A Smart Charging Assistant for Electric Vehicles Considering Battery Degradation, Power Grid and User Constraints

Abstract

Der Anstieg intermittierender Stromerzeugung aus erneuerbaren Energiequellen erschwert zunehmend einen effizienten und zuverlässigen Betrieb der Versorgungsnetze. Gleichzeitig steigt die Zahl der Elektrofahrzeuge, die zum Aufladen erhebliche Mengen an elektrischer Energie benötigen, rapide an. Energie- und Mobilitätssektor sind somit unweigerlich miteinander verbunden, was zur Folge hat, dass zuverlässige Elektromobilität von einer robusten Stromversorgung abhängt. Darüber hinaus empfinden Fahrzeugnutzer ihre individuelle Mobilität als eingeschränkt, da Elektrofahrzeuge im Vergleich zu Fahrzeugen mit Verbrennungsmotor derzeit eine geringere Reichweite aufweisen und mehr Zeit zum Aufladen benötigen. In der vorliegenden Arbeit wird daher ein neuartiges Konzept sowie eine Softwareanwendung (Ladeassistent) vorgestellt, die den Nutzer beim Laden seines Elektrofahrzeuges unterstützt und dabei die Interessen aller beteiligten Akteure berücksichtigt. Dafür werden zunächst Gestaltungsmerkmale möglicher Softwarearchitekturen verglichen, um eine geeignete Struktur von Modulen und deren Verknüpfung zu definieren. Anschließend werden anhand realer Daten sowohl Energieverbrauchs- als auch Batteriemodelle entwickelt, verbessert und validiert, welche die Fahr- und Ladeeigenschaften von Elektrofahrzeugen abbilden. Die wichtigsten Beiträge dieser Arbeit resultieren aus der Entwicklung und Validierung der folgenden drei Kernkomponenten des Ladeassistenten. Als Erstes wird das individuelle Mobilitätsverhalten der Nutzer modelliert und anhand von aufgezeichneten und halbsynthetischen Fahrdaten von Elektrofahrzeugen ausgewertet. Insbesondere wird ein neuartiger, zweistufiger Clustering-Algorithmus entwickelt, um häufig besuchte Orte der Nutzer zu ermitteln. Anschließend werden Ensembles von Random-Forest-Modellen verwendet, um die nächsten Aufenthaltsorte und die dort typischen Parkzeiten vorherzusagen. Als Zweites wird gemischt-ganzzahlige stochastische Optimierung angewandt, um Ladestopps in einem zukünftigen Zeithorizont möglichst komfortabel und kostengünstig zu planen. Dabei wird ein graphenbasierter Algorithmus eingesetzt, um den Energiebedarf und die Eintrittswahrscheinlichkeit von Mobilitätsszenarien eines Elektrofahrzeugnutzers zu quantifizieren. Zur Validierung werden zwei alternative Ladestrategien definiert und mit dem vorgeschlagenen System verglichen. Als Drittes wird ein nichtlineares Optimierungsschema entwickelt, um vorhandene Zeit- und Energieflexibilität in Ladevorgängen von Elektrofahrzeugen zu nutzen. Die Integration eines detaillierten Batteriemodells ermöglicht eine genaue Quantifizierung der Kosteneinsparungen aufgrund einer geringeren Batteriealterung und dynamischer Stromtarife. Anhand von Daten aus realen Ladevorgängen von Elektrofahrzeugen können Einflüsse auf die Rentabilität von Vehicle-to-Grid-Anwendungen herausgearbeitet werden. Aus der Umsetzung des vorgestellten Ansatzes in einer realistischen Umgebung geht ein Architekturentwurf und ein Kommunikationskonzept für optimierungsbasierte intelligente Ladesysteme hervor. Dabei werden weitere Herausforderungen im Zusammenhang mit standardisierter Ladekommunikation, Eingriffen der Energieversorger und Nutzerakzeptanz aufgedeckt

    Similar works