24 research outputs found

    Multiplierless, Folded 9/7 - 5/3 Wavelet VLSI Architecture

    Get PDF

    Scalable low-complexity B-spline discretewavelet transform architecture

    Get PDF
    A scalable discrete wavelet transform architecture based on the B-spline factorisation is presented. In particular, it is shown that several wavelet filters of practical interest have a common structure in the distributed part of their B-spline factorisation. This common structure is effectively exploited to achieve scalability and to save multipliers compared with a direct polyphase B-spline implementation. Since the proposed solution is more robust to coefficient quantisation than direct polyphase B-spline, it features further complexity reduction. Synthesis results are reported for a 130-nm CMOS technology to enable accurate comparison with other implementations. Moreover, the performance of the new wavelet transform architecture, integrated in a complete JPEG2000 model, has been collected for several image

    Hardware implementation of daubechies wavelet transforms using folded AIQ mapping

    Get PDF
    The Discrete Wavelet Transform (DWT) is a popular tool in the field of image and video compression applications. Because of its multi-resolution representation capability, the DWT has been used effectively in applications such as transient signal analysis, computer vision, texture analysis, cell detection, and image compression. Daubechies wavelets are one of the popular transforms in the wavelet family. Daubechies filters provide excellent spatial and spectral locality-properties which make them useful in image compression. In this thesis, we present an efficient implementation of a shared hardware core to compute two 8-point Daubechies wavelet transforms. The architecture is based on a new two-level folded mapping technique, an improved version of the Algebraic Integer Quantization (AIQ). The scheme is developed on the factorization and decomposition of the transform coefficients that exploits the symmetrical and wrapping structure of the matrices. The proposed architecture is parallel, pipelined, and multiplexed. Compared to existing designs, the proposed scheme reduces significantly the hardware cost, critical path delay and power consumption with a higher throughput rate. Later, we have briefly presented a new mapping scheme to error-freely compute the Daubechies-8 tap wavelet transform, which is the next transform of Daubechies-6 in the Daubechies wavelet series. The multidimensional technique maps the irrational transformation basis coefficients with integers and results in considerable reduction in hardware and power consumption, and significant improvement in image reconstruction quality

    Efficient architectures for multidimensional discrete transforms in image and video processing applications

    Get PDF
    PhD ThesisThis thesis introduces new image compression algorithms, their related architectures and data transforms architectures. The proposed architectures consider the current hardware architectures concerns, such as power consumption, hardware usage, memory requirement, computation time and output accuracy. These concerns and problems are crucial in multidimensional image and video processing applications. This research is divided into three image and video processing related topics: low complexity non-transform-based image compression algorithms and their architectures, architectures for multidimensional Discrete Cosine Transform (DCT); and architectures for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures are parameterised in terms of wordlength, pipelining and input data size. Taking such parameterisation into account, efficient non-transform based and low complexity image compression algorithms for better rate distortion performance are proposed. The proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm, and they achieve a controllable output bit rate and accuracy by considering the intensity variation of each image block. Their high speed, low hardware usage and low power consumption architectures are also introduced and implemented on Xilinx devices. Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been proposed. These architectures attain fast and accurate 3-D DCT computation and provide high processing speed and power consumption reduction. In addition, this research also introduces two low hardware usage 3-D DCT VR architectures. Such architectures perform the computation of butterfly and post addition stages without using block memory for data transposition, which in turn reduces the hardware usage and improves the performance of the proposed architectures. Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced. The presented architectures represent an efficient multiplierless and low memory requirement CDF 9/7 DWT computation scheme using the separable approach. Furthermore, the proposed architectures have been implemented and tested using Xilinx FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can be achieved in the proposed AQC-based architectures. Further, a speed of up to 330 MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT VR architectures. In addition, in the proposed 3-D DWT architecture, the computation time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms. Also, a power consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite can be attained

    Evolutionary design of digital VLSI hardware

    Get PDF

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Methods of covert communication of speech signals based on a bio-inspired principle

    Get PDF
    This work presents two speech hiding methods based on a bio-inspired concept known as the ability of adaptation of speech signals. A cryptographic model uses the adaptation to transform a secret message to a non-sensitive target speech signal, and then, the scrambled speech signal is an intelligible signal. The residual intelligibility is extremely low and it is appropriate to transmit secure speech signals. On the other hand, in a steganographic model, the adapted speech signal is hidden into a host signal by using indirect substitution or direct substitution. In the first case, the scheme is known as Efficient Wavelet Masking (EWM), and in the second case, it is known as improved-EWM (iEWM). While EWM demonstrated to be highly statistical transparent, the second one, iEWM, demonstrated to be highly robust against signal manipulations. Finally, with the purpose to transmit secure speech signals in real-time operation, a hardware-based scheme is proposedEsta tesis presenta dos métodos de comunicación encubierta de señales de voz utilizando un concepto bio-inspirado, conocido como la “habilidad de adaptación de señales de voz”. El modelo de criptografía utiliza la adaptación para transformar un mensaje secreto a una señal de voz no confidencial, obteniendo una señal de voz encriptada legible. Este método es apropiado para transmitir señales de voz seguras porque en la señal encriptada no quedan rastros del mensaje secreto original. En el caso de esteganografía, la señal de voz adaptada se oculta en una señal de voz huésped, utilizando sustitución directa o indirecta. En el primer caso el esquema se denomina EWM y en el segundo caso iEWM. EWM demostró ser altamente transparente, mientras que iEWM demostró ser altamente robusto contra manipulaciones de señal. Finalmente, con el propósito de transmitir señales de voz seguras en tiempo real, se propone un esquema para dispositivos hardware
    corecore