
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

New VLSI design of a MAP/BCJR decoder. New VLSI design of a MAP/BCJR decoder.

Leila Sabeti
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sabeti, Leila, "New VLSI design of a MAP/BCJR decoder." (2004). Electronic Theses and Dissertations.
2850.
https://scholar.uwindsor.ca/etd/2850

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2850?utm_source=scholar.uwindsor.ca%2Fetd%2F2850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

New VLSI Design of a MAP/BCJR Decoder

by

Leila Sabeti

A Thesis
Submitted to the Faculty of Graduate Studies and Research through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at

The University of Windsor

Windsor, Ontario, Canada
2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-00161-5
Our file Notre reference
ISBN: 0-494-00161-5

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(o I

© 2004 Leila Sabeti

All Rights Reserved. No part of this document may be produced,

stored or otherwise retained in retrieval system of transmitted in any

form, on any medium or by any means without the prior written

permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

New VLSI Design o f a MAP/BCJR Decoder

by

Leila Sabeti

APPROVED BY:

R. Lashkari
IMSE Department

Sid-Ahmed
ECE Department

M. Ahmadi, Advisor
ECE Department

C K S K T p f p e , Co-advisor
Department

B. Shahrava, Chair o f Defense
ECE Department

September 29, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Any communication channel suffers from different kinds of noises. By employing

forward error correction (FEC) techniques, the reliability of the communication channel

can be increased. One of the emerging FEC methods is turbo coding (iterative coding),

which employs soft input soft output (SISO) decoding algorithms like maximum a

posteriori (MAP) algorithm in its constituent decoders. Owing to their outstanding

performances, turbo codes have already been adopted by recent communication systems

such as Consultative Committee for Space Data systems (CCSDS), telemetry channel

coding and the 3rd Generation Partnership Project. A major difficulty of applying turbo

codes in many applications is the decoding complexity of SISO decoders.

Efficient implementations of these decoders can significantly increase the employment of

turbo codes in different communication applications. Because Max-Log-MAP algorithm

is the best compromise among other algorithms in terms of performance and

implementation complexity, our implementation is based on this algorithm.

In this thesis we introduce a design with lower complexity and less than 0.1 dB

performance loss compare to the best performance observed in Max-Log-MAP algorithm.

A parallel and pipeline design of a MAP decoder suitable for ASIC (Application Specific

Integrated Circuits) is used to increase the throughput of the chip. The branch metric

calculation unit is studied in detail and a new design with lower complexity is proposed.

The design is also flexible to communication block sizes, which makes it ideal for

variable frame length communication systems. A new even-spaced quantization technique

for the proposed MAP decoder is utilized. Normalization techniques are studied and a

suitable technique for the Max-Log-MAP decoder is explained. The decoder chip is

synthesized and implemented in a 0.18 fj. m six-layer metal CMOS technology.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to extend my sincere gratitude and appreciation to people who have

contributed to the completion of this thesis.

First and foremost, I would like to thank my supervisor, Dr. Majid Ahmadi, for whom

I have the utmost respect and admiration. He had a tremendous impact on me

academically, socially and personally, and for this I am forever in his debt.

I am also grateful to Dr. Kemal Tepe for his knowledge suggestions and his

enthusiasm towards my research. I would also like to thank my committee members,

Dr. M. A. Sid-Ahmed and Dr. R. Lashkari for their patience and support.

Additionally, I would like to thank my husband, Shahram Talakoub for his patience,

his confidence in my ability and his guidance and assistance toward my research.

Finally, I would like to acknowledge my parents for their constant support,

encouragement and motivation.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

Abstract iv
Acknowledgements v
List of Figures ix

Chapter 1: Introduction
1.1 Digital Communication Systems 1

1.1.2 Information Source 2
1.1.3 Source Encoder 3
1.1.4 Channel 4
1.1.5 Noise 5
1.1.6 Channel Coding 6
1.1.7 Modulation 6
1.1.8 Source Decoder 6
1.1.9 Output Information 6

1.2 History of Coding 7
1.3 Number Systems 8

1.3.1 Signed Fixed Point Numbers 8
1.3.2 Redundant Number Systems 9
1.3.3 Residue Number Systems 10
1.3.4 Logarithmic Number Systems 11
1.3.5 Floating point Number Systems 11

1.4 Thesis Overview 12
1.4.1 Thesis Highlights 12
1.4.2 Thesis Overview 13

Chapter 2: Turbo Coding 14
2.1 Turbo Encoder 14
2.2 RSC Encoder 16
2.3 Interleavers 20

2.3.1 Pseudo-Random Interleavers 20
2.3.2 Convolutional Interleavers 20

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f

2.4 Turbo Decoder 21

2.5 Turbo Coding Algorithms 23
2.5.1 Viterbi Algorithm (VA) 24
2.5.2 MAP/BCJR Algorithm

* 2.5.3 Results of the MAP Algorithm
26
31

2.5.4 Max-Log-MAP Algorithm 32
2.5.5 Log-MAP Algorithm 34
2.5.6 Sliding MAP 35

2.6 Improving the Max-Log-MAP Turbo Decoder 35

2.7 Algorithm Comparison 37

2.8 System Specification Summary 38

Chapter 3: System Design and Modeling 39

3.1 Max-Log-MAP Decoder Block Diagram 40

3.2 New Branch metric Calculation Unit 41

3.3 Proposed Node Metric Calculation Unit 43

3.4 Log-likelihood Ratio (LLR) 45

3.5 Soft Output Calculation Unit 45

3.6 Quantization 46

3.7 Normalization 50

Chapter 4: RTL Simulation and Synthesis
4.1 Verilog History
4.2 RTL Coding
4.3 Synthesis

Chapter 5: VLSI Implementation 68
5.1 Hardware and Software Trade-offs 69

5.1.1 16-bit Fixed-point DSPs 71
5.1.2 Modem VLSI DSPs 71
5.1.3 application-Customized RISC Cores 72

5.2 Floorplanning and Power Planning 73
5.2.1 Ring Power Pads 74
5.2.2 Core Power Pads 75

5.3 Placement 75

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 clock Tree Generation 76
5.5 Routing 76

5.5.1 Sroute 76
5.5.2 Trial Routing 77
5.5.3 Nano Route 77
5.5.4 Wroute 77

5.6 Filler Cells 78
5.7 Metal Fill 78

Chapter 6: Results and Conclusion 79
6.1 results and comparison 80
6.2 Summary of Contributions 80

6.2.1 Algorithmic Contribution 82
6.2.2 Architectural Contribution 82
6.2.3 System Level Design Contribution 82

6.3 Conclusions 83

References 84
Appendix A 92
Appendix B 94
Appendix C 109
Appendix D 113
VITAAUCTORIS 120

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

Figure 1.1 A typical digital communication system 2
Figure 1.2 A channel model.............. 5
Figure 2.1 Turbo encoder 15
Figure 2.2 RSC Encoder................ 16
Figure 2,3 State diagram of RSC encoder...,.....,.,..,....... ..IS
Figure 2.4 Trellis diagram of the ESC decoder 18
Figure 2.5 A middle section of the trellis diagram ----- 19
Figure 2,6 Code tree representation. 19
Figure 2.7 Comparison of Mock, convolutional, and random interleaving21
Figure 2.8 Turbo decoder. 22
Figure 2.9 Turbo decoding algorithms,. — 23
Figure 2,10 Viterbi algorithm with, generator (7,5) for BSC............. ..26
Figure 2.11 Turbo code with different scaling factors, block length 5114 bit, Siterations,

AWGN. rate 1/3 and generators (13 ,15)o«..... 36
Figure 2.12 Comparison between performances of turbo coding algorithms, block length

668bit, 4 iterations, AWGN, rate 1/3 and generators (7, 5)........... 37
Figure 3.1 Block diagram of the proposed Max-Log-MAP decoder,..,40
Figure 3.2 Branch metric calculation unit... 43
Figure 3.3 Parallel architecture of the a calculation unit..................... ..44
Figure 3.4 Log-likelihood calculation...... 45
Figure 3,5 Pipeline calculation of LLR for 4 state Max-Log-MAP decoder.. ___ .,46
Figure 3.7 Histogram for the a Priori Probability values (LUT input) 48
Figure 3,8 Logarithm of the AP(-l) or AP(+1) (LOT output) 49
Figure 3,9 Comparison between proposed quantization, using integer values for

quantization and the best possible performance (AWGN, 400 bits frame, no iteration,
Max-Log-MAP decoder) 49

Figure 3.10 Comparison between two normalization methods, block length 400.......52
Figure 4,1 hierarchical levels of the modules written in Verilog.............___ .,56
Figure 4.2 Modules in Synopsys, Design analyzer 57
Figure 4,3 add sub module flowchart ...,,.,,..................59
Figure 4.4 add module,,...60
Figure 4,5 Alpha module................. 61
Figure 4.6 write module (computation of Beta values)62
Figure 4.7 write module (writing branch metric values into RAMI)................... ..63
Figure 4.8 writ2a module (LLR computation)63
Figure 4,9 writ2e module (writing Alpha values into RAM2) ___ 64

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.10 Wave forms status in Sinmsion 64
Figure 4.11 Waveform status in Srmmswn65
Figure 4.12 Synthesis steps................... 65
Figure 4.13 shows the synthesis level of the main module or MAPdecoder.66
Figure 4.14 Inside the main module after synthesis level................... .66
Figure 5.2 Digital design flow 69
Figure 5.3 Floorplaimed design 74
Figure 5.4 Power planned design74
Figure 5.5 Placed design 75
Figure 5.6 Chip after Clock Tree Generation __ 76
Figure 5.7 Routed design 77

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The purpose of a communication system is to transport information from a source

to one or more user destinations via a communication channel. There are two types of

communication systems, analog communication systems and digital communication

systems. In analogue systems the information varies continuously in both amplitude and

time, and is used to modify some characteristic of a sinusoidal carrier wave (e.g.

amplitude, phase, frequency), however in digital systems the information is processed so

that it can be represented by a sequence of discrete messages.

1.1 Digital Communication Systems

A digital communication system conveys information in digital form from a

source to one or more destinations through a communication channel. Figure 1.1 gives the

block diagram of a typical digital communication system.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Information Source Source Encoder Channel Encoder Digital M odulator Transmitter

Channel

Channel Decoder § I Digital DemodulatorCj- ReceiverOutput information Source Decoder
TB

Figure 1.1 A typical digital communication system

1.1.2 Information Source

The input is source signal. It might be a sequence of symbols such as letters from

the English or Chinese alphabet, binary symbols from a computer file, etc. Alternatively,

the input might be a waveform, such as a voice signal from a microphone, the output of a

sensor, a video waveform, or, it might be a sequence of images such as X-rays or

photographs.

Whatever the source signal is, we will model it as a sample function of a random process.

This is one of the reasons why probability is an essential prerequisite for communication

theory. It is not obvious why inputs to communication systems should be modeled as

random, and in fact this was not appreciated before Shannon developed information

theory in 1948. The study of communication before that time (and well after that time)

was based on Fourier analysis, which basically studies the effect of passing sine waves

through various kinds of systems and components. This kind of analysis often called

Nyquist theory in the context of digital communication.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, Shannon's view was that if the recipient knows that a sine wave of a given

frequency is to be communicated, why not simply regenerate it at the output rather than

send it over a long distance? Or, if the recipient knows that a sine wave of unknown

frequency is to be communicated, why not simply send the frequency rather than the

entire waveform?

The essence of Shannon's viewpoint is that we should focus on the set of possible inputs

from the source rather than any particular input. The objective then is to transform each

possible input into a transmitted signal in such a way that each possible transmitted signal

can be distinguished from the others at the output. A probability measure is needed on

this set of possible inputs to distinguish typical inputs from abnormal inputs. It will be

explained later how this point of view drives the processing of the inputs as they pass

through a communication system.

1.1.3 Source Encoder

The source encoder has the function of converting the input from its original form

into a sequence of bits. The simplest source coding techniques involve representing the

source signal by a sequence of symbols from some finite alphabet, and then coding the

alphabet symbols into fixed-length blocks of bits. For example, letters from the 27-

symbol English alphabet (including a space symbol) may be encoded into 5-bit blocks.

Or, upper-case letters, lower-case letters, and a great many other special symbols may be

converted into 8-bit blocks (bytes) using the 7-bit standard ASCII code.

The most straightforward approach to converting an analog waveform to a bit sequence,

called analog to digital (A/D) conversion, is first sampling the source at a sufficiently

high rate (called the “Nyquist rate”), and then quantizing it properly for adequate
reproduction. For example, in standard voice telephony, the voice waveform is filtered to

a bandwidth of less than 4 KHz and sampled 8000 times per second; each sample is then

quantized into one of 256 levels and represented by an 8-bit byte. This yields a source

coding bit rate of 64 kb/s.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Beyond the basic objective of conversion to bits, the source encoder often has the further

objective of transmitting as few bits as possible, subject to the need to reconstruct the

input adequately at the output. In this case source encoding is often called data

compression. For example, modem speech coders can encode telephone-quality speech at

bit rates of the order of 6-16 kb/s rather than 64 kb/s.

1.1.4 Channel

Here, the channel in a generic digital communication system is discussed before

considering channel coding.

In general, the channel is that part of the communication medium that is given and not

under the control of the designer. Thus, to a source code designer, the channel might be a

digital channel with bits as input and output; to a telephone-line modem designer, it might

be a 4 KHz voice channel; to a cable modem designer, it also might be a physical coaxial

cable of up to a certain length, with certain bandwidth restrictions.

For a channel code designer, the channel is often a physical channel; e.g., a pair of wires,

a coaxial cable, or an optical fiber going from the source location to the destination. It

also might be the open space between source and destination over which, electromagnetic

radiation can carry signals, underwater acoustic channel or storage channel.

If a channel was simply a linear time-invariant system (e.g., a filter), then it could be

completely characterized by its impulse response or frequency response. However, the

channels that we look at here (and channels in practice) always have an extra ingredient

noise. Suppose that there were no noise and a single input voltage level could be

communicated exactly. Then, representing that voltage level by its infinite binary

expansion, we would in principle be able to transmit an infinite number of binary digits

by transmitting a single real number. This is absurd in practice, of course, precisely

because noise limits the number of bits that can be reliably distinguished. Again, it was

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Shannon in 1948 who, realized that noise provides the fundamental limitation to

performance in communication systems.

1.1.5 Noise

The major characteristic of a communication channel in is how the channel

distorts the information. We start by listing out some common channel defects:

1. Thermal noise in electronic devices

2. Signal attenuation

3. Amplitude and phase distortion

4. Multipath distortion

5. Finite-bandwidth (low-pass filter) distortion

6. Impulsive noise

Based on a knowledge of these channel defects, we construct the generic channel model.

The most common channel model involves a waveform input X(t), an added noise

waveform Z(t), and a waveform output Y(t) that is the sum of the input and the noise,

Y(t) = X(t) + Z(t), as shown in Figure 1.2.

Each of these waveforms is viewed as a stochastic process. For any channel with input

X(t) and output Y(t), we could define the noise to be Z(t) = Y (t) - X(t), which is essential

to be statistically independent of the input. The noise Z(t) is often modeled as white

Noise

Output

Figure 1.2 A channel model

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gaussian noise (in this case it is called Additive White Gaussian Noise), which is the

most common and most studied model among the various models.

1.1.6 Channel Coding

The objective of channel coding is to map the signal to a form where reliable

communication can be achieved over a noisy channel. This may be achieved by

introducing controlled redundancy into the signal. The channel decoder attempts to

reconstruct the original encoder input as accurately as possible. The choice of channel

coding depends considerably on the channel over which the data will be transmitted.

Block codes, convolutional codes, and more recently block turbo codes are examples of

channel encoding techniques.

1.1.7 Modulation

Modulation is performed to provide for efficient transmission of the signal over

the channel. It operates by keying shifts in the amplitude, frequency, or phase of a

sinusoidal carrier wave to the channel encoder output. The detector performs

demodulation, attempting to produce a signal that follows the time variations in the

channel encoder output. Modulation is required for transmitting over a band-pass channel.

1.1.8 Source Decoder

The source decoder performs the inverse mapping of the source encoder. Usually,

it can be realized with low complexity.

1.1.9 Output Information

Output information is the sink of the transmitted information and should be

similar to the original information of the source before they are sent trough the channel.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 History of Coding

Unlike analog communication, digital communication has the ability to detect and

correct errors produced by the noise of the channel. Forward error correction plays an

important role in the system design process, which attempts to balance the tradeoffs of

power, bandwidth, and data reliability.

Digital communication is a field in which theoretical ideas have had an unusually

powerful impact on actual system design. The basis of the theory was developed in 1948

by Claude Shannon, and is called Information Theory. For the first 25 years or so of its

existence, information theory served as a rich source of academic research problems and

as a tantalizing suggestion that communication systems could be made more efficient and

more reliable by using these approaches. By the mid 1970's, mainstream systems using

information theoretic ideas began to be widely implemented for two reasons. First, by that

time there were a sizable number of engineers who understood both information theory

and communication system development. Second, implementation of the sophisticated

algorithms was possible because of the low cost and increasing processing ability of

digital hardware.

Shannon’s major accomplishments include the development of the noiseless source

coding theorem, the rate distortion theorem, and the channel coding theorem [gallager]. In

1948, Shannon published a groundbreaking paper and showed that reliable

communication trough a noisy channel is possible. What Shannon showed was fact that

more sophisticated coding schemes can achieve arbitrarily low error probabilities without

lowering the data rate below a certain data rate that depends on the channel being used,

called the channel capacity.

Channel capacity can be calculated from the following equation:

C= Wlog2 (l+S/N)

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where W is the bandwidth in Hz, S is the signal power in watts and N is the total noise

power.

Now, after explanation about the digital communication systems there is an overview of

different number systems, which is part of any digital system computation.

1.3 Number Systems

In this design, we are working with fixed-point values that can be either positive

or negative and one of the underlying considerations that must be made when carrying out

digital arithmetic is the number representation. Therefore, in this section different number

systems are discussed with their advantages and shortfalls.

1.3.1 Signed Fixed Point Numbers

The natural number system (also known as unsigned integer), although simple to

put into practice, limits the potential of the overall design. To realize sophisticated

arithmetic computation, the number system of choice must be capable of signed

representation. There are several means by which signed representation may be achieved.

The earliest form of signed numbers representation is known as signed magnitude (or

sign-and-magnitude), where a sign bit is included as part of the value. Similar to the

manual representation of negative numbers, a number will have a numeric value, and a

sign bit in front identifying negation. Thus a k-bit system will have a (k-l)-bit magnitude

description. Although conceptually signed values will require supplementary circuitry

(such as magnitude comparator, or subtractor) for proper addition.

An encoding scheme may also be used to eliminate negative values during computation.

Biased representations, for example, will convert everything to positive numbers by

adding a fixed bias value. Also referred to as excess-biased encoding, this type of

representation is the difficulty in multiplication and division, and the additional

computation that is required to unbiased values

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Complement formats are the third major representation of signed numbers. A large

complementation constant is added to all negative values, satisfying the condition that

there is no overlap in the representation of the positive values. In binary systems, 2’s

complement representation obtained by taking the ones complement (bit-wise negation)

and adding 1, is used to describe negative values. The ease of negation and computation

using complement formats leads to their attractiveness as a signed digit representation.

1.3.2 Redundant Number Systems

A number system with radix-R maybe fully described using R distinct digits. For

example the binary system (radix-2), can define any value using the 2-digit set [0, 1]. In

general a positional radix-R number system representations a k-digit value as a string of

digits:

A system is referred to as redundant if more than R digits are used to define a radix-R

representation. Redundant number systems are primarily used in digital systems for

arithmetic speed-up techniques. By over defining a system using redundant values, the

cost of computation of certain operations may be appreciably reduced. Addition is one

such application, where use of redundant representation allows for constant time addition,

since the value of the carry bit may be obtained by examining a fixed number of previous

bits [pillai].

A simple case of redundant number systems that has already been represented is the carry

save representation of a number. By describing a K-bit value using two k-bit numbers in

the carry save format, [0, 1, 2], the necessary for carry propagation is alleviated. The

description of a value using what are essentially twice as many bits may be clearly

justified when considering the array multiplier. By maintaining the partial product

(dk-i , d k - 2 , . . . do)

k-i

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

summation in carry save form, the latency of each stage is reduced to only one full adder

delay, since carry propagation is postponed until the final stage.

Other redundant number systems have also proven to be favorable alternative to

conventional systems. The signed digit number system, first classified in 1961, has

demonstrated 33% savings in adders required for multiplication over standard binary

notation [parhami].

The disadvantage of using redundant number representation is need for re-conversion

back into conventional notation.

1.3.3 Residue Number Systems

In a residue number system representation (RNS), a umber x, is represented by the

set of its residues with respect to modulo m:

x f= xmodml= <x>mi

Since a value is uniquely represented using smaller residues, the mathematical operations

that are carried out will inevitably be fast and simple. Addition, multiplication and

subtraction are the primary vantage points in residue number systems. This is due to the

fact that these functions may be carried out by directly performing the given operation on

the smaller residues. Frenking and Parhi [ffenking] present an application of RNS

arithmetic in public-key cryptography scheme, which inherent use of modular

exponentiation and multiplication.

One disadvantage of such number systems is reduction of representation efficiency over

binary notation. A k-bit representation, yielding 2k unique values, may only produce half

as many in RNS format. Also, any gains in performance achieved by implementing

addition, subtraction and multiplication may be eclipsed by the severe complexity of

other mathematical and logical operations.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.4 Logarithmic Number Systems

In pure mathematics, the multiplication and division of logarithms are easily

performed by addition and subtraction respectively. Since the hardware implementation

of addition/subtraction circuits is substantially more straightforward than that of

multipliers and dividers, logarithmic number systems (LNS) may be employed to carry

out these operations. As in other non-conventional representations, LNS in only directed

towards the enhancement of certain operations, and presents restrictions on most other

standard numeric tasks, such as addition and subtraction.

Recently the Double Base Number System (DBNS) has been proposed at yet another

class of redundant number representation [dimitrov]. Simple arithmetic operations are

made possible by simple geometric interpretation of the orthogonal bases. DBNS

provides logarithmic like computation with reduced look-up table dimensions. This

representation provides yet another alternative for application specific computation

enhancement.

1.3.5 Floating Point Number Systems

In order to achieve the levels of precision demanded by modem systems, it

becomes imperative to have a number representation capable of describing real numbers.

The limited range and/or precision of fixed-point values alleviated through the use of the

floating-point number system. Unlike fixed-point representations where the location of

the decimal point is predefined, floating point values allow extremely large or small

numbers to be represented with the same high degree of precision by defining a value

using a dynamic range.

As defined in IEEE standard for binary floating-point arithmetic [IEEE], a floating-point

value is defined as:

x = ± f x b e

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where x is the floating point value f is the fraction of mantissa, b is the base (fixed at 2 for

precision) and e in the exponent.

Floating-point numbers have two distinct representations according to the standard,

depending on word size. Figure 1.3 outlines the difference in the structure of the words of

the 32-bit single precision and the 64-bit double precision formats. The sign (s), exponent

(e) and fraction or mantissa (f), form the 32 and 64 bit precision formats. The mantissa is

normalized to lie within the set [1,2), such that the MSB is a 1. In this manner the leading

1 is removed and understood; this is referred to as the “hidden one”, saving one bit in

representation. The signed integer exponent is biased accordingly, such that the value will

always be a positive number; the exponent biased for 127 and for single and 1023 for

double precision formats.

23

(a)
msb msb

11 52

(b)
msb msb

Figure 1.3 IEEE floating-point standard word widths for

(a) single precision (b) double precision

1.4 Thesis Overview

1.4.1 Thesis Highlights

This thesis will present the design and implementation of a new Maximum a

Posteriori (MAP) Decoder, which is a Soft-Input Soft-Output (SISO) decoder. The Max-

Log-MAP algorithm is found to be the best compromise between performance and

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity for implementation of this decoder. The architecture is parallel and pipeline

and therefore, makes the design work at a high throughput rate. A new quantization is

introduced that best fits the performance requirements. Also a new branch metric

calculation unit is proposed, which is less complex and smaller in terms of area size.

The RTL code of the design is written in Verilog and the decoder is synthesized and

implemented in CMOS 0.18// m technology.

The system specifications are as follows:

■ Encoder: Recursive Systematic Convolutional (RSC)

■ Channel: Additive White Gaussian Noise (AWGN)

■ Considered Modulation: Binary Phase Shift Keying (BPSK)

■ Block size: 10-1024

1.4.2 Thesis Overview

This thesis has begun with a general overview of the digital communication

systems in this chapter. Turbo coding and its algorithms are discussed in chapter 2.

System level design including the decoder architecture and the MATLAB simulation

results of quantization and normalization techniques are explained in chapter 3. Chapter 4

will focus on RTL simulation and synthesis level of the design, and VLSI implementation

steps are presented in chapter 5. The thesis will end with the results, comparisons and

conclusions in chapter 6.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Turbo coding

Although Shannon proved the theoretical limit at which error-free

communications could take place using error-correcting codes, all previous coding

schemes have fallen far short of this limit. In 1993 a group of French researchers devised

a new class of error-correcting codes, which achieved near-Shannon limit performance.

Turbo codes were developed in 1993 by C. Berrou, A. Glavieux and P. Thitimajshima

[berrou] at the “Ecole Nationale Superieure des Telecommunications de Bretagne” in

Brest, France, as an exercise in VLSI design and claimed to achieve performance near

Shannon limit in the AWGN channels. The modified BAHL et al. algorithm [bahl] was

used for decoding. The original turbo code’s performance came within 0.7 dB of

Shannon’s theoretical limit after 18 decoding iterations. This chapter presents the

development of turbo codes and discusses the theoretical background necessary to

understand their application.

2.1 Turbo Encoder

The focus of coding theory since Shannon’s initial work has been to find a

constructive way to place 2* codewords in an ^-dimensional space without overlapping

the decoding spheres. The code rate r is defined as the ratio of k, the number of

information symbols transmitted per codeword, to n, the total number of symbols

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with 7 symbols and has a rate equal to 4/7. This code, the first error correcting code, was

able to correct a single error in a block of seven encoded bits. Other attempts to solve the

problem presented by coding theory have included block codes (such as Golay, BCH, and

Reed-Solomon codes) and convolutional codes, but prior to the early 1990’s, no practical

techniques achieved the full promise of Shannon’s predictions. Turbo coding is a unique

approach to the old coding problem. Turbo codes are able to integrate structured codes in

a pseudo-random manner, which approximates Shannon’s capacity limit; this constitutes

a significant increase in power efficiency compared to previous block and convolutional

coding schemes. The original turbo code employed two recursive systematic

convolutional (RSC) encoders concatenated in parallel and separated by a pseudo-random

interleaver.

► Systematic data

► Parity data

RSC

Rate 1/2

* Xt

► Parity data

Figure 2.1 Turbo encoder

Each rate 1/2 RSC encoder produces a set of systematic and parity bits. The systematic

bits are identical to the input bits; the parity bits are determined from the input bits, the

state of the encoder, and the generator matrix. Because transmitting two sets of systematic

bits is redundant, the interleaved systematic bits from the second RSC encoder are

punctured, or removed, before transmission. The overall rate of the turbo code can be

increased from 1/3 to 1/2 by alternately puncturing the parity bits from each of the

constituent encoders. As the code rate increases, bandwidth efficiency improves;

however, performance is degraded since the decoder has less information to use in

making a decision.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The resulting code has a complex structure and appears quite random. This characteristic

of the code results in good performance, particularly at low signal-to-noise ratios (SNRs).

The overall code, however, is broken down into its constituent parts at decoder.

2.2 RSC Encoder

As previously mentioned, the original turbo code was a parallel-concatenated

convolutional code. Concatenated codes can be classified as either parallel-concatenated

convolutional codes (PCCCs), in which two encoders operate on the same information

bits, or serial concatenated convolutional codes (SCCCs), in which one encoder encodes

the output of another encoder. The term “turbo code” is often associated with PCCCs and

will be used to refer to PCCCs throughout the rest of this thesis. PCCCs employ two or

more recursive systematic convolutional (RSC) encoders joined in parallel by one or

more pseudo-random interleavers. Although the encoders need not be identical, they often

are, in practice. An example of a RSC encoder is shown in Figure 2.2.

at
1

(j
r

-----------►

J* K
1
-* Mj -

1 ° r

9------ ►

Figure 2.2 RSC Encoder

The data bits dt are fed into the encoder, which generates a set of systematic and parity

bits. There are two memories in this encoder, which are shift registers. The size of the

memory defines how many symbols in the input sequence will affect the output sequence

at a time. The rate of the convolutional code is the ratio between the number of inputs and

the corresponding number of outputs at a time. For example if the rate is Rc =1/2, then

each bit of the binary input sequence (dt) is mapped into two bits in binary output

sequence (X* and X f) as shown in Figure 2.2. The modulation used is binary phase shift

keying (BPSK), which map 1 to 1 and 0 to -1. The generator sequence defines how the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output will be obtained by the inputs in the memories and the most recent one. The

generator is (7, 5) or (111, 101), which is shown in Figure 2.2. Each connection in the

Figure 2.2 is shown by 1 and otherwise by 0.

Another parameter is the constraint length of the code, K, which is equal to the number of

memories plus one. Figure 2.2 shows a RSC encoder with code rate lA, generators (7, 5)

and constraint length 3. Table 1.1 shows how encoder outputs are obtained by the inputs

in the memories.

Table 1.1 RSC encoder values

dt Ml M2 s
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 0 1 0
1 1 1 1 1 0

The convolutional code’s properties are usually presented in graphical form by using one

of the three equivalent diagrams: code trellis, state diagram and code tree.

The state diagram of the RSC encoder with inputs and outputs shown in above table is

presented in Figure 2.3.

o/oo
A

1/1: l/n
1/10

o/oo

o/or o/oi

Figure 2.3 State diagram of RSC encoder

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3 is a finite state machine that changes its state when an input symbol enters to

the machine and produces two output symbols during the transition (since the code rate is

V2). Although we obtain the state relationships from the state diagram, we cannot obtain

the time information from it. Usually the convolutional encoders are forced to the zero

state at the end of the coding, a process called trellis termination, in order to make the

decoding process easier. It is done by placing the M zero bits at the end of the information

sequence. This causes rate loss. For long blocklengths, the rate loss is acceptable, but for

short blocklengths, the termination causes severe degradation in the system performance

because, those additional zero bits carry no information. The trellis diagram created by

the encoder (7, 5) is shown in Figure 2.4.

state 1=2 Time (t)

00 ■ ■ ■ ■

01

10
O K 01 yX

Figure 2.4 Trellis diagram of the RSC decoder

It starts from state 0 and ends again to state 0. State numbers show the values inside the

encoder memories.

The middle section of the code trellis created by encoder (7, 5) is shown in Figure 2.5.

The dashed lines indicate zero-transition (-1 in BPSK modulation) and the solid lines

indicate one-transition branches. The branch labels are also shown in this Figure.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M l, M2 M l, M2
State 0 State 0

State 1State 1

State 2 State 2

State 3

1 Transition

-1 Transition

Figure 2.5 A middle section of the trellis diagram

The code tree of the code (7, 5) is shown in Figure [tree]. The output sequence follows

the upper branch when zero enters to the encoder and lower branch when one enters to the

encoder as an input. The code tree for code (7, 5) starts repeating itself after the third

branch because it is a memory 2 code and after the third branch, the first input bit has no

affect on the output sequence. The number of possible branches in the code tree doubles

itself at each time unit. For an L-bit input sequence, there are 2L distinct possible paths

that the code can follow on the tree.

oo
00

00

00

00

01

O r
00

00

01
00

01
10

Figure 2.6 Code tree representation

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Interleavers

An interleaver changes the order of the information sequence for the second and

other encoders in pseudo-random fashion. Intereavers are widely used to improve code

performance for channels, which introduce burst errors, but the place and function of an

interleaver in the turbo codes are different from those of previously employed

interleavers. The turbo interleaver reorders the uncoded information sequence for the

second and other encoders so that the correlation between encoded sequences is

arbitrarily low. In this way each generated code can be treated as independent. A good

interleaver can significantly increase the performance of turbo coding by increasing the

separation between sequences.

2.3.1 Pseudo-Random Interleavers

One of the fundamental components of turbo codes is the pseudo-random

interleaver. This design technique generates an overall code, which appears random but is

actually composed of two or more structured codes. The random characteristics of the

code result in good performance, yet the overall code is easily decoded at the receiver by

breaking it down into its structured, constituent components. Choosing a good interleaver

design is important for obtaining good turbo code performance, but the most significant

parameter relating to the interleaver is its size. As the interleaver size increases,

performance improves. There is a tradeoff, however, between performance and latency.

2.3.2 Convolutional Interleavers

There are a number of interleavers to choose from when designing PCCCs. Block
interleavers tend to give poor performance because they do not adequately break apart

certain input sequences which result in low weight codewords. Convolutional interleaving

also results in an interleaving pattern where low weight codewords are likely to degrade

performance. Simulation results have shown that convolutional interleaving between

constituent RSC encoders yields poor performance for these reasons [refthesl4]. A

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comparison of block, convolutional, and random interleaving is shown in Figure 2.7. A

rate 1/3, constraint-length 4, turbo code with generator matrices G = (13, 15)octo/ was used

to encode 1024-bit data frames. The Log-MAP algorithm was used for decoding, and

plots are shown for six decoding iterations. Twenty-five errors were logged at each value

of Eb/No. In general, when structure is introduced to the interleaver design, turbo code

performance suffers. With a few exceptions, random interleavers provide good

performance. Slightly improved performance can be obtained with a spread interleaver. A

spread interleaver is a pseudo-random interleaver designed according to an algorithm,

which guarantees that a specified distance always separates consecutive input symbols in

the output sequence.

25 frame errors registered at each value o f Ob/No

Convolutional Interleaving
Block Interleaving
Random Interleaving

£u
tn

.0r3
ea.

Parameters:
£ iterations
! 02*4 Frame si/e
Rate 1/3
G»(I5,17|0-i
Log-MAP

o 0.5 1 1.5 2.52
Eb/No in dB

Figure 2.7 Comparison of block, convolutional, and random interleaving

2.4 Turbo Decoder

The whole decoder consists of two constituent decoders, deinterleavers and

interleavers. Each decoder operates on the systematic and parity bits (channel outputs)

associated with its constituent encoder and produces soft outputs of the original data bits

in the form of extrinsic values. Soft output gives the probability of each received bit from

the channel to be 0 or 1 (-1 or 1 in BPSK modulation). The decoders then share their

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respective soft information in an iterative fashion. The goal of this project is

implementation of these two decoders or soft input soft output (SISO) modules and if

MAP algorithm runs through these decoders, they are called maximum a posteriori

(MAP) decoders. The extrinsic output of each decoder is interleaved (or deinterleaved)

and passed to the next decoding module as a priori information. Decoding continues in an

iterative fashion for a fixed number of iterations or until a given convergence criteria is

met. Because iterative decoding is subject to diminishing returns, the coding gains

realized with each additional iteration are less than for the previous iteration. This

principle is illustrated in Figure 2.8.

Although turbo codes integrate the two desirable qualities of pseudo-randomness and ease

of decoding, the important contribution to communication theory lies in the iterative

decoding method used to decode them. This iterative strategy has been employed in other

communications areas such as iterative multiuser detection, turbo equalization, and turbo

code assisted synchronization with good results.

Extrinsic values
out, Le(d)

A Priori
Information A Priori

Information

Systematic
data mm

H an lB k
Decisions

Figure 2.8 Turbo decoder

Turbo decoder is a soft input soft output (SISO) decoder and for a systematic code, it can

be shown [turbo] that the soft output of the decoder L(d) is equal to:

L(d) = L'(d) + Le(d)

where L \d) is a priori log likelihood ratio and Le(d) is extrinsic log likelihood ratio.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L'(d) = log p{x\ d = + 1)
p { x \ d = -\)^

4 0 0 = log P(d = + 1)
p(d = - l)

The soft output or log-likelihood ratio (LLR) provides the probability of the channel

output bits and decides if the channel output bits have been originally 1 or -1. The soft

decision L(d) is a real number that provides a hard decision as well as the reliability of

that decision. The sign of L(d) denotes the hard decision; that is, for a positive value of

L(d) decides that the channel output bit has been originally +1 and for negative values

decides that the bit has been -1. The magnitude of L{d) denotes the reliability of that

decision.

2.5 Turbo Coding Algorithms

Having outlined the iterative decoding process, the specific decoding algorithms

used by the SISO modules will now be described. This section highlights two classes of

trellis-based algorithms, which are typically used to decode turbo codes. Figure 2.9 lists

the two classes of trellis-based algorithms.

T rellis- B ased
A lgorithm s

V iterb i A lgorithm X I l J) SO V A E Z j) Im proved SO V A

M A P A lgorithm > S M ax-L og-M A P > S L og-M A P

Figure 2.9 Turbo decoding algorithms

In 1967 the VA was presented in [viterbi 1] as a practical procedure for maximum-

likelihood decoding of convolutional codes. The VA is optimal for estimating the state

sequence of a finite-state Markov process observed over a discrete memoryless channel

(DMC)[fomey]. The VA minimizes the frame error rate by finding the most likely path

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through the trellis. The VA is unsuitable for turbo decoding because it is a soft-input,

hard-output algorithm. A soft-output VA (SOVA), introduced by Hagenauer and Hoeher

in [hagenauer 1], is a SISO algorithm, which retains information related to the pruned,

competing paths. This information determines the reliability of the bits, which differ from

those in the surviving path.

In 1996 the Improved SOVA was developed in [papke] to combat an inherent bias with

SOVA. The bias is removed by multiplying the SOVA output by a normalizing constant

derived from the estimated mean and variance of the output. A small performance

increase mitigates the slight increase in computational complexity.

2.5.1 Viterbi Algorithm (VA)

VA starts with a known initial state and the metric of the path originating starting

from this state is zero. Then the received sequence at each time instant is compared stage

by stage with branch labels of the code and the distances between these two are measured

by a metric. These metrics are added to the paths’ previous metrics. For the binary

symmetric channel (BSC), the Hamming distance1 between the branch labels and

received sequence is a good choice for the metric. When the paths merge at a particular

state, the paths with the bigger metrics are dropped and the path with the smaller metric

survives for next step. If the merging paths have the same metric, then the surviving path

will be chosen randomly among them. The procedure is repeated until the end of the

trellis is reached and the path whose metric is the smallest is hopefully the correct path

and the bit sequence, which creates this path, is hopefully the error free decoded

sequence. Figure 2.10 shows the trellis diagram for the VA algorithm with the generator

(7, 5). Suppose that we receive the sequence (01, 10, 11, 00). The algorithm starts

decoding from the zero state at time t=l. Figure 2.10(a) shows the paths after decoding

for received bits (01) and (10) and each path metric is shown above the paths. The next

received sequence is (11). Figure 2.10(b) shows the path’s new metrics after decoding for

that sequence. The X marked paths are dropped paths. Paths with larger Hamming

distances drop and the path with the least distance remains. Figure 2.10(c) shows the

1 The Hamming distance is the number of bits which differ between two binary strings

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

paths after decoding the last received sequence (00). At that stage, the entire path’s

metrics of the state 2 are the same and we drop one of them randomly. Figure 2.10(d)

shows the final survivor paths. According to Figure 2.10(d), the most likely decoded

sequence will be (1000).

As we can see from Figure 2.10, we have always 4 survivor paths for t>=2. In general, we

have always 2k_l survivor paths after t>=k-1 for a constraint length K convolutional code,

because only one paths will survive among the paths entering to a state. Due to the

exponential increase on the number of survivor paths, 2k_1, with respect to the constraint

length, K, the utilization of the VA is practical for relatively short constraint length codes.

1 transition

0 transition

(a)

State 0

State 1

State 2

State 3

(b)

25

t= l (01) t=2 (10) t=3 (11)

0000

t= l (01) t=2 (10) ► Receive bits

00
State 0

State 1 •

State 2 •

State 3 •

Hamming
distance

Branch
label

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t=l (01) t=2 (10) t=3 (11) t=4 (00)

1 1
State 0

State 1

State 2

State 3

(c)

t= l (01) t=2 (10)

State 0

State 1

State 2

0 . ' ' '

t=3 (11)

0 , - '

t=4 (00)

State 3 •

1

3

i

i

1
- •
5

3 •
4

3•
3

i
4

(d)

Figure 2.10 Viterbi algorithm with generator (7,5) for BSC

2.5.2 MAP/BCJR Algorithm

Based on an algorithm developed by Chang and Hancock for removing inter

symbol interference, the MAP algorithm was introduced in 1974 as an optimal means for

estimating the a posteriori probabilities (APPs) for a finite-state Markov process observed

over a DMC [bahl].

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The MAP algorithm, also known as the BCJR algorithm for the four researchers who

developed it, is a forward-backwards recursion algorithm, which minimizes the

probability of bit error rate. Therefore, the path that the MAP algorithm traces through the

trellis need not be connected, as is the case for the VA. In the 1970’s the MAP algorithm

fell out of favor for decoding convolutional codes because of its computational

complexity in comparison to VA. When SISO decoding of turbo codes became an

important issue, the Max-Log-MAP and Log-MAP algorithms were introduced to solve

the instability problem; they are now the preferred SISO algorithms used to decode turbo

codes. In the following thesis, these algorithms are explained and MAP algorithm is

described first.

Transition probabilities and output probabilities in MAP algorithm are represented by the

following equations [bahl],

p t {m | m') = Pr{»S, = m | St_t = m'}

qt (X | m',m) = P r jX , = X | St_x = m ' ; S t = m)

where m and m' are transitions and X is the encoder output. The source starts in the

initial state St = 0, and produces an output sequence X / ending in the terminal state St - 0.

X / is the input to a noisy discrete memoryless channel (DMC), whose output is the

sequence Y/ = Y\, Y2, . . . Yt. The transition probabilities of the channel are defined by

R(.|.) so that

Prtf' I = n * (r , 1
7=1

The objective of the decoder is to examine Y / and estimate the a priori probability (APP)

of the states and transitions of the source or encoder, i.e., the conditional probabilities

Pr{St =m\Y'} = J>r{St = m;^} /Pt{Y*} (1)
and

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr{SM =m'-,St = m | ^ } = Pr{SM = m';St = m;Y*}/?r{Y'} (2)

A graphical interpretation of the problem is shown in Figure 2.3. The nodes are the states

and the branches represent the transitions having nonzero probabilities. If we index the

states with both the time index t and state index m, we get the “trellis” diagram of Figure

2.4. The trellis diagram shows the time progression of the state sequences. For every state

sequence S / there is a unique path through the trellis diagram, and vice versa.

If the source is time variant, then we can no longer represent it by a state-transition

diagram; however, it is obvious that we can construct a trellis for its state sequences.

Associated with each node in the trellis is the corresponding APP Pr {S'/ = m | YXT} and

associated with each branch in the trellis is the corresponding APP Pr {St.i - m '; St = m\

Fjr). The objective of the decoder is to examine Y/ and compute these APPs.

Ft r ease of exposition, it is simpler to derive the joint probabilities

A,t (m) = J>r{St =m;YlT}

and

<7t (m', m) = Pr {5M =m';St = m; Y*}

Since, for a given YtT, Pr {T,r } is a constant, we can divide X,(m) and a t(m',m) by

Pr{FJT} (= Xt (0), which is available from the decoder) to obtain the conditional

probabilities of (1) and (2). Alternatively, we can normalize A,t{m) and cjt(m',m) to add

up to 1 to obtain the same result. We now derive a method for obtaining the probabilities

X, (m) and a t (m' , m). Let us define the probability functions:

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nov/

a t(m) = Pr{St = m\Y[}

Pt (m) = Pr {^+1 \St =m)

yt = Pr{£, = m;Yt \ = m'}

Al(m) = Pr{Sl =m;Yl,}.Pr{Y,r+l |S, =m;Y‘}

=at(m).?r{Ytll \St =m}

= a t (m).pt(m) (3)

The middle equality follows from the Markov property that if St is known, events after

time i ' o not depend on Y/.

Simil; !v,

(7 ,

Now f 7 t = 1,2, , T

M - 1

a , (m)= X P r^ - i = m '’S < = m ’Yi‘}
m'-0

= 2 P r { S M = m ’;r '} .P r {S , =m-,Y, |S,_, = m'}
m'

(5)
m'

Again, the middle equality follows from the fact that events after time t - 1 are not

influenc'd by Y\~‘ if St-i is known.

For t - we have the boundary conditions

a 0 (0) = 1, and a 0 (m) = 0, for m * 0. (6)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, for t = 1,2,. . T - 1

= ! > < • ? , , , = IS, = m } .P r {r , :2 |S ,+, = « ' }
t o '

(V)

The appropriate boundary conditions are

Pv (0) = 1, and Pr (m) = 0, for m * 0. (8)

Relations (5) and (7) show that a t(m) and PT(m) are recursively obtainable. Now

where the summation in (9) is over all possible output symbols X.

In the equation (9), p t(m | m') is the transition probability and the output X, is a

deterministic function of the transition so that, for each transition, there is a 0 - 1

probability distribution qt{X For time invariant codes q,(. \ .) is independent of

t. If the output sequence is sent over a DMC with symbol transition probabilities rt (. | .),

the derived block transition probabilities are

where Yt = (y;<1),...,>’,<''o)) is the block received by the receiver at time t. For instance, in a

BSC with crossover probability p c‘.

y t (m' ,m) -]V]Pr{>S(= m \ S t_x - m'}.Vx{Xt = X \ S t_{ = m ' , S l m}.Pr{7; \X }
x

(9)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R{ Yt \ x t) = {pcY (\ - Pcy -d

where d is the Hamming distance between X t , and Yt .

2.5.3 Results of the MAP Algorithm

The ultimate result of the MAP algorithm is the logarithm of the ratio of the a

posteriori probability (APP) of each information bit being 1 to the APP of it being 0.

2 r l+1 (rn\m).pt+x (m).at (m')
a / 1 / \ i (m ' , m) , X = 1

) — log ^ z ; r~ 7 z r z ;r (10)
= -1

In this design binary phase shift-keying (BPSK) modulation is considered so that, bits

with the value of 0 and 1 are mapped to -1 and 1 respectively. Forward node metric at

time t is calculated from the computed forward node metric at time t-1 and the branch

metric at time t:

a t (m) = (™\m)
m'

Backward node metric at time t is calculated from the computed forward node metric and

the branch metric at the current time t+1:

m

Transition metric or Gamma is the symbol transition probability and for a 1/2 code rate

encoder can be computed as:

yt(m\m) = I \ m\m)JKJtd \ X t).R(J | X t) (11)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where, X t is the channel input symbol at time t and Yj and Yp are channel outputs for

Systematic data and Parity data respectively qt and R are probability functions that

mentioned before.

2.5.4 Max-Log-MAP Algorithm[robertson2]

The complexity of the MAP algorithm is high in terms of number of operations,

especially number of multiplications. Max-Log-MAP algorithm is the logarithmic

approximation of MAP algorithm therefore; we work with the logarithms of the values

mentioned in MAP algorithm using the following approximation:

In AWGN, the maximum likelihood probability function, R (Yt \ X ,) , is equal to:

By taking the logarithm of equation (11) and substituting fori? from the equation (13) we

obtain the following equation for branch metric:

where No/2 is the variance of the noise in Additive White Gaussian Noise (AWGN)

calculations. Equation (14) is a less complex algorithm in comparison to (11); however

there are still some multiplications and divisions in (14) that can be removed and changed

to an equation with only additions and comparisons without using any approximation.

This fact is explained in section 3.2.

\n{er' + ... + e r") « m ax y i (12)

1
e (13)

In y t(m' ,m) = + In APt + K (14)

channel and AT is a constant which can be ignored since it cancels out during the recursive

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Forward and backward node metrics in MAP algorithm can be shown by the following

equations:

^ r ^ a t_x (15)

S A +i

M m ') = Z (>6>

By taking the logarithm of a and [5 in equations (15) and (16) and using approximation

(12), we get:

In a,(m) = ln (£ eHa‘-'{m'y■*«"») - ln(£ £ e ln(a'^m')r'(m''m)))
m ' m m '

and

In p t(m') = ln(]£ e ln<^>('">^>('">») _ in(£ £

to get:

In a,(m) = max[ln a t_x (m') + In y,(rri, m)] - max[ln a t_x (m') + in yt(m', m)]m' (m’,m)

In Pt (m') = max[ln ft t+l (m') + In yt+x (m', m)] - max[ln fit+x(m') + In yt+x (m', m)]
m (m ,m ')

The second terms are a result of the derivation from (15) and (16) and because these

normalization terms will cancel out in (17), omitting them has no effects on the output of

the Max-Log-MAP algorithm and the final equation will be:

In a t (m) = m ax[ln a t_x (m') + In y t (m', m)\
m'

In Pt (m') = max[ln fit+l (w') + ln yM (m', m)]

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are no multiplications exist in the above equation and it is only includes additions

and comparisons. Therefore, this is obvious that the above equations are less complex and

need smaller area size for implementation.

The Log-likelihood reliability is also computed from branch and node metrics as follow:

*

In A/+1 « max [In y t+x (m', m) + In /?,+1 (m) + In a t (m ' , m)]
(m ,m ’),X= l

- max [In yl+l (m', w) + In j3l+] (m) + In a, (m', m)]
(m ,m '),X = - 1

Again by looking at the above equation and compare it to the same equation in MAP

algorithm (equation (10)), we can conclude that LLR obtained in Max-Log-MAP

algorithm is less complex.

The Max-Log-MAP algorithm has a performance loss of about 0.5dB that can be

improved ~0.4dB more by using a scaling factor within the extrinsic information in turbo

decoders [vogtl]. This concept will be explained later.

2.5.5 Log-MAP Algorithm [robertson2]

Applying a correction term to the Max-Log-MAP algorithm forms the Log-MAP

algorithm:

ln (eg' + e Sl) = max (£ }, S2) + ln (l + e~lSl~s^)

= max (S1,S2) + / c(| - S2 1)

where fc(.) is a correction function and by considering S = ln(eSl +... + e ^ 1) we can

show that:

\ n (e Sl + . . . + e s")

= ln(A + e s”) with A = e Sx + . . . + e Sf>~x = e s

= max(ln A, 8n) + / e (| In A - <?J)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= max(e>, 8n) + f c(\ d - d n |)

as a result, by correcting the approximation made in Max-Log-MAP at each step, the

performance of Log-MAP algorithm will be almost the same as MAP algorithm.

Term “ / c(\ S - S n \)” compensates the approximation error in equation (12). But

correction is done using look-up tables in practical implementations and multiple look up

tables are required for a wide range of operating signal-to-noise ratios (SNRs), thus it

increases the hardware cost [cheng],

2.5.6 Sliding MAP

Sliding window MAP [chass] performs the calculations on the sub block instead

of recursive calculation on the whole received block.

The size of the sub block is in the order of the survivor length of the Viterbi algorithm,

SMAP reduces the demand on memory. A disadvantage is increase in the complexity,

since for each sub block a reliable start vector for the backward recursion has to be

provided. That means, instead of one forward and one backward recursion now one

forward and two backward recursions are necessary.

2.6 Improving the Max-log-MAP Turbo Decoder

Remember from section 2.4 that:

L(d) = L'(d) + Le(d)

where L(d) is a posteriori probability, L \d) is soft output of the decoder and Le(d) is

extrinsic probability. By applying an additional scaling factor, R, to the extrinsic

information the result will be:

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L(d) = L '(d) + R.Le(d)

The scaling factor R allows us to change the amount of information exchanged between

two constituent decoders. Larger R makes the previous decoder outcome dominate the

current decoding result, whereas the smaller R makes one decoder less dependent on the

other decoder’s result. In [Wul], the scaling factor R-0.6, and in [vogtl], the scaling

factor R=0.7 have given the best BER performance for AWGN. A properly selected

scaling factor could improve the Max-Log-MAP by ~0.4 dB, yielding a near optimal

(Log-MAP) BER performance.

-© - Max-Log-MAP(s=1.0)
—*• Max-Log-MAP(sdD.7)
- B - MAP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SNR cB

Figure 2.11 Turbo code with different scaling factors, block length 5114 bit, 8iterations, AWGN, rate
1/3 and generators (1 3 ,15)oct

The BER improvement is due to the fact that the scaling factor R can effectively mitigate

error propagation through iterations. Normally in Max-Log-MAP, when a cluster of

extrinsic values of the first decoder are in error, they would dominate the branch metrics

in the second decoder, and in turn causes more decoding errors in the second decoder.

Because the decoding is iterative, more errors would be produced in the end. However,

with the scaling factor the effect of erroneous a-priori values on branch metrics is

reduced, allowing the decoder to upset the previous incorrect decoding results.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.11 shows the performance of the best-evaluated scaling factor compare to the

standard algorithm (s=1.0) for block length 5114 and AWGN channel. For a bit error rate

of 106the improvement of the Max-Log-MAP is ~0.3dB and the difference between Max-

Log-MAP and MAP is now only O.ldB.

2.7 Algorithm Comparison

Figure 2.12 shows the comparison between different algorithm’s performances

[vogt2], SOVA has the maximum performance loss and Log-MAP and MAP, which are

optimum algorithms, have the best performance. The Max-Log-MAP algorithm has a

performance loss of about 0.4dB and as it mentioned in previous section, it can be

improved up to ~0.3dB more by using a scaling factor within the extrinsic information in

turbo decoders.

-B - uncoded
- O SOVA
— Max-Log-MAP
— MAP and Log-MAP

0.5 2.5
SNR bB

Figure 2.12 Comparison between performances of turbo coding algorithms, block length 668bit, 4
iterations, AWGN, rate 1/3 and generators (7,5)

Comparison between computational complexity shows that the MAP algorithm is the

most complex algorithm and not suitable for implementation. This fact is observable from

the MAP algorithm equations. Moreover, for implementation of the additional of the Log-

MAP algorithm, multiple look up tables are required for varies signal to noise ratios and,

which makes the design larger and increases the cost. Therefore, Max-Log-MAP

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is chosen for the purpose of implementation of MAP decoder, which is the best

compromise between performance and complexity.

2.8 System Specification Summary

The proposed decoder specifications are as follows:

• Encoder: Recursive Systematic Convolutional (RSC)

• Channel: Additive White Gaussian Noise (AWGN)

• Modulation: Binary Phase Shift Keying (BPSK)

• Number Of Memories: 2

• Code Rate: 1/2

• Frame size: variable up to 1024 bits

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

System Design and Modeling

A major difficulty of applying turbo codes in many applications is the decoding

complexity of SISO decoders. Efficient implementations of those decoders can

significantly increase employment of turbo codes in different communication

applications.

After introducing turbo coding and its related algorithms and choosing Max-Log-MAP

algorithm for implementation, we discuss the system design and the proposed architecture

for the implementation of MAP decoder. In this chapter an efficient design of a MAP

Decoder suitable for ASIC, with lower complexity and smaller area size is introduced.

The performance loss of the proposed design is less than 0.1 dB in comparison with the

best performance observed in Max-Log-MAP algorithm.

At the beginning, quantization and normalization techniques are studied and those that

best fit the proposed MAP decoder are described. Furthermore, a new design with lower

complexity is introduced for transition probability (y) calculation unit. The architecture

used for this design is parallel and pipeline, which explained in this chapter.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Max-Log-MAP Decoder Block Diagram

It was mentioned in chapter 2 that four parameters are calculated in Max-Log-

MAP algorithm.

1. y : branch metrics or probability of transitions

2. a and P : Node metrics or probability of states

3. A : Log likelihood ratio (LLR)

Figure 3.1 shows the block diagram of the proposed Max-Log-MAP decoder and its units.

Inputs to the decoder are the a priori probability, systematic data and parity data. The a

priori probability comes from the output of another Max-Log-MAP decoder inside the

turbo decoder. Remember that turbo decoder includes two constituent decoders and

Figure 3.1 shows one of them. Systematic and parity data inputs on the other hand are

channel outputs and distorted by the noise of the channel. In a pipeline process bits

received in input go to branch metric calculation unit and afterward to a calculation unit.

y and a values are then computed and saved into memories. Therefore, in forward

recursion, y and a calculation units work in parallel, until one complete frame or block

of bits is received. By reaching to the end of each frame, y and a units stop their

execution, backward recursion starts and P and soft output (LLR) calculation units

compute their values in parallel. The output is a probability that help us decide for each

received bit from the channel to be originally 1 or -1.

Systematic
Parity

A-priori

p Calculation
Unit Metnoiy 2

a Calculation
UnitM e n t o r) ' 1

Branch Metric
Calculation Unit

LLR Calculation Unit

Figure 3.1 Block diagram of the proposed Max-Log-MAP decoder

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This design is very fast because of its parallel and pipeline nature and suitable for

implementation. The only drawback of parallel and pipeline architecture is the need for

using large memories, which in tern makes the design larger. In the proposed architecture,

by computation of the LLR in backward recursion and in parallel with fi calculation unit,

one large memory is omitted and it saves about 30% of the area size and reduces the

implementation cost of the chip.

Memories used are 4k, 8bits and there are for different y or a values for each received

bit. Therefore, a 4k memory can store y or a values for a frame of up to 1024 bits. The

number of bits per frame can be increases by using larger memories in other applications;

however for a general application such as the current work, 1024 bits per frame is an

adequate number.

3.2 New Branch Metric Calculation Unit

Recall from section 2.5.4 that there were still some multiplications and additions

in equation (14). The decoder design can be further simplified by considering the

insensitivity of Max-Log-MAP algorithm to the AWGN channel variance of the noise

(NO/2). In [worm] it was shown that performance of turbo decoding with the Max-Log-

MAP decoder, as its constituent decoder was SNR independent; however, turbo-decoding

with the Log-MAP decoder theoretically requires SNR estimates. Elimination of the SNR

significantly reduces the complexity of the decoder and yields an ASIC with a smaller

area and lower cost.

If in Equation (14) we consider No=2,

f In AP, + K

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there will be no multiplication (or division) in the calculation of y values. Since X t is

equal to either 1 or -1, the four final values for In y are:

~Ytp) + \nAPt(- \)

ln Yt, 01 (w \ = i~Y,d + Ytp) + \nAPt (-1)

ln7,,io(m'>m) = (+1^ - Y tp) + \nAPt{+\)

ln y t l, (m',m)=(+Ytd +Ytp) + ln APt (+1)
(3.1)

For implementation of these four equations, only adders and a small look up table are

required. The input to the look up table is the a priori probability2, and the outputs are

l n ^ (+ l) and l n ^ (- l) . The following equations clear the relationship between input

and outputs of the LUT:

APP = \n(APt<K+X))

and because

we can write

A P ,(- iy

APt{+\) + APt{ - \) = \

APP = ln(APt<&X))

eAPP =

i - A P t(+ iy

a p m i)
l - A P t(+l)

and
APP

AP, (+1) =

APt (- 1) = 1

l + ^ (+ l)

eAPP
l + APt{+\)

2 In turbo decoders usually a posteriori probability is shown with APP, which is the decoder output, but here
APP is the name o f the input pin o f the chip and shows the logarithm o f the a priori probability.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as a result, the input to the decoder or LUT is logarithm of the a priori probability (APP)

and the outputs of the LUT are:

In APt{+\) = APP-\n(\ + eAPP)

and

ln A P t (1) = — ln(1 + e APP)

Figure 3.2 shows the design of the branch metric calculation unit. It shows how y values

of equations 3.1 are computed.

JP&5SSL,
inWMJ}

Figure 3.2 Branch metric calculation unit

3.3 Proposed Node Metric Calculation Unit

After explanation about the computation of the first parameter of the Max-Log-

MAP algorithm or branch metric, we move to the second parameter or a and explanation

about the a calculation unit. Figure 3.3 shows the parallel architecture of the a

calculation unit. In this Figure a is equal to In a and y is equal to ln y .

Considering equation

In a t (m) = max[ln a t_x (m') + ln yt{rri, m)\

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nod* mMric I
calculation unit I

calculation unit
Stata 2

Figure 3.3 Parallel architecture of the a calculation unit

for calculation of a , we can see in forward recursion that, a values are calculated using

current branch metrics and previous calculated a values. There can be n number of states

and for each state there is a node metric calculation unit. According to the above equation

node metric calculation units are add, compare and select units. It takes two clock cycles

for each a value to be computed. Therefore, this architecture is very fast.

Considering /? computation equation shows that the architecture of the fi calculation unit

is similar to the a calculation unit, except that (3 values are calculated in backward

recursion. Therefore, ft values at time t are calculated using f3 and y values at time

/ + / .

In Pt (jri) = max[ln J3t+l (m') + ln yt+l (m', m)]

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Log-likelihood Ratio (LLR)

As it mentioned in chapter 2, Log-likelihood ratio is our ultimate result and

proposed decoder output. It gives us the probability of each received bit from the channel

to be 0 or 1 (-1 or +1 in BPSK modulation).

lnA,+1 « max \\nyt+x(m\m) + \nPt+l(m) + \nat{m\m)]
(m ,m ’),X = l

- max [ln yt+x (m', m) + ln /?,+1 (m) + ln a t (m', m)]

in this equation, the part \nyt+x (m',m) + lnJ3t+l(m) + lnat(m' ,m) is called the a posteriori

probability. Therefore, in this equation we should compute maximum a posteriori

probability for X=-l and then subtract it from maximum a posteriori probability for

X=+l.

3.5 Soft output calculation unit

Figure 3.4 shows the block diagram of the soft output calculation unit. Maximum

a posteriori probability is computed from a , f3 and y values coming from the data bus.

After that, a subtractor subtracts maximum a posteriori probabilities for X=-l and X=+l.

Add, compare units used in this design work in a pipeline process.

ln a ,

Figure 3.4 Log-likelihood calculation

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The pipeline process of the LLR computation is shown in details in Figure 3.5. It takes

five clock cycles for each LLR value to be computed. Figure shows the pipeline

computation of the a posteriori probability for X=1 and X=-l. a , (3 and y values of the

different states enters the unit. The state numbers are for the proposed Max-Log-MAP

decoder, which uses RSC encoder with rate 1/2.

, Adder

. Adder
"U

. Adder

In 0 ,(0)

tao,<3)_

m -
b io ,(l) .
In AW .
hf.lP) -

I n (1) ; ^ Adder ——#

■n 0,(1) -j------------1
lnj-,(3) - i-* . Adder ——*
lno,(2) J ---------
l"A(D n r L-
I n (2) Adder — ■>
1110,(0) j ,
W>.W H*
lnft(3) | » Adder ----- ►
InOtP) j
M ,(3) I I T L *
hiyi(2) ; ^ Adder — ►

Adder

Adder

comparator

Adder

Adder

Adder

comparator

1 Transi t ion

comparator
|~]

Adder

c<Mtiparator
'L

Adder

Adder

comparator L T

com paratw J

SUB

-1 Transition

F igure 3.5 Pipeline calculation of L L R for 4 state M ax-Log-M AP decoder

As a result, it takes 11 clock cycles for each LLR bit to be computed from the decoder

input values.

3.6 Quantization

Because channel outputs are distorted by the noise of the channel, we should

consider real values for decoder inputs. These inputs are stochastic values that can include

a range from [-00,00]. This fact causes requirement for quantization of the values to a

specific number of bits in a proper range. Different quantization techniques have been

proposed in [montorsi], [wul] and [michel2], which use various ranges and number of

bits. The following table shows the differences between quantizations techniques used by

them.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1 comparison between different quantization techniques

References Extrinsic values

(Bits)

Data inputs

(Bits)
Internal metrics

(Bits)

Wul 7 5 8

Montorsi, michel2 9 7 10

stralen - 6 -

robertson 6 4 8

Proposed 8 6 8

First, the proposed quantization technique is explained and then it is compared to other

techniques in terms of performance and complexity.

Simulation results show that if we consider data inputs (systematic and parity data)

between [-4, +4] and truncate all other possible values, there will be 99% coverage for the

channel outputs. This fact is also confirmed in [michel2]. Values between this range are

real values. Therefore, in [wul] only integer values are considered; however in other

references fixed-point values are used.

It is experienced in simulation that by considering 6 bits fixed-point values for data inputs

(3 bits for integer and 3 bits for decimal), the best comparison between performance and

complexity will be obtained. Increasing the number of bits does not have much influence

on the performance while; it increases complexity and cost. Also simulation results show

the same fact by choosing 8 bits integer values for node metrics and extrinsic or LLR

values. Figure 3.6 shows the result of using the proposed quantization. Simulation is done

in AWGN and for RSC encoder with 400 bits block length and no iteration in Max-Log-

MAP decoder. This result is compared to the best possible answer that Max-log-MAP

algorithm can achieve in simulation. Best possible answer is when we do not quantize

values in simulations i.e. considering any real values. Figure 3.6 shows that the

performance difference is less than 0.1 dB, which is a reasonable result.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T=TTTlTTTTrnTTT!TT=TTPTTTTnTT=TT :: : :
 Proposed (plxed-paint)

Integer values
-© ■ Real values

l i l i i i i l l i i i H i i i i i i i i i

iiiiiiiiiiiI ! 11 !
I

M il!!!!!

1!!!!!!!!!! I!!!!!!!!!! I!!!!!!!!!! I!!!!!!!!!! I!!!!!!!!!!

SNR CB

Figure 3.6 Comparison between proposed quantization, using integer values for quantization and no
quantization, BCJR decoder, no iterations, RSC encoder, rate 1/2, block length 512, AWGN

In the proposed quantization, the a priori probability values (APP input of the decoder)

are also quantized into integer values between [-8, 0]. The reason for this quantization is

that after monitoring the a priori probability values by a histogram, it is observed that

most of the values are between [-8, 8], and that after these values enter the LUT inside the

branch metric calculation unit (Figure 3.2), the outputs of the LUT are real values mostly

between [-8,0].

16

14

I ”5*
8

»
4

8
0

4 * ^ijl^ * 4 I I n

Figure 3.7 Histogram for the a Priori Probability values (LUT input)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8 Logarithm of the AP(-1) or AP(+1) (LUT output)

Figure 3.8 shows that LUT output values are real values between [-8, 0]. The reason for

quantization of the LUT output values into integer values is using the result of [worm],

which states, “Theoretically, Turbo-decoding with the Max-Log-MAP decoder (when

properly defined) is SNR independent.” And “properly defined” means quantization of

these values into integer values and not real or fixed point.

10 =

•110'

•2
10 ' : : :

i
m’3 t L SX

W !!! ! ! ! ! ! ! ! !
i s : : : : : : : : :

■10' 0 1 2 3 4 6 6
Eb/NO (CB)

Figure 3.9 Comparison between proposed quantization! using integer values for quantization and the
best possible performance (AWGN, 400 bits frame, no iteration, Max-Log-MAP decoder)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.9 shows the comparison between the proposed quantization technique, using

only integer values for quantization [wul] and the best possible performance of the

decoder in simulation using real values. As this Figure shows, using only integer values

for quantization has a very small decrease in complexity, however it causes a high

performance loss. This fact prevents us to use this method. Also, Figure 3.9 clearly shows

that there is no need for increasing the number of bits, as it increases the complexity

without significant improvement on performance.

3.7 Normalization

In forward/backward recursions of the MAP or Max-Log-MAP algorithm, metric

values can easily overflow or underflow. When the most significant bits of two binary

values, which are being added or subtracted, have the same values (both 1 or both 0) and

the same bit of the result has a different value, overflow or underflow has happened. This

means that the result will be an incorrect value and therefore, not reliable. This fact can be

shown by an example:

-5 -> 1011 (2’s compliment)

- 7 1 0 0 1 (2’s compliment)

1 0100

Normalizing the values can solve this problem. Several methods of metric normalization

have been proposed in [bemardl]. Among these are:

• Reset

• Difference Metric ACS

• Variable shift

• Fixed Shift

• Modulo Normalization

Which are all normalization techniques for Viterbi algorithm.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reset:

Redundancy is introduced into the channel input sequence in order to force the

survivor sequences to merge after some number N of Add-Select-Compare (ASC)

recursions for each state.

Difference Metric ACS:

The Viterbi algorithm is reformulated to keep track only of differences between

metrics for each pair of states.

Variable shift:

After some fixed number N of recursions, the minimum survivor metric is

subtracted from all of the survivor metrics.

Fixed Shift:

When all survivor metrics become negative (or all positive), the survivor metrics

are shifted up (or down) by a fixed amount.

Modulo Normalization

Use two’s complement representation of branch and survivor metrics and modular

arithmetic during ACS operations.

The method used in [Wul], also adds the complexity without improving the

design more than other methods. The most popular methods are subtraction of the node

metrics from the max or minimum [bemardl] node metrics at each time.

[In a t (m)\N = ln a t (m) - min(ln a t)

[ln a t (m)] N = ln a t (m) - max(ln a t)

We have tested different methods of normalization for MAP decoder. The method that

gives the best performance is to subtract all of the node metrics at each time, from the

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maximum node metric at that specific time. Also values more/less than 128/—128 should

be assigned to 128/—128 for 8bits 2’s complement integer values. Figure 3.10 shows the

comparison between two normalization methods. This Figure shows that by subtracting

the max node metric from each node metric at every specific time, the performance in

MAP decoders will be improved. In addition to its performance, this method is low

complex and suitable for implementation.

— Max node metric subtraction
- - Min node metric subtraction

t—

0 2 3 4 5 6
Eb/NO (cB)

Figure 3.10 Comparison between two normalization methods, block length 400

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

RTL Simulation and Synthesis

After system-level modeling and hardware architecture exploration, the design is

ready for the next step, which is Register Transfer Level (RTL). Therefore, the RTL code

is written in Verilog HDL. Code is tested at each step of programming by test benches

and simulated to find any possible errors. Test benches examine the functionality of the

design and Test vectors located in test benches check the accuracy of the program.

Program is also tested, by monitoring the waveforms status of the inputs, outputs and

intermediate parts of the design in Simvision. After finishing the RTL codes successfully,

the design is also synthesized in Syriopsys Design analyzer. More details of the steps

mentioned above are explained in this chapter.

4.1 Verilog History

The Verilog Hardware Description Language, usually just called Verilog, was

designed and first implemented by Phil Moorby at Gateway Design Automation in 1984

and 1985. It was first used beginning in 1985 and was extended substantially through

1987.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The implementation was the Verilog simulator sold by Gateway. The first major

extension was Verilog-XL, which added a few features and implemented the infamous

"XL algorithm", which was a very efficient method for doing gate-level simulation. This

occurred in 1986, and marked the beginning of Verilog's growth period. Many leading-

edge electronic designers began using Verilog at this time because it was fast at gate level

simulation, and had the capabilities to model at higher levels of abstraction. These users

began to do full system simulation of their designs, where the actual logic being designed

was represented by a netlist and other parts of the system were modelled behaviorally.

In 1988, Synopsys delivered the first logic synthesizer, which used Verilog as an input

language. This was a major event, as now the top-down design methodology could

actually be used effectively. The design could be done at the "register transfer level", and

then Synopsys' Design Compiler could translate that into gates. With this event, the use of

Verilog increased dramatically.

Beginning in 1989, the second major trend began to emerge, and that was the use of

Verilog-XL for sign-off certification by ASIC vendors. As Verilog became popular with

the semiconductor vendors customers, they began to move away from their own,

proprietary simulators, and started allowing customers to simulate using Verilog-XL for

timing certification. As more ASIC vendors certified Verilog-XL, they requested more

features, especially related to timing checks, back annotation, and delay specification. In

response, Gateway implemented many new features in the language and the simulator to

accommodate this need.

Cadence Design Systems acquired Gateway in December 1989, and continued to market

Verilog as both a language and a simulator. At the same time, Synopsys was marketing

the top-down design methodology, using Verilog. This was a powerful combination.

All this time, Verilog was a proprietary language. No other vendors were allowed to make

a Verilog simulator. In response, the other vendors put their weight behind the VHDL

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standardization process, which had been started by the DoD in the early 1980's. They

needed a comparable product to sell, and VHDL was the only viable alternative.

By 1990, Cadence recognized that if Verilog remained a closed language, the pressures of

standardization would eventually cause the industry to shift to VHDL. Consequently,

Cadence organized Open Verilog International (OVI), and in 1991 gave it the

documentation for the Verilog Hardware Description Language. This was the event,

which "opened" the language. Subsequently, OVI did a considerable amount of work to

improve the Language Reference Manual (LRM), clarifying things and making the

language specification as vendor-independent as possible.

In 1994, the IEEE 1364 working group was formed to turn the OVI LRM into an IEEE

standard. This effort was concluded with a successful ballot in 1995, and Verilog became

an IEEE standard in December 1995.

When Cadence gave OVI the LRM, several companies began working on Verilog

simulators. In 1992, the first of these were announced, and by 1993 there were several

Verilog simulators available from companies other than Cadence. The most successful of

these was VCS, the Verilog Compiled Simulator, from Chronologic Simulation. This was

a true compiler as opposed to an interpreter, which is what Verilog-XL was. As a result,

compile time was substantial, but simulation execution speed was much faster.

Now, Verilog simulators are available for most computers at a variety of prices, and

which have a variety of performance characteristics and features. Verilog is more heavily

used than ever, and it is growing faster than any other hardware description language. It

has truly become the standard hardware description language.

4.2 RTL Coding

The program includes 10 modules. Figure 4.1 shows these modules where

“topMAPchp2” is the top-level module and “w ritea” and “write b” are RAM macro

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blocks. “topMAPchp2” is an 10 wrapper around the chip. The hierarchical levels of the

modules are as below:

topMAPchp

1
MAPdecoder

1
1' y 1 i J r

addsub LUT add2 alpha write2 write

r y r

Write_a Write_g

Figure 4.1 hierarchical levels of the modules w ritten in Verilog

Inputs and outputs of the chip are:

Inputs:

• Yp: Parity data.
• Yd: Systematic data.
• App: The a priori probability.
• CLK: System clock.
• Start: Allows the chip to take the data values from the input data bus.
• Reset: Resets the chip.
• Block: Inform the chip about reaching to the end of each block or frame.

Output:

• 1: Log-likelihood ratio (LLR)

Modules are briefly explained here. For better understanding of the function of each

module look at Figure 3.1 and Figure 3.2.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(s y n o p ty t D e tlg n A n a ly te t ■ n >, ^ , w O < & B

MAP d e c o d e r 2 a d d Z ZLUT2

t a p M A P c h p 2 u r f t e 2 u r f t e 2 2

Read /home/v1$ i/sa be t i/cmc_di g f1owl8/Synopsys/topMAPchp2♦db

Figure 4.2 Modules in Synopsys, Design analyzer

topMAPchp2: The top module, which is an 10 wrapper.

Inputs:

• Yp: Parity data.
• Yd: Systematic data.
• app: The a priori probability.
• CLK: System clock.
• start: Allows the chip to take the data values from the input data bus.
• Reset: Resets the chip.
• block: Inform the chip about reaching to the end of each block or frame.

Output:

• 1: Log-likelihood ratio (LLR)

Wires:

• start_top,block_top,Reset_top,CLK_top,Yd_top,Yp_top,app_top,l_top

example of wrapper:

PDIDGZ xYdOO (.C(Yd_top[0]), .PAD(Yd[0])); //for input pin

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PDO08CDG xlOO (.PAD(1[0]), .l(l_top[0])); //for output pin

MAPdecoder: Top module of the logical gates.

Inputs:

• Yp, Yd, app, CLK, start, Reset, block

Output:

• 1

add_sub: Adds and subtract systemic and parity data inputs.

Inputs:

• busy, start, Yd, Yp;
busy=0 in forward recursion and busy=l in backward recursion.

Outputs:

• addl, add2, add3, add4;

Figure 4.3 shows the flowchart of this module.

LUT: Is the look up table for the a priori probability input.

Inputs:

• busy, start, app;

Outputs:

• prl,prm l

prl:P r(l)

prm l:Pr(-l)

add2: Adds outputs from “add_sub” and “LUT” modules in an specific order.

Inputs:

• Reset, block, busy, CLK, n, addl, add2, add3, add4, prl, prml;

Outputs:

• g l,g2,g3, g4; // Four different values of branch metrics at each time

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

start

No
negedge start

Yes

No

Yes

End

wait

wait

Figure 4.3 add sub module flowchart

alpha: Reieves branch metrics, computes Alpha values and normalizes them in forward

recursion.

Inputs:

• Reset, busy, CLK, nb, g 1, g2, g3, g4;
• n //when start pulse comes n will be equal to 0.

Outputs:

• al, a2, a3, a4; //Four different Alpha values
• max_a; //Max Alpha value at each time

write: Writes branch metric values in RAMI, computes Beta values and performs Beta

normlization.

Inputs:

• start, block, Reset, CLK, max a, gl, g2, g3, g4

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• ggl,gg2,gg3,gg4,

Branch metrics read by Beta calculation unit from RAMI

Outputs:

• b l, b2, b3, b4, ADR, D, WE, ME, OE, n, nb, busy

• lastADR

lastADR, keeps address of the last Alpha or branch metric value stored in RAM

write2: Writes Alpha values in RAM2 and computes Log-likelihood ratio (LLR) and

normalize it.

start

No
negedge start

Yes

Yes

Yes

No

End

wait

wait

Figure 4.4 add module

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No

B usy=start=0

Yes

End

w ait

Norm alize Alpha values

Initialize A lpha values
a l= a2= a3= -infinity

a4=0

C om pute 4 different A lpha values at
each tim e

Figure 4.5 Alpha module

Inputs:

• n, busy, block, Reset, CLK, al, a2, a3, a4

• aal, aa2, aa3, aa4

Alpha values read by soft output information unit from RAM2

• ggl, gg2, gg3, gg4,

Branch metrics read by soft output information unit from RAMI

• b l,b2 , b3,b4

Beta calculation unit outputs

Outputs:

• ADR2, D2, WErl, ME2, OE2, nl, maxi, max2

Figure 4.8 and Figure 4.9 shows the algorithm for this module.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

write_a: RAM macro block for storage of Alpha values in forward recursion.

write_g: RAM macro block for storage of branch metric values.

start

No

Backward
recursion startsYes

YesNo
ADR>0

Compute four different
values for Beta

Initialize Beta values
busy=l

Check for the overflows
or underflows

Normalize Beta values

busy=0
(End o f backwardrecursioi^

wait
(Fo maid recursio n is

performing)

Read gamma values from memory

Figure 4.6 write module (computation of Beta values)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yes

wait for other instructions
to be iinished

Wait 2 cycles for branch metric
calcuation unit

Write g l , g2, g3 and g4
(branch metrics) in RAMI

Figure 4.7 write module (writing branch metric values into RAMI)

start

No

Yes

wait

Re ad Alpha and branch metrics
from RAMI and RAM2

Wait 2 cycles far Beta calculation unit

Compute LLR w ith checking for
overflows or underflows

0 * 0

Figure 4.8 writ2a module (LLR computation)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No

Yes

End

Wait 2 cycles for Alpha
cabuation unit

wait for other ins true tions
to be finished

Write a l, a2, a3 anda4
(branch metrics) in RAM2

Figure 4.9 writ2e module (writing Alpha values into RAM2)

Figure 4.10 also shows an example of the results and status of the waves in Simvision.

Monitoring the values in this software helps us to verify the accuracy of the program and

check its functionality. It is possible to observe the inputs and outputs of each module or

unit during integration of the program.

Cuntr-BMMn* • 0

sasBHM B
■ Q 'toot |
B ^ *2(7:0| 'toot I
S ^ 'toot I
S Q M(7:0) ’toot I
ffi ^ u1[7:0] 'toot I
B ^ u^pcq 'toot I
■ ^ ••V* 'toot
B ^ 4»4[7:0| 'toot
B Q 'tooot
8 ^ A0«T 1 'toeot
a Q bipfll 'toot
a « MPH 'too.
a ^ MPfl 'toot
a M(74| ‘toot

^ „ ,r , r ̂ ^ , |a a t»a iiii»ciu

Figure 4.10 Wave forms status in Simvision

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next Figure shows a closer view of the waveforms and values of some input/outputs in a

specific time.

b1 [7:0]

b2[7:0]

b3[7:0]

b4[7:0]

block

busy

CLK

Figure 4.11 Waveform status in Simvision

4.3 Synthesis

Synthesis tools change the RTL level of the design into gate level. This job is

performed here with Synopsys Design analyzer. The steps required for synthesis of a

design in Synopsys Design analyzer is showed here.

Compiling the design

Im porting the R TL code into
Synopsys

Constraining th e design

Figure 4.12 Synthesis steps

Fig 4.13 shows the synthesized level of the top module. In this Figure, I/O wrapper can be

observed around the main module or MAPdecoder.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.13 shows the synthesis level of the main module or MAPdecoder.

Figure 4.14 Inside the main module after synthesis level

During synthesis steps, different reports should be generated by designer; including area,

constraint, timing, power, etc. These reports show that the proposed design has a total cell

area of 0.94 mm2 and consumes total dynamic power of 48.4 mW. Design has already 27

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ports that will increase in later steps by adding other ports such as power rings or power

cores. Each RAM block used in this design has a total area of 263,685 square microns.

The clock period is 7ns, which make the design frequency to be about 143 MHz.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

VLSI Implementation

After system-level modeling and hardware architecture exploration, the design is

ready for physical implementation. Most of these steps are done in Cadence First

Encounter. Figure 5.1 shows briefly the required steps for digital design, which starts

from system design and ends in physical verifications.

System level design, Register Transfer Level (RTL) coding including simulation and

synthesis are already explained in previous chapter. Another simulation is also done after

synthesis level to ensure the functionality of the design in gate level.

The next steps are physical implementations and include:

■ Floorplanning and power planning

■ Placement

■ Clock Tree Generation
■ Routing and timing verification

■ Adding filler cells

■ Physical verifications

■ Adding pins and metal fills

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Verilog

V erilog

Figure 5.2 Digital design flow

These terms are explained in more details in this section, however it is good to briefly talk

about hardware and software trade-offs for advanced 3G channel coding [michel], first.

5.1 Hardware and Software Trade-offs

One of the main drivers for the development of next generation wireless

communications systems is the increasing demand for high-rate data services. Today’s 2G

systems, e.g. GSM, were targeted to voice as primary service. The supported data-

services are limited to low rates. Therefore, the computational complexity for the

baseband signal processing in the receiver, comprising equalizing, channel decoding and

source decoding is relatively low and can be implemented using one state-of-the-art DSP

running at 80 to 150MHz [nicol].

69

CjjTL Simulating)

T

(^Gate-Level Simulation^) ► < ^ F T n n r p C a d e n c e First
—— — — Encount er

(^ ^ ck T ree Generation)

luting & Timing
Verification

Physical Verification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The 3G cellular wireless standards comprise advanced equalizing and coding algorithms.

Especially Turbo-Codes [nicol, robertson] as channel coding scheme pose great demands

on the computing power of communication devices and infrastructure. Along with the

higher throughput requirements (384 kbit/s, 2 Mbit/s in UMTS) the resulting

computational complexity has raised by at least an order of magnitude compared to 2G.

Dedicated hardware solutions for the baseband signal processing fulfill these

requirements, but often lack the flexibility to support the various existing or even

emerging future communication standards. Therefore efficient implementations on

programmable architectures are of great interest.

The actual requirements for the DSPs differ for the various fields of application: For

hand-held devices, e.g., meeting the signal processing demands of one data channel while

minimizing cost and power consumption is critical. In wireless infrastructure, several data

channels have to be processed simultaneously, which exceeds the capabilities of a single

signal processor even if a high-end device is used. Hence, the baseband receiver can be

implemented either by a set of high-performance DSPs or by a combination of DSPs with

dedicated IP cores.

It is argued in [bick] that “the trends in decoding algorithms are moving from standard

Viterbi towards more computationally-expensive algorithms like softoutput Viterbi

algorithm (SOVA) and maximum a posteriori (MAP) algorithm. The implementation

efficiency of these algorithms will become a differentiating factor for next generation

wireless communications - particularly for those employing programmable DSP

devices.” Thus we focus on channel decoding, which is besides equalization the

computationally most demanding part within the baseband receiver. The computational

complexity of these algorithms is very high, e.g. up to about 6000 MOPS for a Log-MAP

decoder for 3G, assuming a data-rate of 2 Mbit/s. Therefore it is necessary to identify the

primary bottlenecks in pure software implementations.

Depending on the targeted system environment these bottlenecks are solved by using

advanced VLIW DSPs, application-customized RISC cores or custom IP blocks. Current

state-of-the-art DSPs, from low-cost to high performance, supports already the kernel

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operations of the Viterbi algorithm, used in 2G channel decoding, with dedicated

instructions. For the MAP algorithm this support is actually lacking. The new approach of

customizing and extending a RISC core blurs the borders between hardware and software.

In contrast to a heterogeneous RISC/DSP or RISC/IP-block architecture the application

specific hardware is coupled to the RISC core by an extension of its base instruction set.

Thus application specific performance bottlenecks can be removed.

5.1.1 16-bit Fixed-point DSPs

The core architecture of a classical 16-bit fixed point DSP usually comprises one

ALU/MAC unit, a program memory and two data memories, each with separate address

and data busses. ALU unit and address generation unit (AGU) operate independently

from each other, thus allowing parallel execution of instructions to a limited extent, e.g.

ALU operations and memory-register transfers. A member of this architectural class of

processors is, e.g., Motorola’s DSP 56603. The DSP56603 is a low-cost low-power DSP,

which is specially optimized for mobile wireless applications and provides a processing

performance of 80 MIPS.

5.1.2 Modern VLIW DSPs

Modem DSP architectures attempt to increase the signal processing performance

by exploiting the inherent parallelism of many signal-processing algorithms. This class of

DSP architectures provides several independent ALU units along with wide and fast

busses to the internal memories. To allow this increased degree of instruction level

parallelism, instructions to be executed in parallel are grouped together to so-called very

large instruction words (VLIW). Further, the processing units usually support the single

instruction/multiple-data approach (SIMD). An example is sub-word parallelism, where

several sub-words of a data word are processed with the same operation. A (Max-) Log-

MAP implementation for decoding an 8-state Turbo-Code on this class of DSPs should

exploit the benefits of the subword parallelism by using 16-bit packed data types. A state-

of-the-art architecture is the ST 120 from STMicroelectronics. It features two ALU units

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and supports three different instruction sets: A 16-bit instruction set for compact

microcontroller code, a 32-bit instruction set for higher performance and more complex

instructions, and a third one for an increased level of instruction parallelism. In this 4x32-

bit Score-boarded Long Instruction Word mode the processor is able to execute four 32-

bit instructions in one clock cycle. Following the SIMD approach, the processor supports

2x16-bit data packed into one 32-bit data word.

5.1.3 Application-Customized RISC Cores

Significant attention has recently been drawn towards configurable processor

cores such as those offered by ARC [arc] and Tensilica [tensilica]. These are based on

classical RISC architectures that can be conFigured in two dimensions: First with respect

to the architectural features of the core, e.g. inclusion of fast MAC units, cache sizes and

policies, memory size and bus-width. Secondly the instruction set can be extended by

user-defined instructions. This approach offers the benefit of removing application

specific performance bottlenecks while still maintaining the flexibility of a software

implementation, thus blurring the borders between hardware and software. For instance,

performance-critical code portions that require multiple instructions on a generic RISC

architecture can be compressed into a single, user defined instruction to obtain a

significant speed-up. More importantly, this can on system-level eliminate the need for a

heterogeneous RISC/DSP or RISC/IP-block architecture, therefore simplifying the

architecture, reducing the cost of the system and simplifying the validation of the total

system.

Key to efficiently using a configurable processor core is the methodology behind defining

and implementing the custom instructions.

ARC’s approach uses two independent descriptions that have to be provided to the tools:

A C-model that describes the behavior of the new instruction to the instruction set

simulator. And second, a synthesizable VHDL model that extends the VHDL description

of the processor core. However, it is difficult to validate the consistency of the two

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

models, therefore creating a potential validation hole. The approach followed by Tensilica

tries to tackle this validation problem by a single source model that is used for both

extending the software tool chain with the custom instructions as well as for generating

the synthesizable HDL of the extended processor. The implementation of the new

instructions is done using a special extension language, called TIE, which is essentially a

hybrid of Verilog and C.

5.2 Floorplanning and power planning

Floorplanning is the process of identifying structures that should be placed close

together, and allocating space for them in such a manner as to meet the sometimes

conflicting goals of available space (cost of the chip), required performance, and the

desire to have everything close to everything else. The effort required for floorplanning

depends on the prototyping level of the design. For example, floorplanning is very

important if the design is being prepared for timing closure and detailed routing.

Floorplanning, in conjunction with placement and trial routing, can be an iterative design

process.Floorplanning usually starts by preplacing blocks, modules, and submodules

according to the prepared floorplan and pad or pin locations in the chip I/O. All other

modules or blocks not in the prepared floorplan are left outside the chip area.

Figure 5.3 shows the design in Cadence First Encounter environment after floorplanning.

RAM macro blocks are placed manually and other modules are outside of the chip area to

be placed later by software. The pad locations are allocated around the chip core. Also

some space is considered between core and I/O for power planning.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.3 Floorplanned design

In power planning, power rings and power stripes are added to the design to connect

blocks and cells to the power structures. Power rings includes rings around the chip core

and all of the macro blocks. Power rings and power stripes are shown in the Figure.

Figure 5.4 Power planned design

5.2.1 Ring power pads

Ring power pads are used to provide power to the I/O cells, and drive signals off-

chip. The number of ring power pads are decided based on the rule-of thumb of one pair

for every 4-6 output pins. Therefore, two pairs of ring power pads are considered here.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Core power pads

Core power pads provide power to the core of the chip. Core and ring power are

often separate to reduce the off-chip noise associated with high-current drive from

affecting the core power. For core power, the rule of thumb is 1mA per micron of metal

width. Power connections are assumed 60-micron and 60mA is considered for each

power connection. It should provide a margin of almost 8x the estimated maximum core

requirement, which is 59.66mW. Therefore, 4 pairs of power pads are considered:

4 x 60mA=240mA (4 pairs of power pads provide 240mA)
240mA x 1.8v=432mW
Maximum core power requirement=59.66mW

432/59.66=7.24x (almost 8x more than Maximum core power requirement

As a result, the total number of I/O pins after adding power pads is 39.

Figure 5.5 Placed design

5.3 Placement

Placement includes placing standard cells and blocks inside the chip core to create

a placement that is routable and meets the performance constraints. Timing-driven

placement algorithms are iterative algorithms that consider critical path to find the best

placement that satisfies both timing and area requirements.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Clock Tree Generation

Clock Tree Synthesis (CTS) is used to build a buffer tree and balance insertion

delays from the clock source to all flip-flops.

Figure 5.6 Chip after Clock Tree Generation

5.5 Routing

Routing connects standard cells to each other, to blocks and I/O pads considering

minimum congestion. Also, routing includes power routing, which routes power and

ground to all parts of the chip.

5.5.1 Sroute

SRoute creates pad rings and routes power and ground nets to the following power

structures:

■ Block pins

■ Pad pins

■ Standard cell pins

■ Unconnected stripes

Srouting in usually performs before other kinds of routing.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Trial routing

The Trial Routing follows the design rules described in the technology file to

accurately gauge routing congestion and extract resistance and capacitance (RC) parasitic

values. The program routes the metal interconnection to completely connect the design

according to the imported netlist, and also incorporates any changes made during

placement.

5.5.3 NanoRoute

NanoRoute performs concurrent timing and signal integrity-driven routing and

physical optimization, and postroute repair of timing and noise problems in multimillion

instance cell, block, or mixed cell and block level designs.

5.5.4 Wroute

Wroute in this software performs global and detailed routing of placed block-and-

cell designs using an area-based algorithm.

Figure 5.7 Routed design

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Filler cells

The Add Filler program inserts filler cell instances between the gaps of standard

cell instances. Filler cells provide decoupling capacitance or complete the power

connections in the standard cell rows.

5.7 Metal fill

Metal fill is electrically inactive metal that fills open areas on each metal layer.

This serves to minimize variations in the metal thickness, resulting in a more even

distribution of the dielectric and improved chip performance. You can insert metal fill

areas into a placed and routed design to achieve a metal density within the range required

by a specific manufacturing process. Metal density is defined as follows:

1T̂ . TotalMetalArea
MetalDensity = ----------------------

Window Area

There are also many implementation details during steps mentioned above and

design must be verified to meet all the physical and timing requirements.

. 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Results and Conclusion

Channel decoding is one of the most computationally intensive and power

consuming tasks and is therefore normally implemented in a dedicated hardware block. A

2-Mb/s 3G turbo decoder with ten turbo iterations must carry out more than 1.2 billion

add-compare-select (ACS) operations per second plus the additional overhead of data

handling and control. The flexible nature of reconfigurable general purpose DSP devices

means that for any specific task they will always consume more power, have less

throughput, and be larger than a dedicated hardware solution. For this reason, the high

computational load involved in 3G channel decoding makes a software solution on a

general purpose DSP less attractive than a dedicated hardware. This fact has led some

latest-generation DSPs to include dedicated hardware decoder cores on chip [agrawala].

Others have used additional hardware to implement specialized instruction sets for

accelerating ACS computations [olofsson]; however, the flexible nature of the DSP
architecture still inherently makes them less attractive than dedicated channel decoder

hardware solutions with respect to throughput, power consumption, and area.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Results and comparison

Other turbo decoders proposed in literature are implemented in 0.35//m [vogtl,

stralen], 0.25//m [miyauchi] and 0.18//m [bickl] technologies. There are also other

designs such as [Wu, bai, zeng, youyun], which are implemented in FPGAs or [michell]

in DSP processors.

Table 6.1 shows the proposed turbo decoders in literature. Almost all of the designs are

implemented in (RTL level) VHDL or Verilog HDL and the results are from the reports

obtained from synthesis level. Between these implementations Bicherstaff et. al. have

fabricated an ASIC [bicherstaff].

By comparing the results presented in table 6.1, and the proposed design, we conclude

that our achieved results are superior. Our throughput will be about 6.5Mb/s in turbo

decoders after ten iterations. This result is comparable with [michell] that has used the

same algorithm but less throughput or 0.54Mb/s after 5 iterations. The proposed chip in

[michell] is implemented in a 200MHz DSP processor. Also, we can compare our

throughput result of 16.2Mb/s after 4 iterations with IMb/s that Vogt et. al have reached.

6.2 Summary of Contributions

With the application of turbo coding to more communication systems, low-

complexity implementation of turbo decoder becomes a more popular and challenging

topic. The aim of this thesis has been design and implementation of a low-complex MAP

decoder with performance that meets the requirements for sound and data transfer. A

summary of the contributions in the design and implementation of this decoder is

provided in this section.

I

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1 Results and comparison

Rate Block
size

Algorithm Throughput
Mb/s

Frequency
MHz

Implementation
fl m

Area
mm2

Vogt2 1/3 668 ML-MAP l(4it) 16 0.35 2.8

Vogt2 1/3 668 SOVA-OU 1.9(4it) 16 0.35 2.5

Stralen 1/2 512 L-MAP 3.5 62.5 0.35 -

Miyauchi 2/3 8920 SL-MAP - 100 0.25 -

Bicherstaff 1/3 2568 L-MAP 2.5 110.8 0.18 9

Y. Wu 1/2 640 ML-MAP 1 - FPGA -

Bai 1/3 3168 L-MAP 0.14(5it) - FPGA -

Zeng 1/3 2000 L-MAP 2 - FPGA -

Youyun 1/3 5114 SL-MAP 2.5 30.72 FPGA -

Michell 1/3 5114 ML-MAP 0.54(5it) - ST120 -

Michell 1/3 5114 L-MAP 0.3(5it) - Custom RISC -

Proposed 1/2 512 ML-MAP 13,1.6(4it),
1.3(5it)

143 0.18 1.46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.1 Algorithmic Contribution

The original turbo decoder consists of SISO decoders based on MAP algorithm,

which involves a large amount of multiplications, exponentials, and logarithm

computations. Implementations of these mathematical operations are usually quite

complex in VLSI design. Sub-optimal, but much simpler, varieties of MAP algorithms,

Max-Log-MAP and Log-MAP, reduce the computational complexity. These sub-optimal

SISO algorithms bring certain level of complexity reductions with some performance

degradations.

In this thesis by using the fact that Max-Log-MAP algorithm is not sensitive to the

AWGN variance of the noise [worm], we could reduce the complexity of the branch

metric calculation and introduce a less complex equation. Using this fact results in

omitting the multiplication and division exists in branch metric calculation equation.

6.2.2 Architectural Contribution

At the architectural level, through computation of soft output information unit in

backward recursion, we could omit a large RAM block for storage of p values. This

design offers two RAM blocks, one for the storing branch metric values and the other for

a values. The stored values will be needed for the computation of log-likelihood ratios.

Log-likelihood ratio is computed by using saved branch metrics and a values in RAMs

and real time p values.

6.2.3 System Level Design Contribution

Because distorted information that decoder receives from the channel can be any

real value, they are required to be quantized into a proper number of bits. Therefore, in

this thesis the quantization of the decoder inputs and metric values is studied and the best

quantization with the minimum possible number of bits and reliable Bit Error Rate (BER)

is chosen based on the simulation results. Normalization techniques are also studied and a

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suitable technique for the Max-Log-MAP decoder is explained. In addition, the decoder is

flexible with respect to Block Size and accepts frames from 10 to 512 bits per block.

6.3 Conclusions

We have demonstrated the new implementation of a MAP decoder suitable for

ASIC, which can be used in turbo decoders. Various turbo-coding algorithms were

studied and Max-Log-MAP algorithm was selected for this design for being the best

compromise between performance and complexity. The branch metric calculation unit is

redesigned to reduce its complexity, which in turn reduces overall complexity of the

decoder. The complexity reduction is due to exploiting the insensitivity of the MAX-Log-

MAP algorithm to AWGN channel variance. The new decoder design only needs two

RAM blocks compared to three RAM blocks of previous proposals. The design

architecture is parallel and pipeline, which makes the design work fast. The quantization

and normalization techniques that can best fit our MAP decoder design are studied and a

new quantization is presented based on the simulation results. The decoder has achieved

the throughput of 6.5Mb/s after 10 iterations and the core of the chip has an area of 1mm2

in a 0.18// m six-layer metal CMOS technology.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[agarwala] S. Agarwala et a l, “A 600 MHz VLIW DSP,” in IEEE Int. SolidStateCircuits
Conf. Dig. Tech. Papers, vol. 45, Feb. 2002, pp. 56-57.

[anderson] Anderson, J.B.; Hladik, S.M.; “Tailbiting MAP decoders,” IEEE Journal on
Selected Areas in Communications, Volume: 16 Issue: 2, pp. 297 -302, Feb. 1998

[arc] ARC International Ltd. http://www.arccores.com

[atluri] Atluri, I.; Arslan, T.; “Low power VLSI implementation of the map decoder for
turbo codes through forward recursive calculation of reverse state metrics,” IEEE
International [Systems-on-Chip] SOC Conference 2003, Proceedings, pp. 408- 411,17-
20 Sept. 2003

[bahl] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” IEEE Transactions on Information Theory, vol. 20,
pp. 284-287, Mar. 1974.

[bai] Chunlong Bai; Jun Jiang; Ping Zhang; “Hardware implementation of Log-MAP
turbo decoder for W-CDMA Node B with CRC-aided early stopping,” IEEE 55th
Vehicular Technology Conference, 2002, VTC, Vol. 2, pp. 1016 - 1019, 6-9 May 2002

[bemard] Shung C.B., Siegel P.H., Ungerboeck G., Thapar H.K.; “VLSI architectures for
metric normalization in the Viterbi algorithm,” IEEE International Conference on
Communications, 1990, ICC 90, SUPERCOMM/ICC '90, vol. 4, pp. 1723 - 1728,16-19
April 1990

[berrou] Berrou, C.; Glavieux, A.; “Near optimum error correcting coding and decoding:
turbo-codes,” IEEE Transactions on Communications, Volume: 44, Issue: 10, pp. 1261—
1271, Oct. 1996

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.arccores.com

[bickl] M. Bickerstaff et al. “DSP Systems for Next-Generatio3^|Mobile WirelXs
Infrastructure,” In Proc. ICASSP 2000, pp. 3710-3713,2000. 1 I

[bick2] Bickerstaff, M.; Garrett, D.; Prokop, T.; Thomas, C.; Widdup, B. ̂Gongyu Zhou;
Nicol, C.; Ran-Hong Yan; “A unified turbo/viterbi channel decoder for 3GPP mobile
wireless in 0.18 pm CMOS,” 2002 IEEE International Solid-State Circuits Conference,
2002, Digest o f Technical Papers, ISSCC, Volume: 1, pp. 124 -451 vol.l, 3-7 Feb. 2002

[boutillon] Boutillon, E.; Gross, W.J.; Gulak, P.G.; “VLSI architectures for the MAP
algorithm,” IEEE Transactions on Communications, Volume: 51 Issue: 2, pp. 175-185,
Feb. 2003

[chaikalis] Chaikalis, C.; Noras, J.M.; “Implementation of an improved reconfigurable
SOVA/log-MAP turbo decoder in 3GPP,” Third International Conference on 3G Mobile
Communication Technologies, 2002 (Conf. Publ. No. 489), pp. 146 -150, 8-10 May 2002

[chass] A. Chass and A. Gubeskys, “On Performance/Complexity Analysis and SW
Implementation of Turbo-Decoding,” In Proc. 2nd International Symposium on Turbo-
Codes & RelatedTopics, pp. 531-534, Brest, France, September 4-7,2000.

[cheng] Jung-Fu Cheng; Ottosson, T.; “Linearly approximated log-MAP algorithms for
turbo decoding,” Vehicular Technology Conference Proceedings, 2000, VTC 2000,
Spring Tokyo, Volume: 3, pp. 2252 -2256,15-18 May 2000.

[dawidl] Dawid, H.; Gehnen, G.; Meyr, H.; “Map channel decoding: Algorithm and
VLSI architecture,” VLSI Signal Processing, VI, 1993., [Workshop on] , pp. 141 -149,
20-22 Oct. 1993

[dawid2] Dawid, H.; Meyr, H.; “Scalable architectures for high speed channel decoding,”
Workshop on VLSI Signal Processing, VII, 1994, pp. 226 -235,26-28 Oct. 1994

[dawid2] Dawid, H.; Meyr, H.; “Real-time algorithms and VLSI architectures for soft
output MAP convolutional decoding,” Sixth IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, 1995, PIMRC'95, 'Wireless: Merging onto
the Information Superhighway', Volume: 1, pp. 193 -197,27-29 Sept. 1995
[dimitrov] V. S. Dimitrov, G. A. Jullien, W.C. Miller, “Theory and applications of the
double base number system”, IEEE Transactions on computers, vol. 48 pp. 1098-1106,
1999

[el-Assal] El-Assal, M.; Bayoumi, M.; “A high speed architecture for MAP decoder,”
IEEE Workshop on Signal Processing Systems, 2002 (SIPS '02), pp. 69 -74, 16-18 Oct.
2002,

[engling] Engling Yeo; Pakzad, P.; Nikolic, B.; Anantharam, V., “VLSI architectures for
iterative decoders in magnetic recording channels,” IEEE Transactions on Magnetics,
Volume: 37 Issue: 2, pp. 748 -755, March 2001

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[erfanian] Erfanian, J.A.; Pasupathy, S.; “Low-complexity parallel-structure symbol-by-
symbol detection for ISI channels,” IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, 1989, Conference Proceeding, pp. 350-353, 1-2 June
1989 *

[feldman] Feldman, J.; Abou-Faycal, I.; Frigo, M.; “A fast maximum-Liklihood Decoder
for Convolutional Codes,” IEEE 56th Vehicular Technology Conference, 2002,
Proceedings, VTC 2000,Vol. 1, pp. 371 -375,24-28 Sept. 2002
[fomey] G. D. Forney, “The Viterbi algorithm,” Proceedings o f the IEEE, vol. 61, pp.
268-278, Mar. 1973.

[frenking] Frenking and Parhi, “Montgomery modular multiplication and exponentiation
in the residue number system”, Asilomar Conference on Signals, Systems and Computers,
vol. 2, pp. 1312-1316,1999

[gallager] Gallager, R.G.; “Claude E. Shannon; a retrospective on his life, work, and
impact,” IEEE Transactions on Information Theory, Volume: 47, Issue: 7, pp. 2681 -
2695, Nov. 2001

[gibong] Gibong Jeong; Dan Hsia; “ Optimal quantization for sofit-decision turbo
decoder,” Vehicular Technology Conference, 1999, VTC 1999 - Fall. IEEE VTS 50th,
Volume: 3, pp. 1620 -1624,19-22 Sept. 1999

[gross] Gross, W.J.; Gaudet, V.C.; Gulak, P.G.; “Difference metric soft-output detection:
architecture and implementation,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, Volume: 48, Issue: 10, pp. 904 - 911, Oct. 2001

[hagenauerl] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision
outputs and its applications,” Proceedings o f the IEEE, GLOBECOM, pp. 1680-1686,
1989.

[hagenauer2] Hagenauer, J.; Offer, E.; Papke, L.; “Iterative decoding of binary block and
convolutional codes,” IEEE Transactions on Information Theory, Volume: 42 Issue: 2,
pp. 429-445, March 1996

[halter] S. Halter, M. Oberg, P. M. Chau, and P. H. Siegel, “Reconfigurable Signal
Processor for Channel Coding & Decoding in Low SNR Wireless Communications,” In
Proc. 1998 Workshopon Signal Processing Systems (SiPS ’98), pages 260-274,
Cambridge, Massachusetts, USA, Oct. 1998.

[heller] Heller, J.; Jacobs, I.; “Viterbi Decoding for Satellite and Space Communication,”
IEEE Transactions on Communications, [legacy, pre - 1988], Volume: 19 Issue: 5, pp.
835 -848, Oct 1971

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[hsu] Jah-Ming Hsu; Chin-Liang Wang; “On finite-precision impler lentation of a
decoder for turbo codes,” Proceedings of the 1999 IEEE Intematic
Circuits and Systems, 1999ISCAS '99, Volume: 4, pp. 423 -426, 30] 4ay-

nal Symposium on
I June 1999

[hong] Hong, S.; Yi, J.; Stark, W.E.; “VLSI design and implementation of low-
complexity adaptive turbo-code encoder and decoder for wireless mobile communication
applications,” 1998 IEEE Workshop on Signal Processing Systems, SIPS 98, pp. 233-
242, 8-10 Oct. 1998

[IEEE] IEEE Standard for binary floating-Point, IEEE Std. 754-1985

[kienle] Kienle, F.; Kreiselmaier, G.; Wehn, N.; “VLSI-implementation issues of turbo
trellis-coded modulation,” 2003 IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2003, Proceedings, (ICASSP '03), Volume: 2,6-10, pp. 633-636,
April 2003

[kwon] Taek Won Kwon; Dae Won Kim; Woo Tae Kim; Eon Kyeong Joo; Jun Rim
Choi; Pyung Choi; Jun Jin Kong; Sung Han Choi; Won Hee Chung; Ki Won Lee; “A
modified two-step SOVA-based turbo decoder for low power and high performance,”
TENCON 99. Proceedings o f the IEEE Region 10 Conference, Volume: 1, pp. 297-300,
15-17 Sept. 1999

[lee] Sung-Woo Lee; Won-sub Kim; Jin-Soo Park; “System Implementation in Turbo
Code for Digital Video Transmission,” TENCON '02, Proceedings 2002 IEEE Region 10
Conference on Computers, Communications, Control and Power Engineering, Volume:
2, pp. 1043 -1047 vol.2,28-31 Oct. 2002

[lopez] Lopez-Vallejo M.; Mujtaba, S.A.; Inkyu Lee; “A low-power architecture for
maximum a posteriori decoding,” Conference on Signals, Systems and Computers, 2002.
Conference Record of the Thirty-Sixth Asilomar, Volume: 1, pp. 47-51, Nov. 3-6,2002

[luukkanen] Luukkanen, P.; Ping Zhang; “Comparison of optimum and sub-optimum
turbo decoding schemes in 3rd generation cdma2000 mobile system,” Wireless
Communications and Networking Conference, 1999, WCNC 1999 IEEE, pp. 437 -441
vol.l, 21-24 Sept. 1999

I
[mansour] Mansour, M.M.; Shanbhag, N.R.; “VLSI architectures for SISO-APP
decoders,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume:
11 Issue: 4, pp. 627-650, Aug. 2003 I

[markman] Markman, I.; Anderson, J.B.; “New estimates for the performance of soft-
decision sequential decoders,” IEEE International Conference on Communications, 1994.
ICC 94, SUPERCOMM/ICC '94, Conference Record, Serving Humanity Through
Communications, vol.3, pp. 1260-1264,1-5 May 1994 j|

[maseral] Masera, G.; Mazza, M.; Piccinini, G.; Viglione, F.; Zamboni, M.;
“Architectural strategies for low-power VLSI turbo decoders,” IEEE Transactions on

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Very Large Scale Integration (VLSI) Systems, Volume: JO, Issul: 3, pp. 279 —28j5, June
2002 F I

I
[masera2] Masera, G.; Piccinini, G.; Roch, M.R.; Zamboni, M.; “VLSI architectures for
turbo codes”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Volume: 7 Issue: 3, pp. 369-379, Sept. 1999

[michell] Michel, H.; Worm, A.; Munch, M.; Wehn, N.; “Hardware/Software Trade-offs
for Advanced 3G Channel Coding,” Design, Automation and Test in Europe Conference
and Exhibition, pp. 396 - 401,4-8 March 2002

[michel2] Michel, H.; Wehn, N.; “Turbo-decoder quantization for UMTS,”
Communications Letters, IEEE, Volume: 5 Issue: 2, pp. 55 -57, Feb 2001.

[miki] Miki, M.H.; Taki, D.; Fujita, G.; Onoye, T.; Shirakawa, I.; Fujiwara, T.; KasamL
T.; “Recursive maximum likelihood decoder for high-speed satellite communication,’I
Proceedings o f the 1999 IEEE International Symposium on Circuits and Systems, 1999:
ISCAS '99, Volume: 4, pp. 572 -575,30 May-2 June 1999

[miyauchi] Miyauchi, T.; Yamamoto, K.; Yokokawa, T.; Kan, M.; Mizutani, Y.; Hattori,
M.; “High-performance programmable SISO decoder VLSI implementation for decoding
turbo codes”, IEEE Global Telecommunications Conference, GLOBECOM '01. Volume:
1, pp. 305 -309,25-29 Nov. 2001

[montorsi] Montorsi, G.; Benedetto, S.; “Design of fixed-point iterative decoders for
concatenated codes with interleavers,” Global Telecommunications Conference, 2000,
GLOBECOM '00, IEEE, Vol. 2, pp. 801 -806,27 Nov.-l Dec. 2000

[nicol] I. Verbauwhede and C. Nicol. “Low-Power DSP’s for Wireless Communications,”
In Proc. ISLPED 2000, pp. 303-310, Rapallo, Italy, 2000.

[nikolic] J. Nikolic-Popovic. “Implementing a MAP Decoder for cdma2000 Turbo Codes
on a TMS320C62x DSP Device,” Technical report, Texas Instruments Incorporated,
Houston, Texas, USA, May 2000. Application Report SPRA629 |

[olofsson] A. Olofsson and F. Lange, “A 4.32GOPS 1 W general purpose DSP with an
enhanced instruction set for wireless communication,” in IEEE Int. Solid State Circuits
Conf Dig. Tech. Papers, vol. 45, Feb. 2002, pp. 54-55.

[papke] L. Papke, P. Robertson, and E. Villebrun, “Improved decoding with the SOVA in
a parallel concatenated (turbo-code) scheme,” Proceedings, IEEE International
Conferenceon Communications, pp. 102-106,1996.

[parhami] Behrooz Parhami, “Computer Arithmetic: Algorithms and Hardware Designs”,
Oxford University Press, New York, 2000.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[park] Goohyun Park; Sukhyon Yoon; Changeon Kang; Daesik Hong; “An
implementation method of a turbo-code decoder using a block-wise MAP algorithm,”
Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000, 52nd, Volume: 6,
pp. 2956 -2961,24-28 Sept. 2000

[pietrobon] S. S. Pietrobon, “Implementation and performance of a turbo/MAP decoder,’’j
International Journal o f Satellite Communications, vol. 16, pp. 23-46,1998 j§IP

[pillai] R. V. K. Pillai, D. Al-Khalili and A. J. Al-Khalili, “Energy delay analysis of
partial product reduction methods for parallel multiplier implementation”, International
Symposium on Low Power Electronics and Design, pp. 201-204,1996

[robertsonl] P. Robertson, P. Hoeher and E. Villebrun, “(|ptimal and Sub-Optimal
Maximum a Posteriori Algorithms Suitable for Turbo Decoding,” ETT, pp. 119-125,
Mar-Apr. 1997 I I

I f *
[robertson2] Robertson, P.; Villebrun, E.; Hoeher, P.; “Afcomparison of optimal and sub-
optimal MAP decoding algorithms operating in the log domain,” 1995 IEEE International
Conference on Communications, ICC 95 Seattle, Gateway to Globalization, Volume: 2,
pp. 1009 -1013 vol.2,18-22 June 1995 '

[robertson3] Robertson, P.; “Illuminating the structure o!f code and decoder of parallel
concatenated recursive systematic (turbo) codes,” Global Telecommunications
Conference, 1994, GLOBECOM '94, 'Communications: The Global Bridge'. IEEE,
Volume: 3, pp. 1298-1303,28 Nov.-2 Dec. 1994

[rosa] La Rosa, A.; Passerone, C.; Gregoretti, F.; Lavagno, L.; “Implementation of a
UMTS turbo-decoder on a dynamically reconfigurable platform,” Design, Automation
and Test in Europe Conference and Exhibition, 2004, Proceedings, Volume: 2, pp. 1218-
1223,16-20 Feb. 2004

[schurgers] Schurgers, C.; Catthoor, F.; Engels, M.; “Memory optimization of MAP turbo
decoder algorithms,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Volume: 9, Issue: 2, pp. 305 - 312, April 2001

[sklar] Sklar, B.; “A primer on turbo code concepts,” Communications Magazine, IEEE,
Volume: 35 Issue: 12, pp. 94 -102, Dec. 1997

[stralen] N. Van Stralen S. Haladik, ’’Design of Turbo Decoder ASIC,” 2nd International
Symposium on Turbo Codes & Related Topices, Brest, France, 2000

[tajima] Tajima, M.; Shibata, K.; Kawasaki, Z.; “On the equivalence between scarce-
state-transition viterbi decoding and syndrome decoding of convolutional codes,” IEEE
International Symposium on Information Theory, 2003 Proceedings, pp. 304 -304, June
2 9 -July 4,2003

[tensilica] Tensilica Inc. http://www.tensilica.com.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tensilica.com

[tepe] K. E. Tepe; “Iterative Decoding Techniques for Correlated Raleigh Fading and
Diversity Channels,” Report TR 2001 -1, February 2001 J

[thul] Thul, M.J.; Gilbert, F.; Vogt, T.; Kreiselmaier, G.; Wehn, N.; “A scalable systemf
architecture for high-throughput turbo-decoders,” IEEE Workshop on Signal Processing
Systems, (SIPS ’02), pp. 152 - 158,16-18 Oct. 2002

[tong] Tong, Y.; Yeap, T.-H.; Chouinard, J.-Y.; “VHDL Implementation of a Turbo
Decoder With Log-MAP-Based Iterative Decoding,” IEEE Transactions on
Instrumentation and Measurement, Volume: 53 , Issue: 4 , pp. 1268 - 1278, Aug. 2004

[viglione] Viglione, F.; Masera, G.; Piccinini, G.; Ruo Roch, R.; “Zamboni, M.; A 50
Mbit/s iterative turbo-decoder,” Design, Automation and Test in Europe Conference and
Exhibition 2000, Proceedings, pp. 176 - 180,27-30 March 2000

[viterbil] A. J. Viterbi, “Error bounds for convolutional codes and an assymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, pp.
260-269, Apr. 1967.

[viterbi2] Viterbi, A.J.; “An intuitive justification and a simplified implementation of the
MAP decoder for convolutional codes,” IEEE Journal on Selected Areas in
Communications, Volume: 16, Issue: 2, pp. 260-264, Feb. 1998

[vogtl] Vogt, J.; Finger, A.; “Improving the max-log-MAP turbo decoder” Electronics
Letters, Volume: 36 Issue: 23, pp. 1937 -1939, 9 Nov. 2000

[vogt2] Vogt, J.; Koors, K.; Finger, A.; Fettweis, G.; “Comparison of different turbo
decoder realizations for IMT-2000,” Global Telecommunications Conference, 1999
GLOBECOM '99, Volume: 5, pp. 2704 -2708,1999

[wangl] Zhongfeng Wang; Suzuki, H.; Parhi, K.K.; “VLSI implementation issues of
TURBO decoder design for wireless applications,” IEEE Workshop on Signal Processing
Systems, 1999, SiPS 99, pp. 503 - 512, 20-22 Oct. 1999

[wang2] Zhongfeng Wang; Parhi, K.K.; “High performance, high throughput
turbo/SOVA decoder design,” IEEE Transactions on Communications, Volume:
51, Issue: 4, pp. 570 - 579, April 2003

[wang3] Zhongfeng Wang; Zhipei Chi; Parhi, K.K.; “Area-efficient high-speed decoding
schemes for turbo decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Volume: 10, Issue: 6, pp. 902 - 912, Dec. 2002

[wee] Wee-Peng Ang; Garg, H.K.; “A new iterative channel estimator for the log-MAP
& max-log-MAP turbo decoder in Rayleigh fading channel,” Global Telecommunications
Conference, 2001, GLOBECOM '01, IEEE, Vol. 6, pp. 3252-3256,25-29 Nov. 2001

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[wei] Lei Wei; “Near Shannon limit decoding for 1% packet error rate,”
Global Telecommunications Conference, 1998, GLOBECOM 98, The Bridge to Global
Integration IEEE, Vol. 5, pp. 2818 -2823, 8-12 Nov. 1998

[wiesler] Wiesler, A.; Muller, O.; Jondral, F.; “MAP-algorithm with fixed-point
representation for software radios,” Vehicular Technology Conference, 2000. IEEE VTS-
Fall VTC 2000. 52nd, Volume: 6, pp. 2962 -2968,24-28 Sept. 2000

[worm] Worm, A.; Hoeher, P.; Wehn, N.; “Turbo-decoding without SNR estimation,”
Communications Letters, IEEE, Volume: 4, Issue: 6, pp. 193 - 195, June 2000.

[wul] Wu, P.H.-Y.; Pisuk, S.M.; “Implementation of a low complexity, low power,
integer-based turbo decoder,” Global Telecommunications Conference, 2001,
GLOBECOM '01, IEEE, Vol. 2, pp. 946 -951,25-29 Nov. 2001

[wu2] Wu, P.H.-Y.; “On the complexity of turbo decoding algorithms,” Vehicular
Technology Conference, 2001, VTC 2001, IEEE VTS 53rd, Vol. 2, pp. 1439 -1443, 6-9
May 2001

[youyun] Xu Youyun; Li Zongwang; Ruan Ming; Luo Hanwen; Song Wentao; “VLSI
design and implementation of WCDMA channel decoder,” Canadian Conference on
Electrical and Computer Engineering, 2001, Volume: 1, pp. 241 - 245,13-16 May 2001

[zeng] Xiao-Jun Zeng; Zhi-Liang Hong; “Design and implementation of a turbo decoder
for 3G W-CDMA systems,” IEEE Transactions on Consumer Electronics, Volume:
48, Issue: 2, pp. 284 - 291, May 2002

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

List o f Abbreviations

3GPP Third Generation Partnership Project
AM Amplitude Modulation
AMPS Advanced Mobile Phone System
API Application Programming Interface
APP A Posteriori Probability
ASIC Application-specific Integrated Circuit
AWGN Additive White Gaussian Noise
BCJR Bahl, Cocke, Jelinek, and Raviv (algorithm)
BER Bit Error Rate
BSC Binary Symmetric Channel
CB Citizens Band
CCM Configurable Computing Machine
CDMA Code-Division Multiple-Access
CEPT Conference Europeenne des Postes et Telecommunications
CLB Configuration Logic Block
DMC Discrete Memoryless Channel
DS Direct-Sequence (spread-spectrum)
DSP Digital Signal Processing
ETACS European Total Access Cellular System
FIFO First-In, First-Out
FM Frequency Modulation
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GSM Global System for Mobile communications
HDL Hardware Descriptive Language
IMT 2000 International Mobile Telecommunications by the year 2000

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IOB Input-Output Blocks
IP Intellectual Property
ITU International Telecommunications Union
JHDL Java-based Hardware Descriptive Language
IFU Interconnect Functional Unit
LC Logic Cell
LUT Look-Up Table
LLR Log-Likelihood Ratio
LVS Layout Versus Schematic
MAP Maximum A Posteriori (algorithm)
NAMPS Narrowband AMPS
NMT Nordic Mobile Telephone
PCCC Parallel Concatenated Convolutional Code
PCS Personal Communication Systems
PE Processing Element
PSTN Public Switched Telephone Network
QOS Quality of Service
RMTS Radio Telephone Mobile System
RSC Recursive Systematic Convolutional (code)
RTR Rim-Time Reconfiguration
SCCC Serial Concatenated Convolutional Code
SDR Sign Difference Ratio
SISO Soft-Input, Soft-Output
SNR Signal-To-Noise ratio
SOVA Soft-Output Viterbi Algorithm
SRAM Synchronous Random Access Memory
TDMA Time-Division Multiple-Access
TTD Time-Division Multiple-Access
VA Viterbi Algorithm
VHDL VLSI Hardware Descriptive Language
VLSI Very Large Scale Integrated circuits
W-CDMA Wideband CDMA

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Verilog HDL Code for the MAP Decoder

'timescale lns/lps
'include "RAMl.v"
'include "RAM2.v"

module topMAPchp2(start,block,Reset,CLK,Yd,Yp,app,1);

input start,block,Reset;
input CLK;
input [4:0] Yd,Yp;
input [4:0] app;
output [7:0] 1;
wire start_top,block_top,Reset_top,CLK_top;
wire [4:0] Yd_top,Yp_top,app_top;
wire [7:0] l_top;

MAPdecoder2
MAPdecoder2(start_top,block_top,Reset_top,CLK_top,Yd_top,Yp_top,app_top
, 1 t op);

PDIDGZ xstart
PDIDGZ xblock
PDIDGZ xReset
PDIDGZ xCLK (
PDIDGZ xYdOO
PDIDGZ xYdOl
PDIDGZ xYd02
PDIDGZ xYd03

(.C(start_top), .PAD(start))
(.C(block_top), .PAD(block))
(.C(Reset_top), .PAD(Reset))
.C(CLK_top), .PAD(CLK));
(.C(Yd_top[0])
(.C (Yd_top[1])
(.C (Yd_top[2])
(.C(Yd_top[3])

.PAD(Yd[0])

.PAD(Yd[l])

.PAD(Yd[2])

.PAD(Yd[3])

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PDIDGZ xYd04
PDIDGZ xYpOO
PDIDGZ xYpOl
PDIDGZ xYp02
PDIDGZ xYp03
PDIDGZ xYp04
PDIDGZ xappOO
PDIDGZ xappOl
PDIDGZ xapp02
PDIDGZ xapp03
PDIDGZ xapp04

PDO08CDG xlOO
PDO08CDG xlOl
PDO08CDG xl02
PDO08CDG xl03
PDO08CDG xl04
PDO08CDG xl05
PDO08CDG xl06
PDO08CDG x!07

.C (Yd_top[4]),

.C (Yp_top[0]),
•C (Yp_top[1]),
•C (Yp_top[2]),
•C (Yp_top[3]),
•C (Yp_top[4]),
(.C(app_top[0]
(.C(app_top[1]
(.C(app_top[2]
(.C(app_top[3]
(.C(app_top[4]

(.PAD(1[0]), .
(.PAD(1[1]), .
(.PAD{1[2]), .
(.PAD(1[3]), .
(.PAD(1[4]), .
(.PAD(1[5]), .
(.PAD(1[6]), .
(.PAD(1[7]), .

.PAD(Yd[4]))

.PAD(Yp[0]))

.PAD(Y p [1]))

.PAD(Yp[2]))

.PAD(Yp[3]))

.PAD(Yp[4]))
)■, .PAD(app [0]
),, .PAD(app [1]
),, .PAD(app [2]
)■, .PAD(app [3]
)., .PAD(app [4]

I (1 top[0]));
I (1 top[l]));
I (1 top[2])) /•
I (1 top [3])) ;
I (1 top[4]));
I (1 top [5]));
I (1 top[6]));
I (1 top[7]));

endmodule

module MAPdecoder2(start,block,Reset,CLK, Yd,Yp, app, 1);

input start,block,Reset;
input CLK;
input [4:0] Yd,Yp;
input [4:0] app;
output [7:0] 1;

wire [31:0] Q,Q2;
wire [7:0] gl,g2,g3,g4;
wire [7:0] addl,add2,add3,add4;
wire [7:0] prl,prml;
wire OE,OE2, ME,ME2,WE,WErl,busy;
wire [9:0] ADR,ADR2, lastADR;
wire [31:0] D,D2;
wire [7:0] al,a2,a3,a4;
wire [3:0] n,nb,nl;
wire [7:0] yl,y2, y3,y4,y5,y6,y7,y8,bl,b2,b3,b4,maxl,max2,max_a;
reg [31:0] ggl,gg2,gg3,gg4,aal,aa2,aa3,aa4;
reg [7:0] 1;

/ / --

add_sub2 add_sub2(busy,start,Yd,Yp,addl,add2,add3, add4);
LUT2 LUT2(busy,start,app,prl,prml);
add22

add22(Reset,block,n,busy,CLK,addl,add2,add3,add4,prl,prml,gl,g2,g3,g4);

alpha2 alpha2(nb,busy,n,Reset,CLK,gl,g2,g3,g4,al,a2,a3,a4,max_a);
write22

write22 (n, busy, block, Reset, CLK, al, a2, a3, a4, aal, aa2, aa3, aa4, ggl, gg2, gg3,
gg4,bl,b2,b3,b4,ADR2,D2,WErl,ME2,OE2,nl,maxi,max2);//Write alpha

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hdssl_1024x32cm8 write_a2(Q2, ADR2, D2, WErl, 0E2, ME2, CLK);
//##### RAM2 #####//

write2
write2(start,block,Reset,CLK,max_a,ggl,gg2,gg3,gg4,gl,g2,g3,g4,bl,b2,b3
,b4,ADR, D, WE,ME,OE,n,nb,busy,lastADR);//Write Gamma

hdssl_1024x32cm8 write_g2(Q, ADR, D, WE, OE, ME, CLK); //#####
RAMI #####//

/ / --

always©(negedge CLK) //Reading from RAMI (Gammas) for Beta and
log-liklihood calculation

begin
if(busy==l)

begin
case(nb)
1: gg4=Q;
2: begin if(ADR==lastADR-l) gg3=0;else gg3=Q;

end //End of the block goes back to state 0
3: begin if(ADR==lastADR-2) gg2=0;else gg2=Q;

end //End of the block goes back to state 0
4: ggl=Q;

endcase
end

end//always
/ / --

always©(negedge CLK) //Reading from RAM2 (alphas) for log-
liklihood calculation

begin
if(busy==l)

begin
case(nl)
1: aa4=Q2
2: aa3=Q2
3: aa2=Q2
4: aal=Q2

endcase
end

end//always
//----------------------------------

always©(negedge CLK)
begin

if(nl==7 && busy==l)
begin

l<=maxl-max2;
//nl=0;

end
end//always

//--

// initial begin

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// $shm_open("decoder3.db"); //open a database
file
/ /

$shm_probe(CLK,start,Reset,busy,n,bl,b2,b3,b4, al, a2, a3,a4, aal,aa2
,aa3,aa4, ggl, gg2, gg3,gg4,1,block, nb,ADR,ADR2);
// end

endmodule
//%% MODULES

%%//

module add_sub2 (busy,start,Yd,Yp,addl,add2,add3,add4);

input busy,start;
input [4:0] Yd,Yp;
output [7:0] addl,add2,add3,add4;
reg [7:0] addl,add2,add3,add4;

always®(negedge start)
begin

if(busy==0)
begin
addl=-Yd-Yp;

add2=-Yd+Yp;
add3=Yd-Yp;
add4=Yp+Yd;

end
end

endmodule

//**
module LUT2(busy,start,app,prl,prml);

input busy,start;
input [4:0] app;
output [7:0] prl,prml;
reg [7:0] prl,prml;

always®(negedge start)
begin

if(busy==0)
begin

case(app)
5'h 18: begin prl=8'h F8; prml=0 ;end //F8 & 18-

>2's Complement of -8
>2' s

5'h 19: begin
Complement of -7

prl=8'h F9; prml=0 ; end //F9 & 19-

>2' s
5'h 1A: begin

Complement of -6
prl=8'h FA; prml=0 ;end //FA & 1A-

toCMA

5'h IB: begin
Complement of -5

prl=8'h FB; prml=0 ;end //FB & 1B-

>2' s
5'h 1C: begin

Complement of -4
prl=8'h FC; prml=0 ;end //FC & 1C-

5'h ID: begin prl=8'h FD; prml=0 ;end //FD & 1D-
>21s Complement of -3

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5'h IE: begin prl=8'h FE; prml=0 ;end
Complement of -2

5'h IF: begin prl=8'h FF; prml=0 ;end
Complement of -1

0: begin prl=0 prml=0 ;end
1: begin prl=0 prml=8'h FF;end
2: begin prl=0 prml=8'h FE;end
3: begin prl=0 prml=8'h FD;end
4: begin prl=0 prml=8'h FC;end
5: begin prl=0 prml=8'h FB;end
6: begin prl=0 prml=8'h FA;end
7: begin prl=0 prml=81h F9;end
8: begin prl=0 prml=8'h F8;end

default:begin prl=0; prml=0;end

//FE & 1E-

//FF & 1F-

endcase
end//if

end
endmodule
^ f ' k ' k ’k ' k - k ' i e ' k ' k - J e ' k ' k ' k ' k ' k J e J e ' k ' i r ' k ' j e ' k

* * * * * * *

module
add22(Reset,block,n,busy,CLK,addl,add2,add3,add4,prl,prml,gl,g2,g3,g4)

input Reset,block,busy,CLK;
input [3:0]n;
input [7:0] addl,add2,add3,add4,prl,prml;
output [7:0] gl,g2,g3,g4;
reg [7:0] gl,g2,g3,g4;
reg gstart;

always©(negedge CLK)//(prl or prml or addl or add2 or add3 or
add4)

begin
if(Reset) gstart=0;

else if(busy==0)
begin

gl=prml+addl;
if(gstart==0) g2=0; else g2=prml+add2; //if n=0 or

Start then g2=0(begining of the block is from state 0)
if(gstart==0) g3=0; else g3=prl+add3;
g4=prl+add4;
if(n==4) gstart=l;

end
if(block) gstart=0;

end
endmodule
/ / *

* *

module alpha2(nb,busy,n,Reset,CLK,gl,g2,g3,g4,al,a2,a3,a4,max_a);

input busy,Reset,CLK;
input [7:0]gl,g2,g3,g4;
input [3:0]n,nb;
output [7:0]al, a2,a3,a4,max_a;

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reg [7:0]all,al2,al3,al4,al,a2,a3,a4,max_a;
reg [7 : 0] xl, x2, x3, x4, x5, x6, x7, x8;
reg [7:0] tempi,temp2,tmpal,tmpa2,tmpa3,tmpa4;
reg [1:0] flag;

always@(negedge CLK)
begin

if(Reset)
begin //Initializing Alphas,a=0 =>ln(a)

a 1=0;
a2=8'h80;//-128;

a3=8'h80;//-128;
a4=8'h80;//-128;
a 11=0;

a12=8'h80;//-128;
al3=8'h80;//-128;
al4=8'h80;//-128;

end

else if (nb==7)
begin

al=0;
a2=8'h80;//-128;

a3=8'h80;//-128;
a4=8'h80;//-128;
a 11=0;

al2=8'h80;//-128;
al3=8'h80;//-128;
al4=8'h80;//-128;
flag=0;

end

else if(n==0 && busy==0) //Start
begin
xl=gl+all;
x2=g4+al2;
x3=g3+al3;
x4=g2+al4;
x5=g4+all;
x6=gl+al2;
x7=g2+al3;
x8=g3+al4;

if (gl[7]==1'bl && all[7]==1'bl && xl[7]==l'b0)
if(gl[7]==l'b0 && all[7]==1'b0 && xl[7]==l'bl) xl=127

if (g4[7]==l'bl && al2[7]==l'bl && x2[7]==l'b0)
if(g4[7]==l'b0 && al2[7]==l'b0 && x2[7]==l'bl) x2=127

if (g3[7]==l'bl && al3[7]==l'bl && x3[7]==l'b0)
if(g3[7]==l'b0 && al3[7]==l'b0 && x3[7]==l'bl) x3=127

if (g2[7]==l'bl && al4[7]==l'bl && x4[7]==l'b0)
if(g2[7]==l'b0 && al4[7]==l'b0 && x4[7]==l'bl) x4=127

if (g4[7]==l'bl && all[7]==l'bl && x5[7]==l'b0)
if(g4[7]==l'b0 && all[7]==l'b0 && x5[7]==l'bl) x5=127

if (gl[7]==1'bl && al2[7]==l'bl && x6[7]==l'b0)
if(gl[7]==l'b0 && al2[7]==l'b0 && x6[7]==l'bl) x6=127

99

=-infinity(-128)

xl=8'h80; else

x2=8'h80; else

x3=8'h80; else

x4=8'h80; else

x5=8'h80; else

x6=8'h80; else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (g2[7]==l'bl && al3[7]==l'bl && x7[7]==l'b0) x7=8'h80; else
if(g2[7]==1'bO && al3[7]==l'b0 && x7[7]==l'bl) x7=127;

if (g3[7]==1'bl && al4[7]==l'bl && x8[7]==l'b0) x8=8'h80; else
if(g3[7]==l'b0 && al4[7]==l'b0 && x8[7]==l'bl) x8=127;

if (xl[7]==1'bO && x2[7]==l'bl) all=xl;
//al=MAX(gl+al and g4+a2)

else if (xl[7]==11bl && x2[7]==l'b0) all=x2;
else if (xl[7]==x2[7] && xl>= x2) all=xl;

else if (xl[7]==x2[7] && xl<= x2) all=x2;

if (x3[7]==l'b0 && x4[7]==l'bl) al2=x3;
//a2=MAX(g3+a3 and g2+a4)

else if (x3[7]==1'bl && x4[7]==l'b0) al2=x4;
else if (x3[7]==x4[7] && x3>= x4) al2=x3;
else if (x3[7]==x4[7] && x3<= x4) al2=x4;

if (x5[7]==l'b0 && x6[7]==l'bl) al3=x5;
//a3=MAX(g4+al and gl+a2)

else if (x5[7]==1'bl && x6(7]==l'b0) al3=x6;
else if (x5[7]==x6[7] && x5>= x6) al3=x5;
else if (x5[7]==x6(7] && x5<= x6) al3=x6;

if (x7[7]==l'b0 && x8[7]==l'bl) al4=x7;
//a4=MAX(g2+a3 and g3+a4)

else if (x7[7]==l'bl && x8[7]==l'b0) al4=x8;
else if (x7[7]==x8[7] && x7>= x8) al4=x7;
else if (x7[7]==x8[7] && x7<= x8) al4=x8;

//-------------------------------Finding Maximum alpha
 / /

if (all[7]==l'b0 && al2[7]==l'bl) templ=all;
//al positive,a2 negative

else if (all[7]==1'bl && al2[7]==1'bO) templ=al2;
else if (all[7]==al2[7] && all>= al2) templ=all;

else if (all[7]==al2[7] && all<= al2) templ=al2;

if (al3[7]==1'bO && al4[7]==1'bl) temp2=al3;
//a3 positive,a4 negative

else if (al3[7]==l'bl && al4[7]==1’bO) temp2=al4;
else if (al3[7]==al4[7] && al3>= al4) temp2=al3;

else if (al3[7]==al4[7] && al3<= al4) temp2=al4;

if (tempi[7]==1'bO && temp2[7]==1'bl) max_a=templ;
else if (tempi[7]==1'bl && temp2[7]==1'bO) max_a=temp2;
else if (tempi[7]==temp2[7] && templ>= temp2) max_a=templ;

else if (tempi[7]==temp2[7] && templ<= temp2) max_a=temp2;

//------------- alpha normalization---------------- //
max_a=-max_a;

tmpal=all+max_a;
tmpa2=al2+max_a;
tmpa3=al3+max_a;
tmpa 4=a14 +max_a;

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (all[7]==1'bl && max_a[7]==1'bl && tmpal[7]==1'bO)
tmpal=8'h80;//-128;

else if(all[7]==1'bO && max_a[7]==11bO && tmpal[7]==11bl)
tmpal=127;

if (al2[7]==1'bl && max_a[7]==1'bl && tmpa2[7]==1'bO)
tmpa2=8'h80;//-128;

else if(al2[7]==l'b0 && max_a[7]==1'bO && tmpa2[7]==1'bl)
tmpa2=127;

if (al3[7]==1'bl && max_a(7]==1'bl && tmpa3[7]==1'bO)
tmpa3=8'h80;//-128;

else if(al3[7]==l'b0 && max_a[7]==1'bO && tmpa3[7]==1'bl)
tmpa3=127;

if (al4(7]==l'bl && max_a[7]==1'bl && tmpa4[7]==1'bO)
tmpa4=8'h80;//-128;

else if(al4[7]==l'b0 && max_a[7]==1'bO && tmpa4[7]==1’bl)
tmpa4=127;

al=tmpal;
a2=tmpa2;
a3=tmpa3;
a4=tmpa4;
end

end
endmodule
/ / • k ' k ' k i e ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k j t ' k ' k ' k ' k ' k ' k ' i t ' k ' k ' j e ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i r ' k ' i e ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k

' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' - k ' k ' k ' i e ' k ' i e ' k ' k - k ' k ' k ' k ' k ' k ' k - k - k - k ' k ' j e ' k ' t t ' k ' k - k - k i r ' k ' k

module
write22(n,busy,block, Reset,CLK,al,a2,a3,a4,aal,aa2,aa3,aa4,ggl,gg2,gg3,
gg4,bl,b2,b3,b4,ADR2,D2,WEr1,ME2,OE2,nl,maxi,max2);

input busy,block,Reset,CLK;
input [7:0] al,a2,a3,a4;
input [3:0]n;
input [31:0] aal,aa2,aa3,aa4,ggl,gg2,gg3,gg4;
input [7:0] bl,b2,b3,b4;
output[7:0] maxl,max2;
output [9:0] ADR2;
output [31:0] D2;
output OE2,WErl,ME2;
output [3:0]nl;
reg WErl,OE2,ME2;
reg [9:0] ADR2;
reg [31:0] D2;
reg [3:0]nn2;
reg [3:0]nl;
reg [7:0]cmpl,cmp2,cmp3,cmp4,maxi,max2;
reg [7:0]
Zl,z2,z3,z4,z5,z6,z7,z8,il,i2,i3,i4,i5,i6,i7,i8,jl,j2,j3,j4,j5,j6,j7,j8

alwaysG(negedge CLK)
begin

if(Reset)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

begin
nn2=4;
ADR2=10'hfff;//-l;
0E2 = 1'bO;
ME2 = l'bl;

end//Reset

■+++++++++++++++++ Reading Alpha and Log-liklihood calculation

else if (block)
begin
WErl=l'bO;
nl=0 ;
ADR2=ADR2-3;
end

else if((busy==l) && (ADR2>0) && (nl>=0) && (nl<4))
begin
ADR2=ADR2-1;
0E2 = l'bl;
nl=nl+l;
end

else if (nl==4 && busy==l) nl=nl+l;

else if (nl==5 && busy==l)
begin

//MAXI(a2+bl+g4 , a3+b2+g3 , al+b3+g4 , a4+b4+g3) - MAXO(al+bl+gl ,
a4+b2+g2 , a2+b3+gl , a3+b4+g2)

nl=6;

il=aa2+bl;
i2=aa3+b2;
i3=aal+b3;
i4=aa4+b4;
i5=aal+bl;
i6=aa4+b2;
i7=aa2+b3;
i8=aa3+b4;

if(aa2[7]==1'bl & & bl[7]==l'bl & & H* h-1 II II h-1 bO) il=8'h80 ; else
if(aa2[7]==l'b0 && b l [7]==1'bO Sc Si il[7]==1 bl) il=127;
if(aa3[7]==l'bl && b2[7]==l'bl Si Si i2[7]==1 bO) i2=8'h80; else
if(aa3[7]==l'b0 & & b2[7]==l'b0 Si Si i2[7]==1 bl) i2=127;
if(aal[7]==1'bl && b 3 [7]==1'bl && i3[7]==1 bO) i3=8'h80; else
if(aal[7]==1'bO && b3[7]==l'b0 && 13 [7]— 1 bl) i3=127;
if(aa4[7]==l'bl && b 4 [7]==1'bl ScSc IIIIr--H bO) i4=8'h80; else
if(aa4[7]==l'b0 & & b4[7]==l'b0 && 14 [7] — 1 bl) i4=127;
if(aal[7]==1'bl && bl [7]==1'bl Si Si 15[7]==1 bO) i5=8'h80; else
if(aal[7]==1'bO & & bl[7]==l'b0 SiS i 15[7]==1 bl) i5=127;
if(aa4[7]==l'bl && b2[7]==l'bl Sc Sc 16[7]==1 bO) i6=8'h80; else
if(aa4[7]==l'b0 && b2[7]==l'b0 Si Si 16[7]==1 bl) i6=127;
if(aa2[7]==l'bl && b3 [7]==1'bl SiS i i7[7]==1 bO) i7=8'h80; else
if(aa2[7]==l'b0 && b3[7]==l'b0 SiSc i7[7]==1 bl) i7=127;

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(aa3[7]==1'bl && b4[7]==l'bl && i8[7]==l'b0) i8=8'h80; else
if(aa3[7]==1'bO && b4[7]==l'b0 ScSc i8[7]==l'bl) i8=127; I

zl=il+gg4; //zl=aa2+bl+gg4;
z2=i2+gg3; //z2=aa3+b2+gg3;
z3=i3+gg4; //z3=aal+b3+gg4;
z4=i4+gg3; //z4=aa4+b4+gg3;
z5=i5+ggl; //z5=aal+bl+ggl;
z6=i6+gg2; //z6=aa4+b2+gg2;
z7=i7+ggl; //z7=aa2+b3+ggl;
z8=i8+gg2; 7/z8=aa3+b4+gg2;

if(il[7]==1 bl & & gg4[7]==i bl & & zl [7]==l'b0) zl=8'h80; else
if(il[7]==1 bO && gg4 [7]==i bO && zl[7]— 1 »bl) zl=127;
if(i2[7]==1 bl && gg3[7]==i bl && z2[7]==l'b0) z2=8'h80; else
if(i2[7]==1 bO && gg3[7]==i bO && z2[7]==1'bl) z2=127;
i f (i 3[7]==1 bl & & gg4[7]==i bl && z3[7]==l'b0) z3=8'h80; else
if(i3[7]==1 bO ScSc gg4[7]==i bO Sc Sc z3[7]==1'bl) z3=127;
if(i4[7]==1 bl & & gg3[7]==i bl ScSc z4[7]==1'bO) z4=8'h80; else
i f (14[7]==1 bO && gg3[7]==i bO Sc Sc z4[7]==1’bl) z4=127;
i f (15[7]==1 bl & & ggl[7]==i bl ScSc z5[7]==l'b0) z5=8'h80; else
i f (15[7]==1 bO && ggl[7]==i bO Sc Sc z5[7)==l'bl) z5=127;
i f (i 6[7]==1 bl && gg2[7]==i bl ScSc z6[7]==l'b0) z6=8'h80; else
if(i6[7]==l bO & & gg2[7]==i bO ScSc z6[7]==l'bl) z6=127;
if(i7[7]==1 bl && ggl[7]==i bl ScSc z7[7]==1'bO) z7=8'h80; else
if(17[7]==1 bO && ggl[7]==i bO ScSc z7[7]==1’bl) z7=127;
if(i8[7]==1 bl && gg2[7]==i bl Sc Sc z8[7]==1'bO) z8=8'h80; else
i f (18[7]==1 bO && gg2[7]==i bO ScSc z8[7]==1'bl) z8=127;

if (zl[7] ==l'bO ScSc 7 . 2 [7] ==1 'bl) cmpl=zl;
else if (zl[7] ==l'bl ScSc z2[7]==l'b0) cmpl=z2;
else if (zl[7] ==z2[7] && zl>= z2) cmpl=zl;
else if (zl[7] ==z2[7] ScSc zl<= z2) cmpl=z2;

if (z3[7] ==l'bO ScSc z4[7]==l'bl) cmp2=z3;
else if (z3[7] ==l'bl ScSc z4[7]==l'b0) cmp2=z4;
else if (z3[7] ==z4[7] ScSc z3>= z4) cmp2=z3;
else if (z3[7] ==z4[7] && z3<= z4) cmp2=z4;

if (z5[7] ==l'bO && z6[7]==l'bl) cmp3=z5;
else if (z5[7] ==l'bl ScSc z6[7]==l'b0) cmp3=z6;
else if (z5[7] ==z6[7] && z5>= z6) cmp3=z5;
else if (z5[7] ==z6[7] && z5<= z6) cmp3=z6;

if (z7[7] ==l'bO ScSc z8[7]==l'bl) cmp4=z7;
else if (z7[7] ==l'bl ScSc z8[7]==l'b0) cmp4=z8;
else if (z7[7] ==z8[7] ScSc z7>= z8) cmp4=z7;
else
end

if (z7[7] ==z8[7] ScSc z7<= z8) cmp4=z8;

else if(nl==6 && busy==l)
begin

nl=7;
if (cmpl[7]==1'bO && cmp2[7]==1'bl) maxl=cmpl;

//coml=positive com2=negative

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else if (cmpl[7]==1'bl && cmp2[7]==l'b0
//coml=negative com2=positive

else if (cmpl[7]==cmp2[7] &&
else if (cmpl[7]==cmp2[7] &&

maxl=cmp2;

cmpl>= cmp2)
cmpl<= cmp2)

if (cmp3[7]==l'b0 && cmp4[7]==1'bl)
//com3=positive com4=negative

else if (cmp3[7]==l'bl && cmp4[7]==1'bO)
//com3=negative com4=positive

else if (cmp3[7]==cmp4[7] && cmp3>= cmp4)
else if (cmp3[7]==cmp4[7] && cmp3<= cmp4)

end

maxl=
maxl=

max2=

max2=

max2=
max2=

=cmpl;
=cmp2;

=cmp3;

=cmp4;

=cmp3;
=cmp4;

else if(nl==7 && busy==l)
begin
// l<=maxl-max2; //in main body

nl=0;
end

writing alpha

else if(nn2>=4 && nn2<8 && busy==0)
begin

ADR2 = ADR2+1;
nn2=nn2+l;

case (nn2)
5: begin D2
6: begin D2
7: begin D2
8: begin D2
//default
endcase

al; WErl
a2; WErl
a3; WErl
a4; WErl

D2 = al;

l'bl; end
l'bl; end
l'bl; end
l'bl; end

end

else if(nn2<3 || nn2==4'bllll & busy==0) //n2=-l or 0,1,2
begin
ADR2 = ADR2+1;

nn2=nn2+l;
case (nn2)
0: begin D2 = al; WErl = l'bl; end
1: begin D2 = a 2; WErl = l'bl; end
2; begin D2 = a3; WErl = l'bl; end
3: begin D2 = a4; WErl = l'bl; end
default: D2 = al;
endcase

end//if n<3

else if (n==0 && busy==0) nn2=4'hf;//-l;
signal is received

//when start

else if (ADR2==0) begin ADR2=ADR2-1; nn2=4; end
/ / ?

end//always
endmodule

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / * ★ * ★ *

module
write2(start,block,Reset,CLK,max_a,ggl,gg2,gg3,gg4, gl, g2, g3,g4, bl,b2, b3
,b4,ADR,D,WE,ME,OE,n,nb,busy,lastADR);

input start,block,Reset,CLK;
input [7:0] max_a,gl,g2,g3,g4;
input[31:0] ggl,gg2,gg3,gg4;
output [7:0] bl,b2,b3,b4;
output [9:0] ADR,lastADR;
output [31:0] D;
output WE,OE,ME,busy;
output [3:0] n,nb;
reg WE,OE,ME;
reg [9:0] ADR,lastADR;
reg [31:0] D;
reg [3:0] n,m,nb;
reg busy;
reg [7:0] yl, y2, y3, y4, y5, y6, y7, y8, bl, b2, b3, b4;
reg [7:0] tmpbl,tmpb2,tmpb3,tmpb4;
reg check2,nstart;

always©(negedge CLK)
begin

if(Reset) begin
ADR=10'hfff;//-l;
OE = 1'bO;
ME = l'bl;
busy=0;
check2=0;
nstart=0;

end

Beta Calculation

/ /
/ /

Busy=l

else if (block)
begin

WE=l'b0;
b4=8'h80;//-128
b3=8'h80;//-128
b2=8'h80;//-128;
bl=0;
busy=l'bl;//At the end of the block busy=l and Beta

calculation is started
nb=0;
lastADR=ADR;
ADR=ADR+1;
end

else if((busy==l) && (ADR>0) && (nb>=0) && (nb<4))

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

begin
ADR=ADR-1; //Reading gammas ■
OE = l'bl;
nb=nb+l;

end

else if (nb<=6 && busy==l) nb=nb+l; //make gamma to
be read synchron with alpha and beta

else if((nb==7) && (busy==l))
begin

yl=ggl+bl;
y2=gg4+b2;
y3=gg3+b3;
y4=gg2+b4;
y5=gg4+bl;
y6=ggl+b2;
y7=gg2+b3;
y8=gg3+b4;

//--------- Check for overflow or
underflow----------// !|

if (ggl[7]==1'bl && bl[7]==l'bl && yl[7]==l'b0) yl=8'h80
else if(ggl[7]==1'bO && bl[7]==l'b0 && yl[7]==l'bl) yl=127;

if (gg4[7]==1'bl && b2[7]==l'bl && y2[7]==l'b0) y2=8'h80
else if(gg4[7]==l'b0 && b2[7]==l'b0 && y2[7]==l'bl) y2=127;

if (gg3[7]==1'bl && b3[7]==l'bl && y3[7]==l'b0) y3=8'h80
else if(gg3[7]==l'b0 && b3[7]==l'b0 && y3[7]==l'bl) y3=127;

if (gg2[7]==l'bl && b4[7]==l'bl && y4[7]==l'b0) y4=8'h80
else if(gg2[7]==l'b0 && b4[7]==l'b0 && y4[7]==l'bl) y4=127;

if (gg4[7]==1'bl && bl[7]==l'bl && y5[7]==l'b0) y5=8'h80
else if(gg4[7]==l'b0 && bl[7]==l'b0 && y5[7]==l'bl) y5=127;

if (ggl[7]==1'bl && b2[7]==l'bl && y6[7]==l'b0) y6=8'h80
else if(ggl[7]==1'bO && b2[7]==l'b0 && y6[7]==l'bl) y6=127j

if (gg2[7]==1'bl && b3[7]==l'bl && y7[7]==l'b0) y7=8'h80
else if(gg2[7]==l'b0 && b3[7]==l'b0 && y7[7]==l'bl) y7=127;

if (gg3[7]==l'bl && b4[7]==l'bl && y8[7]==l'b0) y8=8'h80
else if(gg3[7]==l'b0 && b4[7]==l'b0 && y8[7]==l'bl) y8=127;

if (yl[7]==1'bO && y2[7]==l'bl) bl=yl;
//bl=MAX(gl+bl and g4+b2)

else if (yl[7]==1'bl && y2(7]==l'b0) bl=y2;
else if (yl[7]— y2[7] && yl>= y2) bl=yl;

else if (yl[7]==y2[7] && yl<= y2) bl=y2;

if (y3[7]==l'b0 && y4[7]==l'bl) b2=y3; i
//b2=MAX(g3+b3 and g2+b4)

else if (y3[7]==l'bl && y4[7]==l'b0) b2=y4;
else if (y3[7]==y4[7] && y3>= y4) b2=y3;

else if (y3[7]==y4[7] && y3<= y4) b2=y4;

if (y5[7]==l'b0 && y6[7]==l'bl) b3=y5;
//b3=MAX(g4+bl and gl+b2)

else if (y5[7]==l'bl && y6[7]==l'b0) b3=y6;
else if (y5[7]==y6[7] && y5>= y6) b3=y5;

else if (y5[7]==y6[7] && y5<= y6) b3=y6;

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (y7[7]==l'b0 && y8[7]==l'bl) b4=y7;
//b4=MAX(g2+b3 and g3+b4)

else if (y7[7]==l'bl && y8[7]==l'b0) b4=y8;
else if (y7[7]==y8[7] && y7>= y8) b4=y7;

else if (y7[7]==y8[7] && y7<= y8) b4=y8;

//-------------------------- beta normalization
 / /

tmpbl=bl+max_a; // tmpbl=bl-max_a; max_a=-max_a
tmpb2=b2+max_a; // tmpb2=b2-max_a; max_a=-max_a
tmpb3=b3+max_a; // tmpb2=b2-max_a; max_a=-max_a
tmpb4=b4+max_a; // tmpb2=b2-max_a; max_a=-max_a

if (bl[7]==1'bl && max_a[7]==1'bl && tmpbl[7]==1’bO)
tmpbl=8'h80;// — 12 8;

else if(bl[7]==1'bO && max_a[7]==1'bO && tmpbl[7]==1'bl)
tmpbl=127;

if (b2[7]==l'bl && max_a[7]==1'bl && tmpb2[7]==1'bO)
tmpb2=8'h80;//-128;

else if(b2[7]==1'bO && max_a[7]==1'bO && tmpb2[7]==1'bl)
tmpb2=127;

if (b3[7]==l'bl && max_a[7]==1'bl && tmpb3[7]==1’bO)
tmpb3=8'h80;//-128;

else if(b3[7]==l'b0 && max_a[7]==1'bO && tmpb3[7]==1’bl)
tmpb3=127;

if (b4[7]==l'bl && max_a[7]==l'bl && tmpb4[7]==1'bO)
tmpb4=8'h80;//-128;

else if(b4[7]==1'bO && max_a[7]==1'bO && tmpb4[7]==1'bl)
tmpb4=127;

bl=tmpbl;
b2=tmpb2;
b3=tmpb3;
b4=tmpb4;

nb=0;
if(ADR==0) begin busy=0; ADR=ADR-1; end //At ADR=0 Beta

computation stops and busy=0 and gamma and alpha units start working
again

end

writing Gammas in RAMI

for Start

else if(m==0 && busy==0) //Start
begin //Start

if((n[3]==0) && (n>3) && (busy==0))

begin
end

//Waiting

else
begin
n=n+l;

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case (n)
0 :;
1: begin D = gl; WE = 1 'bl;ADR=ADR+1;
2: begin D = g2; WE = l'bl;ADR=ADR+1;

if(ADR==l) D=0; end //begining of the block is from state 0
3: begin D = g3; WE = 1 'bl;ADR=ADR+1;

if(ADR==2) D=0; end //begining of the block is from state 0
4: begin D = g4; WE = 1 'bl;ADR=ADR+l;
default: D = gl;
endcase
end//else

end//else

if(start && busy==0)
begin

m=0;
n=4'hf;//-l;

end
end//always
endmodule

end

end

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

MATLAB Code for the MAP Decoder

This is the main function of the Max-Log-MAP decoder with proposed quantization:

function L_all = logmapo(rec_s,g,L_a,ind_dec)

% g: code generator for the component RSC code, in binary matrix form.

% L a: a priori info, for the current decoder,

% scrambled version o f extrinsic Inftyo. o f the previous decoder.

% ind_dec: index o f decoder. Either 1 or 2.

%

%

% Output: L all: log-likelihood ratio o f the symbols. Complete information.

% Total number o f bits: Inftyo. + tail

L_total = length(rec_s)/2;

[n,K] = size(g);

m = K - 1;

nstates = 2Am; % number o f states in the trellis

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Set up the trellis

[nextout, next_state, lastout, laststate] = trellis(g);

Infty = 128;

% Initialization of Alpha

Alpha(l,l) = 0;

Alpha(1,2 instates) = -Infty*ones(l,nstates-l);

% Initialization of Beta

if ind_dec==l

Beta(L_total,l) = 0;

Beta(L_total,2:nstates) = -Infty *ones(1 ,nstates-1);

elseif ind_dec==2

Beta(L_total, 1 instates) = zeros(l,nstates);

else

fprintf('ind_dec is limited to 1 and 2!\n');

end

% Trace forward, compute Alpha

for k = 2:L_total+l

for state2 = 1 instates

gamma = -Infty*ones(l,nstates);

gamma(last_state(state2,l))=int8((-rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,2))....

-log(1 +exp(L_a(k-1))));

gamma(last_state(state2,2))=int8((rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,4))..„

+L_a(k-1)-log(1 +exp(L_a(k-1))));

if(max(gamma+Alpha(k-1, :))<-Infty)%sum(exp(gamma+Alpha(k-1 ,:)))<-Infty)

Alpha(k,state2)=-Infty;

elseif(max(gamma-i-Alpha(k-1 ,:))>Infty)

Alpha(k,state2)=Infty;

else

Alpha(k,state2) =int8(max(gamma+Alpha(k-l,:)));%log(sum(exp(gamma+Alpha(k-l,i)))) ;

end

end

%end

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tempmax(k) = max(Alpha(k,:)) ;

Alpha(k,:) = Alpha(k,:)- tempmax(k);

if(max(gamma+Alpha(k-1, :))<-Infty)%sum(exp(gamma+Alpha(k-1, :)))<-Infty)

Alpha(k,state2)=-Infty;

elseif(max(gamma+Alpha(k-1 ,:))>Infty)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Alpha(k,state2)=Infly;

end

end

% Trace backward, compute Beta

fork = L_total-l:-l:l

for state 1 = lmstates

gamma = -Infty*ones(l,nstates);

gamma(next_state(state 1,1)) =int8((-rec_s(2*k+1)+rec_s(2 *k+2)*next_out(state 1,2))....

-log(1 +exp(L_a(k+1))));

gamma(next_state(statel,2)) =int8((rec_s(2*k+l)+rec_s(2*k+2)*next_out(statel,4))....

+L_a(k+l)-log(l+exp(L_a(k+l))));

if(max(gamma+Beta(k+1 ,:))<-Infty)

Beta(k,state 1)=-Infty;

elseif (max(gamma+Beta(k+l,:))>Infty)

Beta(k,state 1)=Infty;

else

Beta(k,statel) =int8(max(gamma+Beta(k+l,:))); %log(sum(exp(gamma+Beta(k+l,:))));

end

end

%end

Beta(k,:) = Beta(k,:)-tempmax(k+l);

if(max(gamma+Beta(k+1, :))<-Infty)

Beta(k,state 1)=-Infty;

elseif (max(gamma+Beta(k+l ,:))>Infty)

Beta(k, state 1)=Infty;

end

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

% Compute the soft output, log-likelihood ratio of symbols in the frame

fork= l:L_total

for state2 = 1 instates

gammaO = (-rec_s(2*k-l)+rec_s(2*k)*last_out(state2,2))....

-log(1 +exp(L_a(k)));

gammal = (rec_s(2*k-l)+rec_s(2*k)*last_out(state2,4))...

+L_a(k)-log(1 +exp(L_a(k)));

temp0(state2) = (gammaO + Alpha(k,last_state(state2,l)) + Beta(k,state2));

templ(state2) = (gammal + Alpha(k,last_state(state2,2)) + Beta(k,state2));

end

L_all(k) = max(templ)-max(tempO);%log(sum(templ)) - log(sum(tempO));

end

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Simulation Reports

Synopsys Reports:

Information: Updating design information... (UID-85)
' k ' k ' k ' k - k ' k - k - k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k i r ' k

Report : area
Design : topMAPchp2
Version: 2003.06
Date : Fri Aug 20 13:52:39 2004
' k ' k ' k ’k - k ' k

Library(s) Used:

hdssl_1024x32cm8_lib (File:
/CMC/kits/cmospl8/VGdir/SRAM/hdssl_1024x32cm8/syn/hdssl_1024x32cm8_tc.d
b)

vst_nl8_sc_tsm_c4_typ (File:
/CMC/kits/cmospl8/synopsys/2002/syn/vst_nl8_sc_tsm_c4_typ.db)

tpz973gtc (File: /CMC/kits/cmospl8/synopsys/2002/syn/tpz973gtc.db)

Number of ports:
Number of nets:
Number of cells:
Number of references:

27
54
28
3

Combinational area:
Noncombinational area:
Net Interconnect area:

365109.375000
578619.937500

undefined (Wire load has zero net area)

Total cell area: 943754.312500

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Total area: undefined

Information: This design contains black box (unknown) components. (RPT-
8)
1
design_analyzer> report_constraints
' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' l t ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' i e ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k

Report : constraint
Design : topMAPchp2
Version: 2003.06
Date : Fri Aug 20 13:52:41 2004
• k ' k ' k ' k ' k ' k - k ' k i t - k ' k ' k - k i e - k ' k ' k ' k ' t e ' k ' k - k ' k ' k ' k - k ' k - k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k

Weighted
Group (max delay/setup) Cost Weight Cost

CLK 0.00 1.00 0.00
default 0.00 1.00 0.00

max_delay/setup 0.00

Total Neg Critical
Group (critical_range) Slack Endpoints Cost

CLK 0.00 0 0.00
default 0.00 0 0.00

critical_range 0.00

Weighted
Group (min delay/hold) Cost Weight Cost

CLK (no fix hold) 0.00 1.00 0.00
default 0.00 1.00 0.00

min_delay/hold 0.00

Constraint Cost

multiport net 0.00 (MET)
max transition 0.00 (MET)
max fanout 0.00 (MET)
max capacitance 0.00 (MET)
max_delay/setup 0.00 (MET)
critical_range 0.00 (MET)

1
design_analyzer> report_power
Performing power analysis through design, (low effort)
' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' i r ' k ' k ' k i t ' k ' k ' k i r i r ' k ' k ' k

Report : power
-analysis_effort low

Design : topMAPchp2

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version: 2003.06
Date : Fri Aug 20 13:57:12 2004
' k ' k ' k - k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k T k ' k

Library(s) Used:

hdssl_1024x32cra8_lib (File:
/CMC/kits/cmospl8/VGdir/SRAM/hdssl_1024x32cm8/syn/hdssl_1024x32cm8_tc.d
b)

vst_nl8_sc_tsm_c4_typ (File:
/CMC/kits/cmospl8/synopsys/2002/syn/vst_nl8_sc_tsm_c4_typ.db)

tpz973gtc (File: /CMC/kits/cmospl8/synopsys/2002/syn/tpz973gtc.db)

Operating Conditions: NCCOM Library: tpz973gtc
Wire Load Model Mode: segmented

Design Wire Load Model Library

topMAPchp2 TSMC128K_Conservative
tpz973gtc

MAPdecoder2 TSMC64K_Conservative
tpz973gtc

Global Operating Voltage = 1.8
Power-specific unit information :

Voltage Units = IV
Capacitance Units = l.OOOOOOpf
Time Units = Ins
Dynamic Power Units = lmW (derived from V,C,T units)
Leakage Power Units = lpW

Cell Internal Power = 38.0972 mW (79%)
Net Switching Power = 10.3057 mW (21%)

Total Dynamic Power = 48.4029 mW (100%)

Cell Leakage Power = 10.6374 uW

1
design_analyzer> report_timing -path full -delay max -max_paths 1
nworst 1
' k ' k ' k ' k ' k ' i e ^ c ' k ' k ' k ' k ' i e ' i t i c ' k ' k ' k ' k ' i r ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' i c ' k ' k ' k ' k ' k ' k ' k

Report : timing
-path full
-delay max
-max_paths 1

Design : topMAPchp2
Version: 2003.06
Date : Fri Aug 20 13:57:19 2004
' k ’k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' J t ' k ' k ’k ' k - k - k ' k ' k ' - k ' k ' i e ' k ' f c ' k ' k ' k ' k ' k ' k

Operating Conditions: NCCOM Library: tpz973gtc

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wire Load Model Mode: segmented

Startpoint: MAPdecoder2/alpha2/al4_reg_3_
(falling edge-triggered flip-flop clocked by CLK)

Endpoint: MAPdecoder2/alpha2/a4_reg_7_
(falling edge-triggered flip-flop clocked by CLK)

Path Group: CLK
Path Type: max

Des/Clust/Port Wire Load Model Library

topMAPchp2 TSMC128K Conservative
MAPdecoder2 TSMC64K Conservative

Point
Path

tpz973gtc
tpz973gtc

Incr

clock CLK (fall edge) 4.00
4.00

clock network delay (ideal) 0.00
4.00

MAPdecoder2/alpha2/al4_reg_3_/CKB (DFERSNB2) 0.00
4.00 f

MAPdecoder2/alpha2/al4 reg_3 /Q (DFERSNB2) 0.41
4.41 r

MAPdecoder2/U0 1 368/Z (NAN2D1) 0.08
4.49 f

MAPdecoder2/Ul 4 0 441/Z (OAI21D1) 0.26
4.75 r

MAPdecoder2/Ul 4 1 641/Z (AOI21D1) 0.07
4.82 f

MAPdecoder2/U848/Z (OA21D1) 0.13
4.95 f

MAPdecoder2/U0 5 741/Z (EXNOR2D2) 0.28
5.23 r

MAPdecoder2/U272/Z (INVD2) 0.04
5.28 f

MAPdecoder2/U2041/Z (NAN3D4) 0.16
5.43 r

MAPdecoder2/U2095/Z (NAN2D2) 0.04
5.47 f

MAPdecoder2/U34/Z (NAN2D2) 0.10
5.57 r

MAPdecoder2/U0 3 536/Z (INVD1) 0.06
5.63 f

MAPdecoder2/U0 2 536/Z (NOR2D1) 0.16
5.79 r

MAPdecoder2/Ul 1 0 58/Z (OAI21D1) 0.06
5.85 f

MAPdecoder2/Ul 1 1 78/Z (AOI21D1) 0.16
6.01 r

MAPdecoder2/Ul 1 2 78/Z (OAI21D1) 0.06
6.07 f

MAPdecoder2/U0 128/Z (A021D2) 0.17
6.24 f

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MAPdecoder2/U300/Z (NAN2D2)
6.35 r

MAPdecoder2/U2196/Z (NAN2D4)
6.39 f
MAPdecoder2/U1962/Z (NAN2D4)

6.51 r
MAPdecoder2/U218 7/Z (INVD4)

6.54 f
MAPdecoder2/U1964/Z (NAN2D4)

6.63 r
MAPdecoder2/U2168/Z (INVD7)

6.68 f
MAPdecoder2/U2067/Z (NAN2M1D2)

6.77 r
MAPdecoder2/U1886/Z (NAN2D4)

6.84 f
MAPdecoder2/U0 3 340/Z (INVD1)

6.95 r
MAPdecoder2/U0 2 340/Z (NOR2D2)

6.99 f
MAPdecoder2/U1 2 0 340/Z (NOR2D1)

7.14 r
MAPdecoder2/U1 1 1 312/Z (AOI21D1)

7.22 f
MAPdecoder2/U1 1 2 712/Z (OAI21D1)

7.37 r
MAPdecoder2/U0 1212/Z (A021D2)

7.49 r
MAPdecoder2/U1973/Z (INVD4)

7.53 f
MAPdecoder2/U2191/Z (NAN2D4)

7.59 r
MAPdecoder2/U2139/Z (NAN2M1D2)

7.64 f
MAPdecoder2/U1974/Z (NAN2D4)

7.75 r
MAPdecoder2/U1722/Z (INVD7)

7.79 f
MAPdecoder2/U2028/Z (NAN2D4)

7.92 r
MAPdecoder2/U1686/Z (INVD7)

7.95 f
MAPdecoder2/U1921/Z (NOR2D4)

8.02 r
MAPdecoder2/U2029/Z (INVD4)

8.08 f
MAPdecoder2/U2050/Z (NAN2D4)

8.16 r
MAPdecoder2/Ul05/Z (NAN3D2)

8.26 f
MAPdecoder2/U0 3 041/Z (INVD1)

8.38 r
MAPdecoder2/U0 1 041/Z (NAN2D1)

8.42 f
MAPdecoder2/Ul 1 0 :113/Z (OAI21D1)

8.58 r

0 . 1 1

0.04

0 . 1 2

0.03

0.09

0.05

0.09

0.07

0 . 1 2

0.04

0.14

0.08

0.15

0 . 1 2

0.04

0.06

0.05

0 . 1 1

0.04

0.13

0.04

0.07

0.06

0.08

0 . 1 0

0 . 1 2

0.05

0.15

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MAPdecoder2/Ul 1 1 313/Z (AOI21D1) 0.
8.65 f

MAPdecoder2/Ul 1 2 713/Z (OAI21D1) 0.
8.81 r

MAPdecoder2/U0 1213/Z (A021D2) 0.
8.93 r

MAPdecoder2/U2054/Z (NAN3D4) 0.
8.99 f

MAPdecoder2/U1781/Z (NAN3D2) 0.
9.11 r

MAPdecoder2/U1780/Z (BUFDA) 0.
9.20 r

MAPdecoder2/U1113/Z (OR2D2) 0.
9.29 r

MAPdecoder2/U18 96/Z (NAN3M1D2) 0.
9.35 f

MAPdecoder2/Ul_5_0_228/Z (NOR2D2) 0.
9.44 r

MAPdecoder2/Ul 4 1 228/Z (AOI21D2) 0.
9.61 f

MAPdecoder2/Ul 2 2 228/Z (INVD0) 0.
9.72 r

MAPdecoder2/Ul 2 3 228/Z (INVD2) 0.
9.75 f

MAPdecoder2/U0 5 328/Z (EXOR2D4) 0.
10.09 f

MAPdecoder2/U0 1 357/Z (NAN2D1) 0.
10.30 r

MAPdecoder2/U1745/Z (OAI21D1) 0.
10.37 f

MAPdecoder2/Ul 4 1 632/Z (AOI21D1) 0.
10.53 r

MAPdecoder2/U14 94/Z (OAI21D1) 0.
10.60 f

MAPdecoder2/U4 98/Z (EXNOR2D2) 0.
10.89 r

MAPdecoder2/U1260/Z (OR2DO) 0.
11.09 r

MAPdecoder2/U2181/Z (NAN2D4) 0.
11.12 f

MAPdecoder2/U727/Z (NAN2D1) 0.
11.19 r

MAPdecoder2/U726/Z (NAN2D1) 0.
11.24 f

MAPdecoder2/alpha2/a4 reg 7 /D (DFERSNB1) 0.
11.24 f

data arrival time
11.24

clock CLK (fall edge) 12.
12.00

clock network delay (ideal) 0.
12.00

clock uncertainty -0.
11.50

MAPdecoder2/alpha2/a4 reg 7 /CKB (DFERSNB1) 0.
11.50 f

118

07

16

12

06

12

09

08

07

08

17

11

03

34

21

07

16

06

30

20

03

07

05

00

00

00

50

00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

library setup time -0.26
11.24

data required time
11.24

data required time
11.24

data arrival time
11.24

slack (MET) 0.00

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

AWARDS

Leila Sabeti

Tehran, Iran

1977

Narges High School, Tehran
1990-1995

Shahid Beheshti (Melli) University, Tehran, Iran
1995-2000 B.Sc.

University of Windsor, Windsor, Ontario
2003-2004 M.Sc.

2004 University of Windsor Visa Differential Fee
Bursary

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	New VLSI design of a MAP/BCJR decoder.
	Recommended Citation

	tmp.1618231395.pdf.GXwWO

