18 research outputs found

    Mapping the SISO module of the Turbo decoder to a FPFA

    Get PDF
    In the CHAMELEON project a reconfigurable systems-architecture, the Field Programmable Function Array (FPFA) is introduced. FPFAs are reminiscent to FPGAs, but have a matrix of ALUs and lookup tables instead of Configurable Logic Blocks (CLBs). The FPFA can be regarded as a low power reconfigurable accelerator for an application specific domain. In this paper we show how the SISO (Soft Input Soft Output) module of the Turbo decoding algorithm can be mapped on the reconfigurable FPFA

    The modified Max-Log-MAP turbo decoding algorithm by extrinsic information scaling for wireless applications

    Get PDF
    The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications

    Wilis: Architectural Modeling of Wireless Systems

    Get PDF
    The performance of a wireless system depends on the wireless channel as well as the algorithms used in the transceiver pipelines. Because physical phenomena affect transceiver pipelines in difficult to predict ways, detailed simulation of the entire transceiver system is needed to evaluate even a single processing block. Further, some protocol validations require simulation of rare events (say, 1 bit error in 109 bits), which means the protocol must simulate for a long enough time for such events to materialize. This requirement coupled with the heavy computation typical of most physical-layer processing, rules out pure software solutions. In this paper we describe WiLIS, an FPGA-based hybrid hardware-software system designed to facilitate the development of wireless protocols. We then use WiLIS to evaluate several microarchitectures for measuring very low bit-error rates (BER). We demonstrate, for the first time, that the recently proposed SoftPHY can be implemented efficiently in hardware

    VLSI Architectures for WIMAX Channel Decoders

    Get PDF
    This chapter describes the main architectures proposed in the literature to implement the channel decoders required by the WiMax standard, namely convolutional codes, turbo codes (both block and convolutional) and LDPC. Then it shows a complete design of a convolutional turbo code encoder/decoder system for WiMax.Comment: To appear in the book "WIMAX, New Developments", M. Upena, D. Dalal, Y. Kosta (Ed.), ISBN978-953-7619-53-

    New VLSI design of a MAP/BCJR decoder.

    Get PDF
    Any communication channel suffers from different kinds of noises. By employing forward error correction (FEC) techniques, the reliability of the communication channel can be increased. One of the emerging FEC methods is turbo coding (iterative coding), which employs soft input soft output (SISO) decoding algorithms like maximum a posteriori (MAP) algorithm in its constituent decoders. In this thesis we introduce a design with lower complexity and less than 0.1dB performance loss compare to the best performance observed in Max-Log-MAP algorithm. A parallel and pipeline design of a MAP decoder suitable for ASIC (Application Specific Integrated Circuits) is used to increase the throughput of the chip. The branch metric calculation unit is studied in detail and a new design with lower complexity is proposed. The design is also flexible to communication block sizes, which makes it ideal for variable frame length communication systems. A new even-spaced quantization technique for the proposed MAP decoder is utilized. Normalization techniques are studied and a suitable technique for the Max-Log-MAP decoder is explained. The decoder chip is synthesized and implemented in a 0.18 mum six-layer metal CMOS technology. (Abstract shortened by UMI.)Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S23. Source: Masters Abstracts International, Volume: 43-05, page: 1783. Adviser: Majid Ahmadi. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Reconfigurable architectures for beyond 3G wireless communication systems

    Get PDF

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF
    corecore