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1. Introduction  

Energy market design is changing worldwide. Small-scale low carbon electricity generation or so-

called Distributed Generation made it possible for neighboring citizens not only to jointly own and 

operate microgeneration or storage facilities but also be actively involved in the energy market by 

selling the excess energy and earn a profit. The thesis is investigating the concept of Local Energy 

Communities from the current regulatory framework and technical point of view mainly assessing 

capabilities to be flexible on the energy market, meaning delivering or consuming electricity for 

maintaining the generation-consumption balance and the required grid frequency.  

Nowadays, thanks to smart meters deployment and sensors' measuring capabilities, the ability to 

gather data from customers up to the service provider have disrupted the electricity sectors, with 

the opening of new services and markets. This makes it possible to operate with the energy data 

more freely and frequently than before.  

Combining the disruption with new energy data and legislation enabling energy communities 

operation, this thesis assesses the possibility to make the dispatch and flexibility provision as 

automatic and “smart” as possible with the help of Artificial Intelligence and Machine Learning 

techniques. More precisely, the Master’s Thesis is aiming to answer the following questions 

regarding Local Energy Communities (LECs): 

 

1. What are LECs and what are the positive and negative aspects of LECs' existence?       

 

2. From Local Energy Community to Smart Local Energy Community - Can ML techniques 

support LEC to automatically dispatch/ feed energy from/to LEC? How can flexibility be 

used in the context of LEC? 

 

3. What are the market structures and business models for LEC integration? Which energy 

market players participate in LEC business area? 

 

The thesis is organized as follows: The first part of the thesis is a theoretical part, where the 

literature review was done. After the general definition and legal introduction in Section 1, 2.1, 2.2 

and 2.3. Different advantages and disadvantages of LECs are reviewed in Sections 2.3 and 2.4. 

The following section of this thesis presents a brief review of the literature on Big Data foundations 

and techniques (Section 4). The second part of the thesis is a practical experiment where the 

author works with a dataset from real households, performs basic data visualization tasks, and 

performs machine learning-based generation forecasting to evaluate flexibility. The methodology 

and results are explained in Sections 5 and 6. The last subsection of the given thesis compares 

different market models of LEC in different countries (Section 7). Main contributions, conclusions,  

and future work are discussed in Section 8. A representative list of references is provided at the 

end of the thesis. 
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2. Local Energy Communities – overview  

2.1. Legal framework and definition of LECs in the EU 

The latest EU energy-market related legislation, which consists of mainly two documents: 

Regulation on the internal market for electricity (E-Regulation, 2019/943 of the European 

Parliament) [2] and Directive on common rules for the internal market in electricity (E-Directive, 

2019/944/EU of the European Parliament) [1], introduce new actors and define their rights and 

obligations as well as define the legal framework for their operation to ensure fair treatment at the 

energy market. These new energy market participants are the following: Aggregators, Active 

customers, Renewable energy communities, and Citizen energy communities (CEC), Local 

energy communities. In this thesis, we are interested in the latter and we consider Local Energy 

Community and Citizen Energy Community the same.  

Important points regarding LEC operation extracted from Directive 2019/944/EU of the European 

Parliament in the next paragraph:  

1. Ownership structure (recital 46)– shared between stakeholders within the community.  

2. New roles, rights, and responsibilities (recital 43) – local participation of citizens in the 

energy markets now allows them to have a stake in the activities such as production, 

distribution, flexibility provision, energy trading, which brings certain responsibilities to 

maintain the well-functioning of the grid (see Figure 1).  

 

3. DSO status of CEC (recital 47)– if CEC becomes a DSO or so-called closed-DSO it should 

be treated as a DSO and be subjected to the obligations related to it. As regards 

ownership of the distribution infrastructure, CEC can own, purchase, build, lease the 

network.  

 

4. Free entrance and leaving (recital 43)– all citizens have the right to freely join or leave the 

community without losing access to the network operated by this community. 

 

5. Conflict of interest avoidance (recital 44)– decision-making power should not belong to 

the community members whose main economic activity is within the energy sector. 

 

6. CEC legal status (recital 44)– the Directive leaves the possibility for a CEC to choose their 

legal status, which can be an association, a cooperative, a partnership, a non-profit 

organization, or a small or medium-sized enterprise.  

 

7. Purpose-driven – CECs are supposed to be driven by a purpose other than making a 

profit, such as environmental, bill reduction, community engagement, innovation, etc. 
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8. Electricity sharing (recital 46)– CEC cannot be discriminated against and subjected to 

network charges and extra levies.  

 

9. Market access (Art. 16, 3a) –Third-party access to the TS and DS systems for the 

consumers. 

 

10. Cross-border trading participation rights (Art. 16, 2a). 

 

11. Imbalances caused in the networks (Art. 16, 3c)– CEC are financially responsible for the 

imbalances they cause.  

 
To summarize, the roles of LECs are extremely broad. The roles range both from typical 

activities for an energy cooperative as well generating new business models. The research 

done by [36] shows that the LECs can be engaged in several activities, such as renewable 

energy generation (solar, wind, hydro), supply (resale of electricity), distribution (ownership of 

the management of a distribution grid), consumption and sharing, energy efficiency services 

(flexibility, energy monitoring, etc.), electro-mobility (car sharing, carpooling), and other 

(consulting services). For more information, the reader refers to Section 7. The emerging roles 

of LECs are visualized in Figure 1.  

 

 

Figure 1 Emerging roles of LEC in accordance with the Directive 2019/944/EU of the 

European Parliament 
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2.2. Nomenclature  

In the last decade, a number of new energy market players arose. It is essential to point out the 

differences and have a clear distinction among similar concepts from the outset. There are similar 

but slightly different citizens cooperation, such as Distributed Generation (DG), embedded 

generation, microgrids, virtual power plants (VPPs), Citizen Energy Communities and local 

energy communities. In this thesis, we explore the latter concept. 

There is no universal definition of a LEC due to the variety of different arrangements and 

stakeholders involved. Among LEC, the following terms that represent the same concept were 

found in the literature: Renewable Community, Community Energy, Energy Cooperative. These 

terms are used to define social groups at the local level that generate and distribute renewable 

energy, holding high degrees of ownership of a LEC project, as well as collective benefits [12]. 

Energy communities involve two main dimensions: process and outcome, where process 

concerns with who a project is developed and run by, who is involved and who has influence. The 

outcome dimension describes who the project is for, who it is that benefits particularly in economic 

or social terms. In LECs, the process is open and participatory, and the outcome is local and 

collective [12]. 

In other words, LECs are legal entities that are commonly owned by voluntary participants, and 

they are a smaller-sized representation of a large electricity grid, which performs the same 

activities, such as generation, consumption, small-scale distribution, storage, and supply. The 

main difference however is that the main goal of such communities is other apart from gaining 

profit, it can be environmental (reducing greenhouse gasses (GHG) and other emissions), social 

(such as energy security, namely independence from the common energy system, which tariffs 

are often high and not transparent) or economical (reducing the bill size), however, the latter is 

not the main goal. The last objective can be achieved by providing flexibility to the main grid and 

being remunerated according to the tariffs, therefore generating new revenue streams by selling 

flexibility services.  

2.3. Advantages of LECs 

In this section, the research was performed to find the main benefits that local energy communities 

bring to their members and the energy system. Benefits were classified into four major groups: 

financial, social, environmental, and technological. The classification was mainly adapted from 

the review done by [20], which was conducted in the UK, the USA, and Germany. The following 

sections offer a brief overview of each of them.  

2.3.1. Environmental benefits  

• Lifestyle change - Increased importance of final consumers 

Participation in the LEC requires more meaningful consumption and therefore behavioral change. 
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LEC participation influences people's lifestyle choices and helps to develop a more sustainable 

attitude. This means that people involved in LEC activities are generally more receptive to ethical 

and environmental commitment and question their behavior concerning energy consumption [20].  

• Increasing RE generation  

The nature of distributed generation (small-scale, on-site) forces unconventional generation. 

Usually, it means building RE (or at least low carbon) power plants on the consumer's premises. 

The range of technologies varies from solar, biomass, micro-hydro, or wind turbines to fuel cells 

and storage technologies.  

 

2.3.2. Social benefits  

• Increased transparency on the energy market 

In the past, the energy generation process was not transparent and the only information which 

was available were the yearly or monthly energy bill which was the number of total kWh used – 

without any information of its origin or detailed day-to-day consumption. LEC members now will 

have access and therefore a better understanding of their generation, storage and energy flows.  

 

• Education and acceptance  

Since community members will be having the generation assets and the part of the grid 

(depending on the arrangement), they will have to have both a general understanding of the 

technical knowledge of the ES and basics of energy business functioning. The following will be 

needed: formation of a better understanding of RE technologies, the whole generation system, 

from the technical details of PV and AC/DC transformation to transmission of energy and storage. 

But the educational benefits go beyond the technical field. A common benefit found is energy-

saving behavior, often combined with general awareness-raising for issues connected with 

energy consumption, for instance, climate change [20]. All such knowledge, collaboration, and 

ownership structure lead to overall Community sense empowerment. 

2.3.3. Financial benefits  

• Flexibility from LECs 

Sources of flexibility are generation from RESs, stored energy from energy storage systems 

(ESS), demand-side management (DSM), energy trading, etc. A more detailed working principle 

of flexibility provision is described in Chapter 5 as the thesis practical part is focused on flexibility 

forecasting using real household electricity data.  

 

• P2P energy trading 
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Peer-to-peer energy (P2P) trading is an innovative pricing and trading concept in the electricity 

market, which enables trade energy between two parties without a mediator which can increase 

the energy price for the buyer. The trading occurs via a platform – an online marketplace. The 

trading can be done automatically with the help of machine learning when one party has excess 

energy and the other requires energy. P2P trading can be realized between two LECs and can 

be a potential financial source for community members.  

The trading can be done between different households which are members of one community as 

well as between different local energy communities. The EU Directive 2019/944/EU of the 

European Parliament sets new recommendations and obstacles which arise when such trading 

takes place: Consumers should be able to consume, store and sell self-generated electricity to 

the market and to participate in all electricity markets by providing flexibility to the system, for 

instance through energy storage, such as storage using electric vehicles, through demand 

response, or energy efficiency schemes. Recent technology developments will help those 

activities in the future [1].  

 

• Benefits from ownership and investments  

Economic value can come from different sources, such as investment programs made by private 

or public companies as well as local, national or international institutions and organizations. 

Looking at the examples of LECs ownership, it often occurs that a LEC can be owned by a 

property owner (building company) [4]. 

 

2.4. Disadvantages of LECs 

The disadvantages were classified into three major categories: Institutional, Organizational, and 

Behavioral (social) barriers. The classification was based on [21]. There are more barriers that 

LEC stakeholders can face; however, it is out of the scope of this thesis. This section aims to give 

a brief overview. For more detailed information, the reader is addressed to [20] and [21]. The 

description is presented in the following sections.  

2.4.1. Institutional barriers 

• Lack of political support  

Consistent governmental programmers, support, and subsidies are needed for the successful 

creation functioning of LECs. Unstable political conditions and poor governance might lead to 

project failures. Political instability results in frequent changes in schemes and incentives, 

introducing ambiguity in project planning and forecasting [22]. Lack of uniform nationwide policies 

and communication among different institutions limits private sector participation and investments 

in LEC projects [21]. Governmental financial institutions also play a significant role in the 
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development of LECs; credit, and loans system must function well.  

 

• Complex policies and market rules  

Ambiguous national and local policies might bring confusion for potential members of LECs and 

can be considered as a barrier to entry. Clear and uniform and clear national policy is needed. 

Moreover, conflict of interest between local and national governments should not take place. 

Bureaucracy and approval processes should be efficient and should be as clear as possible. 

2.4.2. Organizational barriers  

• Protection and safety  

The energy data are sensitive, and they are generated and consequently stored on a cloud or a 

server. As with all power plants, the electricity data should be well protected against cyber-attacks.   

 

• Lack of long-term or initial funding  

This barrier includes insufficient findings or compensations mechanisms for flexibility provision. 

Needless to say, that like with every power plant installation project, LEC projects usually face a 

number of economic and financial barriers, especially during project initiation, such projects 

require a high upfront cost. The communities as such don’t have paying capacity; therefore, they 

should be subsidized or invested. These include high start-up costs, no start-up funding, and low 

investment and subsidies [21]. The highest cost is due to power plan planning and installation, 

equipment purchasing (PV panel, inverter, cables, fuel cell, etc.). The high initial investment can 

be considered as a large barrier to entry.  

 

• Lack of professional support  

This barrier is due to a lack of engineering knowledge among the general public. Complex 

engineering projects will need to be outsourced or sponsored by the government. It is expected 

that the number of trained people and businesses will arise therefore creating employment 

placement.  

2.4.3. Social barriers 

• Skepticism due to lack of knowledge and increased responsibility  

The lack of knowledge on the energy market side or the technological side can lead to overall 

skepticism and fear of participating in LEC. Uncertainty and fear of responsibility due to the novelty 

of the concept will also increase the unwillingness to participate. Another reason for this barrier is 

asymmetric information that is commonly occurred in the energy market when less information is 

available to the end-user. This is due to the nature of energy markets where the data access 

available only for one party (DSO, TSO, or generation).  
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3. Flexibility – general overview  

With high penetration of renewables as well as high usage of electrical vehicles (EV) in the power 

system (PS), problematics of maintaining supply-balance and system frequency became crucial. 

One of the ways to achieve the above-mentioned goals is to perform demand response (DR) or 

Demand Side Management (DSM) programs to flexible loads – this can be done in the form of 

active load control or load shedding as well as in the form of passive encouraging (e.g., thought 

price signals) energy end-users to shift their load when it is needed.  

Reference [9] states the following: DSM’s main advantage is that it is less expensive to intelligently 

influence a load than to build a new power plant or install some electric storage device. Concepts 

of DSM and flexibility, in general, are correlated and seeks for same results – modification of 

the customer electrical load. The concept of flexibility best described in [10]: Flexibility on 

demand-side is defined as the capability of consumption modification in response to control 

signals. Possible sources of those control signals may be external market signals to the smart 

meter or internal control signals from the home energy management system (EMS).  

As you can see from Figure 2 from the International Energy Agency (IEA), 20% of all final energy 

consumption made in the EU in 2018 was from the residential sector. It is assumed that this is 

the reason flexibility in the domestic sector and DSM programs gained attention in the last 5 years. 

It is a useful source for balancing the grid.  

 

Figure 2 Final energy consumption by sector in 2018 in IEA1[11]. Notes: 1. Refers to 

2018 data for sixteen IEA countries for which data are available for most end uses 

Australia, Belgium, Canada, Czech Republic, Finland, France, Germany, Hungary, Italy, 

Japan. 
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3.1. Flexibility and LECs 

To ensure overall system stability and back up intermediate renewable energy sources (RESs), 

the overall electricity system requires flexibility in both energy generation and consumption sides. 

On the consumption side, technically, LECs are considered as one entity – a microgrid, which 

allows operating with it as with one large consumer or generation plant (depends on the 

availability of generation).  

LECs can benefit from load forecasting to support decision-making regarding flexibility provided 

to the grid/from the grid. If a high degree of forecasting is achieved, LECs can sell future flexibility 

to aggregators or take part in Demand Response (DR) programs from utilities and therefore 

generate revenues. Load and generation forecasting might be economically beneficial for both 

generators and consumers [3]. Load (consumption as a generation) forecasting is a widely 

studied and important problem since it can help all energy market players to forecast future 

demand. 

It is important to set up a clear goal and outcome of the data analytics processes prior to 

developing algorithms and establish the whole ecosystem with the data flow. The goal of load 

forecasting in the context of flexibility provision is the following: To make the forecast as precise 

as possible to successfully provide contracted flexibility and generate profit.  

 



Analysis of capabilities of AI for Local Energy Communities to provide flexibility to the grid Pg. 19 

 

4. Machine Learning foundations and techniques  

4.1. Data Science and Machine Learning Foundations 

There are several data science techniques that can be used to analyze large time-series 

measurement data. For instance, statistical analysis techniques, artificial intelligence (AI), 

machine learning (ML), deep learning (DL), and many others [3]. Each of them is used for its 

specific purpose as well as to solve similar problems. In this section, a basic description of each 

of the data science techniques in the domain of the power grid is offered.  

The goal of data science is to extract value from data. The steps of the data management lifecycle 

are demonstrated in Figure 3 

 

Figure 3 Main steps of the data management life cycle, source [3] 

Approaching the techniques such as AI, ML, and DL, Figure 4 proves how subsections of AI are 

organized. AI is a broader term while ML and DL are the methods to build such an artificial system. 

AI can be viewed as science whose prerogative is to build smart programs that are independent 

and do not require human intervention. ML uses algorithms and datasets to construct models and 

learn by themselves according to the specified rules. DL is a specific type of ML which is more 

complex and has multilayers and classifies information in a more sophisticated way. The way in 

which they differ is in how each algorithm learns. DL automates much of the feature extraction 

piece of the process, eliminating some of the manual human intervention required and enabling 

the use of larger data sets [42].  

All three methods find their applications in the field of electricity data analysis. Examples of specific 
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applications are found in Section 4.2.  

 

Figure 4 Differences between Artificial intelligence, Machine learning, and Deep learning 

 

4.2. Big data and LECs  

Data in the context of electricity grids play a key role. The energy data in the residential settings 

might be generated from smart meters or other intelligent appliances, sensors, and home energy 

management systems (HEMS). This allows a higher degree of digitalization and automatic 

decision-making. Data related to LECs are heterogeneous and come from different (external and 

internal) sources. The data can be both spatial (related to space) and temporal (time-series data). 

All the data we can use will be combined to extract as much information as possible – so-called 

data fusion [3]. There can be different sources of the data that can be combined (fused) in the 

context of LEC to make better sense of the data. We divide them into two categories.  

Internal origin (asset level):  

1. Consumption and generation data from SM 

2. Sensors in the generation assets renewable and not renewable 

3. Different consumption, motion, humidity, temperature sensors  

4. Smart home devices, HEMS 

External origin:  

1. Environmental data from weather stations – temperature, humidity, solar irradiation, wind 
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speed, etc. 

2. Grid data from phasor measurement unit (PMU) in a distribution feeder – voltage, current, 

phase, frequency.  

3. Open Data about the electricity markets – different providers tariffs 

The formats of data used in data analytics are different, and they can be numerical 

(measurements, numbers), categorical (text), or visual (images). It is important to mention that 

the computing power needed for forecasting combining different databases might be high in large 

LECs.  

In the context of the energy system, ML techniques can bring value and help to extract some 

insights into the data. There are several possible tasks we can perform using ML in the area of 

LECs and microgrids. Machine learning objectives are often grouped into descriptive tasks and 

predictive tasks. Descriptive tasks aim to discover interpretable patterns that describe past data, 

and predictive tasks are those where the goal is to identify patterns observed in training data in 

order to estimate future predictions of risks and other outcomes [3]. Some examples of predictive 

and descriptive tasks are given below: 

Predictive tasks examples:  

1. Load forecasting and flexibility forecasting for LECs (short-, medium- and long- term) –

RES generation forecasting for the purpose of local energy trading, bidding, flexibility 

provision  

2. Electricity prices forecasting – the same methodology as before. 

3. Predictive maintenance - Extensive deployment of SMs, sensors and monitoring 

technologies are used for reliability assessment of system equipment over time and to 

optimize the maintenance plans accordingly [41]. 

4. Congestions and outages identification and prediction – the data from SM in use with ML 

can detect deviation and anomalies to identify congestions in the power grid. The 

knowledge from historical data can be utilized to issue predictions of weather-related 

transmission outages few hours ahead  [3]. 

Descriptive tasks examples:  

1. DER Analytics - It is crucial for utilities to have correct information related to DERs at the 

distribution circuit and behind-the-meter (BTM) [3]. 

2. Generation data and Customer load profiling and classification and clustering – (clustering 

based on the historical demand)  
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3. Grid Modeling – SM data can be used in conjunction with substation data to obtain refined 

models for distribution planning, or to obtain insight into specific modeling problems [3]. 

 

4.3. Electrical load forecasting theory  

In this thesis, we will focus mainly on household electricity load forecasting. Electricity demand 

forecasting is a predictive analytics task, and it is considered an essential tool to gain an 

understanding of future demand [23]. With the deregulation of the electricity generation and 

distribution sector as well as with increased RES use the importance of load and demand 

forecasting increased. With supply and demand fluctuating and the changes of weather conditions 

and energy prices increasing by a factor of ten or more during peak situations, load forecasting is 

vitally important for utilities. Short-term load forecasting can help to estimate load flows and to 

make decisions that can prevent overloading [24]. 

There are several traditional methods for load forecasting. They range from simple and intuitive 

to very complex models. They are usually classified into five categories, based on [25]:  

1. Subjective – this method uses basic and intuitive and commercial knowledge without taking 

into consideration past trends 

2. Univariate – this method takes into consideration past information using a single variable.  

3. Multivariate – this is a multivariable method, which takes into account other variables (weather, 

prices) which usually affect consumption and generation  

4. End-use – this method is a bottom-up approach; it looks in detail at the consumption side and 

which it consists of.  

5. Combination of the above  

Enterprises are increasingly moving towards the use of advanced data science techniques to 

forecast customer load and demand. In general, customer demand is modeled as sequential data 

of customer demands over time. Hence, the main forecasting problem can be formulated as a 

time series forecasting problem [23]. In this thesis, the “end use approach” for load forecasting 

will be used, meaning we will analyze the consumption/generation data of the end-users.  

The topics of short- and long-term electricity load forecasting (STLF and LTLF) are currently in 

the attention of researchers around the world. There are several methods of deep learning that 

can be used for load prediction. We have selected two different DL techniques, namely long short-

term memory (LSTM) and recurrent neural network (RNN), which are the most popular deep 

learning methods [55]. The study results in [55], on how LSTM and simple RNN based model can 
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forecast STLF, demonstrate how LSTM outperformed other deep learning algorithms resulting in 

high accuracy of forecasting. 

4.3.1. Machine Learning techniques for energy consumption forecasting   

There are many advanced data science techniques that can be used for our purpose of domestic 

load prediction. Generally, time series forecasting techniques fall into the two main categories of 

statistical and computational intelligence methods. The classification is based on the study done 

in [23]. 

Statistical intelligence methods are commonly used; one of the most common is ARIMA. It 

supposes that the time series has only linear components. However, most real-world time series 

data consist as well of nonlinear components. To deal with non-linearity, several techniques are 

used: the autoregressive conditional heteroscedastic (ARCH) model, general autoregressive 

conditional heteroscedastic (GARCH).  

Computational intelligence techniques are also frequently used for the problem of time series 

prediction. These methods are artificial neural networks (ANN), support vector machine (SVM), 

K-nearest neighbors (KNN), and adaptive neuro-fuzzy inference system (ANFIS) [23]. 

4.3.2. Simple RNN model 

Another machine learning technique that was chosen and proved its suitability for electricity load 

prediction is a Simple Recurrent Neural Networks (RNN) model. Recurrent Neural Networks 

containing feedback and allowing previous information to be stored. Therefore, it resembles a 

chain of information connected with the feedback of each element. This is better explained with 

visualization. In Figure 5 below, a fragment of a neural network A takes an input value xt and 

returns the value ht. This feedback loop allows information to be transferred from one step of the 

network to another. Therefore, RNN is a type of ML that works as a loop. 

 

Figure 5 Schematic model of Recurrent neural networks with feedback.  

The fact that RNNs resemble a chain suggests that they are closely related to sequences and 

lists. Over the past few years, RNN has been applied with incredible success to a range of 
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applications: speech recognition, language modeling, translation, image recognition [27]. 

Because of the list-nature of RNN networks, they can model temporal dependencies and are 

especially suitable for the prediction of sequence data [28].  

To explain the working principle, the author adopts the example from [34]. In the example in Figure 

6, the final output is a 2D tensor of shape (timesteps, output_features), where each timestep is 

the output of the loop at time t. Each timestep t in the output contains information about timesteps 

0 to t in the input sequence. For this reason, the full sequence of outputs is not needed; instead 

only the last output (output_t) is needed since it already contains the information about the entire 

sequence [34]. 

 

 

Figure 6 A simple RNN model, adapted from [34] 

 

4.3.3. LSTM model 

Long short-term memory (LSTM) is a special type of RNN architecture. The source [29] is stating 

that LSTM is promising that has the capabilities to learn the long-term dependencies. [29] LSTM 

perfectly solves a number of different tasks and is widely used nowadays. LSTM method is wildly 

used to perform machine learning tasks, such as image and speech recognition, translation, etc. 

One of the features is that LSTM has a great capability in remembering data for a long-term time 

and therefore they are very suitable for forecasting time series data. 

The LSTM network structure differs from the conventional perceptron architecture as it has a cell 

and gates which control the flow of information. Specifically, the LSTM has an input gate, and a 

forget gate, an internal state (cell memory), and an output gate [26]. 

The comparison of several state-of-the-art time series forecasting techniques was made in the 

study [23] demonstrating the substantially better performance of the LSTM network. The reader 

is addressed to the above-mentioned research for a more detailed explanation. LSTM techniques 
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with the main advantage being the capability to capture nonlinear patterns in time series data.  

The working principle (adapted from [34]) of the LSTM is similar to the simple RNN with the 

difference being the following: LSTM adds a way to carry information across many timesteps. 

(see Figure 7) It is an added data flow that carries information across timesteps. Call its values at 

different timesteps Ct, where C stands for carrying. The impact of Ct is the following: it is 

combined with the input connection and the recurrent connection (via a dense transformation), 

and it affects the state being sent to the next timestep (via an activation function). Therefore, the 

carry dataflow is a way to modulate the next output and the next state [34]. 

 

 

Figure 7 An LSTM model, taken from [34] 

The main difference between RNN and LSTM is that LSTM can store long-term time dependence 

information and can map inputs and outputs accordingly [26]. 
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5. Smart Local Energy Community – flexibility 

provision experiment  

5.1. Dataset description 

For the purpose of the data analysis and forecasting, the dataset of 25 individual houses' 

electricity consumption will be used in the thesis. The dataset was obtained with a license from 

Pecan Street Inc [5]. It is a project initiated in the US. It is a project which collects the energy data 

from households, and it is one of the largest sources of disaggregated customer energy and water 

data in form of a database. There are electrical load data for hundreds of individual households 

across the US. The project allows researchers and academics to receive access to their database 

and make use of it for research purposes.  

As part of the research, the author received access to the dataset license and metadata. In the 

received data, there are static datasets available from twenty-five houses in California, New York, 

and Austin, 75 different houses in total. The time-resolution available ranges are 1-sec, 1-min, 

and 15-min. For the purpose of the experiment, we have selected the 15 min dataset from New 

York. The observations of power consumption within each household were collected every 15 

minutes. Therefore, it can be calculated that there are 96 (15-min) samples per day. It is a 

multivariable time-series dataset that describes 6-months of electricity consumption and 

generation from 25 different houses. The data was collected between 1st of May 2019 until 31st of 

October 2019 and therefore represent the summer consumption pattern, which is usually lower 

than the winter consumption pattern, see Figure 8.  

 

Figure 8 Daily average consumption, an example of seasonal energy demand, taken 
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from the research [18]. 

The reason behind choosing New York as a location for the experiment is that NY city can serve 

as a representative example for several other cities in the world. New York has an average 

monthly Direct Normal Irradiation (DNI) of 1491.5 kilowatt hours per square meter per day 

(kWh/m2/day) which is comparable with the cities like Barcelona – 1739.9 kWh/m2/day, Istanbul 

1378.0 kWh/m2/day, Florence 1492.9 kWh/m2/day, Washington 1560.0 kWh/m2/day, Yantai City 

1142.5 kWh/m2/day, Seoul 1229.0 kWh/m2/day, Hiroshima 1236.0 kWh/m2/day, etc. [43]. 

The chosen dataset is suitable for the purpose of the experiment because it is possible to simulate 

a local energy community of 25 different types of houses. The data provided includes detailed 

and precise generation and consumption information. Table 1 points out the metadata:  

Table 1 Metadata description: different household consumption and generation 

information from pecan street database 

Types  Information  

Building 

information: 

Customer unique ID, building type, house construction year, square 

footage 

Generation and 

consumption: 

PV, PV panel direction, PV size, battery, Electrical vehicles, individual 

rooms consumption, total grid consumption  

Consumption: 

energy-intensive 

appliances: 

Energy-intensive appliances: freezer, washing machine, electric heater, 

swimming pool or jacuzzi and electric water heater, kitchen appliances 

(oven, icemaker, microwave)  

 

The goals of the practical part of the thesis are:  

- Forecast grid consumption for each of 25 houses - separately  

- Forecast consumption patterns of electrical appliances for each house - separately 

Data sources used for analysis: 

- Historical households’ consumption and generation data 

- Meta-data: type of households and most energy-intensive devices used in the building  
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5.2. Data analytics 

In this section, we perform data visualization for some attributes of the dataset that will later be 

used for forecasting. Firstly, in the graph below (Figure 9), aggregated average consumption of 

twenty-five houses is shown.  

 

Figure 9 Aggregated average daily profiles of twenty-five houses in NY, data taken from 

Pecan Street [5] 

Secondly, the aggregated PV generation of each house is illustrated in Figure 10. The time range 

is the maximum that was available in the dataset, which is 6-months from May until October 

(summer season). It is visible that all the houses follow the same electricity generation trend, 

which might be affected by weather conditions (sunny or cloudy days), day/night picks, etc. As 

was described before, there are twenty-five houses in the dataset, each house has a data ID 

which can be seen at the right corner of the graph.  

 

Figure 10 Aggregated 6-months PV generation profiles of twenty-five houses in NY, 

data taken from Pecan Street 
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As was mentioned before, several houses from 25 houses have photovoltaic (PV) panels and 

electric vehicles (EVs), generation and consumption, respectively. From the available data and 

metadata, it was identified that 14 out of 25 houses have PV panels, and 5 houses are with EVs. 

At the same time, 4 of the houses have both solar PV and an EV. Figure 11 a and b reveal the 

aggregated energy generation from PV (a) and aggregated energy consumption (b) that EV 

charges use. 

 

 

 

Figure 11a - Total PV generation by a house (above), 11b - Total EV charging 

consumption by a house (below), data taken from Pecan Street 

The monthly consumption trend is shown in Figure 12 of one representative house № 914 in the 

period from 9.07.2019 until 9.08.2019. The repeating trend from day to day is shown with the 

positive values (taking electricity from the grid) to negative values (feeding the electricity grid with 

the generated electricity. The EV size and PV size are unknown. The given house is a single-

family house located in the city of Ithaca, NY state. From the big appliances, it has one EV, clothes 

washer, dryer and jacuzzi. The house also has PV panels (the size is unknown).  
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Figure 12 Monthly consumption from one house in NY, data taken from Pecan Street 

Ithaca is a large town in the US, with coordinates: latitude 42.443962 and longitude -76.501884. 

Ithaca has average yearly Direct Normal Irradiation (DNI) of 1253.4 kilowatt hours per square 

meter (kWh/m2) and daily GHI of 3.434 kWh/m2/day which is lower than the average DNI in the 

state of New York. The average temperature in Ithaca is 9.8 C. The monthly averages of DNI for 

the city of Ithaca are given in Figure 13. The highest DNI is in July, the month that we are taking 

for the analysis of the load pattern.  

 

Figure 13 Monthly average Direct Normal Irradiation (DNI) in the city of Ithaca, data taken 

from [43] 

Figure 14 shows the daily household grid consumption from the representative house № 914. It 

resembles the well-known “duck’s curve”. It is clear that the aggregated load is rather consistent, 

and its daily pattern is highly noticeable. The feature of the duck’s curve is that it has two peaks: 

in the morning and in the evening as well as one big drop during midday, following the renewable 

energy sources production. The drop is caused by the large power input from PV panels. Variable 

generation resources significantly reduce the load on conventional generators during the day but 

not during the night; a surge in generation demand may occur at the time of sunrise and sunset. 
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This trend might be seen in Figure 14 [35]. 

 

Figure 14 Daily consumption from one house in NY and duck curve, data taken from 

Pecan Street 

 

5.3. Machine Learning training and forecasting experiment set up  

There is a wide range of statistical analysis tools, such as MATLAB, R, Microsoft Excel, Python 

(Pandas), or Tableau. They are used to draw meaningful interpretations, visualize or compare 

trends as well as report of the research findings. In this thesis, the energy analytics and predictions 

were made in Python programming language with the help of libraries used for machine learning 

and data analytics, such as pandas and Keras. Anaconda Jupyter Notebook which is a web-

based data analysis environment was used. The example of how to train neural networks (NN) 

models are explained in the following sections. 

5.3.1. Training the LSTM Network 

Commonly, the process of building an ML algorithm starts with the development of a simple 

network, either directly applying architectures that have already been successfully used to solve 

this type of problem or using hyperparameters that have already given useful results before. In 

this thesis, the author decided to follow this approach and choose as a reference the following 

tutorial [30] which focuses on a forecasting model construction using LSTM and RNN models. 

Below, the training process will be explained in detail on the example of the LSTM model.  

5.3.1.1. Preparing data 

Before the start of building and training the model, it is important to perform data clearing and 

data normalization.  
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Data Clearing. If the time series contains noisy and missing values, the noisy values are 

smoothed, and the missing values are replaced by the appropriate method [23]. 

Data Normalization. Normalization is the scaling of data from the original range so that all values 

are in the range 0 to 1. Normalization requires knowledge or estimation of the minimum and 

maximum observed values [33]. An example of normalization code is presented below:  

 

Figure 15 Data Normalization example using MinMaxScaler function, based on the 

tutorial [30] 

Splitting the data. To achieve successful time series forecasting we need to configure an LSTM 

network. First, we will split the total household consumption data into two parts: a training set 

and a test set. Since the dataset is 6-month long, we take the first three months for the training 

set, and the remaining 3 months of data is used for the test set. 

5.3.1.2. LSTM architecture building 

There are several hyperparameters that influence the quality of the forecasting result. Adjusting 

these hyperparameters is the process of modifying network components which helps us to 

achieve maximum performance and accuracy of the model. Several examples are presented 

below:  

Table 2 Hyperparameters chosen for the LSTM model training 

Hyperparameter 

name 

Chosen 

type/value  

Explanation  

Optimizer 

(solver) 

adam The optimizer is responsible for the minimization of the 

objective function of the NN [31].  Adam optimization is a 

stochastic gradient descent method that is based on adaptive 

estimation of the first-order and second-order moments [32]. 

Loss MSE The purpose of loss functions is to compute the quantity that a 

model should seek to minimize during training. Regression loss 

function was chosen - mean_squared_error. This type of loss 
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5.3.1.3. Forecasted Results 

The results of the forecasting are illustrated in Figure 16 and Figure 17 below. The visualized 

consumption and generation curve is for the 6-month range (05.2019-11.2019) of the house № 

3000. From Figure 16 is can be observed that the predicted curve follows the shape of the actual 

power consumption curve and correctly identifies the peaks. From the visual interpretation, it is 

noticeable that a simple RNN model made forecasting with higher accuracy; in the following 

subsection we will prove it quantitatively with the help of accuracy metrics. 

 

Figure 16 Predictions made by simple RNN model  

Figure 17 demonstrates predictions made by the LSTM model. The accuracy is not high; however, 

as with the earlier Figure 16, we can see that the predictions curve (red) resembles the shape of 

the real electricity consumption curve (blue).  

computes the mean of squares of errors between labels and 

predictions [32]. 

Number of 

epochs 

10 Number of training iterations 

Batch size 

(normalization) 

1000 Determines how often the network weights are updated. Batch 

normalization is done before entering each layer. 

Dropout  0,15 Slows down learning with regularization methods to avoid 

overfitting for NN.  

Activation tanh Layer activation function. Hyperbolic tangent activation function 

was chosen.  



Analysis of capabilities of AI for Local Energy Communities to provide flexibility to the grid Pg. 34 

 

 

Figure 17 Predictions made by LSTM model 

5.3.1.4. The quality of forecasted results 

After the forecasting was done, it is necessary to evaluate the model accuracy. There are several 

performance measures parameters used to assess the accuracy of time series data forecasting 

using Python, called metrics. The most common performance parameters are: Mean Absolute 

Error (MAE), Mean Squared Error (MSE), Root Mean Absolute Error (RMSE), R-squared (R2). 

- MAE is an average of the forecast positive error values. 

- MSE is an average of the squared forecast error values. Squaring the forecast error 

values forces them to be positive; it also has the effect of putting more weight on large 

errors [44]. MSE of zero means no error occurred.  

- RMSE is calculated as square root of the MSE. RMSE of zero means no error. 

- R² is the square of the Correlation Coefficient (R) and it is calculated by the sum of squared 

of prediction error divided by the total sum of the square which replaces the calculated 

prediction with mean. R² is between 0 to 1. The larger R² is the higher the correlation 

between actual value and predicted values. Smaller the R² poorer the model. 

In the forecasting code, R2 metric was used to evaluate accuracy of both LSTM and RNN models. 

The predictions presented the following results:  

- R2 Score of RNN model =  0.543942483197771,  

- R2 Score of LSTM model =  0.4096853402745917 

Therefore, in the case of 6-month one house load forecasting, RNN model performs slightly 

better.  
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6. Flexibility provision use case  

6.1. Twenty-five houses flexibility analysis 

In this section, an analysis of available data on appliance consumption was performed. In Table 

3, all appliances that appeared in the database from Pecan street were listed. Peak power 

consumption values from all analyzed twenty-five houses were identified from the database as 

well as a particular house № 3000 was taken to perform further analysis.  

Table 3 Appliances information from the Pecan street dataset of 25 houses from New 

York.  

Measured 

Appliances 

Numbe

r of 

house

s with 

the 

applia

nce  

Peak power 

consumpti

on [kW] – 

all 25 

houses 

(from the 

dataset) 

Peak power 

consumpti

on [kW] – 

house № 

3000 (from 

the dataset) 

Average 

power 

consumpt

ion [kW] 

(from the 

dataset) – 

all 25 

houses  

Typical 

range 

(min-max) 

of power 

consumpt

ion [kW], 

taken 

from [8] 

Potential 

Flexibilit

y and 

demand 

response 

program

s  

EV charging 14  7,035 3,872 car 1 

2,735 car 2 

0,192 2 - 7  Yes1 

Washing 

machine 

16 1,015 0,910 0,0043 0,5  Yes  

Clothes 

dryer 

17 6,004 0,815 0,0665 1 - 4 Yes 

Jacuzzi 3 1,87 - 0,096 3 - 7  Yes 

Dish washer 12 1,374 1,342 0,0142 1,2 -1,5 Yes  

Air 

Compressor  

11 3,046 2,224 0,146 - Yes 

Kitchen 

Appliances 

(incl. light)  

18 1,496 0,857 0,0357 - No 

Electric 11 14,039 0,288 0,043 2 - 5 Yes2 
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heater 

(heating or 

radiant floor 

heating) 

Water 

heater  

10 13,099 - 0,201 6,6 – 8,8 Yes 

Pump (used 

to circulate 

water in a 

hydronic 

heating or 

cooling 

system) 

5 0,61 0,259 0,081 0,2 – 0,4  Yes 

Living room 

(incl. light) 

6 4,65 1,215 0,075 - No 

Bedroom 

Appliances 

(Inc. Light) 

4 1,436 1,402 0,029 - No 

Furnace and 

air handler 

11 1,196 - 0,084 1 – cooker 

0,02 –hood 

Rather 

Not 

Freezer 7 1,25 0,606 0,085 0,3 – 0,4 No 

Microwave  3 1,006 - 0,005 0,6 – 1,7  No 

Refrigerator 12 1,213 - 0,058 0,15 – 0,4  No 

Oven  6 3,913 - 0,015 2,1  Yes 

Cooktop or 

cooktop and 

oven 

10 4,37 - 0,037 1,4 – 1,8 

(w/o oven) 

Rather 

not 

Garage 

Appliances 

(incl. light) 

7 1,501 - 0,052 

 

- No 

Note: *1,2 – we send the signal to decide when to charge  
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For the purpose of analysis, the peak power consumption values of all available appliance’s from 

25 houses for 6 months were taken. The proportion of each appliance consumption is presented 

in Figure 18. 20% of overall electricity household consumption comes from heating elements.  

 

Figure 18 Percentage of consumption of all measured appliances in all 25 houses in New 

York (Pecan Street Database) 

6.2. One house flexibility analysis  

Analyzing the capability of available devices to supply flexibility, it is essential to analyze the 

consumption patterns of energy-intensive applicants. For illustration, we take a stand-alone 

electric space heater consumption profile. In Figure 19 (top) the seasonality is evident; since the 

measurement was done from May until November, we can see that the heating requirements 

drop with temperature rise in June and it restarts again in October. While the heating season is 

October Figure 19 (middle), it is clear from the peaks that the heating element was switched on 

every day. During the heating season in the middle of October, the heating element was switched 

on several times during the day, as visible from Figure 19 (bottom).  
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Figure 19 Electric heater consumption, from top to bottom: 6-months range, 1-month 

range, 1-day range, data taken from Pecan street New York database 

The second most energy-intensive consumption appliance (19%, Figure 18) of overall electricity 

consumption is the electric water heater. To be able to use flexibility from the water heating, 

research [14] proposes to use, so-called domestic hot water buffers (DHW buffers) which are 

water heaters that can preheat and store heat in a water buffer. Such buffer allows the decoupling 
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of hot water production and consumption which offers opportunities to create flexibility. 

Not all electrical appliances that we use in our houses can deliver flexibility to the same extent 

since the switching off and on time as well as consumption patterns are significantly different. In 

the thesis, with inspiration taken from [17], we group all devices into two categories, into 

appliances which consumption can be shifted to a different period – demand shifting devices 

(as well called: demand shifting, schedulable or postponable appliances), and devices with real-

time control capabilities (using power controllers), so-called real-time devices. As described in 

[17]: 

- Schedulable appliances: fully flexible and can be turned on at a later time when the real-

time electricity price is reasonable, e.g., washing machine, dishwasher, and air 

conditioning  

- Real-time devices: have a low degree of flexibility depending upon the basic needs and 

consumers' priority, e.g., lighting devices, computers, and televisions can be the 

candidates of this category.  

Looking at the consumption from house № 3000, Figure 20, the largest share of power 

consumption comes from the EV charging station (40%); the reason for that is the two EVs that 

the house possesses. This is a potential source of flexibility – the appliance that can be controlled 

externally. The study done in [14] describes the process of making use of EV chargers for flexibility 

purposes. The user sets the expected time of departure and charging time through a linear portal 

site. DR control system is able to then interrupt the charging process when needed.  

Another large consumption device is an air compressor (13%). Air compressors convert electrical 

energy into potential energy store in a pressurized gas. Air compressors compress the gas under 

high pressure. This device falls into the category of postponable appliances.  

The third share of the chart belongs to the living room (8%), and bedroom (8%). Estimation of 

appliances that can be used in these types of rooms: TV, music system, lighting system or wi-fi 

router are real-time appliances with a lower degree of flexibility.  

In the third and fourth positions, there are useful appliances from the flexibility point of view: 

dishwasher (8%) a washing machine (5%), respectively. Usually, another appliance that 

accompanies the two is an electric clothes dryer. All three so-called wet appliances. Wet 

appliances are postponable. Postponing can be achieved either through direct engagement with 

end-users, by asking them to use their devices at a particular hour, or indirectly through automatic 

switching on and off signals (using power controllers). This can be done during the low tariff times 

or at night (threshold can be set), which can be equal to the times when the electricity is the 

cheapest and there is a need from the energy supplier to consume the electricity. This process of 

demand-side management is called demand shifting. [15] explains it as following: if demand is 

needed to be lower tomorrow, intelligent consumers can plan ahead and—if their process allows 
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it—do their tasks earlier or later. Processes that can be shifted typically belong to one of the 

following categories:  

- Inert thermal processes (heating, cooling) 

- Inert diffusion processes (ventilation, irrigation, etc.)  

- Mass transport (pumps with tanks, conveyor belts, etc.) 

- Logistics (schedules, dependencies, lunch breaks, etc.) [25] 

 

 

Figure 20 Percentage of consumption of all measured appliances in house № 3000 in 

New York (Pecan Street Database) 

6.3. Consumption forecasting of selected appliances  

In this section, several selected houses and selected appliances were chosen to perform the load 

forecasting. During the forecasting, we have in mind the simplified model of a possible flexibility 

exchange market structure, which is shown in Figure 21. The model stands for the situation when 

the users register voluntarily for participation in flexibility provision, and they receive monetary 

compensation if they change their baseline profile. Adapted with modifications from [16]. 
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Figure 21 Possible flexibility exchange model in which DSO, BRP, or an aggregator can 

be in control of the management of devices with DR capabilities [16]. 

For the forecasting purposes, we analyze two houses, №3000 and №1222, which both have PV 

generation and one or two EVs and then a range of different large-consumption devices. Figure 

22 demonstrates available appliances from selected houses from the dataset:  

 

Figure 22 Measured flexible appliances in the house №3000 and №1222 – both with PV 

generation 

 

6.3.1. Forecasted Results  

In the code, the author tried to visualize and forecast all the available appliances; however, for 
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the purpose of the example, only one appliance the electrical dryer load pattern from the house 

№3000 was visualized for 6-month (Figure 23), 1-month (Figure 24) and 1-day time-range (Figure 

25) 

 

Figure 23 Electricity data visualization for an electrical dryer, house № 3000, 6-month 

range 

 

Figure 24 Electricity data visualization for an electrical dryer, house № 3000, 1-month 

range 
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Figure 25 Electricity data visualization for an electrical dryer, house № 3000, 1-day range 

As for the earlier forecasting, two main ML techniques were used: LSTM and simple RNN. Here 

we forecast 6-month (05.2019 - 11.2019) long consumption of an individual appliance 

consumption pattern; we again take one house № 3000 and forecast the load of an electric 

clothes dryer. In this case, from the visual assessment we can make an assumption that the 

LSTM model performed better than simple RNN since as can be seen from Figure 26 the 

forecasting (red curve) does not reach negative values (Figure 27). The model can perform better 

since the forecasting peaks almost twice smaller than the real consumption; therefore, the LSTM 

model can be trained better, or some hyperparameters should be adjusted to achieve better 

results.  

 

Figure 26 Predictions made by LSTM model (electrical clothes dryer example) 
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Figure 27 Predictions made by a simple RNN model (electrical clothes dryer example) 

Indeed, looking at the performance (forecasting accuracy) parameter square of the Correlation 

Coefficient  - R2, for more information please read subsection 5.3.1.4, we can conclude that the 

LSTM model performed better than the simple RNN model since the R2 Score of LSTM model 

is closer to zero. We can see that the LSTM score of R2 is significantly lower, meaning that the 

model makes forecasting with fewer errors. The values of R2 scores are:  

- R2 Score of LSTM model =  0.2654782470015554 

 

- R2 Score of RNN model =  0.5272295667696455 

 

6.3.2. Flexibility forecasting conclusions  

After the forecasting experiment using advanced methods of Machine Learning, it can be 

concluded that both methods (RNN and LSTM) are suitable for consumption/generation 

forecasting both for individual appliances, all appliances for one house and accumulative 

consumption/generation of a local energy community.  
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7. Business Models associated with LECs  

As was pointed out before, however worth mentioning, energy communities are not profit-driven 

entities, which bring different value-added services (VAS); they, have an increased sense of local 

community and collective ownership, they bring social benefits. VAS that LECs provide are 

aiming at meeting customer needs (lowering energy bills, optimizing energy use, being a 

prosumer, choosing a specific energy mix, etc.), or services primarily meeting energy grid 

needs (articulating DER that provide energy, capacity, regulation, and/or other services to the 

power system) [37]. There are different BM archetypes that exist both theoretically and as a 

real-world installation; this, chapter discusses the main types, taking into account different 

objectives and stakeholders involved.  

All business models presented below are based on the shared economy principles (when the 

profit is shared among stakeholders equally). This arrangement builds the required trust 

bridges between all the stakeholders, and very particular with the prosumers. Depending on 

the particular services that LECs offer the business model differs and the stakeholders involved 

are different. There is a large number of business models (BMs) that are designed to 

materialize on several services, while maximizing LEC’s full potential.  

7.1. Interaction of LECs with other energy market players 

The following section aims at setting up the relationships between LECs and different 

stakeholders (LECs business partners) operating on the energy markets: DSOs and TSOs, 

aggregators, EV charger owners, generation assets owners, and finally other LECs and 

microgrids. Since a LEC cannot be owned by any energy market player, the interactions which 

will arise between LECs and energy companies are important to investigate. Different BMs and 

revenue stream structures are investigated in relation to each of the entities.  

 

7.1.1. LECs and DSOs  

According to the Directive 2019/944/EU, DSOs in the EU cannot own LEC; therefore, it should 

treat LECs as a competitor, partner, and consumer at the same time. There are different 

possibilities of using the distribution grid by LEC, and it can lease, build, or buy the networks. 

Figure 28 depicts the main needs in the context of a DSO and LEC cooperation.  
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Figure 28 DSO and LECs relationship 

DSO is indirectly taking part in most of the BM presented in this chapter since LEC is not always 

completely isolated from the main grid. Several business models associated with DSO and a LEC 

are proposed in [37]:  

1. Utilities can provide DER as a service in exchange for a fixed monthly fee. It could make it more 

affordable to all customers and facilitate geographical optimization of RES deployment through 

the grid. The main utility’s role is that of a market facilitator and operator.  

2. Another example of a business model is peer-to-peer energy services transactions within the 

LEC or between different LECs, typically supported by blockchain technology and done 

automatically.   

 

7.1.2. LECs and aggregators  

By far one of the most important LEC partners is an aggregator. The aggregator’s goal is to collect 

and trade available flexibility from different generation and consumption points. LEC is a reliable 

source for flexibility since it can shift the demand up or down. This thesis is focusing on assessing 

flexibility provision from LECs either directly to a DSO or indirectly to an aggregator company. 
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Figure 29 Aggregators and LECs relationship 

Business models associated with an aggregator:  

1.  Community flexibility aggregation. LEC can collaborate with an aggregator, monetizing on 

the flexibility provision. The aggregator can offer flexibility services directly to the DSO or as 

an electricity retailer through the different markets available (frequency regulation, reserves 

and other ancillary services) so that this can balance its portfolio and therefore avoid deviation 

penalties [37]. Nowadays it is no longer difficult to access flexibility markets for small-scale 

generation, since European directives advising to reduce minimum generation requirements 

and bureaucracy associated with that. Residential demand flexibility has become commercially 

profitable for LECs.  

One of the BM arrangements is: community aggregators may be created to operate at a local 

level and the flexibility collected is grouped by a larger aggregator. Alternatively, community 

aggregators can also operate directly at the PS level, provided they are able to meet the required 

conditions. Bilateral contracts should be signed between community aggregators and LECs 

through which LECs commit to deliver fixed amounts of flexibility by changing energy 

consumption patterns, benefiting from reduced electricity bills, and using electricity more 

efficiently [40]. 

 

7.1.3. LECs and electrical vehicles 

Smart mobility and EVs represent a good asset for solid business models. The new BM arise 

after the transition from the current context of large amounts of individually-owned and 

inefficiently-operated EVs, to small amounts of smartly and system-integrated, collectively-owned. 

EVs. By deploying a LEC which brings together users and other public transport infrastructure 

allows a more satisfactory coverage of the mobility services demand while reducing the energy 
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requirements and emission implications associated with the manufacture of all these individually-

owned vehicles [38].  

Some business models from this sector are:  

1. A LEC can monetize on participation in such an organic mobility network by providing demand 

response through Vehicle to Grid (V2G), Vehicle to Building (V2B), Vehicle to Home (V2H), 

Vehicle to Vehicle (V2V), or Vehicle to Load (V2L). V2G working principle is: if an EV owner is 

participating in V2G program, he or she is able to sell electricity to the grid during hours when the 

car is not in use (or high tariff times), and to charge the car during low tariff times. It will also be 

possible to connect cars with V2G technology to a house and use them as an uninterruptible 

power supply, in this case it is called Vehicle to Building (V2B).  

2. Another BM is vehicle sharing solutions, carpooling. E-mobility cooperatives are created by 

engaging shareholders (households, SMEs, public entities, social and technical entrepreneurs, 

etc.) to provide community public transportation, car-sharing or car-pooling services. A working 

example of such a BM is a Spanish mobility cooperative called Som Mobilitat, which provides 

rental service of electric cars, with EVs which can be either owned by the cooperative or by 

individuals, enterprises and public institutions [40]. 

3. Smart charging. In energy communities with high shares of EV (like in the case with the houses 

from Pecan Street data), smart charging schemes can be designed to schedule load operation to 

off-peak times or when local energy generation is available, thus optimizing the utilization of local 

resources and flattening demand peaks [39].  

 

7.1.4. LECs and other energy market participants   

A LEC can sell on different market types as freely as other parties. If LEC members are not willing 

to participate in day-to-day trading, they can sign a contract with an electricity retailer in which an 

electricity retailer can trade on behalf of a LEC.  

1. Local energy markets (LEM) is another BM that can bring together different energy market 

participants – consumers, prosumers, LECs, energy traders, etc. In LEM, trading conditions, i.e. 

pricing, can be directly negotiated among market participants (prosumers, consumers, LECs,), 

allowing LECs to select to whom they sell their electricity and consumers to choose the market 

participant they buy their this electricity from, at the same time as they know how it is generated 

[40]. 

LEM is established to promote P2P energy exchanges either in a fully decentralized way, allowing 

community members to freely negotiate with each other, or more centrally, through intermediate 

entities [40]. 
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8. Conclusions and future work 

8.1. Main contributions from the thesis  

This thesis researched novel energy market participants - Local Energy Communities both 

theoretically and practically. As regards the theoretical part, the author tried to look at the 

problematic of LECs from different perspectives: the extensive literature review, legal framework 

in EU, advantages and disadvantages of LECs, current definition of LECs, their new roles, 

possibilities, opportunities and obligations, legal framework of LEC. The research was done on 

the relationships between LECs and their business partners, as well as selected business cases 

were described. The particular part of the thesis was dedicated to the flexibility provision: state of 

the art, flexibility provision methods, appliances behavior and classification, as well as description 

and consumption curve visualization of the appliances from analyzed dataset.  

The main goal of the practical part was to investigate to which extent LECs can be actively 

involved in the flexibility market. Machine learning forecasting capabilities were used in order to 

enable LECs to forecast their future collective as well as individual load. The ultimate goal then is 

to be able to operate on the local flexibility market. For flexibility provision, LECs are then 

financially remunerated as well as the electricity use becomes more efficient.  

The main contributions of the thesis are summarized below: 

 

• DATA ANALYTICS AND VISUALISATION. The topic of flexibility provisions from LECs 

was extensively studied both theoretically and practically. The practical part consists of 

two main tasks. The first being to perform basic data analytics, visualization, 

comparison and interpretation, and the second is electricity load forecasting using ML 

techniques. In order to achieve these goals, the author made use of the dataset, which 

was requested by the Pecan Street company. The analyzed data consisted of electricity 

flow recordings of 25 different houses from New York. The data were very precise and 

allowed the author to perform data visualization and comparison both for individual 

houses with detailed electricity consumption from different appliances and to perform 

collective analysis and comparison. 

 

• LOAD FORECASTING USING ML. As regards the second goal of load forecasting, the 

author made forecasting of overall electricity consumption and generation of one 

representative house number 3000 during the period of 6 month period (Figure 16 and 

Figure 17). Another forecasting that was performed used one energy-intensive 

household device - electrical clothes dryer from the house the number 3000 (Figure 26 

and Figure 27); forecasting was done for 6 month period as well. The process of ML 

model creation is composed of data pre-processing and interpretation, training the 

model, adjusting hyperparameters, and finally results in interpretation. 
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• TECHNIQUES USED FOR FORECASTING AND THEIR ACCURACY. Two main ML 

techniques were used for load forecasting, namely: LSTM and simple RNN. A 

theoretical introduction of both techniques was done. In the first case or overall house 

energy load forecasting, the simple RNN model performed slightly better than LSTM 

model (assessment metrics - performance parameter R2), however for the second 

case of individual devices consumption forecasting, the picture was reverted, and 

LSTM showed better final results than RNN (again assessment metrics - 

performance parameter R2). 

 

• FLEXIBILITY ANALYSIS. The analysis of the electrical appliances' behavior and 

classifications according to their operation mode, showed us that ML forecasting 

methods and data analysis methods could be used both to forecast and make sense 

of the consumption and/or generation data.    

 

• BUSINESS MODELS REVIEW. Relationships between LECs and other energy 

markets participants (DSOs and TSOs, aggregators, EV charger owners, generation 

assets owners, other LECs and microgrids) were described. The most promising 

potential business models were identified and described paying attention to their 

challenges and development strategies. The identified business models have different 

objectives and stakeholders involved. 

8.2. Future work 

This thesis focus field was flexibility provision from LECs. In the future, the research and 

experiments can be done on the following topics: 

1. An extensive financial analysis on potential energy and monetary savings both for LECs, 

aggregators or DSOs in the context of LECs operating on the flexibility market and aggregating 

community flexibility.  

2. Software and hardware model development and testing for automatic flexibility provision from 

LECs. Automatic dispatch, decision-making algorithms based on load forecasting.  

3. Interviews with existing LECs on the topic of issues associated with their operation in the 

context of flexibility.  
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Appendix A - Temporary planning and costs  

The budget of this project includes only the time and personnel devoted to the project. The laptop 

and internet connection is included in the salary of the personnel.  

In the process of writing the thesis, no laboratory equipment or paid computer software was used. 

Therefore, the main component of potential total costs of the thesis is the working hours of 

personnel. The personnel cost breakdown is done accounting to the time devoted by the author 

to develop the thesis (1 in total), as well as the time of external consultants (2 in total) 

In order to calculate the thesis author costs, we should make a few assumption, and the following 

approach was taken. The Master’s Thesis at UPC - Universitat Politècnica de Catalunya at the 

faculty ETSEIB is equal to 30 ECTS (European Credit Transfer and Accumulation System). 

According to the European Commission [19], one ECTS equal to about 28 hours of study. That 

makes 840 hours in total. The thesis was written during January-June 2021. The thesis was 

written in Spain, where the salary for a junior engineer position ranges between 22-27 €/. 

According to glassdoor.com, in Barcelona, this amount is equal to 23 €/h (with VAT).  

Regarding the external consultants, who can be considered superior energy engineers with an 

average salary of 45€/h. Taking into account the information above, Table 4 and Table 5 can be 

proposed:  

Table 4 Number of hours dedicated to Thesis development by the author 

Months  Thesis Author 

Working hours  

Consultants 

Working hours  

January  152 2 

February  152 3 

March  176 30 

April  160 30 

May 160 15 

Jun  40 10 

Total  840 89 
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Table 5 Total project cost 

Thesis author cost, 

before VAT reduction 

External consultants cost, 

before VAT reduction 

Total , before VAT 

reduction  

VAT (21%) 

840 * 23 = 19 320 € 89 * 45 = 4 005 € 23 325 € 4 898.25 € 
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Appendix B - Environmental Impact 

This thesis had no significant impact associated with the environment. However, there are several 

aspects we can consider as a potential thread to the environment: electricity usage to charge 

personal computer, electricity needed to run servers at which coding for machine learning was 

trained, since the model uses significant amount of energy to perform the machine learning tasks.  

Therefore, to summarize, energy consumption sources that were used during the thesis are: 

personal computer, cloud storage and cloud-based open-source coding software. Therefore, it is 

clear that machine learning has carbon footprint. The Thesis was written on MacBook Air (13-

inch, Early 2015) with processor 1,6 GHz Dual-Core Intel Core i5, which average power 

consumption under load is equal approximately to 22 W. Knowing this we multiply this number 

with number of hours used to code, verify and run the training of machine learning algorithms in 

Python using Jupyter Notebook, which was equal to approximately to 100h. Then, using the 

source [45] on electricity emissions factors, which in Spain is equal to 0.309 kgCO2e per kWh, it 

is considered to be the average electricity emissions factor in Europe. Multiplying all three 

numbers gives as:  

Power consumption ∗  Time ∗  Carbon Factor in Spain 

22𝑊 ∗ 100ℎ = 22 kWh ∗  0.309 kg eq. CO2/kWh =  6.8 kg eq. CO2  

Therefore, the CO2 emissions associated with the training of the machine learning model for this 

thesis is equal to 6.8 kg eq. CO2. It is expressed in carbon dioxide equivalent which is usually 

used to describe different greenhouse gases with a common unit (CO2e). 

However, the environmental damage (or CO2 produced during the electricity generation to power 

the servers and charge the computer) can be compensated by the rational use of energy with the 

help of load and generation forecasting that was proposed in this thesis.  
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