16 research outputs found

    Dual-Band Non-Stationary Channel Modeling for the Air-Ground Channel

    Get PDF
    Multiple air-to-ground (AG) radio propagation channels are experimentally characterized for two frequency bands, C-band and L-band. These characterizations are aimed to support the specification of the control and non-payload communication (CNPC) links being designed for civil unmanned aircraft systems (UAS). The use of UAS is expected to grow dramatically in the coming decades. In the United States, UAS will be monitored and guided in their operation within the national airspace system (NAS) via the CNPC link. The specifications of the CNPC link are being designed by government, industries, academia and standards bodies such as the Radio Technical Commission for Aeronautics (RTCA). Two bands have been allocated for the CNPC applications: from 5030 to 5091 MHz in C-band and a portion of the aeronautical L-band from 960 to 1215 MHz. The project under which this work was conducted is entitled “Unmanned Aircraft Systems Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations”, and this is a sub-project of a NASA project entitled “Unmanned Aircraft Systems Integration in the National Airspace System.” Measurements and modeling for radio propagation channels play an essential role in wireless communication system design and performance evaluation; such models estimate attenuation, delay dispersion, and antenna diversity in wireless channels. The AG channel differs significantly from classic cellular, ground-to-satellite, and other terrestrial wireless channels, particularly in terms of antenna heights and velocity. The previous studies about the AG channels are reviewed and the significant gaps are indicated. NASA Glenn Research Center has conducted an AG channel measurement campaign for multiple ground station local environments, including over sea, over freshwater, desert, suburban, near urban, hilly and mountainous settings. In this campaign, over 316 million power delay profiles (PDPs) or channel impulse responses (CIRs), over 82 flight tracks, have been collected. The measurement equipment was a dual-band single-input multiple-output (SIMO) wideband channel sounding system with bandwidth of 50 MHz in C-band and 5 MHz in L-band. Given the dynamic nature of the AG environments, the channels are statistically non-stationary, meaning that the channel’s statistical parameters change over time/space. We have estimated, via two distinct methods, that the stationarity distance is approximately 15 m—this is the distance over which the channel characteristics can be assumed to be wide sense stationary. The AG channel attenuation is considered as a combination of large scale path loss, small scale fading, and airframe shadowing. The large scale path loss is modeled by both the log-distance model and two-ray models. The theoretical flat earth and curved earth two-ray models are presented, along with their limitations, boundaries and some enhancements. Numerous propagation effects in the AG channels are discussed, and this includes earth spherical divergence, atmospheric refraction, atmospheric gas and hydrometeor attenuations, and ducting. The small scale fading is described by the Ricean distribution, which for unit-energy normalizations are completely characterized by Ricean K-factors; these K-factors are approximately 28.7 dB in C-band and 13.1 dB in L-band. The line-of-sight (LOS) signal can be obstructed by the airplane itself in some specific maneuvers, and this is termed airframe shadowing. For the specific flights and NASA aircraft used in our measurements, the shadowing duration was found to be on average 30 seconds, and the shadowing loss can be as large as 40 dB. The statistics, models and simulation algorithm for the airframe shadowing are provided. The wideband characteristics of the AG channel are quantified using root-mean-square delay spread (RMS-DS), and illustrated by sequences of PDPs. Tapped delay line (TDL) models are also provided. Doppler effects for over water channels are also addressed. Given the sparsity of the diffuse multipath components (MPCs) in the AG channels and generally short lifetime of these MPCs, the CIRs are modeled by the two-ray model plus intermittent 3rd, 4th or 5th “rays.” Models for intermittent ray probability of occurrence, duration, relative power, phase, and excess delay are provided. The channels at C-band and L-band were found to be essentially uncorrelated; this conclusion holds for the specific antenna locations used in our experiments (the aircraft underside), but is not expected to change for arbitrary antenna locations. For the aircraft antenna locations employed, intra-band signals are highly correlated, and this is as expected for channels with a dominant LOS component; analytical correlation computations show interesting two-ray effects that also appear in measurements. Multiple aircraft antennas and carefully selected locations are recommended for mitigating airframe shadowing for the CNPC link. Future work for AG channel modeling includes characterization of L-band delay dispersion and L-band TDL models, estimation of building and/or tree shadowing for small UAS that fly at very low altitudes, evaluation of multiple ground site(s) antenna diversity, and AG channel modeling via geometric techniques, e.g., ray-tracing

    A Survey of Dense Multipath and Its Impact on Wireless Systems

    Get PDF

    Comunicações veiculares híbridas

    Get PDF
    Vehicle Communications is a promising research field, with a great potential for the development of new applications capable of improving road safety, traffic efficiency, as well as passenger comfort and infotainment. Vehicle communication technologies can be short-range, such as ETSI ITS-G5 or the 5G PC5 sidelink channel, or long-range, using the cellular network (LTE or 5G). However, none of the technologies alone can support the expected variety of applications for a large number of vehicles, nor all the temporal and spatial requirements of connected and autonomous vehicles. Thus, it is proposed the collaborative or hybrid use of short-range communications, with lower latency, and of long-range technologies, potentially with higher latency, but integrating aggregated data of wider geographic scope. In this context, this work presents a hybrid vehicle communications model, capable of providing connectivity through two Radio Access Technologies (RAT), namely, ETSI ITS-G5 and LTE, to increase the probability of message delivery and, consequently, achieving a more robust, efficient and secure vehicle communication system. The implementation of short-range communication channels is done using Raw Packet Sockets, while the cellular connection is established using the Advanced Messaging Queuing Protocol (AMQP) protocol. The main contribution of this dissertation focuses on the design, implementation and evaluation of a Hybrid Routing Sublayer, capable of isolating messages that are formed/decoded from transmission/reception processes. This layer is, therefore, capable of managing traffic coming/destined to the application layer of intelligent transport systems (ITS), adapting and passing ITS messages between the highest layers of the protocol stack and the available radio access technologies. The Hybrid Routing Sublayer also reduces the financial costs due to the use of cellular communications and increases the efficiency of the use of the available electromagnetic spectrum, by introducing a cellular link controller using a Beacon Detector, which takes informed decisions related to the need to connect to a cellular network, according to different scenarios. The experimental results prove that hybrid vehicular communications meet the requirements of cooperative intelligent transport systems, by taking advantage of the benefits of both communication technologies. When evaluated independently, the ITS-G5 technology has obvious advantages in terms of latency over the LTE technology, while the LTE technology performs better than ITS-G5, in terms of throughput and reliability.As Comunicações Veiculares são um campo de pesquisa promissor, com um grande potencial de desenvolvimento de novas aplicações capazes de melhorar a segurança nas estradas, a eficiência do tráfego, bem com o conforto e entretenimento dos passageiros. As tecnologias de comunicação veícular podem ser de curto alcance, como por exemplo ETSI ITS-G5 ou o canal PC5 do 5G, ou de longo alcance, recorrendo à rede celular (LTE ou 5G). No entanto, nenhuma das tecnologias por si só, consegue suportar a variedade expectável de aplicações para um número de veículos elevado nem tampouco todos os requisitos temporais e espaciais dos veículos conectados e autónomos. Assim, é proposto o uso colaborativo ou híbrido de comunicações de curto alcance, com latências menores, e de tecnologias de longo alcance, potencialmente com maiores latências, mas integrando dados agregados de maior abrangência geográfica. Neste contexto, este trabalho apresenta um modelo de comunicações veiculares híbrido, capaz de fornecer conectividade por meio de duas Tecnologias de Acesso por Rádio (RAT), a saber, ETSI ITS-G5 e LTE, para aumentar a probabilidade de entrega de mensagens e, consequentemente, alcançar um sistema de comunicação veicular mais robusto, eficiente e seguro. A implementação de canais de comunicação de curto alcance é feita usando Raw Packet Sockets, enquanto que a ligação celular é estabelecida usando o protocolo Advanced Messaging Queuing Protocol (AMQP). A contribuição principal desta dissertação foca-se no projeto, implementação e avaliação de uma sub camada hibrída de encaminhamento, capaz de isolar mensagens que se formam/descodificam a partir de processos de transmissão/receção. Esta camadada é, portanto, capaz de gerir o tráfego proveniente/destinado à camada de aplicação de sistemas inteligentes de transportes (ITS) adaptando e passando mensagens ITS entre as camadas mais altas da pilha protocolar e as tecnologias de acesso rádio disponíveis. A sub camada hibrída de encaminhamento também potencia uma redução dos custos financeiros devidos ao uso de comunicações celulares e aumenta a eficiência do uso do espectro electromagnético disponível, ao introduzir um múdulo controlador da ligação celular, utilizando um Beacon Detector, que toma decisões informadas relacionadas com a necessidade de uma conexão a uma rede celular, de acordo com diferentes cenários. Os resultados experimentais comprovam que as comunicações veículares híbridas cumprem os requisitos dos sistemas cooperativos de transporte inteligentes, ao tirarem partido das vantagens de ambas tecnologias de comunicação. Quando avaliadas de forma independente, constata-se que que a tecnologia ITS-G5 tem vantagens evidentes em termos de latência sobre a tecnologia LTE, enquanto que a tecnologia LTE tem melhor desempenho que a LTE, ai nível de débito e fiabilidade.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Joint ERCIM eMobility and MobiSense Workshop

    Get PDF

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Comparison of IEEE 802.11p and LTE-V2X: An Evaluation With Periodic and Aperiodic Messages of Constant and Variable Size

    Get PDF
    V2X (Vehicle to everything) communications can be currently supported by standards based on IEEE 802.11p (e.g. DSRC or ITS-G5) or LTE-V2X (also known as Cellular V2X or C-V2X) technologies. There has been an intense debate in the community on which technology achieves best performance. However, existing studies do not take into account the variability present in the generation and size of V2X messages. This variability can significantly impact the operation and performance of the Medium Access Control (MAC). This study progresses the state of the art by conducting an in-depth evaluation of both technologies under different message traffic patterns. In particular, we consider aperiodic and periodic messages of constant or variable size based on the standardized ETSI Cooperative Awareness Messages (CAMs). This study considers different scenarios and possible configurations of IEEE 802.11p and LTE-V2X. We demonstrate that IEEE 802.11p can better cope with variations in the size and time interval between messages. We also demonstrate (and characterize) that the LTE-V2X sensing-based semi-persistent scheduling faces certain inefficiencies when transmitting aperiodic messages of variable size. These inefficiencies result in that IEEE 802.11p generally outperforms LTE-V2X when transmitting aperiodic messages of variable size except when the channel load is very low

    Performance Analysis of the Cellular-V2X Mode 4

    Get PDF
    This TFM intends to explore the V2X communication capabilities for 5G systems, starting from the V2X sidelink defined in LTE Rel. 14 and including the most recent advances for 5G NR currently considered by recent release 16. The project targets to analyze the different simulation tools that are available for assessing the performance of V2X communications and to carry out a performance assessment of the technology.Vehicular communications are becoming a reality and are necessary to improve safety driving conditions. The objective of this thesis is to introduce the basic concepts of Cellular-V2X Mode 4 and analyze its performance in terms of channel busy ratio (CBR) and packet delivery ratio (PDR) under different scenarios and configurations. A C-V2X Mode 4 Simulator has been used to check the impact of different parameters such as the transmission rate, modulation and coding scheme, transmission power, subchannelization or probability of keeping the granted resources among others. Two different scenarios have been considered, a fast highway and a congested highway with low speed and high vehicle traffic congestion. The results have revealed relevant differences in terms of PDR between both scenarios. The main causes of failure, the delay and CBR have been also analyzed. The transmission rate is the parameter that most influences the overall performance of the network. In some cases such as the congested highway scenario, obtained performance has revealed some limitations of the technology, e.g. in terms of PDR... and it is expected that with the new capacities of 5G NR it could be improved

    Design and Evaluation of a Traffic Safety System based on Vehicular Networks for the Next Generation of Intelligent Vehicles

    Get PDF
    La integración de las tecnologías de las telecomunicaciones en el sector del automóvil permitirá a los vehículos intercambiar información mediante Redes Vehiculares, ofreciendo numerosas posibilidades. Esta tesis se centra en la mejora de la seguridad vial y la reducción de la siniestralidad mediante Sistemas Inteligentes de Transporte (ITS). El primer paso consiste en obtener una difusión eficiente de los mensajes de advertencia sobre situaciones potencialmente peligrosas. Hemos desarrollado un marco para simular el intercambio de mensajes entre vehículos, utilizado para proponer esquemas eficientes de difusión. También demostramos que la disposición de las calles tiene gran influencia sobre la eficiencia del proceso. Nuestros algoritmos de difusión son parte de una arquitectura más amplia (e-NOTIFY) capaz de detectar accidentes de tráfico e informar a los servicios de emergencia. El desarrollo y evaluación de un prototipo demostró la viabilidad del sistema y cómo podría ayudar a reducir el número de víctimas en carretera

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore