111 research outputs found

    Abnormalities in cardiac-induced brain tissue deformations are now detectable with MRI: A case-report of a patient who underwent craniotomy after trauma

    Get PDF
    Background: Heartbeat and respiration induce cyclic brain tissue deformations, which receive increasing attention as potential driving force for brain clearance. These deformations can now be assessed using a novel 3D strain tensor imaging (STI) method at 7 T MRI. Methods: An 18-year-old man had suffered a traumatic brain injury and was treated with a craniotomy with a maximal diameter of 12 cm. STI was employed to capture cardiac-induced brain tissue deformations and additional time-resolved 2D flow measurements were acquired to capture cerebrospinal fluid (CSF) flow towards the spinal canal. Results: The craniotomy caused major changes in all aspects of the brain's mechanical dynamics as compared to healthy volunteer references. Tissue strains increased, particularly around the craniotomy, and directionality of deformations showed large abnormalities, also in the contralateral hemisphere. As the brain tissue could pulsate outward from the skull, physiological pulsatile CSF flow at the foramen magnum was abolished. Conclusions: This work illustrates how STI can assess physiological patterns of brain tissue deformation and how craniotomy leads to widespread deformation abnormalities that can be detected at a single patient level. While this case is meant to provide proof of concept, application of STI in other conditions of abnormal brain mechanical dynamics warrants further study

    Whole-brain mapping of cerebrospinal fluid velocity and displacement over the cardiac cycle using phase contrast MRI and optimization of a DENSE sequence

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2021O líquido cefalorraquidiano (LCR) tem um papel essencial na drenagem dos resíduos resultantes do metabolismo cerebral e o constante movimento a que este fluido está sujeito é vital para manter a homeostasia do cérebro. Com feito, alterações neste movimento, geralmente associadas com o envelhecimento ou com doença, levam a perturbações fisiológicas, como a doença de Alzheimer ou a hidrocefalia. Por esta razão, é fundamental consolidar e aprofundar o conhecimento referente a este fluido, nomeadamente perceber como varia a sua velocidade e deslocamento, pois só desta forma será possível desenvolver e aperfeiçoar a prevenção e tratamento destas perturbações. Com efeito, este fluido está em constante movimento e o seu comportamento está intimamente ligado ao ciclo cardíaco. Apesar de estudos anteriores sobre a velocidade e o deslocamento do líquido cefalorraquidiano através de métodos de Ressonância Magnética (RM), ainda não existe uma descrição completa sobre o comportamento deste fluido. O objetivo principal deste estudo, consistiu em obter uma descrição detalhada da velocidade e do deslocamento do LCR através da aquisição de imagens de ressonância magnética obtidas com contraste de fase, um método de referência no que toca ao estudo da velocidade de fluidos No entanto, utilizar RM de contraste de fase para adquirir velocidades mais baixas, como as do LCR, requer tempos de aquisição mais longos e, consequentemente, as imagens obtidas estão mais sujeitas a distorções. Assim, a segunda parte deste projecto partiu dos resultados de deslocamento obtidos através da RM com contraste de fase para otimizar os parâmetros de uma segunda sequência de MR. Esta sequência é relativamente recente e possibilita o estudo do deslocamento sub-milimétrico do LCR associado ao movimento do cérebro através da aplicação de gradientes sucessivos (DENSE). Porém, é necessária uma escolha rigorosa dos parâmetros utilizados de forma a obter resultados que retratem o deslocamento do LCR de uma forma rigorosa e exata. Na primeira parte deste projecto, quatro voluntários foram estudados utilizando RM com contraste de fase, entre outubro de 2019 e fevereiro de 2020, em concordância com as diretrizes éticas da University Medical Center em Utrecth, Países Baixos. As aquisições foram realizadas utilizando um scanner de RM Philips 7 T e dois tipos de contraste foram utilizados: contraste de fase com 1mm de resolução isotrópica e com uma codificação de velocidade de 5m/s, e imagens 3D com ponderação em T1 com 1mm de resolução isotrópica. As imagens foram obtidas para três orientações distintas: anterior posterior, inferior-superior, e direita-esquerda. Na segunda parte deste projecto, dois voluntários foram estudados, de janeiro a fevereiro de 2020, utilizando seis contrastes: contraste de fase com 1mm de resolução isotrópica, e imagens 3D com ponderação em T1 com 1mm de resolução isotrópica, uma sequência básica DENSE com 2mm de resolução isotrópica, uma sequência básica DENSE com 3mm de resolução isotrópica, uma sequência DENSE com uma preparação T2 com 3mm de resolução isotrópica e, finalmente, uma sequência DENSE com tempo de eco prolongado com 3mm de resolução isotrópica. No entanto, e ao contrário das imagens adquiridas na primeira parte deste projecto, as imagens da segunda parte foram obtidas apenas para a orientação inferior-superior. Todas as imagens adquiridas no decorrer desta dissertação foram obtidas com gating cardíaco. O gating cardíaco foi realizado através da utilização de um eletrocardiograma e de um oxímetro de pulso de modo a relacionar o evolução da velocidade e do deslocamento com o ciclo cardíaco. Neste projecto foi também desenvolvida uma pipeline que permite que a partir das imagens adquiridas seja possível estudar a velocidade e o deslocamento do LCR. Esta pipeline inclui diversos passos. O primeiro passo consistiu em realinhar e co-registar as imagens obtidas de forma a permitir uma análise voxel a voxel. Seguidamente, as imagens foram segmentas em três tipos de tecidos: LCR, substância cinzenta, e substância branca. Adicionalmente, as primeiras etapas foram realizadas através da utilização de toolboxs disponíveis no MATLAB como o SPM e o CAT12. Posteriormente, os artefactos presentes nas imagens, tais como as correntes-eddy, foram corrigidos. No decorrer deste projecto diversas regiões foram analisadas e foram divididas em dois grupos: regiões do sistema ventricular, nas quais se incluíram os ventrículos laterais, o terceiro e quarto ventrículo, o aqueduto de Sylvius e a Cisterna Magna; e regiões mais abrangentes, como a região anterior e posterior do cérebro. Estas áreas do cérebro foram selecionadas através da segmentação das imagens anatómicas. Finalmente, a velocidade de cada uma destas regiões foi extraída e integrada ao longo do ciclo cardíaco de maneira a calcular o deslocamento do LCR. Os resultados obtidos relativamente à velocidade mostraram consistência para os quatro voluntários deste projecto. Verificou-se que as regiões do sistema ventricular demonstram valores de velocidade consideravelmente mais elevados do que as regiões mais abrangentes. Com efeito, a região que apresentou valores absolutos de velocidade mais elevados foi o aqueducto de Sylvius. Adicionalmente, verificou-se que as velocidades são superiores na orientação caudal-cranial e inferiores na orientação direita-esquerda. Concluiu-se também que o valor de velocidade escolhido não foi o mais indicado para as regiões mais abrangentes pois a velocidade destas regiões é significativamente inferior e, desta forma, poderá ter existido perda de sinal do LCR. Posteriormente, ao integrar a velocidade obtida através da RM com contraste fase obtiveram-se mapas de deslocamento para as mesmas regiões cerebrais. Estes resultados mostraram-se consistentes e, tal como anteriormente observado, o deslocamento é consideravelmente superior para as regiões do sistema ventricular. A região inferior do cérebro foi a que apresentou valores de deslocamento mais elevados, o que pode ser justificado pelo facto desta região se encontrar mais próxima do coração e, desta maneira, o LCR ser ejetado das regiões que ocupa com maior velocidade. Adicionalmente, verificou-se que as maiores alterações do deslocamento ocorrem imediatamente após a sístole cardíaca. Seguidamente, foi possível, a partir dos valores de deslocamento obtidos, determinar um valor ótimo para a sensibilidade, relativamente ao deslocamento, da sequência DENSE. Contrariamente à primeira parte deste projecto, os resultados obtidos utilizando as sequências DENSE dizem respeito exclusivamente às regiões mais abrangentes. De facto, esta exclusão das regiões do sistema ventricular foi causada pela baixa resolução das imagens obtidas que, desta forma, não permitiram uma segmentação de áreas tão reduzidas com fiabilidade razoável. Os resultados desta análise mostram que a sequência utilizada cujos resultados de deslocamento se assemelham mais aos resultados obtidos através do contraste de fase foi a sequência que utilizou a preparação T2. Por oposição, as sequências básicas utilizadas mostraram semelhança reduzida com o método de comparação. Esta diferença observada foi justifica pela baixa resolução das imagens adquiridas, o que contribui para que não fosse possível eliminar o efeito de volume parcial. Adicionalmente, concluiu-se que o valor de sensibilidade para o deslocamento utilizado não foi o correto para estas regiões e, desta forma, houve perda de sinal adquirido justificando assim às diferenças encontradas entre os dois métodos. Concluindo, esta dissertação cumpriu o objetivo principal proposto, nomeadamente fazer uma descrição completa e quantificar a evolução da velocidade e do deslocamento do líquido cefalorraquidiano ao longo do ciclo cardíaco. Adicionalmente, o método de RM com contraste de fase mostrou ser um método fiável para o estudo do comportamento do LCR mesmo em regiões com velocidades mais lentas. Os resultados de deslocamento obtidos através da utilização do método DENSE permitiram confirmar o potencial desta técnica para medir deslocamentos sub-milimétricos. No entanto, este método ainda necessita de ser otimizado de forma a ser uma alternativa viável ao contraste de fase. Finalmente, os resultados obtidos neste estudo permitem que estudos futuros utilizem os valores máximos de cada região obtida de forma a otimizar futuras sequências.Cerebrospinal fluid (CSF) plays an essential role in the drainage of cerebral waste, and its continuous motion is vital to maintain the brain’s homeostasis. Variations in this motion, associated with aging and disease, are observed in physical and physiological disorders, such as Alzheimer’s Disease. Therefore, a deep understating of this fluid motion, such as its velocity and displacement, is fundamental to strengthen our knowledge of these diseases and might be vital to their prevention and treatment. Despite previous studies reporting CSF velocity and displacement using magnetic resonance imaging techniques, a complete picture of this fluid motion has not yet been obtained. The aim of this study was to, first and foremost, obtain a general picture of CSF velocity and displacement using Phase Contrast (PC) MRI, a method of reference for velocity acquisition. Furthermore, this sequence was also used to optimize the parameters for an MRI technique called Displacement Encoding with Stimulated Echoes (DENSE), a sequence that was modified in order to be capable of measuring small displacements. Four healthy subjects were studied using whole-brain ultra-high field (UHF) MRI at 7 Tesla (T). The volunteers were scanned using two different MRI imaging sequences: Phase Contrast MRI at 1 mm isotropic resolution and 3D T1-weighted (T1w) at 1 mm isotropic resolution. Additionally, two healthy subjects were scanned using PC and four different DENSE acquisitions. Firstly, two basic DENSE sequences with 2mm and 3mm isotropic resolution were acquired. Next, a DENSE acquisition with a T2 prepared magnetization, and a DENSE sequence with a long echo time were acquired to avoid confounding effects from partial volume between tissue and CSF. The image processing pipeline included coregistration, segmentation, eddy current correction. Moreover, mean velocity and displacement maps were calculated for regions of interest previously selected. The results in this study obtained from the PC acquisitions show consistent velocity and displacement values across all subjects. Furthermore, CSF shows higher values for the ventricular regions, such as the aqueduct, and predominant motion in the anterior and feet direction. Comparatively, regions in the periphery of the brain display slower velocities and smaller displacements. The displacement values obtained with PC were used to optimize the displacement sensitivity used in the DENSE acquisition. The DENSE sequence acquired with a T2 magnetization preparation showed the most consistent results when compared to the Phase Contrast. In conclusion, this project managed to study and quantify CSF behavior in the brain, which allows for the optimization of future sequences that desire a more detailed study of this fluid’s in specific brain regions

    Measuring blood flow and pulsatility with MRI: optimisation, validation and application in cerebral small vessel disease

    Get PDF
    Cerebral small vessel disease (SVD) is the breakdown of the small blood vessels of the brain, leading to many cases of stroke and dementia. The pathophysiology of SVD is largely unknown, although several mechanisms have been suggested. One such mechanism is the role of increased blood flow pulsatility into the brain, caused by vessel stiffening, leading to damage of the microvasculature. Magnetic resonance imaging (MRI) allows us to non-invasively measure blood flow and velocity using a technique called phase contrast-MRI – traditionally used with 2D slices across the vessel(s) of interest. An advanced form of phase-contrast MRI, known as 4D flow, has emerged in recent years that allows for a volume of data to be acquired, containing velocity information in all directions. However, to keep scan times practical when collecting this amount of data, spatiotemporal resolution has to be sacrificed. The main aim of this thesis was to assess 4D flow’s capabilities, including comparing it to the more well-established 2D method in healthy volunteers, patients, and phantom experiments, so as to better understand its role in investigating SVD. Another aim was to learn more about the role of flow and pulsatility in SVD development in patients using data acquired in the longitudinal Mild Stroke Study 3 (MSS3). Firstly, I systematically reviewed studies that have assessed the human brain using 4D flow. Across 61 relevant studies, I found a general consensus for the current use of the technique in this context. I then optimised the Siemens prototype 4D flow sequence (N = 11 healthy volunteers), testing different parameters to find the combination that best balanced scan quality and duration. I then assessed the test-retest repeatability and intra-rater reliability of both 2D and 4D methods (N = 11 healthy volunteers), as well as differences between them. Following this, I performed the same 4D-2D comparison on SVD patients (N = 10). Absolute flow measurements using 4D flow were shown to have moderate repeatability and reliability, while flow pulsatility measurements showed acceptable repeatability and reliability. Furthermore, 2D arterial pulsatility was measured higher than with 4D, while 4D often measured higher flow rates than 2D. 4D flow was shown to be feasible when used on SVD patients, with no noticeable issues caused by potential patient movement. Flow data analysis from the longitudinal SVD study MSS3 showed that intracranial pulsatility is associated with cross-sectional SVD lesion volume but not longitudinal lesion growth, with stronger associations seen in the arteries of the neck compared to the venous sinuses

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Brain Injury

    Get PDF
    The present two volume book "Brain Injury" is distinctive in its presentation and includes a wealth of updated information on many aspects in the field of brain injury. The Book is devoted to the pathogenesis of brain injury, concepts in cerebral blood flow and metabolism, investigative approaches and monitoring of brain injured, different protective mechanisms and recovery and management approach to these individuals, functional and endocrine aspects of brain injuries, approaches to rehabilitation of brain injured and preventive aspects of traumatic brain injuries. The collective contribution from experts in brain injury research area would be successfully conveyed to the readers and readers will find this book to be a valuable guide to further develop their understanding about brain injury
    • …
    corecore