9 research outputs found

    Ontology, Ontologies and the "I" of FAIR

    Get PDF
    According to the FAIR guiding principles, one of the central attributes for maximizing the added value of information artifacts is interoperability. In this paper, I discuss the importance, and propose a characterization of the notion of Semantic Interoperability. Moreover, I show that a direct consequence of this view is that Semantic Interoperability cannot be achieved without the support of, on one hand, (i) ontologies, as meaning contracts capturing the conceptualizations represented in information artifacts and, on the other hand, of (ii) Ontology, as a discipline proposing formal meth- ods and theories for clarifying these conceptualizations and articulating their representations. In particular, I discuss the fundamental role of formal ontological theories (in the latter sense) to properly ground the construction of representation languages, as well as methodological and computational tools for supporting the engineering of ontologies (in the former sense) in the context of FAIR

    Validating Modal Aspects of OntoUML Conceptual Models Using Automatically Generated Visual World Structures

    No full text
    Assessing the quality of conceptual models is key to ensure that conceptual models can be used effectively as a basis for understanding, agreement and construction of information systems. This paper proposes an approach to assess conceptual models defined in OntoUML by transforming these models into specifications in the logic-based language Alloy. These Alloy specifications include the modal axioms of the theory underlying OntoUML, allowing us to validate the modal meta-properties representing ontological commitments of the OntoUML types and relations

    A model-driven approach to the conceptual modeling of situations : from specification to validation

    Get PDF
    A modelagem de situações para aplicações sensíveis ao contexto, também chamadas de aplicações sensíveis a situações, é, por um lado, uma tarefa chave para o funcionamento adequado dessas aplicações. Por outro lado, essa também é uma tafera árdua graças à complexidade e à vasta gama de tipos de situações possíveis. Com o intuito de facilitar a representação desses tipos de situações em tempo de projeto, foi criada a Linguagem de Modelagem de Situações (Situation Modeling Language - SML), a qual se baseia parcialmente em ricas teorias ontológicas de modelagem conceitual, além de fornecer uma plataforma de detecção de situação em tempo de execução. Apesar do benefício da existência dessa infraestrutura, a tarefa de definir tipos de situação é ainda não-trivial, podendo carregar problemas que dificilmente são detectados por modeladores via inspeções manuais. Esta dissertação tem o propósito de melhorar e facilitar ainda mais a definição de tipos de situação em SML propondo: (i) uma maior integração da linguagem com as teorias ontológicas de modelagem conceitual pelo uso da linguagem OntoUML, visando aumentar a expressividade dos modelos de situação; e (ii) uma abordagem para validação de tipos de situação usando um método formal, visando garantir que os modelos criados correspondam à intenção do modelador. Tanto a integração quanto a validação são implementadas em uma ferramenta para especificação, verificação e validação de tipos de situação ontologicamente enriquecidos.The modeling of situation types for context-aware applications, also called situationaware applications, is, on the one hand, a key task to the proper functioning of those applications. On the other hand, it is also a hard task given the complexity and the wide range of possible situation types. Aiming at facilitating the representation of those types of situations at design-time, the Situation Modeling Language (SML) was created. This language is based partially on rich ontological theories of conceptual modeling and is accompanied by a platform for situation-detection at runtime. Despite the benefits of the availability of this suitable infrastructure, the definition of situation types, being a non-trivial task, can still pose problems that are hardly detected by modelers by manual model inspection. This thesis aims at improving and facilitating the definition of situation types in SML by proposing: (i) the integration between the language and the ontological theories of conceptual modeling by using the OntoUML language, with the purpose of increasing the expressivity of situation type models; and (ii) an approach for the validation of situation type models using a lightweight formal method, aiming at increasing the correspondence between the created models’ instances and the modeler’s intentions. Both the integration and the validation are implemented in a tool for specification, verification and validation of ontologically-enriched situation types.CAPE

    Representing Dynamic Invariants in Ontologically Well-Founded Conceptual Models

    Get PDF
    Conceptual models often capture the invariant aspects of the phenomena we perceive. These invariants may be considered static when they refer to structures we perceive in phenomena at a particular point in time or dynamic/temporal when they refer to regularities across different points in time. While static invariants have received significant attention, dynamics enjoy marginal support in widely-employed techniques such as UML and OCL. This thesis aims at addressing this gap by proposing a technique for the representation of dynamic invariants of subject domains in UML-based conceptual models. For that purpose, a temporal extension of OCL is proposed. It enriches the ontologically well-founded OntoUML profile and enables the expression of a variety of (arbitrary) temporal constraints. The extension is fully implemented in the tool for specification, verification and simulation of enriched OntoUML models

    Nomeação de elementos ontológicos para criação de ontologias : uma proposta metodológica

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Ciência da Informação, Programa de Pós-Graduação em Ciência da Informação, 2015.Analisa no escopo da Ciência da Informação os fundamentos da Teoria da Classificação Facetada e Teoria do Conceito com foco nos seus princípios e métodos para análise, identificação e formação de termos/conceitos de um domínio de conhecimento. Na Ciência da Computação descreve os aspectos conceituais de ontologias de fundamentação, a modelagem conceitual orientada a ontologia, a partir da base teórica subjacente à Unified Foundational Ontology (UFO) e analisa os estereótipos da linguagem OntoUML. Utiliza a pesquisa aplicada com abordagem qualitativa com análise de conteúdo e análise de assunto, bem como, a pesquisa exploratória, descritiva, bibliográfica e documental para propor, por meio, de uma perspectiva interdisciplinar que engloba área como a Ciência da Informação e Ciência da Computação o método Nomeação de Elementos Ontológicos (NEO) para delimitação, definição e validação de conceitos e relações para a nomeação de entidades, relacionamentos e atributos na elaboração de modelos conceituais ontológicos em combinação com ontologias de fundamentação utilizando a linguagem OntoUML para a criação de ontologias. Aplica o método NEO construção de ontologias de domínio para a gestão de coleções no campo da biblioteconomia, especificamente no processo de seleção de material informacional. Conclui que a incorporação dos princípios e métodos da Teoria da Classificação Facetada e Teoria do Conceito combinada com as Ontologias de Fundamentação, especificamente a UFO e a linguagem OntoUML contribui para a consistência dos termos/conceitos, flexibilidade nas combinações dos termos/conceitos e suas relações e na elaboração de definições de termos/conceitos na construção de ontologias de domínio.It analyzes the scope of information science the foundations of Faceted Classification Theory and Concept Theory. In Computer Science describes the conceptual aspects of foundational ontologies, oriented conceptual modeling ontology, from the underlying theoretical basis for the Unified Foundational Ontology (UFO) and analyzes the stereotypes of OntoUML language. Uses applied research with a qualitative approach with content analysis and subject analysis, as well as exploratory, descriptive and literature. It proposes, by means of an interdisciplinary perspective encompassing area as the Information Science and Computer Science the Ontological Elements Nomination method (NEO) for delimitation, definition and validation of concepts and relationships for the appointment of entities, relationships and attributes in development of conceptual models in combination with foundational ontologies using OntoUML language. Apply the NEO method in preparing a conceptual model oriented ontology for the domain knowledge in collection management in the field of library science, specifically in the informational materials selection process

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    A COMMITMENT-BASED REFERENCE ONTOLOGY FOR SERVICE: HARMONIZING SERVICE PERSPECTIVES

    Get PDF
    Nowadays, the notion of service has been widely adopted in the practice of economic sectors (e.g., Service, Manufacturing, and Extractive sectors), as well as, in the research focus of various disciplines (e.g., Marketing, Business, and Computer Science). Due to that, a number of research initiatives (e.g., service ontologies, conceptual models, and theories) have tried to understand and characterize the complex notion of service. However, due to particular views of these disciplines and economic sectors, a number of different characterizations of service (e.g., service as interaction, service as co-creation of value, and service as capability / manifestation of competence, among others) have been proposed. The existence of these various non-harmonized characterizations, and the focus on a terminological debate about the service concept, instead of about the service phenomena from a broad perspective, make the establishment of a unified body of knowledge for service difficult. This limitation impacts, e.g., the establishment of unified conceptualization for supporting the smooth alignment between Business and IT views in service-oriented enterprise architecture (SoEA), and the design and usage of service modeling languages. In this thesis we define a theoretical foundation for service based on the notion of service commitment and claims as basic elements in the characterization of service relations along service life-cycle phases (service offer, service negotiation, and service delivery). As discussed in this work, this theoretical foundation is capable of harmonizing a number of service perspectives found in the literature. Such theoretical foundation is specified in a well-founded core reference ontology, named UFO-S, which was designed by adopting a sound ontological engineering apparatus (mainly, a well-founded ontology representation language, OntoUML, and approaches of model verification and model validation). As a kind of theory, UFO-S was applied in the analysis of SoEA structuring principles in order to define a commitment-based SoEA view, which remarks social aspects inherent in service relations usually underexplored in widely adopted service-oriented approaches (such as SOA-RM by OASIS, ITIL, and ArchiMate). Based on this, UFO-S was also applied in an ontological analysis of service modeling at ArchiMates Business layer. Such ontological analysis showed some limitations concerned to semantic ambiguity and lack of expressiveness for representing service offerings (and type thereof) and service agreements in SoEA. In order to address these limitations, three service modeling patterns (service offering type pattern, service offering pattern, and service agreement pattern) were proposed taking as basis UFO-S. The usefulness of these patterns for addressing these limitations was evidentiated by means of an empirical evaluation. Finally, we can say that, beyond offering a broad and well-founded theoretical foundation for service able to harmonize service perspectives, UFO-S presented benefits as a reference model in the analysis of SoEA structuring principles, and in the (re)design of service modeling languages

    Ontology Validation for Managers

    Get PDF
    Ontology driven conceptual modeling focuses on accurately representing a domain of interest, instead of making information fit an arbitrary set of constructs. It may be used for different purposes, like to achieve semantic interoperability (Nardi, Falbo and Almeida, 2013), development of knowledge representation models (Guizzardi and Zamborlini, 2012) and language evaluation (Santos, Almeida and Guizzardi,2010). Regardless its final application, a model must be accurately defined in order for it to be a successful solution. This new branch of conceptual modeling improves traditional techniques by taking into consideration ontological properties, such as rigidity, identity and dependence, which are derived from a foundational ontology. This increasing interest in more expressive languages for conceptual modeling is shown by OMGs request for language proposals for the Semantic Information Model Federation (SIMF) (OMG,2011). OntoUML (Guizzardi, 2005) is an example of a language designed for that purpose.Its metamodel (Carraretto, 2010) is designed to comply to the Unified Foundational Ontology (UFO). It focus on structural aspects of individuals and universals.Grounded on human cognition and linguistics, it aims to provide the most basic categories in which humans understand and classify things around them.In (Guizzardi, 2010) Guizzardi quotes the famous Dijkstras lecture, in which he discusses the humble programmer and makes an analogy entitled the humble ontologist. He argues that the task of ontology-driven conceptual modeling is extremely complex and thus, modelers should surround themselves with as many tools as possible to aid in the development of the ontology. These complexities arise from different sources. A couple of them come from foundational ontology itself, both its modal nature, which imposes modelers to deal with possibilities, and the many different restrictions of each ontological category. But they also come from the need of accurately defining instance level constraints, which require additional rules, outside of the languages graphical notation. To help modelers to develop high quality OntoUML models, a number of tools have been proposed to aid in different phases of conceptual modeling. From the construction of the models themselves using design patterns questions (Guizzardi et al., 2011), to automatic syntax verification (Benevides, 2010) and model validation through simulation (Benevides et al., 2010). The importance of domain specification that accurately captures the intended conceptualization has been recognized by both the traditional conceptual modeling community (Moody et al., 2003) and the ontology community (Vrandečić, 2009). In this research we want to improve (Benevides et al., 2010) initiative, but focus exclusively on the validation of ontology driven conceptual models, and not on verification. With the complexity of the modeling activity in mind, we want to help modelers to systematically produce high quality ontologies, improving precision and coverage (Gangemi et al., 2005) of the models. We intend to make the simulationbased approach available for users that are not experts in the formal method, relieving them of the need to learn yet another language, solely for the purpose of validating their models
    corecore