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A B S T R A C T   

Monitoring intracranial pressure (ICP) and craniospinal compliance (CC) is frequently required in the treatment 
of patients suffering from craniospinal diseases. However, current approaches are invasive and cannot provide 
continuous monitoring of CC. Dynamic exchange of blood and cerebrospinal fluid (CSF) between cranial and 
spinal compartments due to cardiac action transiently modulates the geometry and dielectric properties of the 
brain. The resulting impedance changes can be measured and might be usable as a non-invasive CC surrogate. A 
numerically robust and computationally efficient approach based on the reciprocity theorem was developed to 
compute dynamic impedance changes resulting from small geometry and material property changes. The 
approach was successfully verified against semi-analytical benchmarks, before being combined with experi-
mental brain pulsation data to study the information content of the impedance variation. The results indicate that 
the measurable signal is dominated by the pulsatile displacement of the cortical brain surface, with minor 
contributions from the ventricular surfaces and from changes in brain perfusion. Different electrode setups result 
in complementary information. The information content from the investigated three electrode pairs was 
employed to successfully infer subject-specific brain pulsation and motion features. This suggests that non- 
invasive CC surrogates based on impedance monitoring could be established.   

1. Introduction 

The regulation of intracranial pressure (ICP) is vital for normal brain 
function. Several pathological conditions and neurological disorders 
including hydrocephalus, traumatic brain injury, stroke, and brain 
tumor can cause an increase in ICP beyond safe physiological margins. 
Due to the potentially severe pathological consequences of raised ICP, 
avoiding it is of utmost importance. Consequently, continuous moni-
toring and regulation of ICP, or of the underlying craniospinal compli-
ance (CC), can be crucial for diagnosis and therapy. By CC we 
understand the sum of intracranial and spinal compliance; it is defined 
as the derivative dV

dICP
, where V is the cerebrospinal fluid (CSF) volume. 

The development of accurate, cost-effective, and non-invasive ICP/CC 
monitoring is therefore the focus of extensive research efforts (Zhang 
et al., 2017; Evensen and Eide, 2020). 

Currently, there are different approaches for measuring ICP, which 

vary in invasiveness. The use of invasive, fluid-filled ventricular cathe-
ters connected to an external pressure sensor remains the gold standard 
for ICP monitoring (Foundation et al., 2000; Spiegelberg et al., 2015). 
However, this method has several drawbacks including high infection 
rates, postprocedural hemorrhaging, and mispositioning of catheters 
(Tavakoli et al., 2017). To resolve these problems, microsensors, such as 
the Spiegelberg ICP sensor (Whittle, 2000), have been developed in the 
early 1990s. While they are less-invasive than fluid-filled ventricular 
catheters (Whittle, 2000; Bekar et al., 2009), microsensors still suffer 
from shortcomings such as the risk of bleeding and infection (Evensen 
and Eide, 2020). The most important challenge in invasive methods is 
the need for surgical penetration of the skull and dura mater, which 
prevents application outside the intensive care unit (ICU) or for pro-
longed periods. In addition to ICP monitoring, CC assessment requires 
volume manipulation procedures using infusion testing (Bottan et al., 
2013). Even though the infusion testing procedure has improved over 
time, it remains invasive and unsuitable for continuous CC monitoring 

* Corresponding author. 
E-mail address: karimi@itis.swiss (F. Karimi).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 
journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2022.103280 
Received 7 October 2022; Received in revised form 1 December 2022; Accepted 2 December 2022   

mailto:karimi@itis.swiss
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2022.103280
https://doi.org/10.1016/j.nicl.2022.103280


NeuroImage: Clinical 37 (2023) 103280

2

(Jan Malm et al., 2012). 
Hence, there is a great need to develop non-invasive approaches 

(Zhang et al., 2017). Non-invasive methods typically rely on measuring 
surrogate quantities that strongly correlate with ICP or CC (Zhang et al., 
2017). These methods can be categorized according to their underlying 
working principle, including imaging of fluid-motion by magnetic 
resonance imaging (MRI) or transcranial Doppler ultrasonography 
(TCD), measurement of structural changes, and characterization of 
electric or acoustic properties (Zhang et al., 2017). MRI has been pro-
posed as a tool for measuring ICP non-invasively (Alperin et al., 2000). 
Drawbacks of this method include high cost and unsuitability for long- 
term monitoring (Nag et al., 2019; Zhang et al., 2017). Ultrasound- 
based methods are much cheaper, but highly sensitive to the probe di-
rection and patient anatomy (Zhang et al., 2017; Evensen and Eide, 
2020). 

As a result of cardiovascular and respiratory activity, blood and CSF 
are dynamically exchanged between cranial and spinal compartments, 
modulating ICP and being necessarily associated with variations in both 
head anatomical geometry and the dielectric property distributions, also 
under healthy physiologic conditions. Electrical impedance tomography 
(EIT) thus could be used to derive information about ICP. Manwaring 
et al. were the first to employ this method for continuous non-invasive 
ICP monitoring in animal models (Manwaring et al., 2013). Electric 
capacitance tomography (ECT), based on the same principle as EIT, has 
been applied to detect brain changes caused, for instance, by tumor 
growth (Taruno et al., 2013). Deriving an ICP surrogate from head 
capacitance measurements using electrically isolated electrodes on the 
scalp was proposed by Russegger et al. (1990) in the early 1990s. The 
head capacitance is small (∼ 100pF) and the changes that need to be 
accurately measured are less than 1% thereof. At the time, however, 
there was a lack of suitable hardware and computational algorithms 
with sufficient accuracy to measure these small changes. 

Given the problems and limitation inherent in current ICP and CC 
measurement and monitoring modalities, it is clear that reliable non- 
invasive alternatives should be developed. The present work aims to 
support this effort by developing numerical techniques to computa-
tionally determine and investigate proposed head-impedance-based 
measurement approaches using image-based and highly detailed 
computational models. In silico methodologies can then be applied to 
investigate the relationships between measurable impedance signals and 
underlying dynamic anatomical and dielectric changes. As mentioned 
above, one of the key challenges results from the very small changes in 
magnitude of the head impedance – where ‘small’ refers to the magni-
tude of the impedance change that demands sensitive measurement 
equipment, and also to its relative magnitude compared to that of the 
total head impedance. This complicates both computations and experi-
mental measurements. To overcome the measurement problems, 
Andreas Spiegelberg et al. (2022) developed a new non-invasive 
impedance measurement device. This work aims at overcoming the 
computational issues. Extracting small differences from simulations 
with their associated numerical errors (e.g., discretization- and 
convergence-related) is problematic. Another issue stems from the high 
computational effort that is amplified by the need to sufficiently resolve 
the dynamic changes in time. Corresponding novel computational 
methodologies to overcome these issues are developed and verified in 
this study. They make use of the reciprocity theorem and enable 
numerically robust and computationally efficient, highly detailed and 
realistic, personalized simulations of CC-related impedance-changes. 
Those methodologies are applicable well beyond the current 
application-of-interest, whenever the electromagnetic (EM) impact on 
impedance of small dynamic changes in geometry or dielectric proper-
ties are to be accurately assessed. In life sciences, this includes neural- 
activity or perfusion-related tissue impedance changes, as well as car-
diovascular, respiratory, and digestive motion. While such changes can 
be negligible in many applications, they are increasingly important in 
various fields involving high-precision measurements, such as imaging, 

or neuroscientific diagnosis and therapy (e.g., Fultz et al., 2019). 
The goals of this study are to:  

• develop theory and methodology to efficiently and robustly compute 
small impedance changes resulting from (transient) changes in ge-
ometry and/or dielectric properties;  

• validate the methodology and verify its implementation;  
• derive a spatial sensitivity concept that can be used to understand the 

regional contribution to the measurable signal, e.g., for signal in-
formation content maximization;  

• apply the methodology using a detailed anatomical head model and 
image-based 4D deformation data;  

• investigate inter-subject differences in the obtainable signal and 
relate them to differences in brain pulsation features;  

• investigate the information content of the measurable signal – also 
considering multiple electrode placements – in view of non-invasive, 
patient-specific brain pulsation inference, towards deriving a non- 
invasive CC surrogate; and  

• discuss modeling uncertainties and limitations. 

2. Methods 

2.1. Theory 

Exchange of blood and CSF between cranial and spinal compart-
ments over the cardiac cycle changes the geometry and dielectric 
properties of the brain. The Monro-Kellie doctrine (Monro, 1783; Kellie, 
1824) stipulates that since the skull is rigid and contains primarily brain 
parenchyma, CSF and blood, which are incompressible, the sum of their 
volumes must remain constant. This means that any change in the vol-
ume of one component has to be compensated. Therefore, during the 
systolic part of the cardiac cycle, when the blood volume in the brain 
increases, CSF volume must decrease, and vice versa during diastole. 
This is a dynamic and spatially heterogeneous (i.e., location-dependent) 
process that results in pulsation (changes in shape and location of brain 
structures and the overall brain) and associated brain dielectric property 
variations due to varying amount of tissue perfusion. These dynamic 
changes affect the head’s electric impedance, such that head impedance 
measurements are likely to include information content that can be 
related to brain motion dynamics and associated ICP/CC changes. 
Computational modeling is a powerful tool to help understand and 
exploit this relationship, not just to establish a non-invasive ICP/CC 
surrogate, but to advance the knowledge about dynamic ICP and its 
pathophysiological basis. This demands simulation of an electrostatic 
problem in which the geometry is dynamic and the dielectric properties 
vary simultaneously. The quantity-of-interest is the small impedance 
variation, which must be computed at sufficient temporal resolution 
over the interval of interest (primarily the cardiac cycle). The natural, 
direct, and simple solution is to apply suitable boundary conditions to 
(at least) two surface electrodes and solve the Laplace equation for all 
time steps, while adapting the geometry and dielectric properties: 
∇⋅(∊̃∇ϕ(r, t)) = 0, (1)  

where ∊̃ and ϕ are the complex permittivity and the scalar electric po-
tential, respectively. This is a quasi-static approximation of Maxwell’s 
equations which neglects the displacement current. It is suitable in the 
frequency range of interest, i.e., around 1MHz (Andreas Spiegelberg 
et al., 2022), because the head dimensions are much smaller than the EM 
wavelength (multiple meters). For this study, Dirichlet boundary con-
ditions (constant voltage) were used on the electrodes and insulating 
Neumann boundary conditions at the remaining surfaces. The base 
admittance is the reverse of the impedance and obtained as: 

Y =
1

Z
=

iωQ

V0

, (2) 

F. Karimi et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 37 (2023) 103280

3

where Q =
∫

Ω
∊̃E⋅dS is the total electric charge (E = −∇ϕ: electric field; 

V0: applied voltage; ω: angular frequency; Ω: closed surface encom-
passing one of the electrodes). The admittance change relative to the 
base admittance is then computed as: 

dY = Y* − Y = iω
Q* − Q

V0

= iω
dQ

V0

, (3)  

where Y* is the structure admittance at any time point during the cardiac 
cycle. In this paper, the superscript * denotes values after applying 
geometric or dielectric changes, whereas its absence denotes the initial 
configuration. 

This natural approach suffers from two primary shortcomings: first, 
the computational cost is high because the Laplace equation must be 
repeatedly solved for the considered dynamic configuration. Second, the 
tiny perturbations in the problem specifications lead to similar values for 
Y* and Y, such that any inaccuracy, e.g., related to the simulation, will 
dominate. Inaccuracies can be reduced by refining the discretization and 
strengthening the convergence solver criterion, which in turn incurs 
dramatic increases in computational cost. 

Hence, we developed, based on the reciprocity theorem (Plonsey, 
1963), a novel approach for computing the quantities-of-interest. Fig. 1 
shows an overview of the approach. First, using the reciprocity theorem, 
a closed-form equation for the dynamic charge change is derived. An 
effective bi-layer charge distribution is determined, on the basis of 
which the impact of moving material boundaries - while maintaining 
dielectric properties fixed - is quantified (case (i)), along with that of 
changing these properties while maintaining the geometry (case (ii)). 
The combined, general case is referred to as case (iii). 

2.1.1. Reciprocity theorem application 
Let dϕ = ϕ* −ϕ and d∊̃ = ∊̃*

−∊̃ be the perturbations of the scalar 
electric potential and of the permittivity. The quasi-static Laplace 
equation for ϕ* implies that ∇⋅(∊̃*

∇ϕ*) = 0, which yields: 

∇⋅(∊̃*
∇dϕ) = −∇⋅(∊̃*

∇ϕ) = −∇⋅(∊̃∇ϕ)−∇⋅(d∊̃∇ϕ). (4)  

∇⋅(∊̃∇ϕ) is zero everywhere, and ∇⋅(d∊̃∇ϕ) is only nonzero on the 
original and the new location of the shifting interfaces. Eq. (4) suggests 
that instead of computing dϕ as the difference of ϕ and ϕ*, one can 
compute dϕ and the corresponding dQ directly by solving a corre-
sponding Poisson equation. 

While this reduces the accuracy issue, it still demands solving a 
Poisson problem for each relevant time-point as d∊̃ changes. To over-
come this challenge, the reciprocity theorem (Plonsey, 1963) is applied, 
which states that: in a volume V bounded by surface S and having 
complex permittivity ̃∊, if volume charge densities ρv1 and ρv2 give rise to 
scalar potentials ϕ1 and ϕ2, such that ∇⋅(∊̃∇ϕ1) =−ρv1 and ∇⋅(∊̃∇ϕ2) =

−ρv2, the following vector identity must be satisfied: 
∫

S

ϕ
1
(∊̃∇ϕ

2
)⋅dS−

∫

S

ϕ
2
(∊̃∇ϕ

1
)⋅dS=

∫

V

ϕ
1
(∇⋅(∊̃∇ϕ

2
))dv−

∫

V

ϕ
2
(∇⋅(∊̃∇ϕ

1
))dv.

(5)  

By assigning ϕ1 = ϕ*,ϕ2 = dϕ, and using Eq. (4), one can write: 
∫

S

ϕ*(∊̃*
∇dϕ)⋅dS−

∫

S

dϕ(∊̃*
∇ϕ*)⋅dS = −

∫

V

ϕ*ρvdv− 0 (6)  

where ρv = −∇⋅(∊̃*
∇ϕ), considering that ∇⋅(∊̃*

∇ϕ*) = 0. 

Fig. 1. Developed computational pipeline based on 
the reciprocity theorem for dynamic EM problems. A 
closed-form equation for determining effective 
charge layer distributions is derived and used to 
compute the associated impedance changes (via the 
electric charge variation dQ) as well as sensitivity 
maps (S(r), functional derivative of dQ to local brain 
pulsation). A sensitivity map provides insight into 
the spatial distribution of pulsation-contributions to 
the measurable impedance signal.   
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As the electric permittivity of the background medium (air) is very 
small compared to the permittivities of the various head tissues, it can be 
approximated as zero. Then, ∫Sdϕ(∊̃*

∇ϕ*)⋅dS = 0because dϕ vanishes 
on the electrodes (identical boundary conditions for ϕ and ϕ*) and 
elsewhere ∊̃*

∇ϕ* = 0. Additionally, ∫Sϕ*(∊̃*
∇dϕ)⋅dS =

∫
SE1 VE1⋅q⋅dS +

∫
SE2 VE2⋅q⋅dS +

∫
SNeumann

ϕ*
⋅0⋅dS = −V0dQ, where E1 and E2 denote the 

electrode regions where Dirichlet boundary conditions are applied, q =∊̃*
∇dϕ is the charge density, and SNeumann stands for the boundary sur-

faces where an isolating zero-flux Neumann boundary conditions is 
applied. As a result, 

dQ =

∫
ϕ*ρvdv

V0

. (7)  

Without loss of generality, we assume that there is only one shifting 
interface in the geometry, which moves from region 1 towards region 2 
(Fig. 2). Then, ρv can be written as 
ρv = ρs1

δ(r − r1)+ ρs2
δ(r − r2) (8)  

where ρs1 and ρs2 are surface charge densities, and r1 and r2 are position 
vectors for points located on the original and new location of the 
interface, respectively. In other words, the Poisson equation source term 
−∇⋅(∊̃*

∇ϕ) effectively behaves like a charge bi-layer. Using Gauss’ 

theorem and the conservation of current density on the interface, ρs1 and 
ρs2 are obtained as: 

ρs1
=

(∊̃2

∊̃1

*∊̃1

− ∊̃1

*
)

∂ϕ

∂n
|
Ω
+
1

,

ρs2
= −(∊̃2 − ∊̃1

*
)

∂ϕ

∂n
|
Ω2
,

(9)  

where n is the normal vector to the interface, + denotes the side of 
interface within the second region, and Ω1 and Ω2 denote the original 
and the new location of the interface, respectively. Substituting Eq. (9) 
in Eq. (7) yields 

dQ =

∫
Ω1

ϕ*(r1)ρs1
dS +

∫
Ω2

ϕ*(r2)ρs2
dS

V0

. (10)  

2.1.2. Solution algorithm for case (i) 
Case (i) assumes that the dielectric properties remain constant while 

the interface moves. Thanks to the reciprocity theorem, dQ is computed 
directly through a more stable numerical procedure given in Eq. (10). 
However, the dependence on ϕ* still demands repeated solving of the 
quasi-static Laplace equation for all relevant configurations and time- 
points. Furthermore, extracting ϕ and ∂ϕ

∂n on two interfaces with tiny 
separation can also result in a large numerical error. Hence, a first 
approximation is introduced. It relies on small interface shifts: Eq. (9), 
Eq. (10), and the Gauss’ theorem lead to  

where ∊̃1 and ∊̃2 are the complex permittivity of region 1 and region 2, 
respectively. In the last step, we neglect the E and E* variations between 
the original and new location of the interface. 

On the interface Ω1, dE+
t = dE−

t and according to Eq. (4), 
dE+

n −dE−
n = −ρs1∊̃1

, with Et and En being the tangential and normal 
components of electric field, respectively. Therefore, by assuming 
dE

− ≅ 0 (due to the fact that the difference between E and E* in region 
1 is negligible), one can write: 

dE
+ = −

ρs1∊̃1

n̂ (12)  

and 

E
*
+ = E+ + dE+ = E+ −

ρs1∊̃1

n̂ (13)  

By substituting Eq. (13) in Eq. (11), we obtain: 

Fig. 2. Sketch illustrating a dynamic EM problem with a shifting interface. The 
impedance computation due to the dynamic geometry changes is mathemati-
cally recast (using the reciprocity theorem) into the task of determining 
equivalent dipolar charge-density distributions residing at the shifting inter-
face. Numerical methods are then developed to efficiently estimate those 
distributions. 

V0dQ =

∫

Ω1

(∊̃2 − ∊̃1)ϕ
*(r1)

∂ϕ

∂n
|
Ω
+
1

dS −

∫

Ω2

(∊̃2 − ∊̃1)ϕ
*(r2)

∂ϕ

∂n
|
Ω2

dS

= −

∫

Ω1 ,Ω2

(∊̃2 − ∊̃1)ϕ
*∇ϕ⋅dS = −

∫

v

(∊̃2 − ∊̃1)∇⋅(ϕ*∇ϕ)dv

= −

∫

v

(∊̃2 − ∊̃1)E
*
⋅Edv = −

∫

Ω1

∫
r2

r1

(∊̃2 − ∊̃1)E
*
⋅Edr⋅dS

≈ −

∫

Ω1

(∊̃2 − ∊̃1)E
*
+⋅E+

(∫
r2

r1

dr

)
⋅dS = −

∫

Ω1

(∊̃2 − ∊̃1)E
*
+⋅E+(r2 − r1)⋅dS,

(11)   
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V0dQ =−

∫

Ω1

((∊2

∼
−∊1

∼
)⃒⃒

E+

⃒⃒
2

+
ρ2

s1∊1

∼

)
(r2 − r1)⋅dS

=−

∫

Ω1

((∊2

∼
−∊1

∼
)(⃒⃒

E+
n

⃒⃒
2

+
⃒⃒
Et

⃒⃒
2
)
+
(∊2

∼
−∊1

∼
)2∊1

∼

⃒⃒
E+

n

⃒⃒
2

)
(r2 − r1)⋅dS

=−

∫

Ω1

((∊2

∼ 2∊1

∼ −∊2

∼
)⃒⃒

E+
n

⃒⃒
2

+(∊2

∼
−∊1

∼
)
⃒⃒
Et

⃒⃒
2

)
(r2 − r1)⋅dS.

(14)  

Note that it is easily shown that Eq. (14) holds independently of the 
movement direction of the interface, i.e., whether it moves toward re-
gion one or two. 

2.1.3. Solution algorithm for case (ii) 
Case (ii) assumed that the geometry is constant while the dielectric 

properties change as a result of the varying amount of brain tissue 
perfusion over the cardiac cycle. Based on the Monro-Kellie doctrine, the 
change in intracranial blood volume is thought to exactly compensate 
that of intracranial CSF. The corresponding effective source in the 
Poisson equation is then reduced to a single charge density layer at the 
interface, i.e., ρv = ρsδ(r − r1). Under these circumstances, dQ is ob-
tained as follows:  

where the approximation ϕ*(r1) ≈ ϕ(r1) is used in the last step, which is 

valid for small dielectric property changes. 
Estimating the d∊̃ resulting from brain perfusion changes requires a 

suitable material model. Dielectric mixing rules are algebraic formulas 
that derive the permittivity of a mixture as a function of its components’ 

permittivities and their fractional volumes. They are mostly applicable 
in the long-wavelength regime, which is also a condition for the quasi- 
static approximation to be valid and is justified at the operation fre-
quency of ∼1 MHz, relevant to the application-of-interest. 

Several mixing rules have been proposed, including the Clau-
sius–Mossotti formula (Sihvola, 2000; Van Rysselberghe, 2002; Peter 
Atkins et al., 2010), the Rayleigh formula (Sihvola, 2000), the Max-
well–Garnett formula (Sihvola, 2000), the Bruggeman formula (Brug-
geman, 1935; Karkkainen et al., 2000), and the Lichtenecker formula 
(Karkkainen et al., 2000; von Lichtenecker, 1931). For the small 
perfusion-change-related variations of interest (fractional change <
0.1% (Gehlen et al., 2017)), the differences in d∊̃ obtained using 
different mixing rules were found to be small (the variability in d∊̃ 
among the nine considered models was below 17%). Thus, the Lichte-
necker formula was used, as it is the most common model for biological 
tissues in literature. It implies that: 

∊̃eff = ∊̃1−
dvtotal
Vtissue

tissue ∊̃dvtotal
Vtissue

blood (16)  

where dvtotal,Vtissue, ∊̃tissue, and ∊̃blood are the blood volume variation, the 
total tissue volume, its complex permittivity, and that of blood, 
respectively. As a result: 

d∊̃1 = ∊̃eff − ∊̃tissue = ∊̃tissue

((∊̃blood∊̃tissue

)dvtotal
Vtissue

− 1

)
≈ ∊̃tissue

(
dvtotal

Vtissue

ln

(∊̃blood∊̃tissue

))
,

(17)  

which leads to: 

V0dQ = ∊̃tissue

(
dvtotal

Vtissue

ln

(∊̃blood∊̃̃tissue

))∫

Ω1

ϕ(r1)
∂ϕ

∂n
|
Ω
−
1

dS. (18)  

2.1.4. Solution algorithm for case (iii) 
When the geometry and the dielectric properties vary simulta-

neously, the combined impact of small variations can be obtained using: 

dQ(v, ∊̃) = ∂Q(v, ∊̃)
∂dv

dv+
∂Q(v, ∊̃)

∂∊̃ d∊̃. (19)  

Thus, dQ can be computed as follows:  

Eq. (20) shows that it is possible to compute dQ, for small changes in 
geometry and dielectric properties using a single simulation per elec-
trode configuration, and only necessitating knowledge about the electric 
field on the original interface location, resulting in a numerically robust 
and computationally efficient procedure for computing dY. For the case 
of the human head, substituting Eq. (17) in Eq. (20) yields: 

V0dQ = −

∫

Ω1

((∊̃2

2∊̃1

− ∊̃2

)⃒⃒
E+

n

⃒⃒
2

+ (∊̃2 − ∊̃1)|Et|
2

)
(r2 − r1)⋅dS

+∊̃tissue

(
dvtotal

Vtissue

ln

(∊̃blood∊̃tissue

))∫

Ω1

ϕ(r1)
∂ϕ

∂n
|
Ω
−
1

dS.

(21)  

2.1.5. Sensitivity 
The contribution of a local displacement to the admittance change is 

quantified by the sensitivity map S(r), which is defined as a functional 
derivative (Parr et al., 1994) ∂dQ

∂dv and 

dQ =

∫
δdQ

δdv
dv =

∫
δdQ

δdv
dr⋅dS. (22)  

dQ =

∫

Ω1

ϕ*(r1)ρs1
dS

V0

=

∫

Ω1

(
∊̃*

1
− ∊̃1)ϕ

*(r1)
∂ϕ

∂n
|
Ω
−
1

dS

V0

= (∊̃*
1
− ∊̃1)

∫

Ω1

ϕ*(r1)
∂ϕ

∂n
|
Ω
−
1

dS

V0

≈ d∊̃1

∫

Ω1

ϕ(r1)
∂ϕ

∂n
|
Ω
−
1

dS

V0

,

(15)   

V0dQ = −

∫

Ω1

((∊̃2

2∊̃1

− ∊̃2

)⃒⃒
E+

n

⃒⃒
2

+ (∊̃2 − ∊̃1)|Et|
2

)
(r2 − r1)⋅dS+ d∊̃1

∫

Ω1

ϕ(r1)
∂ϕ

∂n
|
Ω
−
1

dS. (20)   
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Sensitivity maps can be used to optimize the measurement electrode 
configuration such that the information content about CC is maximized. 

Combing Eq. (20) and Eq. (22) and substituting Eq. (17) yields: S(r) = −

((∊̃2

2∊̃1

− ∊̃2

)⃒⃒
E+

n

⃒⃒
2

+ (∊̃2 − ∊̃1)|Et|
2

)

+∊̃tissue

(
1

Vtissue

ln

(∊̃blood∊̃tissue

))∫

Ω1

ϕ(r1)
∂ϕ

∂n
|
Ω
−
1

dS.

(23)  

Fig. 3. Geometries of the (a) 1D, (b) 2D symmetric, (c) 2D asymmetric, and (d) 3D benchmarks; (e) geometry changes in the 2D asymmetric benchmark.  

Fig. 4. Simulation post-processing pipeline used for EM simulations with the MIDA model.  
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2.2. Benchmarks 

To verify the developed formula and investigate the correctness of 
proposed approximation, four analytically or semi-analytically solvable 
benchmarks were established (Fig. 3). 

2.2.1. 1D benchmark 
For the first benchmark, we propose a simple 1D model consisting of 

two dielectric slabs with different permittivities sandwiched between 
two electrodes as shown in Fig. 3a. The derivation of the analytical so-
lution of Eq. (1) in this geometry and the associated electric charge 
density (Q) are discussed in Supplement 1.1. 

Fig. S1 shows results for ∊̃r1 = 2, ∊̃r2 = 10, and p = 0.5, along with 
the relative error 

⃒⃒
⃒dQdirect−dQformula

dQdirect

⃒⃒
⃒, where dQdirect = Q−Q*,Q and Q* are the 

electric charge densities before and after interface motion and/or ∊̃1 
changes, and dQformula is the estimation of dQ obtained using Eq. (21). 
The relative error for slab thickness and permittivity changes of up to 
10% always remained below 7%. 

2.2.2. 2D symmetric benchmark 
Fig. 3b illustrates the 2D symmetric benchmark. Using the general 

solution of the Laplace equation in cylindrical coordinates and enforcing 
the boundary conditions on ρ = ρ1 and ρ = ρ2, namely electric potential 
continuity and conservation of the normal component of current, the 
electric potential can be determined semi-analytically (see Supplement 
1.2). 

First, the semi-analytical solution was verified against simulation 
results obtained using the finite-difference method solver of Sim4Life 
V6.3 (ZMT Zurich MedTech AG, Switzerland; see Supplement 1.2). 
Subsequently, dQ = Q−Q* with Q* calculated after the interface moves 
and ̃∊1 changes was compared with the dQ estimation from Eq. (21) (see 

Fig. S3). The relative error for radius and permittivity changes of up to 
10% always remained below 2.5%. 

2.2.3. 2D asymmetric benchmark 
As the two previous benchmarks have a high degree of symmetry 

that might mask false assumptions in the derivation of the reciprocity 
theorem approach (e.g., because the displacement vector is always 
normal to the interface), a benchmark lacking such symmetries was 
derived (see Fig. 3c). Image theory was applied to solve this benchmark 
analytically (see Supplement 1.3 for details of the solution). 

The analytical solution was again verified against simulations (see 
Supplement 1.3), before using it to validate the reciprocity-theorem- 
based approach for cases where the interface movement direction is 
not aligned with the normal vector to the interface (Fig. 3e). The results 
are shown in Fig. S6. The relative error for radius and permittivity 
changes of up to 10% always remained below 5%. In addition, the 2D 
asymmetric benchmark was used to validate the applicability of the 
developed method in the case where interface motion results in direct 
contact with another tissue (dura). CSF and brain properties were 
assigned and the radius was varied such that in one case contact with the 
boundary was established, and in another case not. The relative differ-
ence between dQ from the semi-analytical solution and the developed 
method (Eq.(21)) is only 2.3% for a radius variation of 5%. 

2.2.4. 3D benchmark 
Fig.3d shows the geometry of the 3D benchmark. Using the general 

solution of Laplace equation in spherical coordinates and enforcing the 
boundary conditions at r = r1 and r = r2, we obtained an analytical 
expression for the electric potential (see Supplement 1.4), which was 
verified against simulation results and used to validate the reciprocity- 
theorem-based approach in full 3D (see Fig. S8). The relative error 
never exceeded 6%. 

2.3. Detailed and realistic model 

To study the impedance changes related to geometry and dielectric 
property variations in realistic scenarios, simulations were performed 
using Sim4Life’s unstructured electro-quasistatic (EQS) solver, which 
employs the finite element method (FEM). These simulations involved a 
detailed anatomical head model, along with 4D deformation data ob-
tained from healthy volunteers. Based on Eq. (21) and using the sensi-
tivity map Eq. (23), dQ can then be computed if information about brain 
surface pulsation is available. Primarily because of poor data quality at 
the brain surface, a number of preprocessing steps are required to extract 
this information from the 4D deformation data. 

2.3.1. EM simulations with the MIDA model 
EM simulations were performed using the MIDA model (Iacono et al., 

2015). The MIDA model is a high-resolution, detailed anatomical model 
of the human head and neck, based on multimodal image data from a 
healthy volunteer, which distinguishes 115 different tissues. In a first 
step, a tetrahedral mesh of the MIDA with 2.2 million elements was 
created using Sim4Life, along with two meshes with 4 and 10 million 
elements for the grid convergence analysis. The dielectric tissue prop-
erties were assigned based on the IT’IS database (Hasgall et al., 2018). 
To solve Eq. (1), the unstructured EQS solver was used. Dirichlet 
boundary conditions were applied to the rectangular 16 × 16 mm2 

electrodes. The working frequency was chosen to be 1 MHz based on the 
recently developed device by Andreas Spiegelberg et al. (2022). Then, 
Eq. (23) was used to compute the sensitivity maps. The post-processing 
pipeline shown in Fig. 4 was implemented to overcome associated nu-
merical challenges. 

2.3.2. Deformation data 
Acquisition. Deformation data is typically acquired using different 

MRI techniques, i.e., displacement encoding with stimulated echoes 

Fig. 5. Schematic description of the pipeline used to process the imaging-based 
deformation data in preparation for their combination with the computation-
ally determined sensitivity maps. 
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(DENSE) (Soellinger et al., 2009; Adams et al., 2020) and phase-contrast 
MRI (PC-MRI) (Enzmann et al., 1992; Dan Greitz et al., 1992). For this 
study, existing DENSE data from eight healthy young subjects of Euro-
pean descent acquired using a 7T MR scanner was used (Adams et al., 
2020). The whole cardiac cycle was covered in 20 snapshots, for two 
opposite gradient polarities. Background errors were removed by sub-
tracting the data from those two polarities. 

Processing. Fig. 5 shows the developed pipeline for deformation data 
analysis. As the anatomical model was generated for a head anatomy 
different from that of the DENSE imaged subjects, (manual) registration 
was performed by first shifting and rotating the MIDA model to align its 
brain regions with the deformation data (primarily relying on brain 
surface, ventricles, and eye landmarks). Subsequently, automatic opti-
mization of the MIDA model scaling along the x, y, and z directions was 
performed, minimizing the absolute value of the relative difference 
between the brain volume of these two different anatomies. Finally, 
another fine-correction of the shift was performed when required. 

The deformation data was masked to remove image regions with 
high associated noise and/or uncertainty which unfortunately includes 
the CSF and nearby regions of primary interest to this study. The initial 
mask encompassed gray matter (GM) and white matter (WM) regions 
based on CSF, GM, and WM probability maps obtained using SPM12 
(Wellcome Centre for Human Neuroimaging, University College Lon-
don; Adams et al., 2020). That mask was eroded (three voxels) to remove 
regions near CSF. The k-nearest neighbors algorithm (KNN, scikit-learn) 
(k = 150) was used to smooth the deformation data and reduce noise 
(see Fig. 6). To extract the deformation fields on the moving interfaces of 
interest, the masked data was extrapolated. Different extrapolation 
methods were compared and were found to result in large differences on 
the outer brain surface (interpolation to ventricular surfaces was 
robust). After excluding schemes that resulted in overly large deforma-
tion predictions (i.e., ≫100μm), further analysis focused on nearest 
neighbour extrapolation and fast Fourier transform (FFT). Using FFT as a 
reconstruction method is not trivial as the masked data is unstructured 
(due to the masking step) and, to our knowledge, there is no available 
toolbox for unstructured FFT that does not assume zero outside the 
domain. To address this issue, we developed a computationally and 
memory efficient unstructured FFT method (Karimi et al., 2022) that 
includes regularization based on singular value decomposition (SVD) to 
handle the associated conditioning problem. 

Visualization. To visualize the overall brain motion, the periodicity 
interval (cardiac cycle) was divided into six sub-intervals and the brain 
surface motion fields were computed by subtracting the displacement 
vectors at the beginning of a sub-interval from those at the end. Their 
visualization as vector field, as well as the associated streamlines, which 
can be thought of as the ‘rails’ of the motion during the sub-interval, can 
be seen in Fig. 6. 

2.4. Impedance change computation 

To estimate the transient variations of the electric charge (dQ) and 
the associated capacitance (dC) and resistance (dR), the sensitivity map 
is combined with the surface deformation data (see Section 2.3.1 and 
Section 2.3.2) using Eq. (21). Fig. 7 illustrates this procedure, which was 
performed for each subject and electrode configuration. 

Inter-subject variability of dC and dR was further investigated. To 
compensate for potential shifts in the reference time point (the third MRI 
snapshot in the cardiac cycle) and separate signal magnitude changes 
related to aspects such as head size and skull thickness from the signal 
shape of interest, an offset and scaling factor were determined using 
least square fitting to the mean curve, which is the average of eight 
healthy subjects (i.e., d*

i (t) = fd,i⋅di(t) + gd,i, where d can stand for dC or 
dR, d* for scaled dC or dR, and i for the subject). The standard deviation 
of the scaling factors fd,i was computed as a measure of the amplitude 
variability between subjects. 

Fig. 6. (Top) Illustrative KNN-smoothed deformation data from one subject at 
one time point during the cardiac cycle; (a) right-left, (b) anterior-posterior, 
and (c) cranial-caudal component. (Middle) Illustration of the brain deforma-
tion over one cardiac cycle (the coloring denotes the motion magnitude); (left) 
streamlines and principal motion trajectories, (middle) vector field views, 
(right) schematic representation of the overall brain deformation pattern; see 
Section 3 for extended explanation and interpretation and Fig. S9 for an 
animated 3D visualization of the streamlines of sub-interval (II). (Bottom) 
Time-intervals of the pulsation period corresponding to the motion visualiza-
tions in the Middle. 
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2.5. Uncertainty assessment 

An uncertainty analysis was performed to investigate the impact of 
discretization and uncertainty about the underlying dielectric tissue 
properties on the quantities-of-interest (peak-to-peak variation of dC 
and dR). The discretization error was estimated by first performing two 
successive grid-refinement steps (from 2 to 4, and to 10 million cells). 
Then, the dC and dR values at infinitely fine resolution were estimated, 
by ensuring that the log–log plot of the discretization errors as a function 
of resolution became linear (R2 ≈ 1). To determine the dC and dR pre-
diction sensitivity to uncertainties about dielectric tissue properties, the 
permittivity and conductivity of eleven principal tissues were 

Fig. 7. Coupling MIDA-based EM simulations and MRI deformation data to compute dC and dR. The displacement and, therefore, the signal contribution maps are 
time dependent and only a snapshot is shown (see Fig. S10 for an animated, transient version). 

Table 1 
Head impedance (capacitance and resistance) and their change (dC and dR) due 
to variations in geometry (constant normal displacement by 0.1mm) and 
consequently dielectric properties for the three electrode pair configurations.  

pair capacitance 
(pF) 

resistance 
(Ω) 

cortex ventricles    

dC 
(fF) 

dR 
(mΩ) 

dC 
(fF) 

dR 
(mΩ) 

1st 117 793 −490 2544 −14 2 
2nd 182 512 −655 1575 −18 40 
3rd 167 548 −812 2399 −15 43  

Fig. 8. The (a) 1st, (b) 2nd, and (c) 3rd electrode configuration and the corresponding sensitivity magnitude (|S|) on the cortex ((d)-(f): total sensitivity combining 
geometry pulsation and dielectric property change contributions – the latter is uniform, as a result of the homogeneous blood distribution assumption, and much 
smaller than the former). 
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individually varied (see Table 3) by 20% and sensitivity coefficients 
were determined (sd,σ/∊,t in [dB/dB], where t stands for the tissue and 
d for dC or dR). From these sensitivities, a combined uncertainty was 
computed assuming log-normal uncertainty distributions with 10% 
standard deviation for the underlying dielectric tissue properties, ac-
cording to Taylor et al. (1297) and Walter Bich et al. (2006): 

ud =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

t∈tissues

∑

i∈{σ,∊}
(
sd,i,t⋅ui,t

)2

√
. (24)  

2.6. Relating head impedance changes and brain pulsation features 

Towards establishing a head-impedance-based CC surrogate, the 
relationship between brain pulsation features and measurable imped-
ance signals (dC(t) and dR(t) for different electrode locations) must be 
investigated, and the ability of inferring one from the other must be 
studied. We focused on three important features of deformation data: 
CSF volume change (dVCSF), brain translation (TS) and rotation (RS), 
which are determined from the reconstructed surface motion. First, 
correlations between the transient impedance signal and the transient 
pulsation features were studied. Where linear correlations are weak, 
recurring non-linear relationships with hysteretic behavior are observed 
(‘loops’), motivating the treatment of time-series as point in high- 
dimensional spaces that can be studied using principal component 
analysis (PCA; in that way, the components capture the principal di-
mensions of the variability in the loop shape). The principal components 
from the concatenated measurement and pulsation vectors of all eight 
subjects were extracted. Due to the lack of orthogonality of the mea-
surement signal parts, relationships between them and the deformation 
feature parts were derived using the ridge regression method in Matlab 
(MATLAB Release 2019b, The MathWorks, Inc., Natick, Massachusetts, 

United States) and used to ‘predict’ deformation features from the 
measurable signals. The agreement between these personalized pre-
dictions of deformation feature variations and their actual value (as 
extracted from the subjects raw deformation data) were quantified. 

A statistical analysis was performed to investigate whether the 
measurement signal based predictions are indeed able to account for 
inter-subject variability and outperform non-personalized approaches. 
As a Shapiro–Wilk test revealed that the data distribution is not normal, 
the Wilcoxon signed-rank test was employed (a p-value< 5% was 
deemed to be statistically significant). 

3. Results 

For three electrode pair configurations on the MIDA Model (see 
Fig.8), the head capacitance (C) and resistance (R) at 1 MHz were 
determined (Table 1). Table 1 also reports the magnitude of C and R 
variations resulting from a constant brain surface displacement by 0.1 
mm outwards. Sensitivity maps according to Eq. (23) were computed on 
the ventricular and cortical surfaces (see Fig. 8). Transient capacitance 
(dC) and resistance (dR) changes over the cardiac cycle were computed 
according to the procedure shown in Fig. 7, using experimentally ob-
tained deformation data from eight healthy subjects (reconstructed on 
the brain surface using the approach from Section 2.3.2). 

As mentioned in Section 2.3.2, the deformation data were extrapolated 
to the brain surface using different methods (see Fig. 6 for visualizations 
of the brain motion). Fig. 9 shows – for the second electrode configura-
tion and the different subjects – the dC and dR contributions from the 
cortical brain surface when the deformation data is extrapolated using 
the KNN, as well as the FFT method. Similarly, the dC and dR contri-
bution from ventricular pulsation is shown in Fig. 10. The results ob-
tained with the KNN and FFT methods are in general agreement, thus 

Fig. 9. Simulated capacitance (left) and resistance (right) variations associated with the cortical CSF-brain interface, shown over the cardiac cycle for the 2nd 

electrode configuration. (Top) dC and dR from data of all eight subjects, using the KNN extrapolation method; (Bottom) comparison between predictions obtained 
using KNN and FFT reconstruction for the average of all subjects. 
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supporting the reliability of reconstruction methods.In Fig. 11, the 
(subject-averaged) contributions from geometry pulsation and from 
perfusion-related dielectric properties are distinguished. Furthermore, the 
signal parts originating from the cortical and ventricular CSF-brain 
interface parts are shown separately. Subject-averaged dC and dR for 
the three electrode configurations from Fig. 8 are shown in Fig. 12. 

Subsequently, we compensated for overall impedance magnitude 
changes by determining appropriate offset and scaling factor (see Sec-
tion 2.4) to investigate the inter-subject variability. The standard devia-
tion of the scaling factors fd,i – a measure for the amplitude variability 
between subjects – is reported in Table 2 for the 2nd electrode 

configuration and both reconstruction methods. The mean and standard 
deviations of the L2-norm of the difference between individual d*

i (t) and 
the subject-averaged curves (relative to the L2-norm of the average 
subject) are also provided in Table 2, as measures for the curve shape 
variability. 

The uncertainties associated with the discretization error and the 
dielectric tissue properties of the quantities-of-interest (dC and dR) were 
quantified for one subject and the 2nd electrode configuration. Relative 
uncertainties in dB were determined for the peak-to-peak variation of dC 
and dR. The uncertainty quantification was performed using both the 

Fig. 10. Simulated capacitance (left) and resistance (right) variations associated with the ventricular CSF-brain interface, shown over the cardiac cycle for the 2nd 

electrode configuration. (Top) dC and dR from data of all eight subjects, using the KNN extrapolation method; (Bottom) comparison between predictions obtained 
using KNN and FFT reconstruction for the average of all subjects. 

Fig. 11. Comparison of the geometry-pulsation- and the blood-perfusion-contributions to the capacitance (left) and resistance (right) variations (average over all 
subjects, two cardiac cycles, 2nd electrode configuration, FFT-reconstructed deformation data). The contributions from the cortical and ventricular CSF-brain in-
terfaces are distinguished. Note the difference in scaling for ventricular vs. cortical CSF-brain interfaces. 
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KNN and the FFT reconstructed deformation data, resulting in very 
similar uncertainty budgets. Here the values for the KNN data are re-
ported. The results are shown in Table 3. To compute the combined 

numerical and dielectric uncertainty, the root sum of squares was used, 
resulting in an estimated 1.4dB and 1.6dB combined uncertainty for dC 
and dR. Additional uncertainty sources are discussed in Section 4.1. 

Towards deriving an impedance-measurements-based CC surrogate, 
we investigated the relationship between dC and dR and deformation data 
features. Fig. 13 shows the relationship between measurable signals 
(average of eight subjects) and deformation data features, along with 
their linear correlation coefficients, for the three electrode configura-
tions shown in Fig. 8 (see Fig. 14 for an illustration of a measurable 
signal and the features of the underlying deformation data). There is 
high linear correlation between dC and dR for a given electrode 
configuration (above 99%), which indicates that they carry the same 
information content. On average, the signals from the 1st and 3rd elec-
trode configuration correlate well with the volume change dVCSF and the 
signal from the 2nd one with the translation Ts, but Fig. 15 reveals that 
this relationship is not universal among subjects. It is evident that 
different electrode configurations are sensitive to different deformation 
features. Although there is low linear correlation between measurable 
signals and Rs, a closer look shows that there is a systematic nonlinear 
relationship between them (‘loops’, illustrated in Fig. 15). The loops 
result from the complexity of the brain pulsations, in which the back- 
and the forward path differ. Moreover, these loops are subject-specific, 
as evident in Fig. 15. 

These observations motivated a further investigation in which prin-
cipal components of these loops were related to principal components of 
the motion feature curves. For this, all measurable signals and 
deformation-feature-curves were normalized and combined in a single 
vector per subject, and a PCA was performed. The resulting principal 

Fig. 12. Comparison across the three electrode configurations from Fig. 8 of the simulated total (cortical and ventricular) capacitance and resistance variations over 
the cardiac cycle obtained using FFT extrapolation. 

Table 2 
Analysis of the variability between subject-specific dC and dR signals, shown for the 2nd electrode configuration. To distinguish differences in signal magnitude and 
signal shape, scaling factors fi (i: subject) relative to the mean over all subjects were extracted (i.e., d*

i (t) = fd,i⋅di(t) + gd,i, where d can stand for dC or dR). The first row 
shows the standard deviation of the scaling factors of the eight subjects (i.e., magnitude variability). The mean and standard deviation of the L2-norm difference 
between scaled and shifted subject signals (d*

i (t)) and the subject-averaged one, relative to the L2-norm of the average subject, are given in second and third row, 
respectively.   

KNN FFT  
Cortical Interf. Ventricular Cortical Interf. Ventricular  

dC dR dC dR dC dR dC dR 
std.dev. fi 22% 25% 43% 37% 29% 30% 27% 33% 

mean ||d
*
i (t) − daver||2
||daver(t)||2 

24% 23% 29% 27% 33% 32% 25% 21% 

std.dev. ||d
*
i (t) − daver||2
||daver(t)||2 

6% 5% 14% 14% 9% 9% 12% 9%  

Table 3 
Uncertainty budget for the peak-to-peak magnitude of dC and dR, assuming log- 
normal uncertainty distributions with 10% standard deviation for the underly-
ing dielectric tissue properties (shown based on the KNN reconstruction data; 
almost identical results are obtained using FFT reconstruction).   

dC uncertainty 
(dB) 

dR uncertainty 
(dB)  

σ ∊ σ ∊ 
white matter 0.18 0.11 0.30 0.07 
gray matter 0.33 0.26 0.59 0.10 

CSF 1.00 0.02 0.78 0.03 
dura 0.07 0.01 0.16 0.03 

muscle 0.01 0.04 0.37 0.06 
fat 0.74 0.08 0.09 0.03 

blood 0.05 0.00 0.03 0.04 
cortical bones 0.03 0.04 0.02 0.04 

cancellous bones 0.02 0.02 0.01 0.03 
galea and epicranial aponeurosis 0.02 0.02 0.02 0.03 

skin 0.00 0.24 0.00 0.04      

combined diel. uncertainty 1.30 0.39 1.11 0.16 
numerical uncertainty 0.13 1.2      

combined uncertainty (k = 1) 1.4 1.6  
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components were projected to two sub-spaces (measurable signals and 
deformation data features) and renormalized. 

A relationship between the obtained measurement signal part of the 
principal components and the deformation feature part was established 
using ridge regression. Based on this relationship, it was possible to es-
timate subject-specific deformation features from their measurement signals, 
via projection into the principal component spaces and back. The de-
viation between the estimated deformation features (x′ ) and the raw 

data (x) was quantified using the following metric: 
|x − x̂|2̅̅̅̅̅̅̅̅̅̅∑
i

x2

i

√ ̅̅̅̅̅̅̅̅̅̅∑
i

x̂
2

i

√ (25)  

and is reported in Fig. 16. 

Fig. 13. Correlation between the subject-averaged measurable signals and subject-averaged deformation data features using FFT-reconstructed data. dC1,2,3 and 
dR1,2,3: capacitance and resistance variation for 1st, 2nd, and 3rd electrode configurations, dVCSF : brain volume change, TS: brain translation, and RS: brain rotation. 
Each dot in the scatter plots corresponds to one time-point. 

Fig. 14. (Top) simulated measurable signals for the 2nd electrode configuration using FFT reconstruction; (Bottom) dVCSF : brain volume change, TS: brain translation 
(surface averaged), and RS: brain rotation (surface averaged). 

F. Karimi et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 37 (2023) 103280

14

4. Discussion 

In this study, we developed an accurate and efficient computational 
approach for solving dynamic EM problems with subtle dynamic vari-
ation. This approach was used to investigate the head impedance vari-
ation (dC and dR) over the cardiac cycle, as a potential intermediary to 
derive non-invasive CC surrogates. For this, computationally 

determined sensitivity maps were combined with experimentally ob-
tained brain pulsation data. 

Brain pulsation data are an important source of information, not only 
for early-stage diagnosis of multiple brain diseases, but also to advance 
our understanding of their pathophysiological basis. After processing 
the brain pulsation data, we visualized and studied one subject’s tran-
sient brain motion as a preliminary step toward understanding (healthy 
baseline) brain motion dynamics. The pulsation period was divided into 
six sub-intervals (see Fig. 6). By studying the streamlines of the motion- 
vector-field, six centers were identified that act as principal motion 
sources or sinks (shown as spheres in Fig. 6). These centers can slightly 
shift and invert their role over the duration of the pulsation period, as 
the brain moves back and forth (though not along the same trajectory). 
The bold arrows in Fig. 6 indicate prominent trajectories (streamline 
bundles) and permit to distinguish sources and sinks. The six centers are 
roughly arranged at the base of the skull (1; midbrain and cerebellum), 
the top (6), and the four corners of a horizontally positioned rectangle 
(2–5). They can be thought of as being arranged at the corners of an 
octahedron. Initially, there is a general, relatively uniform brain shift 
towards the top (moderate magnitude). Over the next three sub- 
intervals, the general motion is one in which the brain continues to 
shift towards but is stopped at the top, resulting in axial compression 
associated with stretching of the brain along an axis that is initially 
mainly anterior-posterior oriented, but subsequently tilts toward one of 
the rectangle-diagonals (left–right symmetry breaking). That stretching 
is associated with a related narrowing along the other (nearly perpen-
dicular) diagonal. Subsequently, this concerted motion in the horizontal 
direction chaotically dissolves, leaving a tilting motion (up in front, 
down at the back). During the last sub-interval, the brain shifts down 
and the inverse of the stretching-thinning motion pattern in the hori-
zontal plane manifests, restoring the original brain shape and position. 

Towards deriving a non-invasive CC surrogate, a relationship was 
established that permits to estimate subject-specific deformation features 
based on the measurable dC and dR. Fig. 16 compares the error (according 

Fig. 15. Correlation between the measurable signals 
and deformation data features using FFT recon-
struction. dC1,2,3 and dR1,2,3: capacitance and resis-
tance variation for 1st, 2nd and 3rd electrode 
configurations, dVCSF : CSF volume change, TS: total 
translation of the cortex, and RS: total rotation of the 
cortex. Each dot in the scatter plots corresponds to 
one subject and one time-point. The nonlinear re-
lationships (‘loops’; bold: mean over all subjects, 
dashed: illustrative individual subjects) between dC2 
and RS are shown on the top right. In view of the 
multiple electrode pairs and the different deforma-
tion features, the loops should be viewed as being 
higher-dimensional (i.e., a vector of size nt ⋅(nf +
ns);  nt : number of time-points, nf : number of fea-
tures, ns: number of signals).   

Fig. 16. Box-plot of the deviations for all subjects of the measurement-signal- 
based volume change, translation, and rotation predictions from their real 
values. Those deviations are much smaller than the deviations of the different 
subjects from the mean, or than their variability (significance assessed using the 
Wilcoxon signed-rank test; ⋆ : p-value< 5%, ⋆⋆ : p-value< 1%); dVCSF : CSF 
volume change, TS: brain translation (surface averaged), and RS: brain rotation. 
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to Eq. (25)) from this subject-specific prediction (based on PCA) to the 
deviations between the subject-specific and the averaged feature curves 
and to the ‘variability’ between subjects (computed as the mean of the 
correlations with the other subjects). Clearly, the subject-specific pre-
dictions are capable of accounting for most of the inter-subject vari-
ability. This was confirmed using the Wilcoxon signed-rank test (see 
Section 2.6 and Fig. 16). Except for the comparison between the subject- 
specific translation curve predictions and their deviation from the 
subject-averaged curve, the superiority of the subject-specific pre-
dictions was confirmed in all cases (p-value<5%). Compared to the 
inter-subject variability, the superiority of the subject-specific pre-
dictions is always highly significant (p-value<1%). 

Furthermore, the subject-averaged dC and dR for the three electrode 
configurations (see Fig. 12) reveal the potential of obtaining comple-
mentary information from their signals by optimizing multi-electrode 
placement. As evident in Fig. 8, the sensitivity is highest near the elec-
trodes, which permits to spatially distinguish signal sources. The sensi-
tivity maps can be used to maximize the signal information content, 
keeping in mind that the optimal locations can be disease-specific and 
can differ according to the diagnostic goal. The sensitivity maps also 
reveal that, while geometry pulsation and brain perfusion changes both 
contribute to the head impedance variation, the former dominates. This 
is further confirmed by the computed dC and dR signal contributions 
(Fig. 11). 

4.1. Limitations 

The approaches and methodologies developed in this study are 
promising and present an important step towards potential clinical 
application. However, the following study limitations must be consid-
ered and addressed in follow-up work. 

Modeling uncertainties. While uncertainty contributions associated 
with dielectric properties and numerical errors were studied, other un-
certainty contributions remain to be quantified. Particularly the recon-
struction of the brain surface motion from the noisy image data and 
inter-subject anatomical variability (i.e., using registered MIDA 
instead of personalized head models) are expected to be major uncer-
tainty contributors that are hard to assess in the absence of corre-
sponding ground truth data. Also, instead of assuming 10% uncertainty 
for all dielectric properties, their real uncertainty/variability should be 
determined, e.g., based on the variability of the measurement data 
collected in Hasgall et al. (2018). Electrode contact is assumed to be 
perfect and no (capacitive) interface effects are considered. Other fac-
tors that deserve consideration are tissue heterogeneity and anisotropy, 
segmentation accuracy, and the non-enforced continuity of thin struc-
tures, such as the dura mater. 

The implemented perfusion model assumes that brain volume 
changes can be attributed to corresponding perfusion changes that ho-
mogeneously affect brain dielectric properties based on a mixing rule. 
However, the 4D brain motion data reveals that it is not divergence free, 
and thus, perfusion changes are not homogeneously distributed. Yet, the 
deformation data quality does not permit to extract reliable maps of 
heterogeneous perfusion change. 

Other signal sources, e.g., related to the pulsation of intra- and extra- 
cranial vasculature, or scalp tissues, have not been considered (see 
Andreas Spiegelberg et al., 2022; Boraschi et al., 2022 regarding 
experimental evidence for the intra-cranial origin of the signal). For 
blood vessels with small diameters that are fully embedded in a homo-
geneous tissue, the signal contributions from diametrically opposite 
vessel sides are expected to compensate, such that only large vessels on 
the brain surface or within the scalp/face are relevant. 

Disease conditions. For this study, we only had access to deformation 
data from healthy volunteers. Additional data and investigations are 
needed to assess the impact of various disorders on head impedance 
variations and to conclude on their diagnostic value. 

Electrode configuration optimization. In the present study, three 

specific electrode placements were considered. Electrode shapes and 
placements should be optimized to maximize the signal information 
content. The here established sensitivity map computation methodology 
can support this. Considering the varying dielectric dispersions of 
different tissues, it might even be valuable to vary the frequency, or to 
use multiple frequencies. The optimal configuration could depend on the 
targeted diagnostic information (e.g., different for different craniospinal 
diseases). 

4.2. Future work 

In addition to optimizing the electrode configuration and studying 
differences between healthy and disease conditions, the following as-
pects should be further investigated: 

Derivation of ICP/CC. Compartmental models of intracranial fluid 
exchange, such as (Gehlen et al., 2017), might help relate brain pulsa-
tion information obtained through head impedance monitoring to ICP 
and/or CC. Alternative, heuristically derived relationships could be 
employed. 

Tomographic reconstruction. By strongly increasing the number of 
electrodes, it might be possible to extend the presented methodology to 
a non-invasive, affordable, and accurate tomographic brain motion 
reconstruction method with high temporal resolution (well above that 
achievable with MRI). For that, a corresponding inverse problem needs 
to be solved. The ability of using computational modeling to identify 
electrode locations with complementary sensitivity fields will be of high 
value towards this goal. 

5. Conclusion 

In this study, we developed a reliable and efficient procedure for 
solving dynamic electrostatic problems where variations in the geome-
try and/or dielectric properties are much smaller than the static ones. 
The developed algorithm is general and applicable to any dynamically 
varying configuration that fulfills the mentioned criteria. It was verified 
against analytical and semi-analytical solutions in four different 
benchmarks. 

The approach was developed for and applied to the challenge of 
relating measurable head impedance variations to underlying brain 
pulsation, as a surrogate for ICP and/or CC measurements, towards a 
non-invasive diagnostic biomarker for craniospinal diseases. Such a tool 
could be of high clinical value by enabling systematic patient screening, 
and by facilitating continuous monitoring of ICP and/or CC surrogates in 
the neurocritical care setting. By combining a large number of electrodes 
that differ in their sensitivity to different deformation contribution, a 
tomographic brain pulsation reconstruction method with high temporal 
resolution and accuracy might even be achievable. 

The present computational study indicates that the measurable 
signal is dominated by the pulsatile displacement of the cortical brain 
surface, with minor contributions from the ventricular surfaces and from 
changes in brain perfusion. Different electrode setups result in comple-
mentary information, and the information content from the investigated 
three electrode pairs can be used to infer subject-specific brain pulsation 
and motion features with a high statistical significance. 

In a forthcoming study, computational model predictions will be 
experimentally validated in healthy and diseased subjects using the 
recently developed device from Andreas Spiegelberg et al. (2022). 

Data and code availability statements 

The Sim4Life simulation setups are available upon request from the 
corresponding author, provided the License Agreement for the MIDA 
anatomical head model has been signed and submitted to the FDA or the 
IT’IS Foundation (see itis.swiss/virtual-population/regional-human- 
models/mida-model/). The deformation image data is available from 
Prof. Jaco J.M. Zwanenburg upon reasonable request. 
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