Using and Interpreting the Bayesian Optimization Algorithm to Improve Early Stage Design of Marine Structures.

Abstract

Early stage naval structural design continues to advance as designers seek to improve the quality and speed of the design process. The early stages of design produce preliminary dimensions or scantlings which control the cost and structural performance of a vessel. Increased complexity in the evaluation of structural response has led to a need for efficient algorithms well suited to solving structural design specific optimization problems. As problem sizes increase, existing optimizers can become slow or inaccurate. The Bayesian Optimization Algorithm (BOA) is presented as one solution to efficiently solve problems in the structural design optimization process. The Bayesian optimization algorithm is an Estimation of Distribution Algorithm (EDA) that uses a statistical sample of potential design solutions to create and train a Bayesian network (BN). The application of BNs is well suited for nearly decomposable problem composition which closely matches rules based structural design evaluation. This makes the BOA well suited to solve complex early stage structural optimization problems. Additionally, the learning processes used to create and train the BNs can be analyzed and interpreted to capture design knowledge. This return of knowledge to the designer helps to improve designer intuition and model synthesis in the face of more complex and intricate models. The BNs are thus analyzed to augment design problem understanding and explore trade-offs within the design space. The result matches a paradigm shift in early stage optimization of naval structures. Designers gain better understanding of critical design variables and their interactions as compared to the previous focus on the single most optimal solution. This leads to efficient simulations which rapidly explore design spaces, document critical design variable relationships and enable the designer to create better early stage design solutions.PhDNaval Architecture and Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133317/1/tedevine_1.pd

    Similar works

    Full text

    thumbnail-image