326 research outputs found

    Performance Analysis of Genetic Algorithm with PSO for Data Clustering

    Full text link
    Data clustering is widely used in several areas like machine learning, data mining, pattern recognition, image processing and bioinformatics. Clustering is the process of partitioning or grouping of a given set of data into disjoint cluster. Basically there are two types of clustering approaches, one is hierarchical and the other is partitioned. K-means clustering is one of the partitioned types and it suffers from the fact that that it may not be easy to clearly identify the initial K elements. To overcome the problems in K-means Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) techniques came into existence. A Genetic Algorithm (GA) is one of hierarchical approach and can be noted as an optimization technique whose algorithm is based on the mechanics of natural selection and genetics. Particle Swarm Optimization (PSO) is also one of the hierarchical search methods whose mechanics are inspired by the swarming. The PSO algorithm is simple and can be developed in a few lines of code whereas GAs suffers from identifying a current solution but good at reaching a global region. Even though GA and PSO have their own set of strengths they have weaknesses too. So a hybrid approach (GA-PSO) which combines the advantages of GA and PSO are proposed to get a better performance. The hybrid method merges the standard velocity and modernizes rules of PSOs with the thoughts of selection, crossover and mutation from GAs. A comparative study is carried out by analyzing the results like fitness value and elapsed time of GA-PSO to the standard GA and PSO

    USING MACHINE LEARNING TO OPTIMIZE PREDICTIVE MODELS USED FOR BIG DATA ANALYTICS IN VARIOUS SPORTS EVENTS

    Get PDF
    In today’s world, data is growing in huge volume and type day by day. Historical data can hence be leveraged to predict the likelihood of the events which are to occur in the future. This process of using statistical or any other form of data to predict future outcomes is commonly termed as predictive modelling. Predictive modelling is becoming more and more important and is trending because of several reasons. But mainly, it enables businesses or individual users to gain accurate insights and allows to decide suitable actions for a profitable outcome. Machine learning techniques are generally used in order to build these predictive models. Examples of machine learning models ranges from time-series-based regression models which can be used for predicting volume of airline related traffic and linear regression-based models which can be used for predicting fuel efficiency. There are many domains which can gain competitive advantage by using predictive modelling with machine learning. Few of these domains include, but are not limited to, banking and financial services, retail, insurance, fraud detection, stock market analysis, sentimental analysis etc. In this research project, predictive analysis is used for the sports domain. It’s an upcoming domain where machine learning can help make better predictions. There are numerous sports events happening around the globe every day and the data gathered from these events can very well be used for predicting as well as improving the future events. In this project, machine learning with statistics would be used to perform quantitative and predictive analysis of dataset related to soccer. Comparisons of these models to see how effectively the models are is also presented. Also, few big data tools and techniques are used in order to optimize these predictive models and increase their accuracy to over 90%

    Scheduling Problems

    Get PDF
    Scheduling is defined as the process of assigning operations to resources over time to optimize a criterion. Problems with scheduling comprise both a set of resources and a set of a consumers. As such, managing scheduling problems involves managing the use of resources by several consumers. This book presents some new applications and trends related to task and data scheduling. In particular, chapters focus on data science, big data, high-performance computing, and Cloud computing environments. In addition, this book presents novel algorithms and literature reviews that will guide current and new researchers who work with load balancing, scheduling, and allocation problems

    Using and Interpreting the Bayesian Optimization Algorithm to Improve Early Stage Design of Marine Structures.

    Full text link
    Early stage naval structural design continues to advance as designers seek to improve the quality and speed of the design process. The early stages of design produce preliminary dimensions or scantlings which control the cost and structural performance of a vessel. Increased complexity in the evaluation of structural response has led to a need for efficient algorithms well suited to solving structural design specific optimization problems. As problem sizes increase, existing optimizers can become slow or inaccurate. The Bayesian Optimization Algorithm (BOA) is presented as one solution to efficiently solve problems in the structural design optimization process. The Bayesian optimization algorithm is an Estimation of Distribution Algorithm (EDA) that uses a statistical sample of potential design solutions to create and train a Bayesian network (BN). The application of BNs is well suited for nearly decomposable problem composition which closely matches rules based structural design evaluation. This makes the BOA well suited to solve complex early stage structural optimization problems. Additionally, the learning processes used to create and train the BNs can be analyzed and interpreted to capture design knowledge. This return of knowledge to the designer helps to improve designer intuition and model synthesis in the face of more complex and intricate models. The BNs are thus analyzed to augment design problem understanding and explore trade-offs within the design space. The result matches a paradigm shift in early stage optimization of naval structures. Designers gain better understanding of critical design variables and their interactions as compared to the previous focus on the single most optimal solution. This leads to efficient simulations which rapidly explore design spaces, document critical design variable relationships and enable the designer to create better early stage design solutions.PhDNaval Architecture and Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133317/1/tedevine_1.pd

    Bridging adaptive estimation and control with modern machine learning : a quorum sensing inspired algorithm for dynamic clustering

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 89-92).Quorum sensing is a decentralized biological process, by which a community of bacterial cells with no global awareness can coordinate their functional behaviors based only on local decision and cell-medium interaction. This thesis draws inspiration from quorum sensing to study the data clustering problem, in both the time-invariant and the time-varying cases. Borrowing ideas from both adaptive estimation and control, and modern machine learning, we propose an algorithm to estimate an "influence radius" for each cell that represents a single data, which is similar to a kernel tuning process in classical machine learning. Then we utilize the knowledge of local connectivity and neighborhood to cluster data into multiple colonies simultaneously. The entire process consists of two steps: first, the algorithm spots sparsely distributed "core cells" and determines for each cell its influence radius; then, associated "influence molecules" are secreted from the core cells and diffuse into the whole environment. The density distribution in the environment eventually determines the colony associated with each cell. We integrate the two steps into a dynamic process, which gives the algorithm flexibility for problems with time-varying data, such as dynamic grouping of swarms of robots. Finally, we demonstrate the algorithm on several applications, including benchmarks dataset testing, alleles information matching, and dynamic system grouping and identication. We hope our algorithm can shed light on the idea that biological inspiration can help design computational algorithms, as it provides a natural bond bridging adaptive estimation and control with modern machine learning.by Feng Tan.S.M

    On improving the performance of optimistic distributed simulations

    No full text
    This report investigates means of improving the performance of optimistic distributed simulations without affecting the simulation accuracy. We argue that existing clustering algorithms are not adequate for application in distributed simulations, and outline some characteristics of an ideal algorithm that could be applied in this field. This report is structured as follows. We start by introducing the area of distributed simulation. Following a comparison of the dominant protocols used in distributed simulation, we elaborate on the current approaches of improving the simulation performance, using computation efficient techniques, exploiting the hardware configuration of processors, optimizations that can be derived from the simulation scenario, etc. We introduce the core characteristics of clustering approaches and argue that these cannot be applied in real-life distributed simulation problems. We present a typical distributed simulation setting and elaborate on the reasons that existing clustering approaches are not expected to improve the performance of a distributed simulation. We introduce a prototype distributed simulation platform that has been developed in the scope of this research, focusing on the area of emergency response and specifically building evacuation. We continue by outlining our current work on this issue, and finally, we end this report by outlining next actions which could be made in this field

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity
    • …
    corecore