200 research outputs found

    Estimation Of Idle Time Using Machine Learning Models For Vehicle-To-Grid (V2G) Integration And Services

    Get PDF
    As the Electric Vehicles (EVs) market continues to expand, ensuring the access to charging stations remains a significant concern. This work focuses on addressing multiple challenges related to EV charging behavior and Vehicle-to-Grid (V2G) services. Firstly, it focuses on accurate minute-ahead (20 minute \& 30 minute intervals) load forecasts for an EV charging station by using four years of historical data, from 2018-2021. This data is recorded from a university campus garage charging station. Machine Learning (ML) models such as Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Random Forest (RF), and Neural Networks (NN) are employed for load forecasts in terms of Kilowatt hour (kWh) delivered from 54 charging stations. Preliminary results indicate that RF method performed better compared to other ML approaches, achieving a average Mean Absolute Error (MAE) of 7.26 on historical weekdays data. Secondly, it focuses on estimating the probability of aggregated available capacity of users for V2G connections, which could be sold back to the grid through V2G system. To achieve this, an Idle Time (IT) parameter was tracked from the time spent by the EV users at the charging station after being fully charged. ML classification methods such as Logistic Regression (LR) and Linear Support Vector Classifier (SVC) were employed to estimate the IT variable. The SVC model performed better in estimating IT variable with an accuracy of 85% over LR 81%. This work also analyzes the aggregated excess kWh available from the charging stations for V2G services, which offer benefits to both EV owners through incentives and the grid by balancing the load. ML models, including Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), Long-Short Term Memory (LSTM), and Random Forest (RF), are employed. LSTM performs better for this prediction problem with a Mean Absolute Percentage Error (MAPE) of 3.12, and RF as second best with lowest 3.59, when considering historical data on weekdays. Furthermore, this work estimated the number of users available for V2G services corresponding to 15\% and 30\% of excess kWh, by using ML classification models such as Decision Tree (DT) and K Nearest Neighbor (KNN). Among these models, DT performed better, with highest 89% and 84% accuracy respectively. This work also investigated the impact of the COVID-19 pandemic on EV users\u27 charging behavior. This study analyzes the behavior modelled as before, after, and during COVID-19, employing data visualization using K-means and hierarchical clustering methods to identify common charging pattern with connection and disconnection time of the vehicles. K-means clustering proves to be more effective in all three scenarios modeled with a high silhouette index. Furthermore, prediction of collective charging session duration is achieved using ML Models, RF and XgBoost which achieved a MAPE of 14.6% and 15.1% respectively

    Crossing Roads of Federated Learning and Smart Grids: Overview, Challenges, and Perspectives

    Full text link
    Consumer's privacy is a main concern in Smart Grids (SGs) due to the sensitivity of energy data, particularly when used to train machine learning models for different services. These data-driven models often require huge amounts of data to achieve acceptable performance leading in most cases to risks of privacy leakage. By pushing the training to the edge, Federated Learning (FL) offers a good compromise between privacy preservation and the predictive performance of these models. The current paper presents an overview of FL applications in SGs while discussing their advantages and drawbacks, mainly in load forecasting, electric vehicles, fault diagnoses, load disaggregation and renewable energies. In addition, an analysis of main design trends and possible taxonomies is provided considering data partitioning, the communication topology, and security mechanisms. Towards the end, an overview of main challenges facing this technology and potential future directions is presented

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de EconomĂ­a y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    Analysis of Capabilities of Machine Learning for Local Energy Communities to Provide Flexibility to the Grid

    Get PDF
    Energy market design is changing worldwide. Small-scale low carbon electricity generation or so- called Distributed Generation made it possible for neighboring citizens not only to jointly own and operate microgeneration or storage facilities but also be actively involved in the energy market by selling the excess energy and earn a profit. The thesis is investigating the concept of Local Energy Communities from the current regulatory framework and technical point of view mainly assessing capabilities to be flexible on the energy market, meaning delivering or consuming electricity for maintaining the generation-consumption balance and the required grid frequency. Nowadays, thanks to smart meters deployment and sensors' measuring capabilities, the ability to gather data from customers up to the service provider have disrupted the electricity sectors, with the opening of new services and markets. This makes it possible to operate with the energy data more freely and frequently than before. Combining the disruption with new energy data and legislation enabling energy communities operation, this thesis assesses the possibility to make the dispatch and flexibility provision as automatic and “smart” as possible with the help of Artificial Intelligence and Machine Learning techniques. More precisely, the Master’s Thesis is aiming to answer the following questions regarding Local Energy Communities (LECs): 1. What are LECs and what are the positive and negative aspects of LECs' existence? 2. From Local Energy Community to Smart Local Energy Community - Can ML techniques support LEC to automatically dispatch/ feed energy from/to LEC? How can flexibility be used in the context of LEC? 3. What are the market structures and business models for LEC integration? Which energy market players participate in LEC business area? The thesis is organized as follows: The first part of the thesis is a theoretical part, where the literature review was done. After the general definition and legal introduction in Section 1, 2.1, 2.2 and 2.3. Different advantages and disadvantages of LECs are reviewed in Sections 2.3 and 2.4. The following section of this thesis presents a brief review of the literature on Big Data foundations and techniques (Section 4). The second part of the thesis is a practical experiment where the author works with a dataset from real households, performs basic data visualization tasks, and performs machine learning-based generation forecasting to evaluate flexibility. The methodology and results are explained in Sections 5 and 6. The last subsection of the given thesis compares different market models of LEC in different countries (Section 7). Main contributions, conclusions, and future work are discussed in Section 8. A representative list of references is provided at the end of the thesis

    Development Schemes of Electric Vehicle Charging Protocols and Implementation of Algorithms for Fast Charging under Dynamic Environments Leading towards Grid-to-Vehicle Integration

    Get PDF
    This thesis focuses on the development of electric vehicle (EV) charging protocols under a dynamic environment using artificial intelligence (AI), to achieve Vehicle-to-Grid (V2G) integration and promote automobile electrification. The proposed framework comprises three major complementary steps. Firstly, the DC fast charging scheme is developed under different ambient conditions such as temperature and relative humidity. Subsequently, the transient performance of the controller is improved while implementing the proposed DC fast charging scheme. Finally, various novel techno-economic scenarios and case studies are proposed to integrate EVs with the utility grid. The proposed novel scheme is composed of hierarchical stages; In the first stage, an investigation of the temperature or/and relative humidity impact on the charging process is implemented using the constant current-constant voltage (CC-CV) protocol. Where the relative humidity impact on the charging process was not investigated or mentioned in the literature survey. This was followed by the feedforward backpropagation neural network (FFBP-NN) classification algorithm supported by the statistical analysis of an instant charging current sample of only 10 seconds at any ambient condition. Then the FFBP-NN perfectly estimated the EV’s battery terminal voltage, charging current, and charging interval time with an error of 1% at the corresponding temperature and relative humidity. Then, a nonlinear identification model of the lithium-polymer ion battery dynamic behaviour is introduced based on the Hammerstein-Wiener (HW) model with an experimental error of 1.1876%. Compared with the CC-CV fast charging protocol, intelligent novel techniques based on the multistage charging current protocol (MSCC) are proposed using the Cuckoo optimization algorithm (COA). COA is applied to the Hierarchical technique (HT) and the Conditional random technique (CRT). Compared with the CC-CV charging protocol, an improvement in the charging efficiency of 8% and 14.1% was obtained by the HT and the CRT, respectively, in addition to a reduction in energy losses of 7.783% and 10.408% and a reduction in charging interval time of 18.1% and 22.45%, respectively. The stated charging protocols have been implemented throughout a smart charger. The charger comprises a DC-DC buck converter controlled by an artificial neural network predictive controller (NNPC), trained and supported by the long short-term memory neural network (LSTM). The LSTM network model was utilized in the offline forecasting of the PV output power, which was fed to the NNPC as the training data. The NNPC–LSTM controller was compared with the fuzzy logic (FL) and the conventional PID controllers and perfectly ensured that the optimum transient performance with a minimum battery terminal voltage ripple reached 1 mV with a very high-speed response of 1 ms in reaching the predetermined charging current stages. Finally, to alleviate the power demand pressure of the proposed EV charging framework on the utility grid, a novel smart techno-economic operation of an electric vehicle charging station (EVCS) in Egypt controlled by the aggregator is suggested based on a hierarchical model of multiple scenarios. The deterministic charging scheduling of the EVs is the upper stage of the model to balance the generated and consumed power of the station. Mixed-integer linear programming (MILP) is used to solve the first stage, where the EV charging peak demand value is reduced by 3.31% (4.5 kW). The second challenging stage is to maximize the EVCS profit whilst minimizing the EV charging tariff. In this stage, MILP and Markov Decision Process Reinforcement Learning (MDP-RL) resulted in an increase in EVCS revenue by 28.88% and 20.10%, respectively. Furthermore, the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies are applied to the stochastic EV parking across the day, controlled by the aggregator to alleviate the utility grid load demand. The aggregator determined the number of EVs that would participate in the electric power trade and sets the charging/discharging capacity level for each EV. The proposed model minimized the battery degradation cost while maximizing the revenue of the EV owner and minimizing the utility grid load demand based on the genetic algorithm (GA). The implemented procedure reduced the degradation cost by an average of 40.9256%, increased the EV SOC by 27%, and ensured an effective grid stabilization service by shaving the load demand to reach a predetermined grid average power across the day where the grid load demand decreased by 26.5% (371 kW)

    A Smart Charging Assistant for Electric Vehicles Considering Battery Degradation, Power Grid and User Constraints

    Get PDF
    Der Anstieg intermittierender Stromerzeugung aus erneuerbaren Energiequellen erschwert zunehmend einen effizienten und zuverlĂ€ssigen Betrieb der Versorgungsnetze. Gleichzeitig steigt die Zahl der Elektrofahrzeuge, die zum Aufladen erhebliche Mengen an elektrischer Energie benötigen, rapide an. Energie- und MobilitĂ€tssektor sind somit unweigerlich miteinander verbunden, was zur Folge hat, dass zuverlĂ€ssige ElektromobilitĂ€t von einer robusten Stromversorgung abhĂ€ngt. DarĂŒber hinaus empfinden Fahrzeugnutzer ihre individuelle MobilitĂ€t als eingeschrĂ€nkt, da Elektrofahrzeuge im Vergleich zu Fahrzeugen mit Verbrennungsmotor derzeit eine geringere Reichweite aufweisen und mehr Zeit zum Aufladen benötigen. In der vorliegenden Arbeit wird daher ein neuartiges Konzept sowie eine Softwareanwendung (Ladeassistent) vorgestellt, die den Nutzer beim Laden seines Elektrofahrzeuges unterstĂŒtzt und dabei die Interessen aller beteiligten Akteure berĂŒcksichtigt. DafĂŒr werden zunĂ€chst Gestaltungsmerkmale möglicher Softwarearchitekturen verglichen, um eine geeignete Struktur von Modulen und deren VerknĂŒpfung zu definieren. Anschließend werden anhand realer Daten sowohl Energieverbrauchs- als auch Batteriemodelle entwickelt, verbessert und validiert, welche die Fahr- und Ladeeigenschaften von Elektrofahrzeugen abbilden. Die wichtigsten BeitrĂ€ge dieser Arbeit resultieren aus der Entwicklung und Validierung der folgenden drei Kernkomponenten des Ladeassistenten. Als Erstes wird das individuelle MobilitĂ€tsverhalten der Nutzer modelliert und anhand von aufgezeichneten und halbsynthetischen Fahrdaten von Elektrofahrzeugen ausgewertet. Insbesondere wird ein neuartiger, zweistufiger Clustering-Algorithmus entwickelt, um hĂ€ufig besuchte Orte der Nutzer zu ermitteln. Anschließend werden Ensembles von Random-Forest-Modellen verwendet, um die nĂ€chsten Aufenthaltsorte und die dort typischen Parkzeiten vorherzusagen. Als Zweites wird gemischt-ganzzahlige stochastische Optimierung angewandt, um Ladestopps in einem zukĂŒnftigen Zeithorizont möglichst komfortabel und kostengĂŒnstig zu planen. Dabei wird ein graphenbasierter Algorithmus eingesetzt, um den Energiebedarf und die Eintrittswahrscheinlichkeit von MobilitĂ€tsszenarien eines Elektrofahrzeugnutzers zu quantifizieren. Zur Validierung werden zwei alternative Ladestrategien definiert und mit dem vorgeschlagenen System verglichen. Als Drittes wird ein nichtlineares Optimierungsschema entwickelt, um vorhandene Zeit- und EnergieflexibilitĂ€t in LadevorgĂ€ngen von Elektrofahrzeugen zu nutzen. Die Integration eines detaillierten Batteriemodells ermöglicht eine genaue Quantifizierung der Kosteneinsparungen aufgrund einer geringeren Batteriealterung und dynamischer Stromtarife. Anhand von Daten aus realen LadevorgĂ€ngen von Elektrofahrzeugen können EinflĂŒsse auf die RentabilitĂ€t von Vehicle-to-Grid-Anwendungen herausgearbeitet werden. Aus der Umsetzung des vorgestellten Ansatzes in einer realistischen Umgebung geht ein Architekturentwurf und ein Kommunikationskonzept fĂŒr optimierungsbasierte intelligente Ladesysteme hervor. Dabei werden weitere Herausforderungen im Zusammenhang mit standardisierter Ladekommunikation, Eingriffen der Energieversorger und Nutzerakzeptanz aufgedeckt

    Advances on Smart Cities and Smart Buildings

    Get PDF
    Modern cities are facing the challenge of combining competitiveness at the global city scale and sustainable urban development to become smart cities. A smart city is a high-tech, intensive and advanced city that connects people, information, and city elements using new technologies in order to create a sustainable, greener city; competitive and innovative commerce; and an increased quality of life. This Special Issue collects the recent advancements in smart cities and covers different topics and aspects
    • 

    corecore