵
1

𝐶
∑ (𝜇𝑖 − 𝜇)(𝐶

𝑖=1 𝜇𝑖 − 𝜇)𝑡                                                     (7) 

Where C-1 is the principal eigenvalue, Ni is the values that belong to Class i, μi is the 

mean of Class i, and μ is the overall mean. 

Spearman Correlation on the other hand utilises a non-parametric test, nonparametric tests 

do not assume a specific distribution in the data. Here a subset of features are generated 

with the highest degree of predictive power. Consequently, each column is scored and 

later utilised to build the predictive model. It assesses the relationship and statistical 

dependence between stochastic sequences in which the coefficient can be depicted using a 

monotonic function [107]. Here: 

𝜌 = 1 −
6 ∑ 2𝑑

𝑛(𝑛2 −1)
                                                        (8) 

Where ρ denotes the Spearman rank correlation coefficient, d is the difference between 

the sequences, and n is the number of the sequences. 

 Machine learning algorithms: The main objective for any machine learning application 

is to obtain a successful classification result. There are numerous classifiers available; 

however different classification algorithms are suited to different applications and data 
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types. Typically machine learning algorithms can be divided into parametric and non-

parametric algorithms. Parametric algorithms make particular assumptions which speed 

up the learning process, but can also limit what can be learned from the data. Non-

parametric algorithms do not form strong assumptions about the mapping function. As a 

result they are free to learn any form from the data meaning they are often more flexible, 

achieve greater accuracy, but have longer training times. Classifiers are also selected for 

other qualities and are often used to address some of the issues previously discussed such 

as class imbalances, sample sizes and data distribution [108]. The selection and 

identification of the most effective classifier is usually an iterative process. 

To perform statistical tests to ascertain if the data is normally or abnormally distributed, 

two common approaches are used. They include boxplots and Quantile Quantile (Q-Q) 

plots. 

A box plot uses statistical measurements which include the minimum and maximum 

range values, the upper and lower quartiles, and the median. Box plots themselves are 

non-parametric, they show variations in data without making assumptions of the 

underlying statistical distribution. Additionally, box plots determine if the dataset 

contains any outliners that could adversely affect the performance of a classifier. 

Q-Q plots provide a graphical illustration to determine if two datasets come from 

populations with a common distribution. The plot is created by plotting two sets of 

quantiles against one another. The Q-Q plot determines if sample 𝑋1…,𝑋𝑛 has come from a 

distribution with a given distribution function 𝐹 (𝑥). The plot displays the sample 

quantiles 𝑋1…,𝑋(𝑛) against the distribution quantiles 𝐹−1 (𝑝1 ), … , 𝐹−1( 𝑝𝑛 ), where: 

𝑝1 =
𝑖−1

2⁄

𝑛
                                                                            (9) 

 Validation: Scoring and validating the results of the classification is an essential step in 

determining the algorithms suitability. The use of machine learning algorithms can 

introduce bias and variance. Bias is often introduced as algorithms make assumptions in 

an attempt to make the target function easier to learn. Results that are obtained during 

training often appear valid while demonstrating a high degree of accuracy. However, 

models often exhibit a reduction in accuracy when alternative data is used [109]. This 

scenario is known as variance and is used to estimate the error rate if different data is 

used. As a result, it is not uncommon to attain a 100% accuracy using training data and 

significantly less on test data. The selection of an appropriate validation method is 

required to overcome two fundamental problems; the first being the selection of an 
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appropriate model and the second being performance estimation. If an algorithm is given 

access to an unlimited set of answers the problem of validation would not exist. This is 

because the lowest possible error rate for the entire population would be attained. 

However, real experiments only have access to a finite set of examples, often much lower 

than desired. The selection of an appropriate validation method requires careful 

consideration as numerous techniques exist. These typically include: 

 Hold out validation: splits the data into two groups, one for training and one for 

testing. The training set is used to train the classifier were the testing set is used to 

estimate the error of the trained classifier. However this approach introduces two 

significant drawbacks. Firstly, setting aside a portion of the dataset for testing can 

be problematic for small datasets. Secondly, since it is a single train-and-test 

experiment, the holdout estimate of error rate can be misleading.  

 Random sampling: is similar to K-Fold cross validation. However, instead of all 

the examples in the dataset being used for both training and testing. Random 

sampling selects a (fixed) number examples to train and estimate the error rate. 

 K-Fold cross validation: The data set is randomly divided into k equal subsets; 

each subset contains approximately the same amounts of data. Of the k subsets, a 

single subset is retained for testing, with the remaining k-1 subsets stored for the 

training. This procedure is then repeated k times, until every one of the k subsets is 

utilised exactly once as a testing set. The results are averaged to estimate the 

classifier’s predictive performance. Specifically, the data is split into 5 folds, 

which provides a more accurate assessment of the classifiers performance, while 

reducing the risk of over fitting. 

 Leave-one-out cross-validation: is a derivative of K-Fold cross validation, where 

K is chosen as the total number of examples. A dataset containing N examples we 

perform N experiments. Each experiment uses N-1 examples for training and the 

remaining example for testing.  

2.6.1 CLASSIFER EVALUATION  

For the validation method, a number of different metrics are used to measure the performance 

of a classifier [110]. Calculating sensitivity, specificity and accuracy are actively used in the 

medical field. 



Page | 51  
 

Each of the classifiers performance is calculated using a confusion matrix to assess the 

success of the classification or Area Under the Curve (AUC), sensitivity, specificity and error 

[110]. This can be expressed mathematically as shown below: 

Sensitivity = TP / (TP+FN) 

(10) 

Specificity = TN / (TN+FP) 

(11) 

Accuracy = (TP+TN) / (TP+FP+FN+TN)  

(12) 

                    Error rate = 1 – Accuracy                                                     (13) 

                                       

Sensitivity measures the proportion of positives which are correctly identified in our system. 

This would be the detection of normal behaviour. Specificity measures the proportion of 

negatives identified during the classification. A confusion matrix is used for multiclass 

classifications. Receiver Operator Curve (ROC) visualises the performance of a binary 

classification to generate  a graphic that highlights the cut off values for the false and true 

positive rates. 

2.7 THE USE OF CLOUD COMPUTING FOR MACHINE LEARNING 

The ability to undertake real time decisions using data is a fundamental requirement of many 

services. These are often beyond the capabilities of traditional on premise data centres and 

infrastructures. Therefore, to achieve this requirement, scalable data analytic services are 

required. These data analytical services are becoming increasingly prevalent in the cloud 

environment where organisations can leverage various services and resources to derive 

important insights and meaning from their acquired data. 

Big data is frequently unstructured and is often difficult to process using conventional tools. 

Cloud based data analytics utilise complex and demanding algorithms, which require vast 

computational power [111]. By utilising a cloud infrastructure, the historical constraints 

associated with data analysis, such as vast storage is removed and a flexible computational 

resource is offered. Cloud providers have integrated dedicated hardware to aid in the machine 

learning process. Field-Programmable Gate Arrays (FPGAs) are used to decrease the 

computational time required for machine learning and other cloud services [112]. FPGA 

algorithms are directly written into the hardware and require reprogramming to take 

advantage of new machine learning developments. Additionally, cloud providers are open 

and extensible as they are compatible with a variety of existing languages and frameworks.  
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In order to facilitate services and create an effective system, the classification models need to 

be accessible to front end applications. Utilising cloud services enables the real time 

interpretation of data intelligence through the integration of front end applications. This can 

be achieved by deploying analytical services as ready-to-use web services. These web 

services facilitate the integration of apps which can be utilised to provide critical information 

to support the needs of the organisation. With the emergence of cloud analytics new and 

innovative ways for querying and interacting with big data have been developed. Natural 

language and proactive interaction enables the user to seamlessly interact with their data by 

utilising cognitive API’s for speech, vision and text recognition. 

2.8 INTERNET OF THINGS, EDGE COMPUTING AND SENSOR ANALYTICS 

Although cloud computing provides scalable resources for processing large amounts of data, 

the ability to perform localised processing introduces numerous benefits, such as reduced 

costs and lower latency [113]. Traditionally, the role of edge computing involved storing, 

filtering and transmitting acquired data to centralised processing facilities such as the cloud. 

As these systems evolve, by introducing increased processing, storage and analytical power, 

the requirement for centralised processing has been reduced or removed completely.  

Modern day edge computing is an extension of Content Delivery Networks (CDNs), which 

increase web performance by caching content locally to the caller. Edge computing extends 

this functionality by leveraging cloud computing functionality for computationally intensive 

tasks through a concept known as cloudlets [114]. Cloudlets provide computational services 

to mobile devices or sensors either through servers placed at the edge of the network or by 

requesting resources from a central datacentre. Edge computing can be used to effectively 

divide computational tasks between edge devices and centralised systems (such as Azure or 

Google cloud). Capabilities are largely dependent on the specification of IoT device that 

determines if processing is undertaken on the device, network edge or in the datacentre.                  

2.8.1 EDGE COMPUTING VS CLOUD COMPUTING 

Edge computing is a relatively new concept, in which computational resources are placed at 

the internet’s ‘edge’ in close proximity to mobile devices or sensors [113]. With edge 

computing the processing of data is undertaken at the edge of the network. As a result, it has 

the potential to address data processing, bandwidth, data safety, privacy and response time 

issues surrounding the proliferation of IoT [115]. 
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Cloud computing has revolutionised the way in which we process, store, access data and 

services. Offloading computing tasks to the cloud has proven to be an efficient method for 

large scale data processing and analytics since cloud computing outperforms the capabilities 

of edge devices. With the introduction of IoT, many researchers suggest technology is on the 

verge of a post cloud era [115]. The concept of edge computing was developed to address 

issues with applications and services that do not perform adequately with the cloud paradigm. 

These include the requirement for low latency, geographical distribution, and large scale 

resources. 

It is estimated that by 2020 data captured by IoT devices will surpass 1.6 Zettabytes (ZB)6. 

Processing data at the edge of the network would introduce increased efficiency for network 

bandwidth, as the transportation of vast volumes of data is becoming impractical for cloud-

based processing. Generally cloud providers construct a limited number of data centres that 

are geographically distributed. This introduces considerable separation between the 

infrastructure and end devices [116].  

Although significant developments in cloud computation have been realised, advancements 

in network bandwidth have been slow and remains a significant challenge in the big data 

paradigm. In addition to big data, applications such as vehicular networks and augmented 

reality require low latency data processing, which is unavailable using cloud infrastructure.     

In recent years, vast amounts of research has been undertaken to overcome existing 

limitations associated with cloud computing. Concepts such as edge, mobile cloud and fog 

computing are samples of emerging paradigms. The similarities in all edge computing 

platforms are the deployment of technology which can mimic cloud capabilities at the edge of 

the network. An overview for each of the edge paradigms and their applications are as 

follows: 

 Fog Computing: is considered as an extension of cloud computing. It provides 

virtualised resources such as computation, networking, storage and applications between 

IoT devices and data centre. Fog computing (FC) is designed to work in conjunction with 

cloud infrastructure; essentially extending cloud computing services to the edge of the 

network. The main objective of fogging is to improve efficiency by reducing the volume 

of data being transported to the cloud. In a fog environment short term data processing is 

                                                           
6 https://www.abiresearch.com/press/data-captured-by-iot-connections-to-top-16-zettaby/ 
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undertaken using a smart hub or gateway where possible, while more intensive longer 

term analytics are sent to the cloud.  

FC addresses the inadequacies of the cloud based model which include latency, network 

bandwidth and the need for geographic distribution. As a result, FC is popular in smart 

grid, smart city and smart home applications [117]. Shanhe et.al., introduce both a design 

and implementation of a prototyping platform for FC. The researchers evaluate the 

platform for use within smart home environments by comparing both the latency and 

bandwidth between the FC and Amazon EC2. Each FC subsystem consists of one router 

and three servers, all of which are connected to Amazon EC2 through a Wide Area 

Network (WAN). The results show a round trip time (RTT) of 1.416 milliseconds (ms) 

for FC compared to 19.989 ms for EC2; while a reduction in bandwidth is noted. The 

researchers implement a face recognition application which is run from a smart phone. 

Each photo is uploaded to a remote server either in the FC or in the cloud. The response 

time for FC is 168.769 ms compared to 899.970 ms for the cloud. The researchers note 

that network bandwidth contributes the most to the difference in response time [118].     

 Mobile Edge Computing (MEC): The concept of MEC provides services within the 

close proximity of mobile subscribers by introducing server infrastructure at each base 

station [119]. Similarly to fog computing, this approach reduces latency, while enabling 

features such as context aware applications and computation offloading. Typically, 

mobile devices, such as smart phones and tablets, exhibit multiple constraints in terms of 

computation and storage. In a MEC architecture computational resources are managed 

locally by the network operator; hosts are virtualised, while functionality is exposed 

through API’s. Tran et.al., introduce two significant use cases which illustrate the benefits 

of MEC, these include mobile edge orchestration and collaborative video caching and 

processing [120]. Here they present a novel framework, which is used to manage 

resources across the edge layer and the collaboration between end users, edge nodes and 

cloud nodes. Edge nodes analyse the data from nearby end users and notify the cloud 

node for further processing. By using a task allocation algorithm, the researchers compare 

the processing time of a smart phone with an edge computing device. They note that the 

performance of execution on a single MEC server is significantly improved when 

compared to the local device. The researchers note that even though the data was 

transmitted to the edge, there is an overall reduction in execution time of 40%.  
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 Mobile Cloud Computing: In mobile cloud computing (MCC), cloud servers provide a 

shared pool of high availability resources such as processors, software and storage. 

Typically mobile devices consume these resources through radio access network (RAN) 

or the internet. With MCC, computing resources can be either distributed or centralised, 

both the performance and adoption of MCC is largely reliant on the deployment of 5th 

generation (5G) mobile networks. The use of 5G will provide improved performance in 

offloading both data and computational tasks to the cloud. By offloading computationally 

demanding tasks to the cloud applications such as mobile learning, healthcare and gaming 

can be efficiently undertaken on smart devices. Curevo et.al., propose a system which 

facilitates fine grained energy aware offloading from mobile devices to the cloud. The 

researchers conduct a number or experiments to evaluate the amount of energy used in 

gaming applications. They state that instead of offloading the entire application for cloud 

processing, code could be partitioned at run time based on the costs of communication 

and CPU utilisation. The results demonstrate a 27% saving in energy usage while 

improving the games refresh rate from 6 to 13 frames per second [121]. 

With the emergence of narrowband IoT the proliferation and usage of low cost sensors is 

increasing. Companies deploy, manage and process sensor data for multiple applications 

while using platforms such as Azure IoT hub for data analytics. Typical applications include 

utility metering, environmental monitoring, event detection and parking sensors. The use of 

narrowband IoT directly compliments edge computing, where limited amounts of sensory 

data can be effectively processed on the network edge. Although narrow band IoT offers 

reduced costs and increased battery life, its transmission speed is limited to 100kbps, 

therefore restricting its range of applications. With the introduction of 5G, data transmission 

speeds range between 1 – 10Gbps therefore facilitating the use of cloud computing for data 

processing and analytics. The use of 5G, can facilitate low latency orchestration between IoT 

devices and cloud services providing scalable on demand computing. This approach is 

becoming increasing viable bringing into question the need for edge computing platforms.  

2.9 SUMMARY 

The implementation of the AMI and, in particular smart meters, enables the analysis of 

energy usage with a high degree of accuracy and granularity. Being able to utilise the 

collected data brings countless benefits to grid stakeholders and consumers alike. Due to its 

ability to integrate with third party services additional applications can be accommodated 

beyond its original intended use. Around the world a large-scale implementation of smart 
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meters is underway, which is supported by a vast and complex infrastructure. The smart 

meter is regarded as more than a simple analogue to digital upgrade. It provides significant 

data collection abilities, which facilities many of the smart grids aim and objectives. 

The emergence of the smart gird has introduced a number of complex computational 

challenges. The requirement for a reliable and scalable IT infrastructure has resulted in many 

researchers proposing the use of cloud computing to mitigate the numerous challenges facing 

the wide implementation of the smart grid. As discussed, cloud computing infrastructures are 

both scalable and adaptable, while overcoming the static limitations that are associated with 

traditional onsite datacentres.  

The chapter introduced the concept of load disaggregation and how it can be exploited to 

identify the use of individual appliances. Specifically the methods and their associated 

benefits and limitations where discussed. Additionally the chapter introduced the concept of 

machine learning along with its individual steps and considerations. The chapter also 

introduced the concept of machine learning within a cloud environment. Many researchers 

and organisations are adopting the use of cloud based machine learning to overcome 

challenges in both computation and system integration. Although the use of cloud computing 

can alleviate many challenges associated with big data, it is clear significant limitations in 

both mobile and IoT applications exist. Challenges, such as bandwidth and latency, mean that 

cloud computing is becoming increasingly impractical for many mobile applications. The 

chapter introduced three specific edge computing concepts which are designed to address 

these limitations. Although Edge computing demonstrates potential, the technology is in early 

development with no clear technical standardisations. Limitations in hardware mean that 

there is still a requirement for large data processing to be undertaken in the cloud. However, 

by using edge and cloud computing, in a hybrid model, challenges with both technologies can 

be overcome.   
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CHAPTER 3 ASSISTED INDEPENDENT LIVING 

This chapter provides a discussion on related work on technologies used to assist independent 

living. The various strengths and weaknesses of each are outlined, as a comparison to the 

approach presented in this thesis. Specifically, the chapter focuses on technology within the 

home and discusses the various sensors and concepts currently used to facilitate independent 

living. In addition, the chapter contains seven requirements for any solution to be considered 

effective in routine clinical practice. Finally the chapter outlines different behavioural 

considerations for selected health-related conditions to facilitate the identification of key 

behavioural patterns. 

3.1 CURRENT ASSISTIVE TECHNOLOGIES 

The term assistive technology covers a wide range of applications and tasks [122]. Assistive 

technology refers to devices or systems that support a person to maintain or improve their 

independence, safety and wellbeing [123]. Typically, existing technologies are divided into 

two distinct categories. Firstly, physical aids which assist the sufferer in performing specific 

tasks which include walking, eating and drinking. Secondly, monitoring and surveillance, 

whereby electronic devices keep track of a person’s medical condition and automatically alert 

health care staff, outreach teams or family members of any changes when required. Although 

no official standardisation exists for assistive technologies, it is widely agreed that 

technology should be personalised, adaptive and non-intrusive. 

Current assistive living technologies involve the deployment of various sensors around the 

home [124]. These include motion sensors, cameras, fall detectors and communication hubs. 

However, installing, maintaining and monitoring these devices is costly and technically 

challenging [125]. In addition, diverse wearable technology is also available. These include: 

Personal Emergency Response Systems (PERS), wearable body networks, electrocardiogram 

(ECG), pulse oximeter, blood pressure monitors and accelerometers. The main objective of 

these sensors is to obtain essential data to assist in the overall assessment of a patient’s 

wellbeing. These readings enable clinical staff to evaluate the state of a patient remotely, 

whilst determining if there is a requirement for intervention or further treatment. 

Even though some technologies enable patients to live independently for longer periods, there 

are concerns about their associated costs and benefits. It is estimated that by adding existing 

telemedicine solutions to standard care plans increases overall costs by 10%. More 

importantly, a recent study has shown that existing solutions provided only minimal gains in 
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quality of life [126].  The cost per Quality Adjusted Life Year (QALY) was utilised in the 

study to measure the cost effectiveness of the solution. The QALY measurement combines 

the duration of life lived and adjusts it for quality of life. The study identified that the 

difference between intervention and non-intervention groups was only 0.012 QALYs. This 

margin equated to only a few additional days of quality health. In addition, the study 

identified that the resulting interventions from the trial was not cost effective and below the 

threshold recommended by The National Institute for Health and Care Excellence (NICE) 

[126]. 

Many areas of research and technology contribute to assistive solutions, with trials 

undertaken to assess their feasibility [127]. The application of several domains has been 

exploited to enable and improve the use of assistive technologies within the household. The 

collection and integration of such technologies is often referred to as Ambient Intelligence or 

Ambient Assistive Living (AML), which aims to support people by enabling them to achieve 

their everyday objectives [128]. Some of the different technologies that have been created 

and integrated into telehealth solutions are highlighted in figure 24 [129].  

Assistive health technology can be divided into three distinct groups which include: enabling, 

preventative and responsive. Each group facilitates the unique requirements of the patient by 

leveraging different technologies and their associated features. Specifically, enabling 

technologies ensure that the patient can perform safely common everyday tasks such as 

controlling heating or lighting. Preventative technologies function by reducing or preventing 

certain dangers to patients by mitigating particular risks. This is achieved by ensuring that the 

patient undertakes specific ADLS, such as taking medication or eating and drinking. 

Responsive technologies react to certain events such as falls, triggered alarms and leaving the 

home. Responsive technologies rely on an effective escalation procedure, which is based on a 

predefined protocol. 
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Figure 24: Assistive solutions related technologies an AML approach 

AML is not only regarded as the integration of various technologies (i.e. sensors, computing 

etc.) and related domains (i.e. computer science, engineering, medicine and social sciences) 

but focuses on incorporation and applicability of such technologies. The main function of any 

system is for the ability to identify human activities from the acquired sensory data. This is 

achieved by applying meaning (which is usually in the form of medical insight) to 

observations. 

Preventative and responsive AML technology is of particular interest to the medical 

profession and can be divided into two distinct applications; smart health and smart homes. 

Firstly, smart health involves the use of wearable technologies to collect and analyse 

important biomedical readings. Secondly, a smart home environment, which is the focus of 

our research, is used for improving or maintaining the health and wellbeing of the occupant 

[130]. The vast majority of existing solutions in the field focuses on the detection of ADLS, 

which was a concept first proposed in the 1960’s7. The assessment of ADLS facilitates the 

monitoring of both the physical and psychological aspects of the patient. The process 

operates by identifying key aspects of a patient’s routine, such as preparing food or sleeping. 

These activities are assessed through the use of multiple sensors or monitoring equipment, to 

ascertain any deviation or abnormal behaviour. 

                                                           
7 Katz, S., Ford, A.B., Moskowitz, R.W., Jackson, B.A. and Jaffe, M.W., 1963. Studies of 

illness in the aged: the index of ADL: a standardized measure of biological and psychosocial 

function. Jama, 185(12), pp.914-919. 
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3.2 TECHNNOLOGY IN THE HOME 

Over 80% of people would prefer to stay in their own home in the later years of life8. This is 

beneficial to both the patient and service providers alike. Evidence suggests that enabling 

patients to live in their own home is more cost effective than any other setting [131]. 

Although many patients wish to live independently, it is crucial to find the right balance 

between independent living and unnecessary harm. The challenge we face is how to mitigate 

the main areas of risk to the patient while ensuring that an appropriate framework for 

escalation exists. Patient risk varies greatly depending on the condition and its overall 

severity. The normal ageing process and more serious conditions, such as dementia and 

psychiatric disabilities share many commonalities in terms of risk [132]. However, living 

with serious conditions increases the likelihood of an incident occurring. Additionally, with 

degenerative diseases the probability of incident increases over time due to disease 

progression and secondary complications. This is also true for patients suffering with various 

psychiatric conditions as certain events or periods may heighten the severity of the condition 

[133]. In recent years, there have been a variety of suggested assistive technologies and a 

number of research studies undertaken [134] [135] [136]. However, many solutions raise 

concerns regarding their feasibility and cost effectiveness. 

It is an essential requirement for any patient monitoring system to take into account the 

specifics of each health condition and their associated risks. If a technology fails to meet the 

individual needs and requirements of the patient, the solution will be largely ineffective and 

may cause additional confusion and complications. Examples of some of the common risks 

that modern technology must address include: 

 Adequately detect a reduction in food and fluid consumption, which directly contributes 

to the overall decline in a patient’s health and wellbeing [137]. Malnourishment increases 

the likelihood of immune deficiency, anaemia, pressure sores, poor healing and low blood 

pressure. Likewise, dehydration can result in urinary tract infections, pneumonia, 

hypotension and confusion. Complications from malnutrition can severely affect a 

patient’s cognitive and functional capacity. This ultimately impedes their ability to 

participate in normal activities of daily living. Additionally, researchers in [138] noted 

that there is a significant lack of research in the use of dietary interventions in older 

people.  

                                                           
8 http://www.raeng.org.uk/publications/reports/designing-cost-effective-care-for-older-people 
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 Assess both the cognitive and physical health of the patient to assess significant risk. The 

identification of the physical functions and decision-making capacity aids in the overall 

assessment of the patient. Additionally, it can provide an understanding of the overall risk 

to the patient, while facilitating in their mitigation through the involvement of health care 

providers and family. However, early detection is vital for an effective outcome and must 

be considered one of the main objectives for any monitoring system [139].  

 Assess the risk of falls due to an inappropriate environment, frailty or cognitive 

impairment [140]. Frailty is a common ailment among elderly patients, which carries 

increased risk of incidents such as fractures, breaks and mortality. Falls often result in 

increased hospital admission rates, which place additional strain on healthcare resources. 

 Inappropriate use of medication can increase the overall risk of falls, as common side-

effects include fatigue, confusion, perceptual disturbances, dizziness and altered muscle 

tone. Additionally, the introduction of new medication can increase the overall risk to a 

patient, as it can result in side effects. 

 Wandering which is a common symptom in both the elderly and people suffering with 

dementia. This behaviour might occur due to environmental irritants, physical 

discomforts or psychological distress. Wandering introduces significant risk to the patient 

as it has the potential to result in injury and additional worry and concern for family 

members and carers. 

 Fire and flooding which are a common risk to patients. Cognitive impairment can often 

result in burning of food or forgetting to turn appliances or taps off after use. 

In addition, the compromise of any technical deployment could further endanger the safety 

and wellbeing of the occupant; specifically through the following: 

 The patient being able to switch off or remove some or all of the installed equipment. 

Patients can easily become confused and forget what and why the solution is there. This 

problem is often exacerbated if the assistive technology requires the installation of 

multiple sensors. The environment should remain confinable and familiar, which can be 

adversely affected with the introduction of sensors. 

 Alert escalation ensuring that there are efficient numbers of relatives, carers and care 

workers to respond to any alert within an acceptable time period and within a predefined 

protocol. 
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 Devices that require any interaction from the patient are particularly problematic. Many 

solutions require the patient to wear a device or manually interact with a device to trigger 

an alarm. 

3.3 AMBIENT ASSISTED LIVING 

The vast majority of telehealth systems fall into an area referred to as Ambient Assisted 

Living (AAL). Essentially, one of the main objectives for any AAL solution is to monitor the 

changing needs and risks of the patient. The system should provide alerts and facilitate 

improved responses to any of the identified needs or risks [141].  

Remote patient monitoring solutions provide alternative ways of monitoring and support. In 

order to achieve this outcome a variety of different sensors are available which can be used 

singularly or in combination to achieve the desired objective. Table 9 highlights the various 

sensors and functions, which are commonly used in a smart home environment [142]. 

Table 9: Sensors deployed in a smart environment 

Sensor Type Measurement Limitations 

Passive Infrared Motion Sensor 

(PIR) 

  

Movement around the 

living environment. 

Multiple sensors are 

required. Typically one for 

each room in a persons living 

environment. PIR solutions 

often struggle to detect key 

ADLS, as they can only 

verify location and not the 

occupant’s activity. Sensors 

can have poor battery life, 

which requires ongoing 

maintenance and accurate 

detection of failing batteries. 

Radio Frequency Identification 

(RFID) 

Movement around the 

living environment. 

Multiple sensors are 

required, which are 

distributed throughout the 

living environment. RFID 

often suffers from reduced 
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accuracy due to interference 

from neighbouring sensors 

[143]. It is common for 

RFID solutions to experience 

contact sensing difficulties. 

For example, when a sensor 

is within the range of an 

antenna but is not detected. 

Pressure Sensors / Smart Tiles 

 

Detects the presence of 

pressure on multiple 

items such as flooring, 

mats, bed and chairs.   

Often inaccurate (sensing 

motion not presence) [140]. 

Equipment positioning often 

requires important 

consideration to obtain the 

best results. In addition they 

are often used in conjunction 

with other sensors [144]. 

Magnetic Switches 

 

Detection of door / 

cabinet opening and 

closing.   

Multiple sensors required. 

Switches can be wired or 

wireless and are often used 

in conjunction with other 

sensors. 

Cameras 

 

Tracks activity within the 

living environment.  

Often considered 

unacceptable due to legal, 

privacy and ethical issues. 

Additionally the deployment 

of camera technology within 

the living environment is 

both expensive and intrusive 

[145].  

Microphone Used to record and Microphones can be 
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identify particular noises 

within the home. 

deployed throughout the 

living environment and can 

be used to identify 

significant sounds. Noises 

can be utilised for the 

detection of ADLS or 

identifying if the patient is in 

trouble.  

Physical Alarms 

 

Devices which are worn 

by the patient and can be 

triggered in the event of 

an emergency. 

Systems that are solely 

reliant on a person’s 

interaction to function pose 

many safety concerns. 

Dementia patients in 

particular may forget to 

activate the device or fail to 

identify if they are at risk. 

 

There are numerous smart home projects, which utilise one or more of the above sensors in 

an attempt to create a smart living environment. Most solutions employ algorithms, with the 

aim of improving accuracy for monitoring indoor localisation, tracking, activity recognition, 

and anomaly detection. Numerous AAL solutions combine complex multidisciplinary 

technology, many of which are still in their infancy [146]. Currently, there is no agreed 

standardisation for AAL, while concerns surrounding high costs and complexity impede their 

adoption [147]. 

Indoor localisation, activity recognition and tracking are key components of AAL research 

and a consideration for any system. As such, it has become the focus of research studies. 

Machine learning and computational techniques have been applied to many solutions in 

human behaviour technology and activity recognition [148, 149]. Specifically, the vast 

majority of AAL solutions depend on supervised learning algorithms, which utilise labelled 

data for training. Examples of such solutions are categorised in table 10 below: 
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Table 10: Summary of various AAL solutions 

Authors Monitoring 

Type 

Technology Algorithm Single / 

Multi 

Senor 

Przybylo 

et.al [150] 

Activity 

Recognition 

Wearable Camera  Speeded Up 

Robust Features 

(SURF) 

Single 

Culmone 

et.al [151] 

Activity 

Recognition 

Distributed Sensing Rule Based Logic Multiple 

Liu et.al 

[152]  

Activity 

Recognition 

Wearable Sensors 

(accelerometer) 

Dynamic Time 

Warping 

Algorithm 

Single 

Große-

Puppendahl 

et.al [153] 

Activity 

Recognition  

Distributed Sensing 

(capacitive 

proximity sensors) 

Radial basis 

function (RBF) 

Multiple 

Hailong 

et.al [155]  

Indoor 

Localisation 

Radio Fingerprinting k nearest 

neighbour (KNN) / 

naive Bayes 

classifier (NBC) 

Multiple 

Antonio 

Del Campo 

et.al [156] 

Indoor 

Localisation 

Radio Fingerprinting  None Multiple 

Bouchard 

et.al [159] 

Indoor 

Localisation 

Proximity Systems 

(Bluetooth)  

Localisation 

Algorithm 

Multiple  

Hsu et.al 

[160]  

Indoor 

Localisation 

Proximity Systems 

(RFID, 

Accelerometers) 

Genetic Algorithm Multiple 

Kovácsházy 

et.al [161] 

Sleep Monitoring Passive Infrared 

Motion Sensor (PIR) 

None Single 

Yazar et.al 

[163] 

Fall Detection Vibration Sensors / 

PIR Sensors 

Support Vector 

Machine (SVM) / 

Sensor Fusion 

Multiple 

Čavka et.al 

[154] 

Fall Detection Wearable Sensors Threshold Based Single 

Activity Recognition: Przybylo et.al., propose the use of a wearable camera to track the 

patient’s movement around the home while identifying key activities [150]. The data 

collected is analysed in real time, which removes the need for recording equipment. Person 
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localisation is achieved through the use of natural landmarks, which are obtained during the 

calibration procedure. They propose the use of the SURF algorithm, which attains results of 

83% accurate classification. The researchers note, however, that further research is required 

in order to improve the speed of both the hardware and algorithm. They also advise that 

further testing in different environments is required to assess the robustness of the system. 

Meanwhile Culmone et. al., propose an ontology-based framework to discover human daily 

activity [151]. The system works by identifying a set of specific actions and locations through 

the use of distributed smart sensors. These sensors consist of presence sensors in the bed, 

kitchen and doors. They define the flow of actions that usually represents the considered 

activity, also taking into account, when necessary the timing of user action. Currently, the 

proposed system employs a rule based logic approach, while the authors state that future 

work will include machine learning (Bayesian Networks) and Markov Models to model 

routine.  

Liu et.al., on the other hand utilise wearable wrist sensors, which communicate wirelessly to 

a hub [152]. This process enables the system to detect hand movements, while attributing the 

results to specific tasks. These tasks are limited to a small number of actions, which include 

cleaning tables, cleaning windows, sweeping and mopping the floor. The overall performance 

in precision, recall, and F1-socre is 89.0%, 88.6%, and 88.1% respectively. Research 

undertaken by Große-Puppendahl et.al., is able to classify the posture of a person using 

proximity sensors embedded into the living environment [153]. The approach embeds eight 

capacitive proximity sensors into a sofa to produce an evaluation using eighteen individuals 

of diverse body height and weight. The authors report 97% accuracy in eight different 

postures using a Radial basis function (RBF) network based classifier.  

Indoor Localisation: While out-door tacking is relatively rudimentary using GPS [154], 

indoor tacking is vastly more complex. In order to address the various challenges of indoor 

tracking, Hailong et.al., [155] and Antonio Del Campo et.al., [156], share a common method 

for location detection called Radio Fingerprinting. Essentially, they work by analysing signal 

properties, such as signal strength, and comparing them to a database of properties. The 

database is constructed from readings that are obtained from various locations, commonly 

referred to as a location map. The closest set of compared properties from both the sensor and 

database returns the estimated position of the occupant. A similar approach was proposed by 

Fergus et. al., here similar approaches have been proposed in [157]. Additional research 

undertaken by Fergus et. al., introduced how both physical activity and sedentary data can be 
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collected from different environments. The researchers used TelsoB sensors to locate and 

measure the behaviours of a resident within their home environment. Sensor networks where 

installed throughout the home to track the physical location of the person by using signal 

strength indicator (RSSI) Values. Several static TelosB sensors were fitted, at fixed points, in 

the home environment while a mobile node was fitted to the resident being monitored. 

Additionally the wearable node was used to measure standing, sitting, and lying positions. 

The experiment was undertaken over a four day period. Overall the results showed an 

accurate account of activity for both location and body position [158].  

Research undertaken by Bouchard et. al., utilises a smart watch to track the patient’s position 

within the home [159]. The smart watch transmits its position using Bluetooth, which is 

detected by low energy Bluetooth beacons deployed throughout the environment. In order for 

the localisation to occur, a localisation algorithm is used to receive and analyse a set of 

inputs. These variables are comprised of a beacon ID, a timestamp and the received signal 

strength indication (RSSI). To assess the performance of the system three different 

environments are used, each containing different amounts of sensors depending on its size. 

Samples are collected at two minute, one minute and thirty second intervals. The authors note 

that the sampling windows used for analysis, affects the overall performance of the system. 

The system obtained over 70% accuracy for a thirty second window and over 80% when 

sampling was increased to ~one minute.  

Research undertaken by Hsu et.al., utilises RFID to determine a person’s position within the 

home [160]. The approach utilises RFID, in conjunction with accelerometers, to improve the 

accuracy of the system. By using the acceleration values the system identifies the walking 

routes while determining the number of steps taken by the occupant. The system uses the 

RSSI value from RFID sensors and the walking paths to approximate the position of the 

occupant using a genetic algorithm.  

Sleep Monitoring: Non-intrusive sleep monitoring introduces various challenges but is one 

of the most important indicators of a person’s health. Kovácsházy et.al., deploy passive infra-

red motion sensors to estimate the sleep quality of the occupant [161]. The authors point out 

that sampling rates between 10 and 20 hertz are required and advise that higher sampling 

rates have a detrimental effect on battery life (6 months of battery life was estimated). The 

node is positioned above the bed to monitor bed occupancy, and the overall movement of the 
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person. The results highlight that small movements are detectable, which are used to identify 

disturbances in peaceful sleep periods.  

Fall Detection: Fall detection technologies have become the focal point for many AAL 

solutions and often utilise a variety of different sensors. Most solutions focus on three sensor 

types; ambient sensors, wearable sensors and computer vision, which can be used singularly 

or in conjunction [162]. Research by Yazar et.al., involves the deployment of vibration 

sensors, which operate by converting vibrations into electrical signals [163]. The system is 

supplemented by PIR sensors, as the paper identifies that vibration sensors alone are not 

robust enough to distinguish falls. The authors extract feature vectors from the acquired 

waveforms, which are later classified by an SVM. A second algorithm (sensor fusion 

algorithm) is deployed to analyse the acquired PIR data. Two PIR sensors are used; one to 

monitor the upper part of the body and one to monitor the lower part of the body.  

Čavka et.al., used a wireless fall detection sensor, which contains an accelerometer that 

attaches to the occupant’s belt [164]. Signals are sent and processed using a communication 

gateway, home router, and server, which is used to notify a carer in the event of a fall. To 

evaluate the system, ten test subjects were asked to act out three types of fall on the mat 

(forward fall, fall on the back, and fall on the side) and three types of (ADLS) which include: 

sitting in a chair, sitting on a toilet and lying down in the bed. These activities are conducted 

twice. The experiment obtained results of 97% for sensitivity and 95% for specificity, 

demonstrating the system’s ability to detect falls accurately. 

All of the above methods present multiple limitations and restrict the ability for widespread 

adoption. Specifically three areas have been identified, which include sensor prevalence, 

personalisation and cost of ownership. The majority of research requires the deployment of 

sensors within the living environment. As such, their installation and ongoing maintenance 

introduces additional costs and complexity. It is clear from the literature review that existing 

approaches do not take these concerns into account during the devolvement phase of their 

AAL solution. Typically, any AAL solution should not rely on user interaction, nor should it 

be overly complex. Some of the solutions presented in the literature review require the user to 

wear one or more sensors in order for monitoring to occur. This approach relies heavily on 

the user’s ability to correctly position the sensors on a daily basis. Additionally, related 

research is dependent largely on the user’s ability to remember to use the sensors, while 

ensuring that the device is functional. The use of these technologies would be impractical for 
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monitoring the vast majority of age related conditions making them largely unsuitable for 

AAL applications. Many people, in later life, struggle with memory problems that are often 

exacerbated by cognitive impairment. Relying on the user’s ability to interact with the system 

can result ultimately in ineffective monitoring therefor putting the user at undue risk.    

Many of the solutions, highlighted in table 10, require the use of sensors; either on the person 

or distributed throughout the living environment. The use of sensors in AAL solutions 

requires special consideration. Their intrusiveness, complexity, feasibility and reliability can 

limit their adoption. The associated financial cost of both implementation and ongoing 

maintenance make them impractical for large scale deployment. Many of the solutions listed 

above use different sensors with the aim of detecting the location of the person and their 

ADLs.  

The majority of reviewed solutions fail to detect significant ADLs and only track the 

occupant around the home. This limits the assessment of cognitive function and hinders the 

system’s ability to personalise over time. Personalisation is absent in current solutions 

leading to a generic approach that does not take the persons routine or medical condition into 

consideration. The absence of both personalisation and clinical knowledge limits the 

effectiveness of EIP while reducing the likelihood of preventing relapse.                      

3.4 AAL DEPOLYMENT AND PRODUCTION 

Many AAL solutions have been adopted, developed and are now used in production. Here we 

examine solutions that are commercially available. Typically, technologies and offerings can 

be divided into the following categories: 

 Community Alarm Services: This is a common offering within the telehealth field. This 

type of service has been utilised for many years and is often provided by social services, 

NHS Trusts and private companies. Typically, the system employs various sensors and 

alarms that communicate wirelessly to a community alarm. The patient can activate the 

alarm manually and raise an alert, usually from a pendant or watch that is fitted with an 

emergency button. The receiver, which is typically connected, to a phone line, transmits 

the alert to a central monitoring centre. When an event is triggered care staff can take 

appropriate action, which is outlined in a previously agreed protocol.  

There are a variety of companies, which offer this type of solution. LifeLine249 provides 

a wearable pendant alarm, which operates using the 869MHz European Social Alarm 

                                                           
9 https://www.lifeline24.co.uk/pendant-alarms/ 
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frequency. A receiver is fitted to the patient’s phone line that is used to trigger an alert, 

which, is answered by a dedicated care team10. Likewise, Age UK offers a similar 

solution, whereby if an incident takes place an operator calls the occupant and where 

appropriate contacts a nominated key holder or emergency service11. 

 Distributed Sensors: These have become increasingly prominent in telehealth solutions 

and are often used in combination depending on the monitoring application. The types of 

sensors used differ greatly, each with their own benefits and limitations. Commonly 

deployed sensors include heat sensors, smoke detectors, flood detectors, unlit gas 

detectors, carbon monoxide detectors and fall/pressure detectors. Additional sensors exist, 

which include door sensors, passive sensors that track movement around the home and 

cameras. Tunstall is a reseller who provides a wide variety of sensors to detect specific 

events12. Sensors are placed in the living environment that can automatically raise an alert 

if a problem is detected, such as smoke, gas, flood or fire. Sensors are predominantly 

wireless and operate using a dedicated radio frequency. Sensors can be configured to raise 

an alert, which can be directed to a mobile phone or to a monitoring centre where trained 

operators follow predefined protocols. 

3.4.1 LIMITATIONS AND REQUIREMENTS FOR AAL SOLUTIONS 

Based on a review of the literature, and research carried out in this study, it has been 

determined that there are many limitations and challenges with existing solutions. Multiple 

barriers exist, which impede and restrict the wide implementation and adoption of many 

solutions. In many instances, AAL systems often fail to meet the complexity of 

environments, patients and objectives required to facilitate independent living [166]. These 

limitations and challenges are summarised as follows [166]: 

 Complexity and feasibility of technologies: Systems are often dependant on 

complicated distributed hardware and software, which are required to seamlessly and 

reliably interact with each other. Many solutions rely on their ability to analyse complex 

data, which is obtained from a variety of different sensors. These distributed sensing 

models make use of a variety of communication technologies, which introduces 

unnecessary complexity. 

 Complicated installation, configuration and ongoing maintenance: Multiple sensors 

and associated equipment can be challenging to install. Variations between buildings, 

                                                           
10 https://www.lifeline24.co.uk/pendant-alarms/ 
11 http://www.ageuk.org.uk/products/independent-living/ 
12 http://www.tunstall.co.uk/solutions/products 
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infrastructure and environmental layout exist, which require careful consideration during 

the planning and installation phase. Additionally, battery replacement and ongoing 

calibration is often required to ensure the continuation and reliability of services. 

 The requirement for user training and education: As various solutions require some 

form of interaction from the patient and often a response from a carer there is often an 

element of training required to ensure that the system is utilised correctly. For certain 

patient groups, such as those with dementia, the requirement for interaction impedes the 

overall safety and effectiveness of the solution. Any solution must facilitate the 

monitoring and escalation without the need for patient involvement. 

 Lack of communication standards and interconnectivity between different solutions: 

Technology standards provide the basis to facilitate interoperability, integration, and 

scalability. However, many of the approaches previously mentioned use communication 

standards, which restrict their interoperability. This often leads to additional financial 

costs, while limiting their applicability and integration with other solutions and services. 

This type of problem is a common concern as there is no governance or agreed 

standardisation for AAL solutions. 

 High costs to both the care provider and the patient: Typically, existing solutions 

require the purchase of expensive equipment and usually some form of ongoing 

subscription or licencing cost [167]. Expense restricts the possibility of widespread 

implementation, while also raising concerns regarding cost effectiveness. 

 Low acceptance due to usability and intrusiveness: The acceptance of many solutions 

relies heavily on both the benefits of the system but also its level of intrusiveness [168]. 

They are often considered to be too intrusive and raise privacy and ethical concerns, 

especially for vulnerable patient groups. In addition, many AAL systems are plagued with 

usability issues [169]. The requirement for patients to interact with the technology or 

wear some type of sensor is a significant failing of existing AAL solutions. Often patients 

suffer from confusion and memory problems, which reduce their ability to use the device 

and impede the effectiveness of the solutions.  

 Inadequate understanding of conditions and patient needs: The previously discussed 

solutions do not account for the specific characteristics and behaviours of the condition. 

This can result in the misclassification of important behavioural indicators.  

 Lack of adequate evaluation and validation (effectiveness and efficiency): Evidence 

surrounding the benefits of telehealth on service use, costs, or cost effectiveness remains 
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scarce. As a result, service providers are often reluctant to offer solutions to their patients 

as the cost benefits of many services are unclear. 

 Absence or inability to adequately facilitate early intervention: Many systems fail to 

identify early behavioural concerns, which could be indicative of a problem; while 

mechanisms, which enable escalation to a relative, are carer, are often absent.    

From the related research, six specific areas have been highlighted which can directly impede 

the deployment and acceptance of any current solution. Here we discuss each of them in 

detail, all of which have been considered in our methodology. 

3.4.2 CHALLENGES FOR AAL SYSTEM DEPLOYMENT 

There are six considerations that need to be addressed if AAL systems are to be useful, viable 

and cost-effective:  

 Early Intervention: Any remote monitoring system must facilitate EIP, enabling front 

line community services to intervene much earlier. If changes in a patient’s condition are 

not dealt with early, the prognosis is often more severe and as a result the cost of 

treatment will undoubtedly be higher [170]. An early intervention approach has been 

shown to reduce the severity of symptoms, improve relapse rates and significantly 

decrease the use of in-patient care. Additionally, evidence suggests that a comprehensive 

implementation of EIP in England could save up to £40 million a year in psychosis 

services alone [171]. Being able to detect deteriorating conditions in dementia patients 

earlier enables physicians to better diagnose and identify stage progression for the 

disease. This helps individuals, and their families, when adapting to illness progression. 

 Cost: There are numerous costs, which are related to the development, deployment and 

management of telehealth solutions. These costs largely consist of research and 

development; equipment, maintenance, communication and staffing. Any solution must 

be cost effective while ensuring long term sustainability. NICE recommendations for 

using health technologies in the NHS should range between £20 000 to £30 000 per 

QALY [172]. Previous solutions have been criticised for failing to adequately evaluate 

cost benefits, health outcomes and patient satisfaction [173]. 

 Personalisation: A person’s habits and routines are clear indicators of their wellbeing. 

Yet, one of the most significant limitations with existing solutions is the absence of 

personalisation. The inability to learn the unique characteristics of each individual and 

each condition degrades the effectiveness of any solution. The ability to model routines, 
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and understand their significance, is imperative for any patient monitoring system. These 

limitations are the main contributors for the inability to provide effective interventions 

and limited gains in QALYs. Although customisation is an important requirement for any 

solution, it is often problematic to achieve, as patients are known to be unable to or are 

reluctant to assist in the development of customisation [174]. Additionally, many patient 

groups, such as dementia patients, are considered vulnerable, which introduces many 

challenges in terms of ethical approval and conducting patient trials where the condition 

is prevalent. 

 Condition Specific: In order to derive a complete understanding of a patient’s wellbeing, 

the solution must account for observations that are specific to the condition. Failure to 

identify and correctly classify key behavioural indicators can reduce the overall 

effectiveness of the system, while reducing the likelihood of EIP and gains in QALYs. 

Any solution should be trained using patient groups, which suffer from the specific 

condition ensuring that individual models are tailored to the ailment. To the best of our 

knowledge, current systems do not consider personalised, adaptive, and anticipatory 

requirements [174]. 

 Alerting and notification: Any AAL solution that does not facilitate the automatic 

escalation of abnormal behaviour impedes its overall effectiveness. Behavioural 

indicators should be classified and dealt with accordingly through a previously agreed 

protocol. Any alerts or notifications should be interpretable by the recipient, while 

identifying their importance and type of notification. Safeguards are required to ensure 

timely escalation if an alert is not dealt with in a predefined period of time. In addition, 

false alerts should be used to retrain the system to limit future reoccurrence. In other 

words the system should get more efficient over the duration of use. 

 Unobtrusiveness: Most technologies are considered too intrusive [175]; the use of 

sensors and cameras within living environments are an example of this and raise both 

privacy and protection concerns. This often leads to a reluctance to use technology. 

Although privacy is important to the individual, it is also recognised in legislation and 

must be considered during the development of any solution. Concerns relating to privacy 

are one of the biggest limitations in current AAL solutions and directly impede their 

widespread adoption. Additionally, there should be minimal change and disruption to 

both the patient and the living environment. As many AAL solutions require the use of 

wearable or distributed sensors patients often decline their implementation. 
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3.5 BEHAVIOURAL ANALYSIS AND CONSIDERATIONS 

A comprehensive understanding, of both the condition and their associated behavioural 

characteristics, is essential for remote patient monitoring [176]. This is imperative in 

determining the diagnosis and enabling an accurate evaluation of any changes. Table 11 

highlights the main ADLs and behaviours, which are required for assessing the overall 

wellbeing of the patient. More specifically, it demonstrates the types of behaviours that can 

be detected through a patient’s interactions with their electrical devices. 

Table 11: Important ADLs and Considerations 

Behaviour Description 

Eating patterns For the purposes of detecting abnormal or altering changes in 

eating habits. These types of behavioural changes provide key 

indicators regarding the general health of the patient, while 

providing insights into condition progression. 

Sleep patterns Changes in sleep patterns provide insights into a patient’s mental 

and physical wellbeing. Sleep disturbances are often key 

indicators for various mental health problems. 

Behavioural changes Provide important indicators for the detection of new conditions, 

while providing information about the progression of existing 

medical problems. 

Changes in activity Highlight possible periods of inactivity. These types of changes 

would require intervention to prevent additional complications 

and worsening of a patient’s condition. 

Routine alteration Is vital for detecting changes in a patient’s behaviour The 

identification of a routine change especially in more serious 

conditions, such as dementia, can indicate the need for immediate 

intervention. 

Side-effects of 

medication 

Drugs that are prescribed to certain patient groups, such as 

dementia sufferers, can have adverse side effects which increase a 

person’s confusion. Patients can also be prescribed doses that are 

too high, or drugs that are no longer appropriate to their needs. 
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Loss of mobility People with dementia gradually lose their ability to perform 

everyday tasks. They usually perform tasks at a much slower rate 

and are more likely to fall due to a reduction in mobility. 

Being able to detect subtle changes early and predict future cognitive and non-cognitive 

changes facilitates earlier intervention. Often, dementia sufferers in hospital are admitted due 

to other poor health caused by other illnesses [177]. 

These illnesses are a result of reduced mobility in the patient. Most commonly, infections 

cause additional complications and can also speed up the progression of dementia [178]. 

Additionally, immobility leads to pressure sores, other serious infections and blood clots and 

an overall decline in their physical condition which can be fatal. With any of these 

complications, early intervention for both preventative care and early treatment is vital to 

ensure a good prognosis and safe independent living. 

There are a common set of features for Alzheimer's disease and other dementias, which 

include agitation, anxiety, depression, apathy, delusions, sleep and appetite disturbance, 

elation, irritability, disinhibition and hallucinations [179]. The severity of each symptom 

differs at various stages of the disease so any system would need to be fully adaptable to 

these changes, as patient’s progress through the different stages of the illness [180]; 

particularly, as later stages of the disease are regarded as significant (if not more significant) 

than earlier stages. Sufferers tend to harbour unique characteristics and events, which occur, 

affecting the lives of the patients and their carers; so it is essential to categorise these 

appropriately. Behavioural problems, such as agitation for example, become more 

pronounced in the later progressive stages of the disease. 

Currently, the Mini Mental State Examination (MMSE) is used by clinicians to diagnose 

dementia and assess its progression and severity [181]. The 6 Item Cognitive Impairment 

Test (6CIT) is also used for similar purposes. This assessment is undertaken more in primary 

care due to copyright issues and time constraints associated with MMSE. After a patient’s 

initial diagnosis ongoing evaluation is required. Typically, a patient is reassessed three 

months after diagnosis and subsequently twice a year. By monitoring a patient’s ADLs 

through smart meter data, there are possibilities for disease progression to be identified much 

earlier. The characteristics being evaluated would need to change regularly, along with the 

algorithms used, in order to maintain system accuracy for each stage of the disease. Figure 25 
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highlights the MMSE in more detail, showing the need for changes in the monitoring 

techniques as the severity of the disease increases. 

Severe depression exhibits many similar behavioural problems as dementia, e.g. memory 

problems and social disengagement. Additionally, depression can cause physical problems, 

such as chronic joint pain, limb pain, back pain, gastrointestinal problems, tiredness, sleep 

disturbances, psychomotor activity changes and appetite changes [182]. These changes can 

be reflected in how the sufferer interacts with people, their environment and their electric 

devices.  

Changes in Energy Characteristics

 

Figure 25: MMSE graph highlighting the various stages of cognitive change 

For example, during periods of severe depression, the sufferer may interact less with their 

electrical devices; they may stay in bed for longer durations (insomnia or hypersomnia) or not 

cook meals (change in appetite) [183]. Changes in sleep behaviours and appetite are all 

reflected through energy usage. Such behaviour could be identified for further investigation 

where appropriate.  

Being able to detect any erratic or sudden behaviour change early enables a better 

intervention process that could lead to an earlier diagnosis in psychosis. Each individual is 

different with their own set of symptoms and warning signs; however one or more indicators 

are likely to be evident. Many of these symptoms can be detected in the electricity usage 

patterns [184]. This includes memory problems, severe distractibility, severe decline of social 

relationships, dropping out of activities, social withdrawal, isolation, reclusiveness, odd or 
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bizarre behaviour, feeling refreshed after much less sleep than normal, deterioration of 

personal hygiene, hyperactivity or inactivity, severe sleep disturbances and significantly 

decreased activity. 

3.6 SUMMARY 

This chapter, presents an overview of the current assistive technologies at the time of this 

research and their various approaches. In particular, the chapter focused on smart home 

solutions, which are deployed within the patient’s home to facilitate independent living. It 

reviewed and discussed the main areas of AAL research, including activity recognition, 

indoor localisation, sleep monitoring, and fall detection. During the review it was established 

that current AAL research is not sufficiently focused on solving the most critical problems 

identified in this chapter. These issues include interoperability, usability, facilitating EIP, 

reliability, and the quality of the user experience. Most of the research presented deals with 

the isolated aspects of AAL and patient requirements. As a result, there are limitations and 

challenges with existing solutions, which means many of them are impractical. Affordability 

and associated costs with existing technologies mean they cannot be implemented on a large 

scale. This leaves a myriad of solutions inaccessible to NHS trusts, councils and social 

services. Often technical solutions are tailored to a specific application and do not meet the 

ongoing changing requirements of a patient. Current solutions fail to adequately identify 

trends in behaviour, which may indicate health problems and facilitate early intervention. The 

proposed solution presented in this thesis is foundational in character. It is a novel never seen 

before solution for independent living that addresses all of the problems and limitations 

discussed above that builds on the smart meter rollout, cloud computing platforms and 

advanced machine learning algorithms to monitor and model a person’s routine behaviour in 

a persons preferred place of care – the home – that provides a real time personalised adaptive 

health monitoring system.  

CHAPTER 4 - PERSONALISED INTELLIGENT HEALTH 

MONITORING USING SMART METERS 

The need to provide a cost effective, non-intrusive and accurate solution leaves existing 

solutions impractical for widespread deployment. We propose an entirely foundational 

approach called Personalised Intelligent health Monitoring using Smart meters (PIMS) that 

facilitates the real time monitoring of routine behaviours exhibited by patients using energy 

readings obtained from smart meters in domiciliary settings. 
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4.1. SYSTEM ARCHITECTURE 

Upon interfacing with a patient’s smart meter, the system operates in three specific modes; 

device training mode, behavioural training mode and predication mode. The PIMS 

framework is used to learn a person’s behavioural routines around the home. The unique 

energy signatures for each electrical device are identified in order to establish ADL routines. 

Mode 1 (device training): power readings are obtained from the patient’s smart meter and 

are recorded within a data store. These energy readings are used to train the system to 

identify autonomously the specific electrical devices from aggregated load readings. The 

training process achieves this using machine learning classifiers. 

Mode 2 (behavioural training): data features are extracted for the data analytics involved in 

detecting abnormal behavioural patterns. The features are used to enable the system to 

recognise the daily routines performed by the patient, their particular habits and behavioural 

trends.  

Mode 3 (prediction mode): the detection of both normal and abnormal patient behaviours is 

conducted in real time. The PIMS framework uses web services to facilitate machine to 

machine communication using a collection of open protocols and standards. During this 

process, the monitoring application interfaces with a web service to receive real time 

monitoring alerts about the patient’s wellbeing.  

Figure 26 provides a high level description of the end-to-end process; starting with the smart 

meter and ending with the monitoring applications. The processing components in the PIMS 

framework function exclusively within a cloud infrastructure ensuring scalability and 

integration with existing services. In order to obtain real time energy readings from the smart 

meter, the software is deployed onto a CAD, which exploits a local communications protocol 

to connect to the smart meter infrastructure. 
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Figure 26: PIMS high level system process 

4.2. PIMS ARCHITECTURE AND FRAMEWORK 

Figure 27 highlights the system components along with their interactions. The framework is 

divided into three distinct sections, which reflects the specific modes of operation (device and 

behavioural training and prediction). 

The framework is comprised of three core components, which include the consumer’s home, 

the backend cloud computing infrastructure and the public gateway used by monitoring 

applications and other third-party systems, such as those provided by the NHS. PIMS offers 

an alternative approach to patient monitoring which does not require the installation or use of 

distributed sensors. Here the use of a single on premise CAD provides a comprehensive 

monitoring solution (you simply turn it on and it pairs with the smart meter using a personal 

area communications protocol). This is one of the novelties of our approach. 
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Figure 27: PIMS end-to-end system framework
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4.2.1 MODE 1: INTERFACING WITH THE SMART METER DEVICE TRAINING 

Figure 28 shows of the PIMS device training mode procedure.  
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Figure 28: PIMS Training Mode UML 

The process starts with the smart meter, which resides in the patient’s home. Table 12 

highlights example readings obtained from a smart meter at 10 second intervals (the higher 

data sample rate is achieved using a CAD system). The date time column describes the date 

and time of the reading while the reading column displays the amount of electrical load in 

watts (W). 

Table 12: Smart meter data sample 10-second intervals 

Date Time Reading 

01/03/2016 21:25 1217 

01/03/2016 21:25 1224 

01/03/2016 21:25 1220 

01/03/2016 21:25 1213 

01/03/2016 21:26 1147 

 

The CAD securely exchanges data with a smart meter using a personal wireless 

communication protocol and joins the SMHAN through a predefined paring procedure.  
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As shown in figure 29, the CAD connects to the smart meter using a remote pairing 

procedure. Once connected, PIMS accesses the aggregated load readings in real time. Date 

Time, Energy Usage (Watts) and the Node ID are collected and transmitted wirelessly to the 

patient’s router using a wireless standards, such as 802.11 or by utilising a wide area 

networking technology, such as 3G. 
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Figure 29: CAD data collection process 

 

 

1 



Page | 84  
 

Once the pairing process is complete, the CAD deploys a push notification service to transmit 

all acquired data to a remote web service. If a connection cannot be negotiated, the data is 

cached locally to the devices internal memory and remote storage is re-attempted using a 

scheduled task. This ensures that important data is retained in the event of a network outage. 

The remote web service, as highlighted in figure 30, is used to collect and process three 

specific variables from the CAD. They include the date time, aggregated energy usage in 

Watts and the node ID. 
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Figure 30: PIMS remote web service 

The port listener identifies and responds to incoming requests that use protocols such as 

HTTPS and their associated port numbers. If the system is operating in training mode, the 

data is processed and sent to the data store. The web service checks the node ID and an 

associated flag to determine if the data collection process should be undertaken for training, 

or if the data should be processed by the data stream service. This verification process is 

2 
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highlighted in figure 31. All new nodes are automatically flagged for training but can be 

manually reset should the need occur. 
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Figure 31: PIMS Training verification process 
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Here the data is collected over a predefined period, for example a week or month and is 

highlighted in figure 32. The period required alters depending on the application, condition 

and the category of electrical devices. Alternatively, if the system is running in prediction 

mode the data is transmitted to the data stream service, which is analysed by device 

classification models. 

 

 Data Store 

Data Store

DateTime Reading Node

01/03/2016 21:25 1217 Node 5

01/03/2016 21:25 1224 Node 5

01/03/2016 21:25 1220 Node 5

01/03/2016 21:25 1213 Node 5

01/03/2016 21:26 1147 Node 5  

Figure 32: PIMS data store 

Any data that is obtained from the smart meter requires pre-processing before feature 

extraction can occur. These processes are undertaken by the information clearing component, 

which is highlighted in figure 33. The system starts the data preparation process by retrieving 

the energy usage data from the data store. 

In order to achieve a classification result the selected training data is cleaned, as highlighted 

in figure 33. This process starts by removing any missing or null values, as most algorithms 

are unable to account for missing data. Here the system deploys statistical replacement where 

any missing values are identified. Alternate values, such as median or mode replace any 

missing values [185]. The data cleaning process also provides an opportunity to exclude 

attributes, which are not required for classification. As highlighted the data is normalised to 

maintain the general distribution and ratios, ensuring that it confirms to a common scale. 

Example methods include: Zscore, MinMax and LogNormal [186]. The processed data is 

then written to a database. 

3 
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Figure 33: PIMS information clearing (data management) 
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Once the data cleaning stage is complete, the processed data is retrieved from the staging 

database for the feature extraction process. During the training mode, features of the data are 

extracted, which in later stages form feature vectors. Features are given aspects of the data, 

which provide an overall representation of the unique electrical signatures for each appliance 

type. Training data can be enhanced by the extraction of features from the raw dataset as they 

increase the efficiency of the training process. During the extraction process, statistical 

calculations are performed against each of the designated observations.  

As highlighted in figure 34, each reading sample is assigned an ID and labelled ‘ready’ for 

classification. During this stage the features for each device are extracted and placed into a 

data store. This process uses unique features that support device identification, which include 

energy, power and consumption levels. The system then extracts more complex features from 

the data such as min, max, mean, mode and standard deviation.  

During training mode, the system deploys dimensionality reduction to improve the 

classification process while reducing the likelihood of overfitting. Figure 35 schematically 

illustrates this process. To ascertain the optimum features and the optimum variance for the 

classification, the method used depends on the distribution of the data, for example Linear 

Discriminant Analysis (FLDA) or Spearman Correlation. Dimensionality reduction is an 

essential requirement for the identification of specific electrical devices from within 

aggregated load readings. Figure 36 highlights the classification process. The appliance 

identification models are created using the processed training data. Supervised learning 

algorithms make predictions based on a set of training examples. Each example (observation) 

used for training is labelled to represent each appliance category enabling the algorithm to 

look for particular patterns in data. For appliance identification, a multiclass classifier is 

deployed. For behavioural classification, there are only two choices either normal or 

abnormal for the label. As a result, our classification is a two-class or binomial classification 

problem. After the algorithm has identified a candidate pattern, it compares that pattern with 

unlabelled test data to make predictions. All classification experiments are run against the test 

data set over thirty iterations. Each of the classifiers’ predications are noted for the validation 

process.
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Figure 34: PIMS feature selection 
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Figure 35: PIMS dimensionality reduction 
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Figure 36: PIMS classification process 
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Figure 37 highlights the validation step, which is used to access the performance of the 

model.  

The process is iterated to find the optimum model for each electrical device. As highlighted 

in step 8 in figure 37, the system determines whether the overall accuracy of the model is 

acceptable for the system. This is achieved by scoring and evaluating the model using 

mathematical techniques such as calculating the sensitivity, specificity, accuracy and error 

rate. If the minimum threshold is not met, the system selects new features to try and improve 

the classification result. If the score exceeds the minimum threshold, the model is stored in 

the model store for use in production by the real time data stream service. 
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Figure 37: PIMS validation process 

Figure 38 shows the validation process in its entirety. Once the classification meets or 

exceeds the validation threshold it is assigned a unique model ID, API access key and paired 

with the node ID for future prediction. Once these stages are complete the model is sent to the 

model store which can be accessed by the web service.  

8 
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Figure 38: PIMS Model validation and generation process 
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Once the device classification models are generated, the next stage is to ensure that they are 

accessible to the data stream service. Figure 39 highlights the operations undertaken in the 

web service, which facilitates the exposure of the models’ functionality. Specifically, an API 

communicates with the device classification model and configures the input and output 

schema for the service. The API exposes both a synchronous service for single requests and 

an asynchronous service for handling multiple requests. 

As highlighted in figure 39 the service provides the following three parameters:  

 The web service address, which enables access to the real time data for assessment. This 

is achieved by invoking the web service and sending the output data to operation 10 in 

figure 41. 

 An API access key is generated and used by the CAD to access the models. The access 

key is a unique security identifier and must be presented on every service request to 

authenticate the caller. Using an access key not only improves the security of the system 

but also ensures that the CAD is accessing the correct models. 

 Input / output schema, here the web address provides information on the input and output 

parameters, which include all of the variables and their associated data types. 

 

Web Service 

Chosen Model API

Model Store

API 
Key

Monitoring 
Service

Web Service URL

Access Key

Input / Output

 

Figure 39: PIMS web service 

Figure 41 highlights the data stream service, which is used to facilitate the integration of live 

data and the trained device identification models. This is achieved by exploiting the web 

service APIs previously discussed. Data describing energy usage is received from the 

patient’s CAD. Data is only sent to the data stream service if the web service does not detect 

the presence of a training flag. Here the data is sent to the monitoring service URL using web 

protocols. Web based protocols, can be utilised for querying, updating and exposing data 

using a standardised syntax. Once a connection is made using web protocols, the service 

9 
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requests the headers. These headers contain the information regarding the content and 

datatypes expected by the web service. The body provides the exact input format, data 

columns and values which is passed to the monitoring service for prediction to occur. In order 

to correctly structure the data for the input parameters the web service contains a feed parser. 

Figure 40 highlights the process starting with the obtained data and ending with the parsed 

feeds.  

Retive Data From 
Web Serive

Is Data 
For Training?

Send to Data Store 
for Training

Yes

Get Node ID

No

Get Energy 
Value From 

Feed

Is Value = > than 
Specified Value?

No
Retry on 
Schedule

Store Value

Yes

Is Item Count = 
Specified Value?

Yes

No

Parse Values

Return API Access 
Key

Send for 
Classification

 

Figure 40: PIMS Web Service Feed Parser UML 

As the service is required to be scalable to cater for multiple patients, the monitoring service 

is housed behind a load balancer. The header and body are sent and the service checks for a 

successful response code. If an error code is returned, it is transmitted to the web service and 

logged for investigation. If a successful code is returned, the data is transmitted for use in the 

device classification, as highlighted in operation 11 in figure 42. 
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Figure 41: PIMS data stream service 

In the next stage of the process, the system identifies specific electrical devices from the 

aggregated load readings. Figure 42 highlights the device classification process in detail. 

Here the aggregated load readings are obtained from the web service and passed to the 

classification models. The system identifies the individual electrical device patterns from the 

aggregated readings by predicting the device class. The system makes a prediction by using 

the trained device classification models.  

The model is individually scored, providing the numerical probability (likelihood) of the 

class predication. The models prediction is examined by assessing the scored probability to 

ensure that it meets a minimum threshold. This ensures that the accuracy of the system and 

any information that is passed to the monitoring apps is accurate. Setting a probability 

threshold introduces a safeguard, which is vital for clinical decision support. If the probability 

score is below the expected threshold, the predication is rejected by the system.  

Individual device detections are stored as feature vectors for use in the behavioural 

classification process. Here the predicted class is assigned a unique device ID for each 

appliance class. Each of the various device IDs are stored in the parameter ID database. Once 

the ID is assigned to the class prediction the device features are stored in the feature vectors 

store. These are later used to perform the correlation between expected user behaviour types 

and device behaviour patterns. 

10 
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Figure 42: PIMS device classification 
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Figure 43 highlights the process for generating the vectors for the behavioural classification 

stage. Here each of the identified devices are labelled with a unique ID which corresponds to 

a specific device class for example: kettle (1), toaster (2) and microwave (3). Each of the 

individual predictions are assigned a date time value and placed in a data store for the 

behavioural models.  

Classification
Fails 

Threshold

Get Device 
Classificaton

Classification 
Meets or Exceeds 

Threshold 

Retrieve Device ID 
From Data Store

Label Device With ID 
From Data Store

Generate Feature 
Vectors 

Assign Date / Time 
Value

Place in Store

 

Figure 43: PIMS device feature vector generation 
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4.2.2 MODE 2: BEHAVIOURAL ANALYSIS  

During mode two (behavioural training), the patient’s behaviour is assessed, which enables 

PIMS to make a decision about the patient’s welfare. During this process, a decision is made 

based on aspects of the patient’s routine. A person’s routines are blueprints of behaviour, 

which influences every aspect of their life. Usually routines are not fixed and can fluctuate 

and are regarded as normal. Figure 44 highlights the parameters that are presented to the 

behavioural models for behavioural analysis. Firstly, P represents the specific devices being 

used; here a unique value is assigned to the identified device. Secondly, t represents the time 

of utilisation, which is required for identifying unusual behaviour or a deviation from a 

patient’s normal routine. wd records the day of the week, enabling the algorithm to construct 

detailed knowledge concerning the unique routines of the patient. c denotes the combination 

of devices over specified time periods e.g. hourly, morning, evening etc. Identifying normal 

device combinations provides insight to both the mental and cognitive functions of the 

patient. 

p 
1

p 
2

p 
3

P
4

P
5

P
6

t
1

t 
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t 
3

wd 
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wd
2

wd 
3
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1
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2

c 
3

c 
4

c 
5

c
6

n Devices n Time n Day
n Combination 

(Previous /Next)

Adjustable Depending on Condition / Application

Expected Behaviours
(Time Frame / Historical Behaviour / Deviation)

 

Figure 44: PIMS behavioural process 

Table 13 highlights the different features that are assessed by the behavioural models. The 

types of devices and behavioural characteristics, which are considered key for patient 

assessment, are also shown. 
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Table 13: Behavioural features 

Feature Description 

Device Usage (Activity) 

Type of Device {Kettle, Microwave, Oven 

/Hob, Toaster, Washing Machine, Dryer, 

Dishwasher, Shower, Vacuum, Television, 

Computer, Radio / DAB, DVD / Blu-ray, 

HI-FI, Phone Charger, Lightings} 

Time 
Time of Activity {Time of Device 

Integrations} 

Day 
Day of the Week {M, T, W, TH, F, SA, 

SU} 

Device Combinations Devices used in combinations 

The system categorises routines by determining the specific series of actions undertaken by 

the patient over a specified time period. This process is displayed in figure 45. Routines are 

stored in behavioural logs, which are converted into sequences of events. The system deploys 

the use of T-pattern analysis in order to obtain the temporal structure of the behaviour but 

also to generate a hypothesis regarding observations. The T-pattern represents the ‘well-

known characteristics’ of the behavioural patterns, which are extracted from the behavioural 

logs [187]. 

Observation Period

n Devices n Time n Day n Combination n Devices n Time n Day n Combination

0,1,3 0,1 3 0,1,3 0,1 0,3 0 0,1  

Figure 45: Discovering routines 

This approach caters for patient personalisation. The behavioural classifiers take into account 

the unique characteristics of the patient and their particular routines. Different people develop 

their own distinctive routines and habits to deal with their individual situations. The 

timeframe and system parameters are adjustable based on the condition or application. More 

severe or later stages of a condition might require more finite monitoring. For example, the 
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monitoring of depression requires the ability to monitor specific times; the evenings for 

detecting sleep disturbances. 

The observation window can be adjusted based on the patient and condition while identifying 

abnormal behaviours. Additionally, it enables the PIMS framework to construct a 

personalised representation of the patient, as device usage can be assigned to specific 

observation windows. This approach improves the probability of identifying routine and 

behavioural alteration. Figure 46 highlights the 7 distinct observation windows for each 24 

hour period. Here the individual values for each period and device class are displayed, which 

are used to generate the features for the behavioural classification models. 

N Observation Period

Early 

Morning 1

Early 

Afternoon

3

Late 

Afternoon 4

Early 

Evening 5

Late 

Evening 

6

Night Period 

7

4,1,3 5,2

Week Day

N Day

Mid 

Morning

2

5,1,3 3,1
2,1,3 4,1 0

Period Key:
1, Early Morning      {06:00 - 08:59}

2, Mid Morning        {09:00 - 11:59}

3, Early Afternoon   {12:00 - 14:59}

4, Late Afternoon     {15:00 - 17:59}

5, Early Evening       {18:00 - 20:59}

6, Late Evening        {21:00 - 23:59}

7, Night Period         {00:00 - 05:59}

Device Key:
1, Kettle

2, Toaster

3, Microwave

4, Washing Machine

5, Cooker

 

Figure 46: Behavioural observation construction 

Figure 47 highlights the PIMS behavioural training process. Here the API access key from 

the device classification mode is sent to the web service. The service sets the period key as 

shown in figure 46 based on the selected monitoring window. The system checks for the 

presence of a training flag in a similar manner to that of the device training mode. If a 

training flag is absent the vectors from the device classification model are retrieved from the 

data store and sent to behavioural models for prediction. The date time stamps are verified to 

ensure the detected appliances consists with the selected monitoring window. 

If a training flag is present the vectors are retrieved from the data store and labelled as normal 

or abnormal by either a clinician or carer. Once the labelling of the vectors is complete the 

behavioural classifiers are trained and validated using techniques such as K- Fold cross 

validation. The CAD node ID is assigned to the model and placed in the model store. Finally 

the training flag is removed to ensure new data is automatically sent for prediction.      
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Figure 47: PIMS behavioural training 

4.3 PREDICATION MODE ALERT PROCESS 

In order to achieve a successful prediction, both the device classification and behavioural 

models are required to work in conjunction. The generated vectors from the device 

classification models are presented to the behavioural classification models to ascertain if the 

observed behaviour is normal or abnormal. Figure 48, illustrates this process. 
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Figure 48: PIMS device and behavioural model interaction 
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During prediction mode, the PIMS framework formulates a decision regarding the patient’s 

wellbeing. This is achieved by analysing both the device usage and behavioural features from 

the first two modes of operation. In step 12, as highlighted in figure 49, a binary classifier 

establishes the patient’s behaviour. By exploiting the trained classifiers and the generated 

model, the system automatically detects both normal and abnormal patient behaviour in real 

time using web services. Where appropriate, the system alerts the patient’s support network 

to a potential problem, if one is detected. 

In the first instance, the system can be configured to alert the patient to check in, by 

performing a specific device interaction, as highlighted in step 13. This feature enables the 

system to reduce any possible false alarms and verifies that the patient requires no further 

assistance. However, this function largely depends on the type of condition being monitored 

and might be deactivated where it is believed to be unsafe or where a patient is deemed 

unable to interact. The system identifies if interaction has taken place; if not, an alert is 

communicated to a family member or a third party health care practitioner as highlighted in 

figure 44. 

Is Behaviour Normal? 

Normal

Altered Behaviour
Patient Check-in 

Required 

Intervention 
Required

Check-in 
Received?  

Yes

No

Update 
Status

Update 
Status

Quality 
Metric / 

Feedback

12
13

14

 

Figure 49: PIMS predication mode and alert process 

The system also supports a sleep function, which deactivates the process and can be enabled 

from the monitoring application. This can be used if the patient is away from their premises 

for long durations, such as being on holiday, and reduces the likelihood of false alerts. 

In order for PIMS to alert the registered user, a monitoring app communicates with the PIMS 

web service by utilising technology such as a Representational State Transfer (REST) API. 
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REST web services require low resources, are highly scalable and are commonly used to 

create APIs for web applications. A REST API facilitates the integration of multiple 

programming languages and platforms. Essentially, each app uses the same API to obtain, 

update and manipulate data, which ensures compatibility with existing services. By making 

use of a compatible API, the PIMS framework can be integrated with existing third party 

services, such as NHS services. Figure 50 illustrates the integration of the services with the 

PIMS system.  

PIMS Web 
SerivcePIMS Native 

Applications
NHS Digital Services

GP Services / 
Community Health 

Services

Hospitals / Walk in 
Centres

Telehealth 
Clinical Decision 

Support

EMIS Web 
Vision
Evolution

Sigma
EMIS Web 
Vision 

Infermed 

 

Figure 50: PIMS web service for integration with NHS Digital 

Here the PIMS web service can expose model functionality to both native apps (ones which 

are specifically developed for the PIMS framework) and a selection of current digital 

services. Figure 51 highlights how the data supports different monitoring applications from 

within existing services. 
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Figure 51: PIMS data analysis applications 

To ensure that the system is adaptable and self-learning, a quality feedback metric is 

introduced in step 14. Here the system recognises if a previously identified behaviour has 

been incorrectly predicted by checking the update status. If an alert is cancelled the behaviour 

is reassessed and feedback is provided into the behavioural models, which are used to retrain 

the system. Figure 52 highlights the PIMS feedback mechanism. 
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Figure 52: PIMS quality feedback process 
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Each notification is assigned a binary value, which identifies if the generated alert is valid. If 

an intervention is required and no check-in was received, the system assigns a binary value of 

0 to the observed behaviour. However, if a patient check-in is received, or if the carer cancels 

the alert, the observation is assigned a binary value of 1. The system examines each generated 

status to ascertain if the alert was valid. If the query returns a value of 0 the system ignores 

the alert as the status is valid. However, if a value of 1 is returned the behavioural observation 

is retained in the data store, which can be used in future retraining. Figure 53, illustrates this 

procedure. Additionally the PIMS framework retains a number of normal observations so the 

models can be retrained over time as more behavioural data becomes available. 
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Figure 53: PIMS Retraining Procedure 
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4.3 SUMMARY 

In this chapter, we presented the PIMS framework and highlighted the various functions and 

interactions it provides. The chapter discussed the three specific modes in which the system 

operates, in order to offer a personalised patient monitoring system. The chapter described 

the process for integrating with the patient’s smart meter and the various data processing 

stages required for device identification and behavioural analysis. Essentially the PIMS 

framework can be described as a wrap-around system, which collects detailed electricity 

usage patterns to provide a non-intrusive stand-alone assistive device with rudimentary setup 

and configuration. It delivers ubiquitous and autonomous home monitoring for real time 

patient analysis that supports medical staff and social services. It facilitates a direct link 

between people at home and informal caregivers via a tool to monitor the patient. It also 

detects improvements and deteriorations in health conditions as they occur in real time. These 

features alone are not possible with other assistive technologies without the use of multiple 

and complex distributed sensors. This system design has been submitted for a GB, European 

and Worldwide priority patent application protecting the detailed system design and 

methodology (Aug 2016; Application no. 1613225.0). 

Interpreting the vast amounts of data generated by smart meters is a significant challenge. 

The analytical work is therefore performed through a cloud-processing platform, such as 

Microsoft Azure. Additionally the use of a cloud platform facilitates exposure to the 

generated models, which can be integrated into high availability web services. Although the 

system would remain the same for each condition and application, the generated 

classification models can be altered in order to focus on the particular condition. 

Additionally, the chapter highlighted how the PIMS framework can be integrated with 

existing digital services through the use of a web service API. Here model functionality 

facilitates alternative monitoring applications ensuring that the system is both diverse and 

scalable. 
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CHAPTER 5 CASE STUDY 

In this chapter a detailed case study is presented. An ongoing patient trial that is being 

conducted in partnership with Mersey Care NHS Trust is introduced. The case study 

introduces three individual patients. By monitoring the first patient over a six month period 

the acquired data and knowledge is used in both the implementation and evaluation of the 

PIMS framework. Additionally the case study outlines how the system currently monitors 

two additional dementia patients.  

5.1 CASE STUDY INTRODUCTION 

This research study involves testing the PIMS framework for people living with Dementia 

and other cognitive impairments. Dementia is selected, as patient’s often exhibit complex and 

unexplained behavioural patterns. Dementia is one of the most challenging conditions for 

remote patient monitoring, hence its selection for this case study. PIMS detects a patient’s 

interaction with specific electrical devices around the home. This is undertaken to identify 

their routine and habits, which enables the system to make a decision regarding their overall 

wellbeing based on their Activities of Daily Living (ADLs). 

On the advisement of the NHS Research Ethics Committee (REC), participants must have the 

capacity to be able to consent to the study and the patient must live alone. If at any point 

during the study the patient loses the capacity to adhere to these requirements, the trial will be 

stopped and the sensor removed. Any data previously collected will be retained and used in 

accordance with the conditions outlined in the study. 

The overall duration of the study is 6 months. During that time, energy usage readings are 

collected at 10 second intervals and logged to a remote server for analysis. This enables 

researchers to collect an adequate amount of data, while testing the performance of the 

algorithms used in system. For the purposes of this case study, an energy monitor is installed 

by a member of the research team for each patient in the trial. The primary outcome of the 

study is to assess the overall performance of the algorithms used by PIMS. This is achieved 

by generating both the training and test data for the implementation.  

5.2 DEVICE INSTALLATION 

In order to capture the required data an energy monitor is installed in each property. Figure 

54 highlights the energy monitor that is used to collect the device signatures from one of the 

properties in the study. Here the CT clips is fastened around the neutral cable. At each 10 



Page | 110  
 

second interval the aggregated energy values are recorded and sent to a remote SQL data 

base. 

 

Figure 54: NITLM device for the collection of device training data 

As smart meters are not widely available a sensor is fitted to the electricity meter. To 

implement the real time data gathering capabilities of a smart meter when used with a CAD, 

an energy monitor was installed in the person’s home. Figure 55 provides an overview of the 

electricity monitor as shown in (a). The blue current sensor transformer clip (CT) is fastened 

around the live cable shown in (b) to measure the electrical load. Finally, the second white 

sensor, which is the Optical Pulse Sensor, as shown in (c), works by sensing the LED pulse 

output from the utility meter. 

     

(a)    (b)   (c) 

Figure 55:  Energy monitor for behavioural classification   

Energy 

Monitor 

and CT 

Clip 
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Each pulse corresponds to a certain amount of energy passing through the meter. By counting 

these pulses, a KWH value can be calculated. All of the acquired data is sent to a remote SQL 

server. Although the KWH are not available through a CAD, it has been recorded for use in 

future studies.  

5.3 STUDY 1 

The data obtained from the first patient in the trial is used to implement and evaluate the 

PIMS framework. Table 14 highlights the details of the patient. 

Table 14: Patient 1 details 

Patient Number Condition Sampling Rate Start Date End Date 

1 Bipolar 10 Seconds 12/06/2016 15/12/2016 

 

Over a 6 month period energy readings were collected at each 10 second interval to construct 

both the device and behavioural data. The installation is used to initially baseline a person’s 

daily routine and to identify any noteworthy trends in device utilisation. During the 

installation the patient was asked to keep a record of each appliance used along with the date 

and time. Figure 56 highlights the initial device testing, here a kettle is shown. 

 

Figure 56: Patient 1initial energy readings 
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5.4 STUDY 2 

Table 15 highlights the details of the second patient in the study. 

Table 15: Patient 2 details 

Patient Number Condition Sampling Rate Start Date End Date 

2 Dementia 10 Seconds 03/04/2017 03/10/2017 

 

As with the first patient the energy monitor will record energy values for a 6 month period. 

Figure 57 shows the energy readings obtained from the sensor. The y axis shows the energy 

readings in watts while the x axis highlights the time of utilisation. During calibration five 

devices are turned on to obtain a baseline for assessing the generalisation of the device 

classification models. 

 

Figure 57: Patient 2 initial energy readings 

Specifically in this trial the kettle, toaster, microwave, oven and washing machine where 

turned on for a period of 140 seconds each. These readings will later be processed by the 

device classification models during implementation to test their generalisation. 
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5.5 STUDY 3 

 Table 16 highlights the details of the third patient in the study. 

Table 16: Patient 3 details 

Patient Number Condition Sampling Rate Start Date End Date 

3 Dementia 10 Seconds 10/04/2017 10/10/2017 

 

Figure 58 highlights the energy readings taken from patient 3 during installation. However 

only the kettle, toaster and microwave where available for sampling.  

 

Figure 58: Patient 3 initial energy readings 

During installation the energy monitors were configured to the patients Wi-Fi and each 

sensor was assigned a unique ID. The technical specifications of the energy monitor and its 

implementation is discussed in chapter 6. The installation time for each patient typically 

lasted between 30 – 40 minutes. During this period, patients where asked some basic 

questions regarding their routine such as when they typically get up and when they go to bed. 

This information can later be used to highlight deviations in their routine while determining if 

patient behaviour alters over time. By monitoring subtle behavioural changes over long 



Page | 114  
 

observation periods, it may be possible to detect the progression of cognitive decline where 

patients suffer from certain diseases.     

From the installations there are different types of appliances available which can be used for 

monitoring. Two patients highlighted restrictions in the use of certain appliances due to safety 

concerns: 1)Patient 3 had no access to a cooker due to safety reasons and was unable to 

provide a sample for the washing machine, 2) Patient 2 stated that although he owns a toaster 

it is never used due to difficulties in swallowing certain food types. The patients also stated 

differences in routine during questioning, this highlighted variations in key daily activities 

such as getting up and going to bed. It was also noted that patients attend reoccurring medical 

appointments and support groups that are unique to the individual. In addition the background 

noise from type 4 electrical devices differs significantly between the different patients by 

around 400 – 500 Watts (W). This supports the hypotheses that the behavioural models not 

only need to be unique to both the patient and condition, but in some cases also the 

environment.  

Differences in both routine and available devices mean that the behavioural aspects of the 

PIMS framework cannot be generalised between patients. Certain aspects of the environment 

do however exhibit similarities.  The energy readings sampled from patient 1 show 

comparisons to the test houses which are introduced in chapter 6. During installation the 

device, classification models identified all of the appliances from each property. This 

supports the hypotheses that the device classification algorithms can generalise across new 

installations, without the need to retrain the classifier. Although the classifiers exhibit 

acceptable levels of generalisation, the PIMS framework requires device signatures for each 

appliance class during new installations. This is needed to maintain accuracy and expand the 

signature database should the algorithm fail to correctly identify an appliance.         

Although the use of only three patients limits the statistical relevance of the study, the 

objective is not to detect behaviours which are indicative to the patient’s condition. Instead 

the study focuses on the detection of abnormal behaviour, without attributing it to a specific 

condition or aliment. This ensures that a small number of patients can be used during the 

initial evaluation of the PIMS framework.           

5.6 SUMMARY 

In this chapter a case study was presented which involves the deployment of an energy sensor 

into the homes of 1 patient suffering with bipolar and 2 dementia patients. Here the energy 
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readings are sampled at each 10 second interval to aid in the implementation and evaluation 

of the PIMS framework. The sensors used in the patient trial are configured to the same 

specifications to that of a smart meter when paired with a CAD. However there are clear 

differences in both the types of appliances available and the characteristics of the aggregated 

electricity load. The energy readings obtained from patient 1 are used in the PIMS 

implementation and are evaluated to determine its performance.  
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CHAPTER 6 IMPLEMENTATION 

The chapter provides a comprehensive discussion of the implementation and the associated 

technologies used to implement the PIMS design. 

6.1 DATA COLLECTION FOR DEVICE TRAINING  

In order to construct an appliance signature database to train the classifiers an energy monitor 

was installed in three separate test homes which was highlighted in figure 54. The energy 

monitor has been configured to the exact standards of a CAD device by sampling the 

aggregated load. Here the real power value (Watts) are retrieved at each 10 second interval 

and sent to a SQL database for analysis.  

The system is trained against a collection of known device signatures. Initially each system 

deployment involves the labelling of individual device readings. It takes up to 2 days to 

monitor individual devices to obtain an accurate enough assessment for the classifier [188]. 

This is achieved through the use of a patient companion application, as highlighted in figure 

60. Patients are asked to record the type of device being used when a device interaction has 

taken place. The application logs the device type based on the patient’s selection along with 

the date and time. The record is then matched with the aggregated power readings from the 

energy monitor to extract the appliance signature. Figure 59 highlights two of the feeds from 

the energy monitor.  

 

Figure 59: Energy monitor feeds 

The occupant is also asked to note whether the device is being used in conjunction with other 

appliances. This ensures that the training data includes observations where devices are used 

singularly or in conjunction with other appliances. In addition, the patient is also asked to log 

any unplanned interactions with medical services such as visits to GPs, A&E and Walk-in 

Centres. The app records the visit type and date; this is undertaken so the patient’s energy 

reading can be assessed prior to the visit and to highlight any noteworthy changes in 

behaviour.  
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This application was constructed in Visual Studio 2015 using C# and Extensible Application 

Markup Language (XMAL). Here the Universal Windows Platform (UWP) application sends 

the data to a remote SQL database by consuming a RESTful API using JSON over HTTP.  

      

Figure 60: Patient companion app for class identification 

Table 17 highlights the individual log files taken from the patient app. Here the date, time, 

device and load type is presented. Specifically, a single device utilisation is represented by a 

0 and a multiple device usage is characterised by a 1. 

Table 17: Patient companion app data sample 

Date  Time  Device Single Load 

28/01/2017 13:29 Kettle 0 

28/01/2017 15:46 Washing Machine 1 

28/01/2017 17:29 Dryer 1 

28/01/2017 18:01 Microwave 0 

28/01/2017 18:28 Microwave 0 

28/01/2017 19:34 Kettle 0 

29/01/2017 07:06 Microwave 0 

29/01/2017 07:41 Toaster 0 

29/01/2017 08:39 Washing Machine 1 

29/01/2017 11:09 Microwave 0 
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Once the database contains a sufficient range of signatures, the labelling stage in new 

deployments is no longer required. The device training dataset is constructed by installing an 

energy monitor into three separate properties and recording the device energy signatures. As 

a result, five distinct classes are generated, which include the kettle, toaster, microwave, 

washing machine and electric oven. The data set contains 25 individual samples from each 

property totalling 75 for each device class.  

Table 18 highlights a sample of the training data obtained from the energy sensor. 

Specifically, eight individual aggregated kettle signatures are presented. The table shows the 

observations at each 10 second interval up to a maximum of 140 seconds.  

Table 18: Aggregated device signatures 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 Class 

250 3319 3319 3176 3176 3182 3156 3189 3104 3142 3104 3104 3104 3169 Kettle 

346 3334 3334 3334 3334 3334 3279 3259 3201 3143 3121 3073 3073 3111 Kettle 

248 3313 3255 3255 3174 3174 3173 3140 3213 3216 3148 3216 3135 3218 Kettle 

115 3066 2984 2984 2972 2972 2975 2975 3049 3037 3037 3030 3006 3042 Kettle 

145 3054 3031 3063 3063 3063 3031 3084 3023 3077 3031 3069 2994 146 Kettle 

278 3275 3230 3307 3246 3250 3213 3221 3221 3214 3222 3201 3211 3205 Kettle 

291 3341 3341 3341 3341 3206 3282 3282 3201 3201 3223 3290 3290 3290 Kettle 

 

6.1.1 DATA COLLECTION FOR BEHAVIORAL TRAINING 

In the case study presented, the data obtained from the energy monitor used is logged to an 

SQL database as shown in Figure 61. The PIMS framework interfaces with the database 

directly. 

 

Electricity Meter Energy Monitor Home Router  Backend Database  

Figure 61: End to end data collection 
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In order to train the behavioural classification model the data obtained from the energy 

monitor is utilised to construct the behavioural features. The data is analysed by the device 

classification models using the web service which is described later in this chapter.  

Figure 62 highlights the patient’s energy usage taken at 10 second intervals. The y-axis 

shows the amount of energy being consumed in watts, while the x-axis shows a snap shot of 

the time. Specifically 00:00 has been chosen to highlight any night activities which could 

signify sleep disturbances. Additionally 12:00 has been selected to highlight midday 

activities. Each individual colour represents one week’s electricity usage, which has been 

overlaid to show correlation over a four week period.  

 

Figure 62: Overlaid energy usage four week period 

Visualising the energy usage data enables background device noise from type 4 electrical 

devices to be quantified. As highlighted, the energy baseline does not peak above 500 watts 

during the entire 4 week period. Estimating the baseline could enable other homes with a 

similar distribution to use existing device classification models, removing the requirement for 

a home by home training period. 

6.2 PIMS IMPLEMENTATION 

The following section provides a detailed description of the PIMS implementation. Here the 

techniques and methods are discussed along with justification for their selection. Each of the 

different implementation stages required for the PIMS framework to operate, are broken 
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down into their individual functions. Figure 63 highlights the system implementation in its 

entirety. The system is configured in a hybrid mode. Here the energy monitor used in the 

implementation is highlighted in figure 64. The monitor posts the readings to an on premise 

web server which in turn processes the data for classification in the cloud using a RESTful 

API. 
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Figure 63: PIMS Implementation 

 

Figure 64: Energy Monitor and CT clip 

Using both the energy monitor and CT clip the energy value (W) and an associated date time 

stamp are logged to a remote web server at each 10 second interval. Feeds are generated for 
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each energy monitor and logged to a database. Data received from RFM69Pi is decoded and 

published to Message Queue Telemetry Transport (MQTT) service. Figure 65 presents an 

overview of the energy sensors architecture. 

RFM69Pi

Python Service 
(Decode and 

Publish to MQTT)

CT 1

Remote Web Service

CT 2

AC

Optical Pulse Sensor

 

Figure 65: Overview of energy sensor architecture 

All of the acquired data is logged directly to a time series feed which is used to explore 

historical data. Figure 66 highlights the logging process while figure 67 shows the login page 

for the website. 

 

Figure 66: Logging values to time series feed 

 

Figure 67: Login page 
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In order to send the obtained energy values to azure for classification the JSON feed needs to 

be parsed. How the JSON parser functions is outlined later in this chapter. Figure 68 

highlights a data sample from the JSON feed for one of the energy monitors used in the trial, 

both the time and energy value are shown. 

 

Figure 68: JSON time and energy value 

Figure 69 highlights the device classification training process stating with the device 

signatures and ending with the trained model. The entire process is undertaken within the 

Microsoft Azure Cloud platform, which has been selected for its scalability and for its ability 

to expose the PIMS functionality.  

 

Figure 69: Device classification training process 
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6.2.1 DEVICE CLASSIFICATION  

For the device classification process two classifiers are chosen for testing, which include a 

Multiclass Decision Forest and a Two Class (SVM). Here the SVM has been adapted to 

support a multiclass operation through a one verse all mode as shown in figure 70, therefore 

facilitating the detection of multiple devices. An SVM has been selected for evaluation as 

they have been used in a number of existing NILM algorithms with varying degrees of 

success [189]. One of the main benefits of using a Decision Forest for the device 

classification is that they are unaffected by scale, therefore removing the requirement for 

normalisation. Energy data does not conform to a common scale, which could adversely 

affect the performance of certain classifiers. In addition, by using a Random Decision Forest, 

the likelihood of overfitting can be reduced without the need to use regularisation techniques. 

The generalisation of the device classification models is an important requirement for the 

PIMS framework.      

 

Figure 70: Azure SVM Multiclass Module 

6.2.2 MUTLICLASS DECISION FOREST CONFIGURATION 

The Multiclass Decision Forest is implemented using Azure and can be configured with a 

variety of parameters. The first configurable parameter specifies how the labeled training data 

is sampled. Randomness is introduced to the trees during the training phase by utilising a 

method known as bootstrap aggregating or bagging [190]. Bagging belongs to an ensemble 

method, which combines multiple predictions to generate an accurate model. Here each tree 

is trained on a new sample, which is generated by randomly sampling the training data; 

essentially each tree utilises a different training subset. Each output (prediction) is combined 

to generate an accurate prediction by majority voting or by averaging the results.  

The next configurable parameter to consider when utilising bagging decision trees is the 

number of trees to include. This parameter is selected by increasing the number of trees after 

evaluating each training cycle until the accuracy shows no improvement. Increasing the 
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number of trees facilitates more coverage but larger models take longer to run and require 

more computational resources.  

The final configurable parameter to specify sets the number of samples, which is required to 

generate a leaf node. Here the value dictates the threshold for generating a new rule. Here the 

model is iterated and tuned using the above parameters in order to attain the optimum result. 

Each iteration is evaluated using k fold cross validation. Figure 71 highlights the Azure 

decision forest configuration. 

 

Figure 71: Azure ML Decision Forest Configuration 

Each of the configurable parameters are tested, where the results of each iteration are 

evaluated to ascertain the optimum configuration. 

6.2.3 FEATURE ENGINEERING 

This section describes the feature engineering methods used to prepare the data for device 

classification. Each device has varying durations of use, for example a kettle boils over 

different durations, depending on the volume of water. In addition, devices are often used in 

combination with others, typically when preparing meals. This situation could adversely 

affect the performance of the classifier as the boundaries between certain devices classes 

become harder to distinguish. Figure 72 (a) highlights an example of devices being used in 

conjunction or in close succession; while figure 72 (b) presents evenly distributed single 

device interactions. 
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     Figure 72: (a) multiple overlapping devices                           (b) Single devices 

Models must correctly identify devices, including when they are being used in combinations. 

This is achieved by training the models, using only the minimum number of observations 

possible. By identifying the appliance in the shortest possible timeframe, devices can be 

classified before additional devices are used. Additionally, our research demonstrates that 

reducing the number of observations enables the classifier to identify type 2 electrical devices 

(MSD). As MSDs consume similar amounts of energy during start-up they are identified 

before variations in the energy usage signal begin. In addition, power consumption levels 

vary depending on the device utilisation as illustrated in figure 73. Here a boxplot highlights 

the distribution of the individual device classes. Typically, the device usage duration in our 

data set ranges between 10 – 360 seconds. The number of observations for each device is 

reduced to the first 14 samples equating to 140 seconds of device usage. The classifiers are 

scored until the lowest possible number of observations can be used to accurately identify the 

device. 
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Figure 73:  Power consumption distribution during device utilisation 

As discussed previously, device signatures that are obtained from aggregated loads pose 

particular challenges for classification. This is because of varying levels of background noise 

from type 4 electrical devices. Type 4 devices remain active for a considerable duration, 

while consuming energy at a constant rate. The level of noise varies for each home as it 

depends on the number of devices being used. Therefore, the specific method used for data 

pre-processing is the statistical replacement method. This involves using the arithmetic mean 

as the replacement value for each missing value in the dataset (14). Figure 74 highlights the 

data cleaning process in the Azure ML portal. 

�̅� =  
𝑥1+𝑥2+⋯+ 𝑥𝑛 

𝑛
  

(14) 
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Figure 74: Azure ML device cleaning process 

Some classifiers require data to be normalised depending on the data structure. SVMs exhibit 

a level of improvement when the data conforms to a common scale. However, normalising 

data for other classifiers, such as a decision forest, is not required, as the criterion splitting is 

not sensitive to scale. Normalisation is used to eliminate bias due to differences in data 

scaling.  

The normalisation technique deployed by the PIMS framework for the SVM is the Min-Max 

scaling approach, where data is scaled to a fixed range 0-1 and is defined as: 

𝑥′ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
                                                      

(15) 

The normalisation process in the Azure ML portal is highlighted in figure 102 in the 

appendices.  

Figure 75 presents the effects of the normalisation process on the processed data. The non-

normalised data is presented on the left, while the normalised data is presented on the right. 

Here the effects of the normalisation process are shown the x and y axis where the fixed 

range of 0-1 has been applied. 
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Figure 75: Data normalisation plot 

For the purposes of this implementation, a steady state feature selection method is deployed. 

The features used in the study are presented in table 19. True Power (P), where (P) is the 

active power in watts for each device utilisation: 

Table 19: Statistical feature extraction utilised by the PIMS framework 

Measure Feature 

True Power (P) Aggregated Load (Psd) standard deviation 

True Power (P) Aggregated Load (Pav) average 

True Power (P) Aggregated Load (Pmax) maximum 

True Power (P) Aggregated Load (Pmin) minimum 

True Power (P) Aggregated Load (Pmean) mean 

 

In this implementation two feature selection techniques are evaluated. Firstly, Fisher Linear 

Discriminant Analysis (FLDA) and secondly, a filter based technique called Spearman 

Correlation.  

Nonparametric tests do not assume a specific distribution in the data, as such the method is 

utilised in the PIMS framework. Here subsets of features are generated with the highest 

degree of predictive power. Consequently, each column is scored and later utilised to build 

the predictive model. 

Figure 76 highlights the distribution of the device training data using a probability plot, 

which is also known as a Quantile – Quantile Q – Q plot. As presented none of the device 

signatures conform to a normal distribution. 
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Figure 76: Normal probability plot device distribution 

6.2.3 WEB SERVICE IMPLEMENTATION  

Figure 77 shows the PIMS web service used to expose the models functionality. Here the 

input and output services are created in order for the web server to transmit the parsed data 

and receive the classification response.   
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Figure 77: PIMS Web Service Implementation 

The PIMS web service expects 6 integer values from the energy monitor, representing the 

first 60 seconds of appliance usage. Once the classification is undertaken the predicted class 

label is returned along with the scored probabilities. The input output schema is presented in 

figure 98 in the appendices section. A Request-Response Service (RRS) parses both the input 

and output values for the PIMS framework. The code for the RSS web service and the JSON 

parser can be found in figures 104 - 111 in the appendices section. 

6.3 BEHAVIOURAL CLASSIFICATION 

The second model in the PIMS framework is used to classify both normal and abnormal 

patient behaviour. This is achieved by constructing a feature set utilising the PIMS device 

classification models. The method proposed is based on T-Pattern analysis, which identifies 

the temporal structure of the data. As a result reoccurring sequences of behavioural events 

can be categorised and described [191]. Relationships between events are identified by taking 

into account various metrics, such as the simultaneously, order, relative and real timing and 

frequency of the observed events, as well as their hierarchical structure [191]. Figure 78 

highlights the behavioural classification process. 
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Figure 78:  Behavioural classification training process 

Similarly to the device classification models, both an SVM and Decision forest are evaluated 

for use within the PIMS framework.    
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6.3.1 BEHAVIOURAL FEATURES 

Figure 79 highlights the web interface used to call the web service API for device prediction. 

 

Figure 79: RSS web interface for device prediction 
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Each of the models predictions are scored. Any probability scoring lower than 0.70 is 

discarded and excluded from the behavioural dataset. Table 20 highlights the behavioural log 

files. It presents five device classes which are used over a 48 hour period.  

Table 20: Behavioural logs 24 hour period 

Time Event  Day 

07:06 Microwave SUN 

07:41 Toaster SUN 

08:39 Washing Machine SUN 

11:09 Microwave SUN 

12:11 Kettle SUN 

14:01 Kettle SUN 

14:03 Oven SUN 

17:56 Microwave SUN 

18:28 Microwave SUN 

19:52 Kettle SUN 

20:00 Microwave SUN 

06:49 Kettle MON 

07:13 Kettle MON 

10:55 Toaster MON 

15:41 Kettle MON 

16:14 Oven MON 

16:57 Microwave MON 

18:30 Microwave MON 

19:28 Kettle MON 

20:40 Toaster MON 

 

The PIMS framework monitors a set of specific observation windows to ascertain the 

behavioural structure of the patient. These windows can be used singularly or in combination 

up to a maximum of 24 hours depending on the application or condition. Certain observation 

periods are considered more significant than others [192]. For example, detecting device 

interactions during the night can signify sleep disturbances. Likewise no device interactions 

in the morning could signify that a patient has not awakened.  

Table 21 highlights a sample of the behavioural features used to train the behavioural 

classifiers. Each of the observations represents the identified devices over a combined s 24 

hour period. The first row in the table represents each of the device interactions. 
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Table 21: Behavioural features 25 hour period 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D14 D15 D15 Class 

3 2 4 3 1 1 5 3 3 1 3     Normal 

1 1 2 1 5 3 3 1 2       Normal 

3 2 1 5 3 3 3 3 3 2 1 1    Abnormal 

3 2 1 5 3 3 1         Abnormal 

In most real world datasets normal data vastly outnumbers abnormal data causing an 

imbalanced dataset. The same is true for the behavioural data presented to the PIMS 

behavioural models. Small imbalances within a dataset do not generally cause an issue. Class 

imbalance in our dataset is not only common but expected. For example normal patient 

behaviour will likely be more prevalent than abnormal behaviour. During the first 48 days of 

the patient trial no abnormal behaviour was identified for any of the patients. In order to 

generate abnormal behavioural patterns, data containing both a reduced number of device 

interactions or device usage in contrast to the patient was generated in the trial homes.   

In one of our datasets 34 samples represent normal observations, while 14 samples represent 

abnormal observations. In total, 48 days were used in the training dataset. Figure 80 

highlights the SMOTE process in the Azure ML portal. 

 

Figure 80: Azure ML SMOTE Configuration 

By utilising SMOTE the number of abnormal observations is increased from 14 to 34 hence 

creating a balanced dataset. 

The approach presented in this implementation provides an end-to-end infrastructure for 

hosting both the PIMS framework and the patient trial outlined in chapter 5. The acquired 

sensory data can be transmitted to the cloud using web service API’s, thus providing access 

to the machine learning models for classification and evaluation. Using cloud services for the 

PIMS implementation enables scalability, reliability and interoperability through redundancy, 
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hosted services and associated API’s. Although this approach has many benefits, 

organisations such as the NHS are reluctant to use cloud infrastructure for data storage and 

processing. This is largely due to concerns surrounding both data security and governance. In 

order to overcome these concerns, a hybrid approach is undertaken to ensure only anonymous 

energy usage data is sent to the cloud for classification. By using a hybrid method additional 

costs are introduced as duplicated resources are created on premise. Although other cloud 

providers such as Google cloud and Amazon Web Services (AWS) offer similar services, 

Azure is selected for its close integration with the .NET framework and its selection of 

machine learning resources.      

6.4 SUMMARY 

Analysing the vast data that is collected from the smart meter creates detailed energy usage 

profiles. These profiles facilitate the identification of reoccurring patterns and trends in 

behaviour. In this chapter, the data collection process was described. By deploying an energy 

monitor into three different households and recording their device interactions an appliance 

signature database was created which is used to train the device classification models. 

In order to assess the behavioural routine of the patient in a manner that is both scalable and 

personalised the PIMS framework was implemented using the Microsoft Azure platform. 

This approach facilitates the detection of individual devices from a single non-intrusive 

sensor which is vital for detecting specific ADLs. However, such analysis introduces a 

variety of different complications. This is due to the wide diversity of different devices which 

are used with an aggregated load. Additionally, the limited parameters that are available from 

the CAD impedes the selection of features which can be obtained from the data. 

Specifically, the reading frequency of the CAD introduces significant challenges for load 

disaggregation. Hence the chapter introduces a novel load disaggregation method specifically 

designed for smart meter CAD data.    
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CHAPTER 7 EVALUATION AND DISCUSSION 

In this chapter the results for both the device and behavioural classification are presented. 

The PIMS framework is assessed using electricity data, which is sampled at 10 second 

intervals. This approach provides a more granular assessment of the patient’s wellbeing by 

identifying specific ADLs through device interactions within a predefined time period. Due 

to the flexibility of the decision forest, parameters such as tree numbers and depth are altered 

and evaluated to determine their optimal configuration. The chapter also discusses the results 

from the implementation. The performance of the PIMS framework is the result of numerous 

key stages including, data processing, feature engineering and classification. In this chapter a 

discussion regarding the justification of the results during the evaluation process is presented. 

7.1 PIMS CONFIGURATION AND EVALUATION 

The evaluation is conducted in two separate stages, firstly the device classification models 

where the performance of the Decision Forest and SVM are compared. Here the various 

configurable parameters and dimensionality reduction techniques are evaluated to ascertain 

the optimum configuration. We start by reducing the number of observations to the minimum 

amount possible while aiming to maintain accuracy. This is undertaken so that the device can 

be classified in the shortest timeframe possible.  The complexity of the classifiers is adjusted 

to find both the highest attainable accuracy and their optimal efficiency. In the second stage, 

the evaluation of the behavioural models is presented. Data obtained from the device 

classifiers is used to classify both normal and abnormal behaviour. 

7.1.1 REDUCING THE NUMBER OF OBSERVATIONS FOR DEVICE TRAINING 

Table 22 highlights a sample of device observations and their associated class. Here all 14 

observations are included and equate to 140 seconds. The observations are reduced by 4 

observations each iteration to a minimum of 60 seconds (6 observations) in the final iteration. 

The full data set contains 375 distinct observations, a sample of which can be found in the 

appendix. 
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Table 22: Device observations - two examples per class 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 Class 

250 3319 3319 3176 3176 3182 3156 3189 3104 3142 3104 3104 3104 3169 Kettle 

346 3334 3334 3334 3334 3334 3279 3259 3201 3143 3121 3073 3073 3111 Kettle 

1109 1103 1103 1091 1091 1092 1093 1094 1092 1093 1105 1085 1084 1084 Toaster 

1096 1100 1097 1101 1101 1115 1101 1095 1097 1097 1097 1097 1097 1101 Toaster 

735 2279 2271 2271 2248 2248 2272 2235 2239 2258 2238 2296 2298 2244 Microwave 

1943 1943 738 738 737 742 1963 1963 1975 1975 1975 1994 1930 1950 Microwave 

704 714 708 900 707 694 2482 2554 2479 2479 2539 2478 2494 2547 
Washing 

Machine 

2222 2222 2188 2188 2278 2212 2212 2185 2185 2228 2257 2147 2147 2235 
Washing 

Machine 

2154 2166 2149 2157 2112 2141 2108 2113 2152 2116 2117 2116 2119 2124 Cooker 

2149 2143 2152 2150 2121 2126 2111 2110 2112 2125 2113 2111 2119 2110 Cooker 

For the evaluation, both the raw energy data and the generated features are assessed. Table 23 

highlights a sample of the generated feature dataset, which is presented to the individual 

classifiers. The dataset is regenerated to reflect the reduction in observations and resubmitted 

to the classifiers for evaluation. We hypothesise that the generated features will help to 

maintain a higher degree of accuracy while reducing the number of observations when 

compared to the raw data. 

Table 23: Generated features on all fourteen observations 

P MIN P MAX P MEADIAN P STDDEV P MEAN Class 

2038 5184 3199.5 895.7511 3532.571 Kettle 

3008 3124 3035 31.41371 3044.5 Kettle 

1084 1109 1092.5 7.636179 1094.214 Toaster 

1095 1115 1097 4.776644 1099.429 Toaster 

735 2298 2253 393.5894 2152.286 Microwave 

737 1994 1946.5 552.4232 1611.857 Microwave 

694 2554 2478.5 876.8858 1748.5 Washing Machine 

776 2647 2544.5 612.1363 2295.5 Washing Machine 

2110 2152 2120 15.72467 2125.143 Cooker 

2808 3003 2868.5 60.10077 2875.429 Cooker 

First iteration all observations 

Second iteration reduced by 4 observations 

Third iteration reduced by 4 observations 
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7.1.2 DEVICE CLASSIFICATION RESULTS OF RAW DATA 

In this section the results for the classification experiment, which is undertaken on the raw 

energy data as described in table 19, is presented. Figure 81 highlights a confusion matrix, 

which presents the classification results for the raw data. Here all 14 observations are 

presented to the classifiers for training. The results for the Decision Forest are presented on 

the left where the SVM is presented on the right.  

 

Figure 81: Confusion matrix Decision Forest vs SVM all observations using raw data 

The Decision Forest attained an accuracy above 76.3% across all device classes with the 

cooker class achieving the best accuracy of 97.3%. The SVM matched the performance of the 

Decision Forest for both the cooker class and toaster class. However, the SVM exhibited 

reduced accuracy across the remaining classes with 88% for the kettle, 60.5% for the 

microwave and 73% for the washing machine. The SVMs least performing class was the 

microwave were 2.6% of the observations were incorrectly classified as kettle, 21.1% as a 

toaster and 15.8% as a kettle. 

Figure 82 highlights the results from the same configuration with the number of observations 

reduced to 6, which represents the first 60 seconds of device usage. It is obvious that by 

comparing the two sets of results that there is a reduction in accuracy across the majority of 

classes for both algorithms.  
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Figure 82: Decision Forest vs SVM first 6 observations using raw data 

The Decision Forest presents a reduction in accuracy for the cooker, microwave and washing 

machine. However, it maintains accuracy for the kettle and improved accuracy for the toaster 

class. In contrast the SVM exhibits a reduced accuracy for the washing machine, toaster, 

microwave and kettle. Nevertheless, it improves accuracy for the cooker class from 97.3% to 

98.7%. The least accurate class for both algorithms across the two iterations was the 

microwave. This highlights a close correlation between the microwave and toaster energy 

signatures were the misclassification prevalence was more prominent for the SVM.   

As the PIMS framework is required to identify a device class in the shortest possible time 

period it is evident that the use of raw data for device identification is not feasible due to the 

adverse classification performance.  

7.1.3 DEVICE CLASSIFICATION RESULTS USING STATISTICAL FEATURES 

This section presents a diverse range of results using the generated statistical features as 

described in table 23. The aim is to reduce the device observation period while maintaining a 

high degree of accuracy. To establish a baseline all 14 observations are used. Figure 83 

highlights the confusion matrix for both the Decision Forest and SVM using FLDA. Figure 

84 presents a confusion matrix replacing FLDA with Spearman Correlation. Here the number 

of trees and tree depth in the Forest is set to 32 with 128 random splits per node. 
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Figure 83:  Initial confusion matrix Decision Forest vs SVM all observations using FLDA 

 

Figure 84: Initial confusion matrix Decision Forest vs SVM all observations using Spearman 

Correlation 

When comparing the results to the raw data, the Decision Forest presents, a reduction in 

accuracy across the cooker, kettle and washing machine class as highlighted in figure 83. 

Accuracy was improved for both the microwave and washing machine classes. The SVM 

displays the most improvement using the statistical features maintaining accuracy across the 

cooker and kettle classes and improving accuracy for the microwave, toaster and washing 

machine class. 

By using Spearman Correlation, as highlighted in figure 84, the Decision Forest shows 

improved accuracy across the kettle, microwave, toaster, and washing machine classes. There 

was a notable reduction in the cooker class, where 4% of the observations are incorrectly 



Page | 141  
 

classified as the kettle class. An additional misclassification of 1.3% for the washing machine 

class is presented. The SVM exhibited the most overall improvement using Spearman 

Correlation. Here the accuracy improved across the microwave and washing machine class, 

while maintaining accuracy for the cooker, kettle and toaster classes. However as with the 

raw data, the microwave class presented the poorest accuracy. 

Figure 85 highlights a bar chart, which presents the classification results across all classes 

and techniques. It is clear that the Decision Forest and SVM obtain similar accuracy for the 

cooker class but have their own individual strengths and weakness with certain device 

classes. For example an SVM would not be selected for the microwave class due to its 

reduced accuracy. However it shows higher accuracy for the toaster and cooker class. 

 

Figure 85: Initial classification results across all observations 

To determine if the accuracy of the Decision Forest could be improved its complexity was 

altered and evaluated by increasing the number of trees. Figure 86 highlights the accuracy of 

the Decision Forest using both FLDA and SC. Here the number of trees in the forest was 

increased to 64 and reduced by half in each training epoch. The configuration that exhibited 

the highest accuracy was SC when configured with 64 trees. Here both the kettle and 

microwave class presented an improvement in accuracy while the worst performing 

configuration was FLDA with 8 trees. The experiment was re-evaluated to ascertain if the 

algorithm presented a higher degree of accuracy by altering both the tree depth and number 

of random splits. Here the tree number was set to 32 with both the tree depth and random 

splits being doubled to 64 and 256 respectively. The accuracy across all device classes 

presented no change with FLDA. However a slight reduction of 2.7% for the microwave class 

was noted using SC and a minor improvement of 1.3% for the washing machine class.    
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Figure 86:  Initial classification result across different Forest configurations 
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Following the process above the observations are systematically reduced by 4 for each epoch, 

while assessing the classification performance. Figure 87 highlights the accuracy for FLDA 

after the first iteration. Using all observations the Decision Forest presented a reduction of 

1.3% for the cooker class, 2.7% for the toaster class and 2.7% for the washing machine. 

However accuracy for the kettle was maintained and an improvement of 7.7% was noted for 

the microwave class. The SVM presented a reduction across all device classes except for the 

microwave class which showed an improvement of 7.4%.  

 

Figure 87: Decision Forest vs SVM first 100 seconds (10 observations) of device usage 

observations using FLDA 

Figure 88 presents the results for the SC after the first iteration. Comparing the results to all 

observations the Decision Forest presented a reduction in accuracy of 1.4% for the cooker, 

4% for the kettle, 9.1% for the microwave and 1.4% for the toaster. However an increase in 

accuracy of 4% was noted for the washing machine class. The SVM presented a reduction in 

accuracy for the cooker of 1.4% and 1.3% for the kettle. The accuracy for the microwave 

exhibited an improvement of 18.1%, 1.4% for the toaster and 14.7 for the washing machine. 
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Figure 88: Decision Forest vs SVM first 100 seconds (10 observations) of device usage 

observations using SC 

Figures 89 and 90 present the confusion matrix for the final reduction in observations using 

the generated statistical features. The Decision Forest and SVM using FLDA is highlighted in 

figure 89. Comparing the results to the previous iteration, the Decision Forest improved 

accuracy for the cooker by 4%, the toaster by 1.3% and maintained accuracy for the kettle. 

However a reduction in accuracy of 5.3% (microwave) and 9.3% (washing machine) was 

noted. The SVM maintained accuracy for the cooker class and presented an improved 

accuracy for the kettle (1.3%) and microwave (2.3%). However, a reduction in accuracy was 

exhibited for the toaster (9.3%) and the washing machine (37.3%) where 41% was 

misclassified as a toaster. 

 

Figure 89: Decision Forest vs SVM first 60 seconds (6 observations) of device usage 

observations using FLDA 
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Figure 90 highlights the confusion matrix for SC. Here the results are compared to the 

previous iteration as presented in figure 86. The Decision Forest presented an accuracy 

reduction of 1.4%, 6.6% and 4% across the cooker, microwave and washing machine classes 

respectively. However, accuracy was maintained for the kettle and toaster classes. The SVM 

exhibited a reduction across the kettle, microwave, and washing machine but improved 

accuracy of the toaster by 13.3%. Accuracy for the cooker was maintained at 98.7%.     

 

Figure 90: Confusion matrix Decision Forest vs SVM first 60 seconds (6 observations) of 

device usage observations using SC 

Figure 91 highlights the accuracy using 6 observations for both the raw data and the 

generated features. The minimum threshold for the PIMS acceptance criteria of 70% is 

represented by a red horizontal line. Only three configurations met the acceptance criteria for 

each device class. These include the Decision Forest SC raw data, Decision Forest FLDA 

statistical features and the Decision Forest SC statistical features.   
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Figure 91: Classification results comparing raw data to generated statistical features 
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7.1.4 BEHAVIOURAL CLASSIFICATION RESULTS 

In the following section the evaluation of the behavioural classification process is presented. 

Specifically, the predicted appliance interactions from the device classification models are 

recorded for each of the patients outlined in chapter 5. In total 48 days of device interactions 

were assessed for each patient in the trial. 48 days were chosen as this is a feasible amount of 

time for training before the system is moved into prediction mode. Training the system for 

longer periods would introduce unacceptable delays in patient monitoring. Although the 

initial training period is limited, the PIMS formwork facilitates the continuous training of the 

behavioural models as outlined in chapter 5.   

Abnormal days are identified where there is a notable reduction in device interactions. As 

with the device classification model, the number of trees and the tree depth in the Forest is set 

to 32 with 128 random splits per node. A linear SVM has been introduced to establish if the 

accuracy is of an acceptable level using a less computationally expensive algorithm. For the 

SVM, the data has been normalised using Min Max. Any missing values in the training data 

have been replaced with a 0 to represent the absence of a device interaction. By using two 

contrasting algorithms, the study investigates the level of model complexity required to 

obtain an acceptable behavioural classification.   

Patient 1: 34 days where identified as normal while 14 were identified as abnormal. In order 

to balance the dataset SMOTE was used to synthetically increase the number of abnormal 

observations to 34. Table 24 presents the confusion matrix for the Decision Forest while table 

25 highlights the confusion matrix for the SVM.  

Table 24: Confusion matrix Patient 1 Decision Forest behavioural model 

True Labels 

Estimated Labels 

1 

(Normal) 

2 

(Abnormal) Totals 

Class 1 

(Normal) 30 4 34 

Class 2 

(Abnormal) 1 33 34 

Totals 31 37 68 
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Table 25: Confusion matrix Patient 1 SVM behavioural model 

True Labels 

Estimated Labels 

1 

(Normal) 

2 

(Abnormal) Totals 

Class 1 

(Normal) 24 10 34 

Class 2 

(Abnormal) 6 28 34 

Totals 30 38 68 

 

Figure 92 highlights the ROC curve for the behavioural classification for patient 1 using the 

Decision Forest, while figure 93 presents the ROC curve for the SVM.  

 

Figure 92: ROC behavioural classification patient 1 decision forest 
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Figure 93: ROC behavioural classification patient 1 SVM  

Patient 2: exhibited 37 days of normal behaviour while 11 days where identified as being 

abnormal. SMOTE is used to balance the dataset by synthetically increasing the number of 

abnormal observations to 37. Table 26 highlights the confusion matrix for the Decision Forest 

while the confusion matrix for the SVM is presented in table 27.  

Table 26: Confusion matrix Patient 2 Decision Forest behavioural model 

True Labels 

Estimated Labels 

1 

(Normal) 

2 

(Abnormal) Totals 

Class 1 

(Normal) 32 5 37 

Class 2 

(Abnormal) 3 34 37 

Totals 35 39 74 
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Table 27: Confusion matrix Patient 2 SVM behavioural model 

True Labels 

Estimated Labels 

1 

(Normal) 

2 

(Abnormal) Totals 

Class 1 

(Normal) 29 8 37 

Class 2 

(Abnormal) 2 35 37 

Totals 31 43 74 

 

Figure 94 highlights the ROC curve for the behavioural classification for patient 2 using the 

decision forest, while figure 95 presents the ROC curve for the SVM.  

 

Figure 94: ROC behavioural classification patient 2 decision forest 
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Figure 95: ROC behavioural classification patient 2 SVM 

Patient 3: During the first 48 days of monitoring patient 3 presents 36 days of normal 

behaviour while 12 days are identified as abnormal. As with the previous patients, SMOTE is 

used to synthetically increase the number of abnormal observations to 36.  Table 28 presents 

the confusion matrix for the Decision Forest while table 25 highlights the confusion matrix 

for the SVM. 

Table 28: Confusion matrix Patient 3 Decision Forest behavioural model 

True Labels 

Estimated Labels 

1 

(Normal) 

2 

(Abnormal) Totals 

Class 1 

(Normal) 33 3 36 

Class 2 

(Abnormal) 3 33 36 

Totals 36 36 72 
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Table 29: Confusion matrix Patient 3 SVM behavioural model 

True Labels 

Estimated Labels 

1 

(Normal) 

2 

(Abnormal) Totals 

Class 1 

(Normal) 30 6 36 

Class 2 

(Abnormal) 1 35 36 

Totals 36 36 72 

 

Figure 96 highlights the ROC curve for the behavioural classification for patient 3 using the 

decision forest, while figure 97 presents the ROC curve for the SVM.  

 

Figure 96: ROC behavioural classification patient 3 decision forest 
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Figure 97: ROC behavioural classification patient 3 SVM 

Table 30 displays a comparison between the success rate; error rate; sensitivity; specificity 

and Area Under Curve (AUC) for each classification experiment. Of all the experiments, the 

Decision Forest presented the best results achieving an accuracy of 92.64% and an error rate 

of 0.0736 for patient 1. The worst performing classifier is the SVM for patient 1 with an 

accuracy of 76.47 and an error of 0.2352. The best performing classifier across all patients is 

the Decision Forest achieving an average accuracy of 91.16 compared to the SVM of 84.3. 

Table 30: Classification results comparison Decision Forest vs SVM 

Patient Classifiers AUC (%) Sensitivity Specificity Error 

Patient 1 Decision Forest 92.64 0.882 0.970 0.0736 

Patient 1 SVM 76.47 0.705 0.823 0.2353 

Patient 2 Decision Forest 89.18 0.864 0.918 0.1082 

Patient 2 SVM 86.48 0783 0.945 01352 

Patient 3 Decision Forest 91.66 0.916 0.916 0.0834 

Patient 3 SVM 90.2 0.833 0.972 0.098 
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7.2 PIMS EVALUATION 

Using both the methodology, and an iterative approach, the minimum threshold for the PIMS 

framework was achieved and in some cases exceeded across all devices classes. By 

generating an accurate device classification model the behavioural classifiers can be deployed 

to identify both normal and abnormal behaviours. 

The devices selected for this implementation not only have good prevalence in UK homes, 

but their usage signifies the undertaking of essential ADLS. Although these devices provide 

significant representation of the activities undertaken, the inclusion of additional devices will 

undoubtedly provide an enhanced assessment of the patient. However, adding additional 

appliances could impact the accuracy of the classifier while leading to increased costs. Before 

additional devices are added to the PIMS framework consultation with clinicians must be 

undertaken to ascertain its effectiveness.        

It is evident from the device classification results that both the Decision Forest and SVM 

achieve reasonable results using both the raw data and the generated statistical features. 

However, obtaining a higher degree of accuracy from the raw data required the use of all 14 

readings. Between the two classifiers the Decision Forest attained a higher degree of accuracy 

when compared to the SVM. The SVM presented a reduction in accuracy for the microwave 

class suggesting the presence of a strong relationship between the microwave, toaster and 

washing machine class. This trend was also reflected in the results for the Decision Forest 

although the reduction in accuracy was not as significant.  

A clustering algorithm as illustrated in figure 98 is used to obtain an overall visualisation of 

the raw data and to find any natural boundaries or relationships between the different device 

classes. Identifying the boundaries between the different classes aids in the selection of the 

classifier for example: linear, quadratic or polynomial. The algorithm selected for this task is 

the Yifan Hu, which belongs to the category of force-directed algorithms [193]. These 

algorithms use specific formulas to calculate both the attraction and repulsions forces. The 

repulsion 𝐹𝑟 formula is mathematically defined as (𝐹𝑟 = 𝑘/𝑑2) while the attraction 𝐹𝑎 

formula is expressed as (𝐹𝑎 =  −𝑘 ∙ 𝑑) where d represents the distance between the two 

nodes. One of the main benefits of this approach is that the algorithms function by calculating 

the specific structure of the data using only information contained within the structure of the 

graph. This removes the need for domain-specific knowledge [194]. Specifically, the Yifan 

Hu algorithm uses the repulsive forces on one node from a cluster of distant nodes, which are 
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approximated by a Barnes-Hut calculation scheme for grouping together bodies that are 

sufficiently nearby [195]. 

 

Figure 98: Cluster analysis of the different device classes highlighting device relationships 

The results presented in figure 98 confirm the presence of a quadratic boundary between the 

different device classes. However, a clear relationship between the toaster and microwave 

classes exists, which could impede the performance of the classifier. The limited sampling 

frequency of the smart meter impedes the classifiers ability to separate certain device classes. 

As a result the introduction of more complex algorithms might be required depending on the 

desired accuracy. Using the first six readings of the device enabled the classifier to identify 

the appliance based on its unique start up signature. By using this technique the algorithms 

achieved reasonable success even though the device boundaries are complex.   

The PIMS framework is required to classify the use of an appliance in the shortest possible 

timeframe. Reducing the number of readings from 14 to 6 using the raw data presented a 

significant reduction in accuracy for the SVM across three device classes. However the 

Decision Forest presented a notable reduction in only a single device class. By using the raw 

data and a reduced observation period only the Decision Forest FLDA configuration archived 

the minimum probability threshold for the PIMS framework.  
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In order to ascertain if the use of statistical features could improve the accuracy of the 

classifiers the experiments where iterated. Applying all 14 observations to both the Decision 

Forest and SVM presented an overall improvement using FLDA and SC. The class that 

presented the most significant improvement for both algorithms was the microwave. Out of 

the 4 results 3 configurations met or exceeded the minimum threshold. These include the 

Decision Forest FLDA, Decision Forest SC and the SVM SC. The results confirm that the 

method out lined in this thesis can be used to effectively identify electrical appliances from 

aggregated load readings.   

By using the first 6 readings two configurations exceeded the minimum threshold. These 

include the Decision Forest FLDA and the Decision Forest SC.  By reducing the number of 

observations from 14 to 6 both the Decision Forest and SVM presented an overall reduction 

in accuracy. In particular the Microwave class exhibited the most significant reduction for 

both classifiers. However, by deploying the statistical features and reducing the number of 

observations to the target value it was possible to obtain an overall accuracy in excess of 70% 

using the Decision Forest.     

To investigate whether increasing the complexity of the Decision Forest improved the 

classification accuracy, the experiment was repeated. Increasing the tree count, depth and 

splits presented no significant improvement in accuracy using both FLDA and SC. Using all 

14 observations each device class presented an accuracy in excess of 80% across each 

configuration, therefore exceeding the minimum threshold. Deploying a configuration that 

maintains accuracy while reducing computational requirements is a principal consideration 

for production. Increasing the Forest complexity introduced extended training times while 

gaining only a minimal increase in accuracy. Typically cloud platforms charge using a per 

transaction cost model consequently, increasing the complexity of any algorithm could 

introduce higher processing costs therefore decreasing the overall cost benefit of the solution. 

To improve upon previous classification performance the use of two techniques were 

deployed and evaluated. FLDA and SC presented varying degrees of success depending on 

the dataset, device class and the type of algorithm deployed. Overall both methods achieved 

an accuracy in excess of 70% using both the Decision Forest and a reduced number of 

observations. Across all experiments SC improved the accuracy of both the microwave and 

washing machine class but presented an adverse effect on the cooker class using the Decision 

Forest. As discussed in the methodology there was an expectation that SC would exhibit a 
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higher degree of accuracy due to the distribution of the data. However FLDA attained similar 

results while increasing the overall accuracy of the SVM by the greatest margin.     

The Decision Forest presented the highest degree of accuracy using both the raw data and 

statistical features. While the SVM did not attain the required accuracy across both the 

microwave and washing machine class it exceeds the threshold across the remaining classes. 

Although the data was normalised therefore benefitting the SVM, altering the kernel from 

linear to a more complex decision boundary such as quadratic improved the overall 

performance. Figure 99 presents the true positive rate for both the linear SVM and the 

quadratic SVM. Here the two classifiers used FLDA and SC for the 6 observations from the 

statistical features.     

 

Figure 99: Classification results linear vs quadratic SVM 

By increasing the complexity of the SVM the quadratic kernel exceeded the minimum 

threshold achieving comparable results when compared with the Decision Forest. 

Using both the Decision Forest and SVM the behavioural classification presented an accuracy 

in excess of 76% across all patients in the trial. Out of the two classifiers the Decision Forest 

obtains the best accuracy of 92.64% for patient 1. The results from all experiments exhibit 

adequate accuracy for use in PIMS and can be used to formulate a decision regarding the 

patient’s wellbeing. The balance between specificity and sensitivity requires careful 

consideration to ensure that both the false positives and false negatives are adjusted 

accordingly. The decision on which factor is of more importance lies with the medical 
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profession but warrants adjustment on a case by case basis. The flexibility of the PIMS 

framework facilities the integration of medical knowledge thus facilitating personalisation 

based on both the needs of the individual and their condition.         

Although the implementation uses an entire 24 hour period this approach can be scaled to 

assess finer periods. By using the identified devices as behavioural indicators the classifiers 

are able to determine the absence or presence of the individual devices along with any change 

in usage frequency. The amount of behavioural data available for training the classifiers will 

always be limited as collecting large amounts of data during the implementation phase is not 

feasible. Once the CAD is installed the initial training phase will be short so the system can 

start monitoring the patient. However, the PIMS framework retrains over time using a 

feedback mechanism. The enables the system to adjust as increasing volumes of data become 

available.  

The outcomes from the patient trial present promising results for its use as an AAL 

technology. By using both the energy readings from a smart meter and a machine learning 

approach, limitations with existing AAL solutions can be overcome. The results demonstrate 

that specific ADLs can be identified by detecting interactions with electrical appliances. This 

approach offers significant improvements over existing AAL technologies where ADL 

detection is often absent. The results from behavioural classification demonstrate that the use 

of machine learning algorithms can be used to provide a personalised assessment of the 

patient’s wellbeing. 

7.3 SUMMARY 

In this chapter, the PIMS framework was evaluated using different configurations to ascertain 

the performance for both the device and behavioural classification models. The evaluation 

highlighted strong relationships between certain device classes which can impede the overall 

performance of the system. However, it was noted that particular classifiers exhibit high 

performance for certain device classes providing the notion of combining them to improve 

accuracy. The need to balance accuracy with computational requirements was discussed. This 

balance is imperative when moving the system into production as extended processing time 

introduces higher financial costs. As previously discussed higher financial costs are likely to 

impede its acceptance. In addition the results from the behavioural classification were 

presented. The results demonstrated that the detection of both normal and abnormal patient 

behaviour is possible using PIMS. 
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By using the PIMS framework, the ability to monitor the behavioural characteristics of the 

patient is possible. However further medical insight is required to define the importance of 

both the observation windows and the observed behaviour. 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

8.1 INTRODUCTION 

In this chapter the thesis is concluded and a summary of the work is put forward. In addition 

the novel contributions to knowledge are highlighted. The chapter also discusses the 

importance of both the research for overcoming limitations with existing solutions. 

Additionally future work is discussed while outlining the different future directions the 

project might take. The chapter is concluded with a summary of the future challenges.   

8.2 THESIS SUMMARY 

The research outlined in this thesis provides a foundation to a novel and emerging concept, 

where smart meter data can be used to address the variety of limitations with existing 

solutions. By using a novel approach the research presented was able to identify the use of 5 

distinct electrical appliances. By detecting the use of electrical appliances the identification of 

specific ADLs is possible. The advantage of using such an approach means that patient 

activities can be accurately identified, opposed to just detecting that an activity has occurred. 

As demonstrated in this thesis our approach requires the use of a single non-intrusive sensor 

which requires no patient interaction to operate. This single feature removes numerous 

limitations with existing solutions which relay on either a complex distributed sensing 

network or manual intervention from the patient. By using a machine learning approach the 

identification of abnormal patient behaviour is possible. This method facilitates the 

construction of a personalised solution which takes into account the complex patterns of 

human behaviour.  

Although the primary objective for the AMI is to balance grid load and demand. The 

infrastructure and its data collection capabilities are also beneficial in a variety of health and 

care applications. However, there are still advancements that need to be made in identifying a 

wide range of electrical devices from aggregated energy readings. These advancements 

would heighten both the adoption and usefulness of smart meters for an assistive living 

technology. However, these improvements rely on additional data features and improved 

sampling rates, beyond the current default readings of 10 second intervals. Although this 

limitation is not a technical restriction, the modification to any smart meter function is a 

policy decision which is specified by both utility companies and government.  

 In conclusion, chapter one provided an introduction to both smart meters, there capabilities 

and the concept of the AMI. Additionally, the motivation behind the research was introduced 
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and the various health and social challenges facing the UK were outlined. As well as an 

overview of the challenges, the various aims, objectives and novelties were presented, which 

were deployed and developed to overcome the research problem. 

The background has been presented in chapter two. This included an overview of the 

motivation, technical detail and the multiple components that sit within the smart grid. 

Specifically the AMI is broken down into its three distinct layers, highlighting their functions 

and interoperability. The chapter introduces the data challenges, which are associated with 

the AMI and the related infrastructure used to process and manage the collected data. Here a 

detailed technical discussion of smart meters is provided along with their data collection 

capabilities. The chapter discussed the concept of load disaggregation focusing on both ILM 

and NILM and their associated benefits and limitations. Additionally the chapter introduced 

the concept of machine learning along with its challenges and mitigations. The chapter was 

concluded with an insight into cloud computing and how it is used in both smart grids and 

machine learning. 

Related research detailed in chapter 3 discussed an emerging concept known as AAL. Here 

numerous fields and disciplines have been integrated to provide a variety of different 

technical solutions aimed at overcoming existing monitoring problems. However, as 

identified, there are a plethora of different issues and limitations, which are associated with 

existing solutions. Complexity, cost, maintenance and the lack of personalisation and 

integration are just some of the reasons for limited deployment and adoption. 

The design and functionality of the PIMS framework was introduced in chapter 4. Here the 

end-to-end system was described starting with the smart meter and ending with the generated 

alert status. Through the use of web services, the functionality of the generated models could 

be exposed and integrated with both native applications and existing services. As a result, the 

research in this thesis introduced a novel approach achieving a cost effective, nonintrusive 

and personalised solution. 

Chapter 5 presented a case study involving 3 different patients. Here the study was used to 

satisfy both the implementation and evaluation of the PIMS framework. By conducting a 

patient trail it facilitated the generation of the behavioural training data and assed the 

generalisation of the device classification models. 

In chapter 6, a detailed description of the data gathering techniques used in the approach was 

presented. Specifically, an energy monitor was installed in three properties to create both the 
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appliance signature database and behavioural data. The data collection undertaken to generate 

and validate both the device and behavioural models was described along with the data 

preparation for classification. In addition the chapter presented the implementation of the 

PIMS framework using a hybrid approach. By using the Microsoft Azure platform a work 

space was generated for the PIMS framework. Here the trained classification models where 

created and configured to facilitate the real time detection of both normal and abnormal 

patient behaviour. In order to expose the functionality of the generated models, two web 

services where created to facilitate the real time classification of both device usage and 

patient behaviour. 

In chapter 7, the results for the device classification models were presented using the raw 

data, statistical features and altering the observation window. Both a decision forest and SVM 

where used to classify each of the 5 electrical devices. Additionally the behavioural models 

were scored using the evaluation methods outlined in the methodology. In Addition the 

implementation and evaluation of the approach was discussed. The chapter highlighted strong 

relationships between certain devices classes and what effect these relationships posed for 

classification. The chapter discussed how the accuracy could be improved by increasing the 

complexity of the classifier while highlighting concerns surrounding increased computational 

requirements.    

8.3 CONTRIBUTIONS TO KNOWLEDGE 

In this thesis, a wide variety of health applications were proposed for the PIMS framework. 

These include monitoring incapacity (such as falls), sleep disturbances, memory problems, 

changes in activity patterns, inactivity, occupancy and the identification of ADLs. The 

research presented in this thesis identified a number of benefits where smart meters provide 

advantages when compared to other AML approaches, such as wearable, distributed sensors 

and Internet of Things devices (IoT). As smart meters will reach high prevalence by 2020 

exploiting this low cost, accurate and maintained infrastructure for health applications 

arguably provides an attractive proposition to health and social care providers alike. Whilst 

these benefits provide the opportunity to alleviate many issues associated with current 

telehealth solutions there are also significant challenges. 

As a result, the proposed methodology offers a significant contribution for both the 

advancement of AAL and load disaggregation. In the UK, the effects of an ever aging 

population are becoming increasingly harder to manage. Consequently a variety of challenges 
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for both health and social care providers have been introduced. Using our methodology, an 

automated machine learning approach which is both adaptable and personalised is provided, 

which can be applied to a variety of medical domains and uses. Proposed applications include 

issuing alerts to carers when unusual activity patterns are recognised, identifying significant 

events such as sleep disturbances, inactivity and monitoring the progress of conditions (to 

inform treatment needs). 

The ability to identify usage patterns of individual appliances facilitates a greater 

understanding of the behavioural patterns of occupants. PIMS can accurately identify kettle, 

toaster, microwave, cooker and washing machine usage. Interaction with these devices and 

the models generated facilitates the detection of significant ADLS, and are used to ascertain 

the overall wellbeing of the occupant. Studying the usage patterns (and changes in usage 

patterns) of individual appliances provides the ability to detect abnormal patterns of 

behaviour linked to various health conditions. For example, unusual energy use overnight 

may be evidence that an occupant is experiencing sleep disturbances.  

Furthermore, analysis of the combination of appliance usage, and variations in these, offers 

the potential to infer different forms of EIP. Such combinations can be used to identify 

whether somebody is simply getting up in the night to go to the toilet, or whether they are 

getting up in the night to eat or make a cup of tea. It is the interpretation of these ‘activities of 

daily living’ that has the strongest potential for smart energy data to support health and care 

lies. However, such applications would be just a small part of the much wider domain of 

digital health. The research presented in this thesis is validated through the implementation of 

the PIMS framework and a unique patient trial. This study is the first of its kind and does not 

increment the technological successes of any other solution; this makes the approach unique 

and foundational in character within remote health monitoring solutions. As a result the 

research provides a novel approach for using energy data for both patient monitoring and 

assistive technologies. The proposed solution requires minimal installation, as it utilises the 

already installed smart meter infrastructure. It is truly non-intrusive in that it requires no user 

interaction beyond the normal usage of common household devices and services. The system 

costs are therefore very low given that the user is not required to wear or use any custom 

devices for the solution to work. This approach is a never been seen before technology that 

addresses many fundamental healthcare needs, for a safe and sustainable independent living 

home-care and Early Intervention system. 
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Although the research offers significant benefits to the AAL domain, its applications are far 

reaching especially in the field of NILM. Historically smart meter load disaggregation has 

been restricted by the quality of data provided by the smart metering infrastructure. By using 

the novel approach presented in this thesis a method is provided for the disaggregation of 

electrical appliances using only smart meter data. Using the start up signatures for each 

appliance class and a single obtainable parameter a machine learning approach was used to 

identify 5 distinct appliance classes. This approach offers a number of contributions to NILM 

by overcoming the challenges with smart meter disaggregation.   

8.4 FUTURE WORK 

The work conducted in this thesis can be adapted to provide a more granular assessment of 

the patient’s wellbeing while being applied to different medical conditions and use cases. In 

this subsection an overview of the future work and considerations are presented. 

 Combining device classification models: As demonstrated in chapter 6, different 

classification models and dimensionality reduction techniques presented increased 

accuracy for certain device classes. The possibility of using the device classification 

models in combination and selecting the classifier with the highest probability score could 

enhance system accuracy. In future work, the web service could be altered to present the 

electricity observations to multiple classification models while scoring them individually. 

The prediction with the highest scoring probability would be used to identify the device. 

Figure 100 highlights the concept of an enhanced PIMS web service: 
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Figure 100: PIMS cross model scoring 

Although cross modelling could improve the device classification accuracy careful 

consideration is required when assessing computational requirements. Each model will use 

additional compute hours which will incur additional costs. 

 Increasing device signatures: In this thesis, the device classification models were 

trained to identify five distinct device classes. Any future work would benefit from an 
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expanded device classification model, in particular profiling the lighting, which would 

enable the detection of a patient’s location within the home. Lights, light fittings and 

bulbs create specific profiles based on the type of light and the amount of bulbs fitted. 

This type of monitoring is extremely beneficial in assessing a patient’s wellbeing. 

Determining how often a patient visits the bathroom during the night can provide useful 

insights into their current health. For example, frequent visits may indicate a urinary tract 

infection or prostate problems if they are male.   

 Multiclass behavioural model: In future work a multiclass model will be deployed 

during step 12 replacing the existing binomial model. This will enable the system to 

identify various behavioural patterns, which require more tailored responses. By utilising 

a multiclass approach, it permits the system to be more granular by facilitating the 

detection of additional behavioural patterns and altering the required response to match 

the identified behaviour. However, generating additional behavioural classes beyond both 

normal and abnormal requires medical insight. Each training sample will require labelling 

to train the classifier to identify the significance of the observation. Additionally 

behavioural models could be generated which are specifically targeted at particular 

medical conditions enabling personalisation to both the patient and their associated 

condition. 

 Monitoring additional utilities: By monitoring the use of additional utilities such as gas 

and water the detection of additional ADLS is possible. Cooking equipment such as gas 

ovens and hobs can be identified in a similar manner to electrical devices. Likewise the 

identification of water consumption can be used to detect bathing habits such as using a 

bath or shower. 

Combing observations from multiple utilities facilities the construction of a more detailed 

behavioural pattern which could be used to detect concerning behaviour. For example if 

the use of a bath was detected but no subsequent electrical devices are used this may 

signify the patient has not gotten out of the bath. Figure 101 highlights how the PIMS 

framework could be developed to assess the usage of additional utilities. Here the use of 

electricity, gas and water can be combined to assess usage patterns and combinations.  
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Figure 101: Monitoring additional utilities through the PIMS framework 

 NHS collaboration: In order to best exploit the data generated from the PIMS framework 

a close partnership with the medical profession is essential. Currently the methodology 

presented in this thesis is being deployed in a number of patients suffering with early 

stage Dementia. Using both the PIMS framework and the expertise from the NHS future 

behavioural models will be more refined and tailored to the condition. By understanding 

the significance of the observed behaviours future training data can be used to detect 

more subtle changes in behaviour while branching out into other medical uses.     

 Work outside the medical domain: The ability to detect specific devices within a home 

obviously inspires other areas of research outside a medical setting. Such avenues include 

balancing grid load and demand, building management and automation and energy 

conservation. 

 Expanding the appliance signature database: Due to the limited number of device 

signatures there is a requirement to retrain the device identification models for each new 

deployment. This process requires manual labelling using the patient companion 

application. To remove this limitation the signature database should be expanded to 

include additional samples therefore improving mode generalisation.     

8.5 CONCLUDING REMARKS 

The approach presented in this thesis introduces an alternative methodology to existing 

patient monitoring solutions. As a result, many of the existing limitations associated with 

current technologies are removed. By using the data collected from smart meters the 
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methodology outlined in this thesis was able to accurately identify the use of individual 

electrical devices. This novel approach provides numerus enhancements over existing 

solutions by facilitating the detection of specific ADLS independently form the patient. By 

using this data a personalised decision regarding the welfare of the patient can be derived.    

Using smart meter data in a medical context is likely to involve taking it out of the regulated 

smart meter infrastructure to share it with third parties. By deploying a CAD sharing smart 

meter data has been facilitated. However, current pairing procedures impede the scalability of 

the solution and close coordination between healthcare providers and DECC will be 

important for mass implementation. Given the sensitive use of the acquired data and the 

associated intelligence that can be derived from it, various privacy concerns have been 

highlighted. Ensuring good data security and privacy after data has left the currently 

regulated system is likely to be a key concern of both the regulators and health care 

providers. 

The level of failure tolerance for health critical usage is also likely to be lower than for 

standard energy metering applications, with potential implications for how the system is 

regulated. Questions will also need to be considered about where responsibility lies when 

systems fail (with potential health consequences). All medical devices are tightly governed 

and the need to maintain an adequate Service Level Agreement (SLA) is an important 

consideration. Smart meters which are being used in a medical context will require high 

priority should a fault occur.    
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APPENDIX 
Figure 102 highlights the normalisation process undertaken in the Azure ML platform. Here 

the PIMS framework normalises the energy values to ensure they conform to a common 

scale.    

 

Figure 102: Azure ML Normalisation Configuration 

Figure 103 presents the expected input and output schema for the PIMS web service. 

Specifically 6 input values are expected representing the first 60 seconds of device usage. 

Once the classification is complete the output schema returns the predicted class along with 

the scored probability for the prediction. 

 

Figure 103: PIMS Input Output Schema 
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Figure 104 highlights the code used to generate the values for the RSS web service. In figure 

105 a break point was added to highlight the 7 column values for the input schema. Here 6 

integer values and one string value is expected by the web service. 

 

Figure 104: Code for generating input values 

 

Figure 105: Break point highlighting input schema 

In figure 106 a break point was introduced to highlight the 6 expected integer values from the 

energy monitor.  
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Figure 106: Break point highlighting input values 

Figure 107 shows the web interface for the JSON parser. Here the feed value is checked at 

each 10 second interval. If the feed value is equal to or greater than 700W the vale is stored in 

a data list until there are 6 values for classification. 

 

Figure 107: PIMS Web Interface JSON Parser 

Figure 108 shows the JSON parser storing each of the acquired values for classification. 

Once 6 values are obtained the data is sent to the PIMS webserver. Figure 109 presents the 

code behind the JSON parser.    
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Figure 108: PIMS JSON Parser Processing For Classification 

 

Figure 109: PIMS JSON Parser Code 
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In order for the values to be passed to the web service both the URL and API Access key 

need to be provided. Figure 110 highlights the code used to connect and authenticate with the 

web service. 

 

Figure 110: Web service connection and authentication code 

Figure 111 presents the code for processing the response from the web service. 

 

Figure 111: Web service response code 

 

 

 

 

 

 

  

 


