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A Flexible UMTS-WiMax Turbo Decoder
Architecture

Maurizio Martina, Member IEEE, Mario Nicola, Guido Masera, Senior Member IEEE

Abstract—This work proposes a VLSI decoding architecture
for concatenated convolutional codes. The novelty of this ar-
chitecture is twofold: (i) the possibility to switch on-the-fly
from the UMTS turbo decoder to the WiMax duo-binary turbo
decoder with a limited resources overhead compared to a single
mode WiMax architecture, and (ii) the design of a parallel,
collision free WiMax decoder architecture. Compared to two
single mode solutions, the proposed architecture achieves a
complexity reduction of 17.1% and 27.3% in terms of logic
and memory respectively. The proposed, flexible architecture has
been characterized in terms of performance and complexity on
a 0.13 µm standard cell technology, and sustains a maximum
throughput of more than 70 Mb/s.

Index Terms—VLSI, Turbo Decoder, UMTS, WiMax

I. INTRODUCTION

In the last years several standards have been proposed for
reliable transmission of data over wireless channels (e.g. [1],
[2]). Besides this, in order to cope with severe transmission
environments, typical of wireless systems, channel codes ought
to be adopted. Turbo codes [3] are among the most performing
channel codes, and are still a major topic of interest in the
scientific literature. Recent works dealing with turbo decoder
implementation mainly focus on three aspects. 1) The design
of VLSI architectures for duo-binary turbo codes [4], [5], [6].
2) The design of flexible architectures able to support multiple
codes [7], [8], [9]. 3) The design of parallel decoders to sustain
very high throughput (tens or hundreds of Mb/s), where the
interleaver parallelization is particularly challenging, due to
the problem of collisions in memory access [10], [11], [12].
Though current scaled CMOS technologies allow to reach
clock frequencies of several hundreds of MHz, parallelization
is still an effective methodology to achieve high throughputs
and to approach the long term objective of 1 Gb/s in wire-
less communications. Furthermore, in high throughput ASIC
design, the adoption of lower frequency parallel architectures
instead of higher frequency serial ones is an effective method
to combat unreliability and reduce nonrecurrent costs.

This work presents a high performance turbo decoder archi-
tecture, which faces the parallelization, the flexibility and the
duo-binary implementation issues while keeping the complex-
ity as reduced as possible, and achieves a throughput of several
tens of Mb/s. Implementation results on a 0.13 μm standard
cell technology show that the complexity overhead required
to support both UMTS and WiMax is limited, compared to
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a single mode WiMax decoder architecture. Moreover, the
proposed architecture yields noteworthy complexity reduction
figures compared to a dual mode architecture, where no
sharing technique is employed.

The rest of the paper is organized as follows. In section II
the decoding algorithm is briefly recalled. Section III presents
a reference architecture. In section IV the design of the
low complexity interleaver employed in our architecture is
addressed, whereas section V deals with the employed design
strategies. Finally, section VI shows the experimental results
and section VII draws some conclusions.

II. DECODING ALGORITHMS

Both the UMTS and the WiMax turbo codes are based on
the parallel concatenation of two 8-state convolutional codes
(CCs). However, the constituent code used in UMTS is a single
binary systematic CC, whereas that used in WiMax is a duo-
binary circular recursive systematic CC. At the decoder side,
the SISO (Soft In Soft Out) module [13] executes the BCJR
algorithm [14], usually in its logarithmic form [15]. Each SISO
module receives the intrinsic log-likelihood ratios (LLRs) of
coded symbols c from the channel and outputs the LLRs
of information symbols u. The two SISO modules exchange
extrinsic LLRs (λk[u]) by means of interleaving memories Π
and Π−1 (Fig. 1 (a)). The output extrinsic LLRs of symbol u
at the k-th step (λk[u; O]) are computed as:

λk[u; O] =
∗

max
e:u(e)=u

{b(e)} − ∗
max

e:u(e)=ũ
{b(e)} − λk[u; I] (1)

where ũ is an input symbol taken as a reference (usually ũ =
0), e represents a certain transition on the trellis and u(e) is
the uncoded symbol u associated to e. The

∗
max{xi} function

[15] is implemented as a max followed by a correction term
stored in a small Look-Up-Table (LUT) [16]. The correction
term, usually adopted when decoding binary codes, can be
omitted for duo-binary turbo codes [4].

It is worth pointing out that in binary turbo codes, at each
trellis step the SISO outputs only one extrinsic LLR, whereas
in duo-binary turbo codes the SISO produces three extrinsic
LLRs; thus, in general, the terms λk[u; O] and λk[u; I] are
vectors. The term b(e) in (1) is defined as:

b(e) = αk−1[sS(e)] + γk[e] + βk[sE(e)] (2)

αk[s] =
∗

max
e:sE(e)=s

{
αk−1[sS(e)] + γk[e]

}
(3)

βk[s] =
∗

max
e:sS(e)=s

{
βk+1[sE(e)] + γk[e]

}
(4)

γk[e] = πk[u(e); I] + πk[c(e); I] (5)
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Figure 1. Parallel Concatenated Convolutional Codes: coder and iterative
SISO based decoder (a), notation for the trellis section in the SISO (b)

where sS(e) and sE(e) are the starting and the ending states
of e, αk[sS(e)] and βk[sE(e)] are the forward and backward
metrics associated to sS(e) and sE(e) respectively (see Fig.
1 (b)). The πk[c(e); I] term in (5) is computed as a weighted
sum of the λk[c; I] produced by the soft demodulator as

πk[c(e); I] =
nc∑
i

ci(e)λk[ci(e); I] (6)

where ci(e) is one of the coded symbols associated to e and
nc is the number of bits forming a coded symbol. On the
other hand, we can write πk[u(e); I] = u(e)λk[u(e)] for a
binary turbo code, whereas for a duo-binary turbo code the
πk[u(e); I] terms are piece wise functions:

πk[u(e); I] =

⎧⎪⎪⎨
⎪⎪⎩

0 if u(e) = (‘0’, ‘0’)
λAB

k [u(e), I] if u(e) = (‘0’, ‘1’)
λAB

k [u(e), I] if u(e) = (‘1’, ‘0’)
λAB

k [u(e), I] if u(e) = (‘1’, ‘1’)

(7)

For further details on the theoretical aspects, the reader can
refer to [13].

III. REFERENCE ARCHITECTURE

The throughput of a turbo decoder (T ), defined as the
number of decoded bits (N ) over the time required to perform
the decoding operations (D), can be roughly estimated as

T =
N

D
= P

Nfclk

2I(Ñ + SISOlP )
(8)

where P is the number of SISOs instanced into the decoder,
I is the number of iterations, SISOl is the SISO latency, fclk

is the clock frequency and Ñ is equal to N or N/2 for binary
and duo-binary turbo decoders respectively. In a windowed
architecture, the SISO latency is directly related to the window
size W , as W clock cycles are required for computing both
the α and β values. If boundary metrics calculated at previous
iteration on the neighboring windows are used to initialize α
and β recursion, as suggested in [17], the SISO latency can be
estimated as SISOl=2W . Considering W=32 (typical value),
fclk=200MHz and I=8, a throughput T � 12 Mb/s is obtained
with P = 1. This value is more than sufficient to achieve
the UMTS maximum throughput of 2Mb/s (block length
N = 5114). On the other hand the WiMax standard requires

a throughput close to 70 Mb/s for the maximum block length
Nc = N/2 = 2400. Considering the same parameters listed
above for UMTS, we obtain P ≥ 4. As a consequence, the
WiMax turbo decoder ought to be implemented as a parallel
architecture, for the same clock frequency f clk=200MHz.

A large part of the decoder area is devoted to the interleaver
memory and the SISO modules, so these blocks can be
effectively shared between the two decoders. The general SISO
architecture is shown in Fig. 3. The α processor implements
(3) and the β processor implements (4) on two consecutive
windows of data. Both the α and β processors compute in
parallel all the new State Metrics (SMs) (see the SM proc.
block in Fig. 3). Since the α processor works in direct order
on the input data, whereas the β processor elaborates them in
reverse order, two Branch Metrics Units (BMUs), are placed
before the α and β processors. Each BMU is devoted to com-
bine λk[u; I] and λk[c; I] and obtains in parallel the Branch
Metrics (BMs) γk associated to the k-th trellis section. As a
consequence a local buffer (BMU-MEM) is required to store
W extrinsic information and channel transition information
values. The λ − O processor generates the λk[u; O] values
according to (1) receiving the βk values directly from the β
processor and loading the αk values from a local buffer (α-
MEM).

It is known that in binary turbo code decoders LLRs
are commonly used. On the contrary, in duo-binary turbo
decoders the use of logarithmic probabilities (LP) instead of
LLRs allows to save a certain amount of logic in the SISO
architecture [5]. However, the use of 4 LPs instead of 3 LLRs
has a negative impact on both the interleaver memory and
the BMU-MEM footprint. In order to select the most suitable
approach, we implemented both the LLR based SISO (SISO-
LLR) and the logarithmic probabilities based SISO (SISO-LP)
in VHDL and synthesized them on a 0.13μm standard cell
technology. Moreover, we generated the dual port SRAMs to
implement the interleaver memory both for the SISO-LLR (2p-
LLR) and the SISO-LP (2p-LP) and the single port SRAMs to
implement the BMU-MEM as a “ping-pong” buffer for both
the cases (1p-LLR and 1p-LP). Fig. 2 shows the complexity
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Figure 2. Complexity growth [μm2] of a duo-binary turbo decoder building
blocks as a function of the number of bits (bit) to represent the input data

growth of SISO-LLR, SISO-LP, 2p-LLR, 2p-LP, 1p-LLR and



3

γ γ

k

β

k

k−1α k+1 β

k−1

k−1α

β

k+1

k

k+1α

γ

α/β

k

k α/βk

γk

α/βk α/β

[u;I]

λk[u;O]
AB

λk[u;O]
AB

λk
AB

[u;O]

uk

no
rm

no
rm

αk−1

βk

8 9 10 117654γ γ γ γ3210 γ γ γ γ γ γ γ γ 12 13 14 15γ γ γ γ

λ [u,I]
AB
k λ [u,I]

AB
k λ [u,I]

AB
kλ

A
[c,I]k

λ
B

[c,I]k

λ
Y

[c,I]k

λ
W
k [c,I]

processor

u k

λ k[u;O] β out

αk−1 βk
β

prv

β −LOC−MEM

max∗
max

i[s ]i[s ]

[e]
(1)

i [e]
(0)

i[e]
(2)

i[e]
(3)

i

(3)

i[s ]
(2)

i[s ]
(1)

i[s ]
(0)

i[s ]

max

UMTS_WiMax_n

[0][0] [7][7]

−Oλ

γ k

λk[T]
AB

λk[T]
AB

λk
AB

[T]

λk[u;I]
AB

λk[u;I]
AB

λk
AB

k k k k k k k k k k k

processor
α β

BMU−MEM

processor

−BMUα β

−Oλ
−MEMα

γγ

β −EXT−MEM−EXT−MEMα

α

λ k[u;I]

λ k[c;I]

α k k

kα

out

in

βk−1

βin

processor

PE0 PE7

(α/β,γ) (α/β,γ)k k

−BMU

BMU SM
proc.

PE

UMTS_WiMax_n

max

*

*

0

00
01
10
11

UMTS_WiMax_n

0

k k k k k

max
tree

max
tree

max
tree

max
tree

Figure 3. Flexible UMTS/WiMax SISO architecture: in the center the general SISO architecture and its building blocks, on the left the BMU structure, on
the top the SM processor structure, on the right the λ − O processor and the detail of the SM processor processing element (PE)

1p-LP in μm2 as a function of the number of bits (bit) used
to represent the LLRs or the LPs. The range explored in this
analysis (bit ∈ [4, 8]) shows that the SISO-LLR complexity is
slightly larger than that of the SISO-LP. However, the amount
of memory required by a SISO-LP based decoder increases
more than that of a SISO-LLR based one. In Fig. 2 the
complexity of a single SISO decoder, including the interleaver,
is also shown. Further experiments show that increasing P ,
the overhead required by the LP based decoder with respect
to the LLR based one decreases from 7.6% (P = 1) to
2.2% (P = 8). However, the LLR based decoder is still less
complex. As a consequence, in the following the LLR based
decoder architecture is described according to the formalism
introduced in section II. This choice implies that the BMU-
MEM contains W words, each word being made of 4 channel
LLRs (λk[c; I]) represented on nλc bits and 3 extrinsic LLRs
(λk[u; I]) represented on nλu bits.

IV. LOW COMPLEXITY INTERLEAVER DESIGN

Since the proposed architecture achieves the throughput
required by UMTS with a single SISO, the UMTS interleaver
parallelization is not addressed in this work. In order to reduce
as much as possible the complexity of the UMTS permutation
generator, we implemented the two step architecture detailed
in [18], which is very similar to that proposed in [19].

On the other hand a parallel decoder (P = 4) is required
to achieve the WiMax throughput with the assumed clock
frequency, fclk=200 MHz; as a consequence we designed the
parallel interleaver shown in Fig. 4. The permutation algorithm
specified in the WiMax standard is structured in two steps. The
first step switches λAB

k [u(e)] and λAB
k [u(e)] stored at odd

addresses leaving λAB
k [u(e)] un-moved (where λk[u(e)] can

be either λk[u(e), I] or λk[u(e), O]). The second step provides
the interleaved address i of the j-th λj [u(e)] triplet as

i = (P0 · j + P
′
j ) mod Nc (9)

where P
′
j ∈ {1, (1 + Nc/2 + P1), (1 + P2), (1 + Nc/2 + P3)}

and Pj are constants depending on Nc, defined in [2] and [18].

The interleaver architecture can be simplified by rewriting (9)
as i = [(P0 · j) mod Nc + (P

′
j mod Nc)] mod Nc as detailed

in [18].
In this work we consider that the throughput sustained by

the decoder scales with Nc, namely for short block lengths
a single SISO is active (e.g. T = 6.8Mb/s with Nc = 24).
When 192 ≤ Nc < 480, two SISOs are active (e.g. T =
30Mb/s with Nc = 192) and when 960 ≤ Nc ≤ 2400 all
the four SISOs are active (e.g. T = 78.95Mb/s with Nc =
960). Given P SISOs and P memories to interleave extrinsic
information, two different SISOs should not read from or write
to the same memory at the same time to avoid collisions. As
detailed in [18], the resulting parallel interleaver with variable
parallelism degree is a circular shifting interleaver [20], whose
implementation requires nearly the same complexity as the
non-parallel version. In fact, the collision free characteristic is
achieved by making the SISOs accessing at the same time the
same location of different memories.

V. FLEXIBLE UMTS/WIMAX SISO ARCHITECTURE

In the following paragraphs the solutions employed to share
the SISO architecture between UMTS and WiMax are detailed.
In Fig. 3 the logic employed in the UMTS mode is highlighted
with bold lines into the WiMax SISO building blocks.

a) BMU sharing - left side Fig. 3: due to the trellis sym-
metry, the WiMax BMU computes 16 possible BMs, whereas
the UMTS BMU only 4. Thus, starting from the equations
required to compute the 8 WiMax αk and βk SMs, we can
reduce the number of multiplexers to implement the UMTS
SMs. Since in the UMTS mode (UMTS WiMax n = ‘1’) 12
outputs of the BMU would not be used, we properly replicate
the 4 possible UMTS BMs so that the 2×16 input adders in
the α and β processor do not require to be multiplexed.

b) SMs processors sharing - bottom right side Fig. 3:
α

(j)
k [si] and β

(j)
k [si] are the j-th SMs connected to the i-th

state (si) at the k-th trellis step and γ
(j)
k [ei] the corresponding

BMs. The UMTS mode at the k-th trellis step requires the
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i-th PE to combine 2 SMs and 2 BMs to produce a new
SM, whereas 4 SMs and 4 BMs are required in the WiMax
mode. The

∗
max function shared by the UMTS and the WiMax

decoder is implemented as a programmable two input
∗

max.
Since the UMTS turbo code achieves excellent performance
even with a 1 bit correction (3 positions LUT [16]), the 1
bit correction can be exploited to substitute the last adder in
the standard Add-Compare-Select-Offset implementation with
a simpler, programmable increment.

c) λ − O processor sharing - top right side Fig. 3: the
λ − O processor input stage is made of two normalization
blocks (norm) devoted to subtracting the 0-state (s0) from the
others, αk(si) − αk(s0) and βk(si) − βk(s0).

The normalized SMs, combined with γk, become the inputs
of the

∗
max trees (two

∗
max trees for UMTS and four

∗
max trees

for WiMax). The
∗

max tree output referred to ũ is subtracted
from the others; then, subtracting the corresponding λ k[u; I],
the output extrinsic LLRs are obtained. To ease the decoded
bits generation the hard decision circuit is embedded into
the λ − O processor. For a binary turbo decoder it can be
implemented taking the sign of λk[T ] = λk[u; I] + λk[u; O].
On the other hand for a duo-binary turbo decoder the hard
decision is selected as the couple with maximum LLR in
{0, λAB

k [T ], λAB
k [T ], λAB

k [T ]}, as shown in Fig. 3.
d) SM exchange network sharing: to grant a windowed

elaboration, the α-MEM contains W words, each word being
made of 8 SMs, represented on nSM bits. As stated in section
III the SISO complexity and latency can be reduced [17]
implementing a β metrics inheritance strategy at the expenses
of additional memory. Given the number of windows per
SISO (NWP ), a NWP -1 words local memory (β-LOC-MEM)
stores the SMs at the boundary of two consecutive windows
(βprv). Each word is made of 8 SMs, each of which is
represented on nSM bits. Moreover, every SISO requires two
8 SMs values to initialize its trellis portion (αin and βin).
This architecture is suited to a single SISO decoder, where
only intra SISO SMs inheritance is required. However, in a

Table I
TURBO DECODER ARCHITECTURES COMPARISON: SYMBOL MODE (S) CAN

BE BINARY (B) OR DUO-BINARY (D), CMOS TECHNOLOGY PROCESS
(TP), LOGIC (L), MEMORY (M), CLOCK FREQUENCY (fclk ) AND

THROUGHPUT (T )

Architecture S TP L M fclk T
[μm] [kgate] [kbit] [MHz] [Mb/s]

[24] B 0.18 410 450 145 24
[25] B 0.18 121 - 285 27.6
[22] B 0.5 75 390 95 3.8

This work B 0.13 75 70.9 200 12
[23] D - ∼480 ∼713 ∼200 -

This work D 0.13 171 133.6 200 90.36
[7]-I B/D 0.09 97 - 335 7.4
[7]-II B/D 0.09 1552 - 335 100

This work B/D 0.13 204 148.6 200 90.36

parallel SISO decoder, inter SISO SMs inheritance is required
to properly initialize trellis slices of different SISOs. This can
be achieved by inserting two 2-position shift registers (α-EXT-
MEM and β-EXT-MEM) to exchange the αout and βout SMs
with the neighboring SISOs. As depicted in Fig. 4, a simple
network allows to properly exchange the boundary SMs among
the different SISOs considering that in the UMTS mode the
trellis starting and termination SMs are fixed (αinit and βinit)
whereas in the WiMax mode they are estimated as explained
in section III. Depending on which is the last SISO active
(last SISO) the SMs ought to be inherited from a different
SISO.

VI. IMPLEMENTATION, THROUGHPUT AND LATENCY

According to the literature [16], [21], nλc= 6, nλu= 8 and
nSM = 12 have been chosen as a significant, conservative
case for both UMTS and WiMax. Synthesis results on a
0.13 μm standard cell technology show that the proposed,
flexible UMTS/WiMax architecture requires about 204 kgates.
The single mode WiMax architecture requires about 171
kgates, the UMTS one described in [22], similar to the one
employed in this work, requires 75 kgates. So the combination
of the two single mode decoders leads to 246 kgates: the
proposed solution is 17.1% less complex. As stated in section
III, memory sharing and on-the-fly generation of scrambled
addresses grant a large area saving. This is confirmed by the
actual memory requirements: the P = 4 WiMax decoder
requires 133.6 kbits, whereas the UMTS decoder requires
70.9 kbits. As a consequence the two architectures require
204.5 kbits. The proposed solution with memory sharing
requires only 148.6 kbits, thus it grants a memory saving of
27.3% and a total area saving of 27.7% compared to the two
single mode architectures. In Table I the proposed architecture
is compared to some binary and duo-binary turbo decoder
architectures. The proposed dual mode architecture shows
excellent performance and complexity figures compared both
to a fixed implementation [23] and to a programmable solution
[7] ([7]-I refers to the single processor solution, whereas [7]-II
is related to the 16 processor architecture).

As it can be inferred from Table I the proposed architecture
achieves a throughput higher than specified by the WiMax
standard. This implies that enough processing power is avail-
able for the concurrent execution of the UMTS and WiMax
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Table II
THROUGHPUT/LATENCY

Architecture T [Mb/s] D [μs]
Single standard UMTS 12 414
Single standard WiMax 90.36 53

Concurrent UMTS 2 2400
Concurrent WiMax 75 2400

decoding. Of course external buffers must be available to
receive an UMTS frame while WiMax decoding is in progress
and viceversa. In the following we prove that the proposed
architecture can support the concurrent execution of the UMTS
and WiMax decoding. The time required to decode K blocks
of N bits with the proposed architecture is

Θx(K) = K
N

Tx
(10)

where Tx is the throughput of the proposed architecture and x
can be either U for UMTS or W for WiMax. As a consequence

Θtot(K) = ΘW (K) + ΘU (1) (11)

is the total time required to decode the hybrid sequence of K
WiMax blocks and 1 UMTS block. Concurrent decoding can
be sustained only if the throughputs required (Φ) by UMTS
and WiMax are achieved for maximum block length:

K
NW

Θtot
≥ ΦW

NU

Θtot
≥ ΦU (12)

where NW =4800 (WiMax) and NU =5114 (UMTS). Substitut-
ing (10) and (11) in (12) we obtain⌈

ΦW TW

TU (TW − ΦW )

⌉
≤ K ≤

⌊
TW

ΦU
− TW

TU

⌋
= KM (13)

The final choice for K has been made taking ΦU =2 Mb/s and
solving (13) for the maximum ΦW ; this results in KM=37 and
ΦW =75 Mb/s. The concurrent decoding also affects latency.
The proposed architecture latency can be obtained from (8) as

D =
2I(Ñ + SISOlP )

Pfclk
(14)

namely DU �414 μs and DW �53 μs. Thus, the total latency
to decode KM WiMax blocks and 1 UMTS block is

Dtot =
2I

fclk

[
KMNc

P
+ N + SISOl(1 + KM )

]
(15)

In the worst case (Nc=2400 and N=5114) we obtain D tot �
2.4 ms, which is a small percentage of the global latency
specified by both UMTS and WiMax standards. The single
and multi-standard figures of throughput and latency offered
by the presented architecture are summarized in Table II.

VII. CONCLUSION

In this paper a flexible UMTS/WiMax turbo decoder ar-
chitecture has been presented together with a parallel WiMax
interleaver architecture. Compared to a single mode, paral-
lel WiMax architecture the proposed one exhibits a limited
complexity overhead. Moreover, compared to a separated dual
mode UMTS/WiMax turbo decoder architecture, it achieves
the 17.1% logic reduction and the 27.3% memory reduction.
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