
Bridging Adaptive Estimation and Control with

Modern Machine Learning: A Quorum Sensing

Inspired Algorithm for Dynamic Clustering

by

Feng Tan

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY "_L

September 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author
Department of Mechanical Engineering

August 20, 2012

OCT 2 2 2012

RARIES

Certified by............

7Th

/ .-...

Jean-Jacques Slotine
Professor

Thesis Supervisor

Accepted by ..
David E. Hardt

Chairman, Department Committee on Graduate Students

Bridging Adaptive Estimation and Control with Modern

Machine Learning: A Quorum Sensing Inspired Algorithm

for Dynamic Clustering

by

Feng Tan

Submitted to the Department of Mechanical Engineering
on August 30, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Quorum sensing is a decentralized biological process, by which a community of bac-
terial cells with no global awareness can coordinate their functional behaviors based
only on local decision and cell-medium interaction. This thesis draws inspiration from
quorum sensing to study the data clustering problem, in both the time-invariant and
the time-varying cases.

Borrowing ideas from both adaptive estimation and control, and modern machine
learning, we propose an algorithm to estimate an "influence radius" for each cell that
represents a single data, which is similar to a kernel tuning process in classical machine
learning. Then we utilize the knowledge of local connectivity and neighborhood to
cluster data into multiple colonies simultaneously. The entire process consists of
two steps: first, the algorithm spots sparsely distributed "core cells" and determines
for each cell its influence radius; then, associated "influence molecules" are secreted
from the core cells and diffuse into the whole environment. The density distribution
in the environment eventually determines the colony associated with each cell. We
integrate the two steps into a dynamic process, which gives the algorithm flexibility
for problems with time-varying data, such as dynamic grouping of swarms of robots.

Finally, we demonstrate the algorithm on several applications, including bench-
marks dataset testing, alleles information matching, and dynamic system grouping
and identication. We hope our algorithm can shed light on the idea that biological
inspiration can help design computational algorithms, as it provides a natural bond
bridging adaptive estimation and control with modern machine learning.

Thesis Supervisor: Jean-Jacques Slotine
Title: Professor

3

4

Acknowledgments

I would like to thank my advisor, Professor Jean-Jacques Slotine with my sincerest

gratitude. During the past two years, I have learned not only knowledge, but also

principles of doing research under his guidance. His attitude to a valuable research

topic, "Simple, and conceptually new", although sometimes "frustrating", is inspiring

me all the time. His broad vision and detailed advice help me all the way towards

novel and interesting explorations. He is a treasure to any student and it has been a

honor to work with him.

I would also like to thank my parents for unwavering support and encouragement.

All the time from childhood, my curiosity and creativity were so encouraged and my

interests were developed with their support. I feel peaceful and warm with them on

my side as always.

This research was sponsored in part by a grant from the Boeing corporation.

5

6

Contents

1 Introduction

1.1 Road Map

1.2 M otivations

1.2.1 Backgrounds.

1.2.2 Potential Applications

1.2.3 Goal of this thesis

1.3 Clustering Algorithms

1.3.1 Previous Work

1.3.2 Limitations of Current Classical

1.4 Inspirations from Nature

1.4.1 Swarm Intelligence

1.4.2 Quorum Sensing

13

14

. 15

. 15

. 16

. 17

. 17

. 18

Clustering Techniques 23

. 24

. 25

. 26

2 Algorithm Inspired by Quorum Sensing

2.1 Dynamic Model of Quorum Sensing

2.1.1 Gaussian Distributed Density Diffusion .

2.1.2 Local Decision for Diffusion Radius . . .

2.1.3 Colony Establishments and Interactions

2.1.4 Colony Merging and Splitting

2.1.5 Clustering Result

2.2 Mathematical Analysis

2.2.1 Convergence of Diffusion Tuning

2.2.2 Colony Interaction Analysis

7

29

. 29

. 31

. 33

. 35

. 36

. 37

. 39

. 39

. 43

2.2.3 Analogy to Other Algorithms4

3 Experimental Applications

3.1 Synthetic Benchmarks Experiments

3.2 Real Benchmarks Experiments

3.3 Novel Experiment on Application for Alleles Clustering

3.4 Experiments on Dynamic System Grouping

3.4.1 M otivation .

3.4.2 Application I. Clustering of mobile robots . . .

3.4.3 Application II. Clustering of adaptive systems .

3.4.4 Application III. Multi-model switching

4 Conclusions

4.1 Summary .

4.2 Future Work. .

8

49

. 49

. 56

. 59

. 70

. 71

. 72

. 75

. 79

83

83

86

46

List of Figures

1-1 Quorum sensing model

2-1 The interactions between two colonies

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

The two-chain shaped data model

Density distribution of two-chain shaped data model

Clustering result of the two-chain shaped data model

The two-spiral shaped data model

Density distribution of two-spiral shaped data model

Clustering result of the two-spiral shaped data model

The two-moon shaped data model

Density distribution of two-moon shaped data model

Clustering result of the two-moon shaped data model

The island shaped data model

Density distribution of island shaped data model

Clustering result of the island shaped data model . . .

The clustering result of Iris dataset

The distribution map of data and density in 14 seconds

Variation of density and influence radius of a single cell

Cluster numbers of over the simulation time

Initial parameters configuration of the 60 systems . . .

Cluster numbers during the simulation

Parameter estimations of the real system

3-20 Density of the real system

9

27

46

. 50

. 50

. 51

. 51

. 52

. 52

. 53

. 53

. 54

. 55

. 55

. 56

. 57

. 73

. 74

. 74

. 78

. 78

. 80

. 8 0

3-21 Trajectory of the real system . 81

3-22 Error of the real system . 81

10

List of Tables

3.1 Clustering result of Pendigits dataset 58

3.2 Clustering result comparison with NCut, NJW and PIC 59

3.3 Clustering result of the alleles data 61

3.4 Clustering result match-up of alleles clustering 70

3.5 Clustering result comparison of alleles clustering 71

11

12

Chapter 1

Introduction

This thesis is primarily concerned with developing an algorithm that can bridge adap-

tive estimation and control with modern machine learning techniques. For the specific

problem, we develop an algorithm inspired by nature, dynamically grouping and co-

ordinating swarms of dynamic systems. One motivation of this topic is that, we will

inevitably encounter control problems for groups or swarms of dynamic systems, such

as manipulators, robots or basic oscilators, as researches in robotics advance. Conse-

quently, incorporating current machine learning techniques into the control theory of

groups of dynamic systems would enhance the performance and achieve better results

by forming "swarm intelligence". This concept of swarm intelligence would be more

intriguing if the computation can be decentralized and decisions can be made locally

since such mechanism would be more flexible, consistent and also robust. With no

central processor, computational load can be distrbuted to local computing units,

which is both efficient and reconfigurable.

When talking about self-organization and group behavior, in control theory we

have the ideas about synchronization and contraction analysis, while in the machine

learning fields, we can track the progress in a lot of researches in both supervised or un-

supervised learning. Currently researches are experimenting with various methods on

classification and clustering problems, such as Support Vector Machine[1], K-Means

clustering[2], Spectral clustering[3] [4], etc. However, rarely have these algorithms

been developed to fit into the problems of controling real-time dynamic systems, al-

13

though successful applications in image processing, video and audio recognition have

thrived in the past decades.

The main challenge that we will consider in this thesis is how to modify and

fomulate the current machine learning algorithms, so that they can fit in and improve

the control performance of dynamic systems. The main contribution of this thesis

is that we develop a clustering algorithm inspired by a natural phenomenon-quorum

sensing, that is able to not only perform clustering on benchmark datasets as well

as or even better than some existing algorithms, but also integrate dynamic systems

and control strategies more easily. With further extensions made possible through

this integration, control theory would be more intelligent and flexible. With the

inspiration from nature, we would like to discuss more about the basic concepts

like what is neighborhood, and how to determine the relative distance between data

points. We hope these ideas provide machine learning with deeper understandings

and also find the unity between control, machine learning and nature.

1.1 Road Map

The format in Chapter 1 is as follows: we will first introduce the motivations of

this thesis, with backgrounds, potential applications and detailed goal of this thesis.

Then we will briefly introduce the clustering alogorithms by their characteristics and

limitations. Finally, we will illustrate our inspiration from nature, with detailed

description of quorum sensing and the key factors of this phenomenon that we can

extract to utilize for developing the algorithm.

Beyond the current chapter, we will describe detail analysis of our algorithm in the

second chapter. We will provide mathematical analysis on the algorithm from both

views from machine learning and dynamic system control stability. Then clustering

merging and splitting policies will be introduced along with comparison with other

clustering algorithms. In chapter three, we will put our clustering algorithm into

actual experiments, including both synthetic and real benchmarks experiments, ex-

periments on alleles classification, and finally on real time dynamic system grouping.

14

In the last chapter, we will discuss about the results shown in the previous chapters

by comparing the strengths and weaknesses of our proposed algorithm, and provide

our vision on future works and extensions.

1.2 Motivations

Control theory and machine learning share the same goal, which is to optimize certain

functions to either reach a minimum/maxmimum or track a certain trajectory. It is

the implementing methods that differs the two fields. In control theory, since the

controled objects have the requirements of real-time optimization and stability, the

designed control strategy starts from derivative equations, so that after a period

of transient time, satisfying control performance can be achieved. On the other

hand, machine learning faces mostly with static data or time varying data where

a static feature vector can be extracted from, so optimization in machine learning

is more direct to the goal by using advanced mathematical tools. We think if we

can find a bridge connecting the two fields more closely, we can then utilize the

knowledge learned from past to gain better control performance, and also we can

bring in the concepts like synchronization, contraction analysis, and stability into

machine learning theories.

1.2.1 Backgrounds

Research in adaptive control started in early 1950's as a technology for automatically

adjusting the controller parameters for the design of autopilots for aircrafts[5]. Be-

tween 1960 and 1970 many fundamental areas in control theory such as state space

and stability theory were developed. These progresses along with some other tech-

niques including: dual control theory, identification and parameter estimation, helped

scientists develop increased understanding of adaptive control theory. In 1970s and

1980s, the convergence proofs for adaptive control were developed. It was at that time

a coherent theory of adaptive control was formed, using various tools from nonlinear

control theory. Also in the early 1980s, personal computers with 16-bit microproces-

15

sors, high-level programming languages and process interface came on the market.

A lot of applications including robotics, chemical process, power systems, aircraft

control, etc. benefitting from the combination of adaptive control theory and com-

putation power, emerged and changed the world.

Nowadays, with the development of computer science, computation power has

been increasing rapidly to make high-speed computation more accessible and inex-

pensive. Available computation speed is about 220 times what it was in the 1980's

when key adaptive control techniques were developed. Machine learning, whose ma-

jor advances have been made since the early 2000s, benefitted from the exploding

computation power, and mushroomed with promising theory and applications. Con-

sequently, we start looking into this possibility of bridging the gap between machine

learning and control, so that the fruit of computation improvements can be utilized

and transferred into control theory for better performance.

1.2.2 Potential Applications

Many potential applications would emerge if we can bridge control and machine learn-

ing smoothly, since such a combination will give traditional control "memory", in-

telligence and much more flexibility. By bringing in manifold learning into control,

which is meant to find a low dimentional basis for describing high dimentional data,

we can possibly develop an algorithm that can shrink the state space into a much

smaller subset. High dimensional adaptive controllers, especially networks controllers

like[6] would benefit hugely from this. Also we can use virtual systems along with

dynamic clustering or classification analysis to improve performance of multi-model

switching controllers, such as [7] [8][9] [10]. This kind of classification technique would

also be helpful for diagnosis of control status, such as anonaly detections in [11]. Our

effort presented in developing a clustering algorithm that can be incorporated with

dynamic systems is a firm step right on building this bridge.

16

1.2.3 Goal of this thesis

The goal of this thesis is to develop a dynamic clustering algorithm suitable to imple-

ment on dynamic systems grouping. We propose this algorithm with better clustering

performances on static benchmarks datasets compared to traditional clustering meth-

ods. In the algorithm, we would like to realized the optimization process not by direct

mathematical analysis or designed iterative steps, yet by derivative equations conver-

gence, since such algorithm would be easily combined with contraction analysis or

control stability analysis for coordinating group behavior. We want to develop the

algorithm not so "artificial", yet in a more natural view.

1.3 Clustering Algorithms

When thinking about the concept of intelligence, two basic parts contributing to in-

telligence are learning and recognition. Robots, who can calculate millions of times

faster that human, are good at conducting repetitive tasks. Yet, they can hardly

function when faced with a task that has not been predefined. Learning and recog-

nition requires the ability to process the incoming information, conceptualize it and

finally come to a conclusion that can describe or represent the characteristics of the

perceived object or some abstract concepts. The concluding process requires to de-

fine the similarities and dissimilarities between classes, so that we can distinguish

one from another. In our mind we put things that are similar to each other into a

same groups, and when encountering new things with similar charateristics, we can

recognize them and classify them into these groups. Furthermore, we are able to

rely -on the previously learned knowledge to make future predictions and guide future

behaviors. Thus, it is reasonable to say, this clustering process, is a key part of the

learning, and further a base of intelligence.

Cluster analysis is to separate a set of unlabeled objects into clusters, so that the ob-

jects in the same cluster are more similar, and objects belonging to different clusters

are less similar, or dissimilar. Here is a mathematical description of hard clustering

problein[12]:

17

Given a set of input data X = 1 ,x 2 ,x3 , ... N,

Partition the data into K groups: C1, C2, C3 , ... CK, (K ; N), such that

1) Ci # 0, i = 1, 2, ..., K;
K

2) U Ci = X;

3) Ci (~ Cy = 0, i, j = 1, 2,7... K, i # j

Cluster analysis is widely applied in many fields, such as machine learning, pattern

recognition, bioinformatics, and image processing. Currently, there are various clus-

tering algorithms mainly in the categories of hierarchical clustering, centroid-based

clustering, distribution-based clustering, density-based clustering, spectral clustering,

etc. We will introduce some of these clustering methods in the following part.

1.3.1 Previous Work

Hierarchical clustering

There are two types of hierarchical clustering, one is a bottom up approach, also

know as "Agglomerative", which starts from the state that every single data forms

its own cluster and merges the small clusters as the hierarchy moves up; the other

is a top down approach, also know as "Divisive", which starts from only one whole

cluster and splits recursively as the hierarchy moves down. The hierarchical clus-

tering algorithms intends to connect "objects" to "clusters" based on their dis-

tance. A general agglomerative clustering algorithm can be summarized as below:

1. Start with N singleton clusters.

Calculate the proximity matrix for the N clusters.

2. Search the minimal distance

D(Ci, C3) = min1<m, 1N,1mD(Cm, C1)

where D is a distance function adopted specified on certain dataset.

18

Then combine cluster Ci, Cj to form a new cluster.

3. Update the proximity matrix.

4. Repeat step 2 and 3.

However, the hierarchical clustering algorithms are most likely sensitive to outliers

and noise. And once a misclassification happens, the algorithm is not capable of

correcting the mistake in the future. Also, the computational complexity for most of

hierarchical clustering algorithms is at least O(N 2). Typical examples of hierarchical

algorithms include CURE[13], ROCK[14], Chameleon[15], and BIRCH[16].

Centroid-based clustering

The Centroid-based clustering algorithms try to find a centroid vector to represent a

cluster, although this centroid may not be a member of the dataset. The rule to find

this centroid is to optimize a certain cost function, while on the other hand, the be-

longings of the data are updated as the centroid is repetitively updated. K-means[2]

clustering is the most typical and popular algorithm in this category. The algorithm

partition n data into k clusters in which each data belongs to the cluster with the

nearest mean. Although the computation is NP-hard, there are heuristic algorithms

that can assure convergence to a local optimum.

The mathematical model of K-means clustering is:

Given a set of input data X - 1, Y2, X 3 , ... XN, Partition them into k sets C1, ... CK, (K <

N), so as to minimize the within cluster sum of squares:

k

argmirnc S(|x- ti||2
i=1 xjGCi

where pi is the mean of points in Ci

Generally, the algorithm proceeds by alternating between two steps:

Assignment step: C(' {x,: [lz, - p || 1 ||x, - p J|V1 < j < k}

19

Update step: calculate the new means m =Ct) -- 1
xjEC~t)

However, the K-means algorithm has several disadvantages. It is sensitive to initial

states, outliers and noise. Also, it may be trapped in a local optimum where the

clustering result is not acceptable. Moreover, it is most effective working on hyper-

spherical datasets, when faced with some dataset with concave structure, the centroid

information may be not precise or even misleading.

Distribution-based clustering

Distribution based clustering methods are closely related to statistics. They tend to

define clusters using some distribution candidates and gradually tune the parame-

ters of the functions to fit the data better. They are especially suitable for artificial

datasets, since they are originally generated from a predefined distribution. The most

notable algorithm in this category is expectation-maximization algorithm. It assumes

that the dataset is following the a mixture of Gaussian distributions. So the goal of

the algorithm is to find the mutual match of the Gaussian models and the actual

dataset distribution.

Given a statistical model consisting of known data X =1, 2, X 3, ... XN,, latent data

Z, and unknown parameters 0, along with the likelihood function:

L(; X, Z) = p(X, Z|0)

and the marginal likelihood

L(O; X) = p(XI) = (Zp(X, Z|0
Z

The expectation-maximization algorithm then iteratively applies the following two

steps:

Expectation step: calculate the expected value of log likelihood function

(0|0O) = Ez x,so [log L(0; X, Z)]

20

Maximization step: Find the parameter to maximize the expectation

W'+) = argmarg.Q(I9(t)

However, the expectation-maximization algorithm is also very sensitive to the initial

selection of parameters. It also suffers from the possibility of converging to a local

optimum and the slow convergence rate.

Density-based clustering

Density based lustering algorithms define clusters as areas of higher density than the

remainder area. The low density areas are most likely to be bonders or noise region.

In this way, the algorithm should handle the noise and outliers quite well since their

relevant density should be too low to pass a threshold. The most popular density

based algorithm is DBSCAN[17)(for density-based spatial clustering of applications

with noise). DBSCAN defines a cluster based on "density reachability": a point q is

directly density-reachable from point p if distance between p and q is no larger that

a given radius E. Further if p is surrounded by sufficiently many points, one may

consider the two points in a cluster. So the algorithm requires two parameters: e and

the minimum of points to form a cluster (minPts). Then the algorithm can start from

any random point measuring the c neighborhood. The pseudo-code of the algorithm

is presented below:

DBSCAN(D, e, MinPts)

C = 0

for each unvisited point P in dataset D

mark P as visited

NeighborPts = regionQuery(P, 6)

if sizeof (NeighborPts) < MinPts

mark P as NOISE

else

C = nextcluster

expandCluster(P, NeighborPts, C, 6, MinPts)

21

add P to cluster C

for each point P' in NeighborPts

if P' is not visited

mark P' as visited

NeighborPts' = regionQuery(P', E)

if sizeof (NeighborPts') >= MinPts

Neighbor Pts = NeighborPts joined with NeighborPts'

if P' is not yet member of any cluster

add P' to cluster C

regionQuery(P, e)

return all points within P's e-neighborhood

It is good for the DBSCAN that it requires no specific cluster number information

and can find arbitrarily shaped clusters. It handles outliers and noise quite well.

However, it depends highly on the distance measure and fails to cluster datasets with

large differences in densities. Actually, by using a predefined reachability radius, the

algorithm is not flexible enough. Also, it relies on some kind of density drop to detect

cluster borders and it can not detect intrinsic cluster structures.

Spectral clustering

Spectral clustering techniques use the spectrum(eigenvalues) of the proximity matrix

to perform dimensionality reduction to the datasets. One prominent algorithm of this

category is Normalized Cuts algorithm[4], commonly used for image segmentation.

We will introduce the mathematical model of the algorithm below:

Let G = (V, E) be a weighted graph, and A and B as two subgroups of the vertices.

AUB =V,AfB =0

cut(A, B) = E w(u, v)
uEA,vEB

assoc(A, V) = E w(u, t) and assoc(B, V)= Z w(v, t)
uEA,tEV vEB,tEV

then Ncut(A, B) = cut(A,B) + cut(B,A)
assoc(A,V) assoc(B,V)

22

Let d(i) = wi and D be an n x n diagonal matrix with d on the diagonal, then

after some algebric manipulations, we get

minANcut(A, B) = ming V , where

yJ E {1, -b} for some constant b, and yfD1 = 0

To minimize g (-W, and avoid the NP-hard problem by relaxing the constraints

on g, the relaxed problem is to solve the eigenvalue problem (D - W)g = AD' for

the second smallest generalized eigenvalue.

And finally bipartition the graph according to this second smallest eigenvalue.

The algorithm has solid mathematical background. However, calculating the eigen-

values and eigenvectors takes lots of computation. Especially if there are some tiny

fluctuations in the data along time, the whole calculating process must be redone all

over again, which makes calculations in the past useless.

1.3.2 Limitations of Current Classical Clustering Techniques

With the introduction and analysis on current existing clustering algorithms, we can

conclude with some limitations of current classical clustering techniques:

1. Many algorithms require the input of cluster number. This is acceptable when

the data is already well known, however, a huge problem otherwise.

2. The sensitivity to outliers and noise often influences the clustering results.

3. Some of the current algorithms can not adapt to clusters with different density

or clusters with arbitrary shape.

4. Almost all algorithms adopt pure mathematical analysis, that are infeasible to

be combined with dynamic systems and control theory. The lack of time dimen-

sion makes most of the algorithms a "one-time-deal", of which past calculations

can not provide reference to future computations.

Actually, there are many examples in nature, like herds of animals, flocks of birds,

schools of fish and colonies of bacteria, that seem to deal quite well with those prob-

23

lems. The robustness and flexibility of natural clusters far exceed our artificial algo-

rithms. Consequently, it is natural to take a look at the nature to look for inspirations

of a new algorithm that handles those problems well.

1.4 Inspirations from Nature

Nature is a great resource to take a look at when we want to find a bridge between

computational algorithms and dynamic systems. On one hand, a lot of biological

behaviors themselves are intrinsically dynamic systems. We can model these biologi-

cal behaviors into physical relations and moreover into dynamic equations. Actually,

many biomimic techniques such as sonar technology and flapping aircrafts are devel-

oped following this path. The close bonding between biology behaviors and dynamic

systems makes it possible to not only simulate biology processes through dynamic

models, but also control such processes toward a desired goal or result. Thus, it would

be highly possible to develop control algorithms for biomimic systems in a biological

sense, which is able to achieve efficient, accurate and flexible control performance.

On the other hand, computer science has been benefitting from learning from

the nature for a long history. Similar mechanisms and requirements are shared by

computational science and biology, which provide a base for cultivating various joint

applications related to coordination, network analysis, tracking, vision and etc.[181.

Neuro networks[19][20], which has been broadly applied and examined in machine

learning applications such as image segmentation, pattern recognition and even robot

control, is a convincing example derived from ideas about the activities of neurons in

the brain; Genetic algorithms[21], which is a search heuristic mimics the process of

natural evolution, such as inheritance, mutation, selection, and crossover, have been

widely applied over the last 20 years. Also, there have been many valuable researches

motivated by the inspirations of social behaviors existing among social insects and

particle swarms, which we will discuss in details in the following section 1.4.1.

There are several principles of biological systems that make it a perfect bridge con-

necting dynamic system control and machine learning algorithms[18]. First, dynamic

24

systems require real-time control strategy, which most modern machine learning algo-

rithns fail to meet because that advanced and resource-demanding mathmetical tools

are involved. However, a machine learning algorithm inspired by biology process is

most likely to be feasible to be converted into a dynamically evolving process, such as

ant colony algorithms and simulated annealing algorithms. Secondly, biological pro-

cesses need to be able to handle failures and attacks successfully in order to survive

and thrive. This property shares the same or similar concept with the robustness

requirements for computation algorithms and also stability and resistance to noise

for dynamic systems control strategy. So we may use the biological bridge connecting

these properties in different fields and complement them with each other. Thirdly,

biological processes are mostly distributed systems, such as molecules, cells, or or-

ganisms. The interaction, coordination, among the agents along with local decisions

make each agent not only an information processing unit, but also a dynamic unit.

This is very promising for connecting information techniques with dynamic control,

and also for bringing in more intelligence into mechanical engineering field.

These shared principles indicate that bridging dynamic system control with ma-

chine learning through biology inpired algorithms is very promising. Such connection

may improve understanding in both fields. Especially, the computational algorithms

focus on speed, which requires utilizing advanced mathematical tools, but simultane-

ously makes the algorithm less flexible to time varying changes from both data side

and environments. Since biological systems can inherently adapt to changing envi-

ronments and constrains, and also they are able to make local decisions with limited

knowledge, yet optimize towards a global goal, they are ideal examples to learn from

for machine learning algorithm to realize large scale self organizing learning. In the

following section 1.4.1, we will introduce some previous work utilizing this fact for

building swarm intelligence.

1.4.1 Swarm Intelligence

Swarm intelligence is a mechanism that natural or artificial systems composed of many

individuals behave in a collective, decentralized and self-organized way. In swarm

25

intelligence systems, a population of simple agents interact locally with each other

and with the environment. Although there is no centralized control structure dictating

individual behavior, local interactions between the agents lead to the emergence of

global intelligent behavior. This kind of simple local decision policy hugely reduces the

computational load on each information processing unit. Such mechanism pervades

in nature, including social insects, bird flocking, animal herding, bacterial growth,

fish schooling, and etc. Many scientific and engineering swarm intelligence studies

emerge in the fields of clustering behavior of ants, nest building behavior of termites,

flocking and schooling in birds and fish, ant colony optimization, particle swarm

optimization, swarm-based network management, cooperative behavior in swarms of

robots, and so on. And various computational algorithms have been inspired by the

facts. For the swarm intelligence algorithms, we now have: Altruism algorithm[22],

Ant colony optimization [23], Artificial bee colony algorithm[24], Bat algorithm[25],

Firefly Algorithm[25], Particle swarm optimization [26], Krill Herd Algorithm[27], and

so on.

The natural inspiration that we take in this thesis is Quorum Sensing, which will be

described in details in section 1.4.2.

1.4.2 Quorum Sensing

Quorum Sensing[28] [29][30][31] [32] [33][34][35] is a biological process, by which a com-

munity of bacteria cells interact and coordinate with their neighboring cells locally

with no awareness of global information. This kind of local interaction is not achieved

through direct cell-to-cell communication. Actually, each cell sends out signaling

molecules called autoinducers that diffuse in the local environment and builds up

local concentration. These auto inducers that carry introduction information can be

captured by the receptors, who can activate transcription of certain genes that are

equipped in the cell. In V. fisheri cells, the receptor is LuxR. There is a low likelihood

of a bacterium detecting its own secreted inducer. When only a few cells of the same

kind are present in the neighborhood, diffusion can reduce the density of the induc-

ers to a low level, so that no functional behavior will be initiated, which is "energy

26

efficient". However, when the concentration of the surrounding area reaches a thresh-

old, more and more inducers will be synthesized and trigger a positive feedback loop,

to fully activate the receptors. Almost at the same time, specific genes begin being

trascripted in all the cells in the local colony, and the function or behavior expressed

by the genes will be performed collectively and coordinatedly in the swarm. For in-

stance, if only one single Vibrio fischeri exists in the enviroment, then producing the

bioluminescent luciferase would be a waste of energy. However when a quorum in

vicinity is confirmed, such collective production can be useful and functional. Fig.1-1

gives a pictorial view of the process in Vibrio fischeri.

LuxR

Figure 1-1: Quorum sensing model

In this context, quorum sensing is applicable in developing clustering algorithms,

since the cells can sense when they are surrounded in a colony by measuring the

autoinducer concentration with the response regulators. A clustering method inspired

by quorum sensing would have the following advantages:

1. Since each cell makes decision based on local information, an algorithm could

be designed to fit parallel and distributed computing, which is computationally

efficient.

27

2. Since quorum sensing is a naturally dynamic process, such algorithm would be

flexible for cluster shape-shifting or cluster merging, which means a dynamic

clustering algorithm would be possible to develop.

3. Since the whole process can be modeled in a dynamic view, it would be much

easier to incorporate the algorithm into real dynamic swarms control, such as

groups of oscillators or swarms of robots, where most of current algorithms

fail. So our thesis targets on the problem of developing a clustering algorithm

inspired by quorum sensing and connects it with dynamic control strategies.

28

Chapter 2

Algorithm Inspired by Quorum

Sensing

In this chapter, we are going to present the proposed algorithm inspired by quorum

sensing. To design the algorithm, we need to first model the biological process of quo-

rum sensing, including the pheromone distribution model, the local reacting policy,

the colony establishments, the interactions between and inside colonies and colony

branching and merging processes, which will be introduced respectively in section 2.1.

For the algorithm inspired by nature, we provide adequate mathematical analysis on

the diffusion tuning part and the colony interaction part. In the end of this chapter,

we will compare with existing algorithms, to show that our algorithm is reasonable

from both a biological view and a mathematical view in section 2.2.

2.1 Dynamic Model of Quorum Sensing

To model quorum sensing into a dynamic system, we need to have a review of the

characteristics of the process, make some assumptions and also define our goal for

the algorithm. For the quorum sensing, we can extract the following key principles

by analyzing the process:

1. Every cell interacts not directly with other cells, but actually with its local

29

environment or medium. This kind of interaction is undertaken through tun-

ing the ability to secrete pheromones that carry some information introducing

themselves for species or some other genetic information.

2. For all the cells, they only know their local environment with no global aware-

ness: where the other cells live and how they behave are unknown to any single

cell. It is this global unawareness that makes it possible to make decisions

locally and keep the whole process decentralized.

3. When the local density exceeds the threshold, it is confirmed that the cell

currently lives in a colony, then relevant genes will be transcripted and all the

cells in this colony will perform collective behavior.

4. Cells of certain species can sense not only pheromone molecules of their own

kind, they can also receive autoinducers of other species to determine its local

environment as enemy existing or other status.

Based on the principles introduced above about quorum sensing, we are proposing

an algorithm to mimic the bio-behavior realizing dynamic clustering:

1. Every single cell expands its influence by increasing an "influence radius" as -in

its density distribution function. This can also be regarded as the exploration

stage, since all the cells are reaching out to check whether there is a colony

nearby.

2. When the density of some cells reaches a threshold, a core cell and a colony are

established simultaneously, then it begins to radiate certain kinds of "pheromones"

to influence its neighboring cells and further spread the recognition through lo-

cal affinity. Any influence from an established colony would also stop the other

cells from becoming new core cells, so that there are not too many core cells

nor too many colonies.

3. Colonies existing in the environment interact with each other to minimize a

cost function that can achieve optimized clustering results. In the mean time

30

some colonies may be merged into others and some may even be eradicated by

others.

4. Finally get the clustering result by analyzing the colony vector of each cell.

We will introduce each part of the above proposal in the following sections 2.1.1-2.1.5.

2.1.1 Gaussian Distributed Density Diffusion

To simulate the decentralized process of quorum sensing, we are treating every data

as a single cell in the environment. And to describe secretion of pheromones, we are

using the Gaussian distribution kernel function as:

(x-xg)
2

f (x, xi) = e i (2.1)

We are using the Gaussian distribution here because:

1. The Gaussian distribution constrains the influence of any single data in a local

environment, which is an advantage for developing algorithms since outliers

would have limited impact on the whole dataset.

2. The Gaussian kernels have also been broadly used in supervised learning meth-

ods like Regularized Least Squares, and Support Vector Machines, for mapping

the data into a higher dimension space, in which clusters are linearly separable.

While in these algorithms, learning is achieved by tuning a coefficient vector

corresponding to each data, in our algorithm, we are proposing to tune the

oi's for each data which is a deeper learning into the topology structure of the

dataset.

3. Gaussian distribution is a proper model for quorum sensing. The ai's can be

considered as "influence radius" representing the secreting ability of each cell.

Also, the influence from one cell to another is naturally upper bounded at 1,

even if two cells are near each other and the influence radius is very large.

31

By using the Gaussian kernel function, we can map all the data into a kernel matrix

Mx, where for i z j,
(Xj -X,)

2

mij = f(Xi, x) = e 0U (2.2)

So mi is the influence of pheromones from cell j to cell i, while we make mi = 0

since cells tend to ignore their self secreted auto-inducers. Also, by treating f(x, xj) =
(XxXj)2

e -J2 as cell i's influence on environment, mi is the indirect influence on cell j
from the environment owing to the impact from cell i. Moreover,

n n (zj-x4)2

mi = I e 72 (2.3)

is the influence on cell i from all other cells, or in another word, the local density of

cell i in the environment. We use a density vector d= M x 1nx1, where di E mij to

represent the density of all the cells. The density of a cell describes the "reachability"

of a cell from others. In a directed network graph scenario, it's the total received

edge weights of a single node. Also it represents the local connectivity of a cell which

is quite meaningful if we think of a cluster as a colony of locally and continually

connected data. If the density of a certain cell is high, we can say this cell is "well

recognized" by its neighbors, and for the cell itself, it can make the judgment that

it is located in a well established colony. One thing also worth noting is that, since

we only want the cells connected with their local neighbors, it will be wiser to set

a threshold on mij to make the matrix M much sparser, such as if mij < 0.1 then

update mij as zero in the M matrix.

So the upcoming problem is how to develop the local policy for tuning the -i's, which

will influence the density vector, to simulate quorum sensing and eventually realize

data clustering. This problem will be introduced in the following section.

32

2.1.2 Local Decision for Diffusion Radius

We propose the local tuning policy as the following evolution equation:

o = M(a - 1nx1 - M - + #(M - D)d + fat (2.4)

As introduced in the previous section, M - Inxi represents the local density of all the

cells. So if we set a density goal vector as a - Inx1, then a - 1 nxi - M - inxi is the

difference vector, which can also be considered as the "hunger factor" vector. If the

hunger factor of a certain cell is zero, above zero or below zero, we can say this cell is

well recognized, over recognized or poorly recognized by the environment respectively.

The "hunger factor" information can be carried in the secreted molecules since all

the needed inputs are the local density which can be sensed from local environment.

Moreover, M(a - fnxi - M - f x1) is the local hunger factor vector accumulated in the

location of all the cells, which is the actuation force tuning the d. When the local

environment appears to be "hungry" (local hunger factor is positive), the cell tends

to increase its influence radius to satisfy the demand, and on the hand when the local

environment appears to be "over sufficient" (local hunger factor is negative), the cell

tends to decrease its influence radius to preserve the balance.

For the second component in the evolution equation, #(M - D)9, we add in

the term based on the assumption that cells in a neighborhood should share similar

secreting ability. The D matrix here is a diagonal matrix, with the entries Di=
n n

E mij. So actually, the ith term in the vector #(M - D)U3 equals to E mijo-(u - o-),

which is diffusive bonding that is not necessarily symmetric. Adding this term here

would help keep influence radius in a neighborhood similar with each other. In the

nature, cells belonging to the same colony share similar biological characteristics,

which in our case, can be used to restrain the influence radius to be similar with the

neighborhood. Also, in the nature, any cell has an upper bound for the influence

radius. No cell can secrete enough auto-inducers to influence all the cells in the whole

environment, due to its capability and environment dissipation. Since we are not

aware of this upper bound, or in a statistics view, the variance in a local environment,

33

it is hard to find a proper parameter to describe the upper bound. Actually, this is

also a huge problem for many other Gaussian kernel based algorithms, since there is

no plausible estimation for the oi's in the Gaussian kernel. In our algorithm, we use

this mutual bonding between cells to provide a local constraint on the upper bound

of the oi's. It also helps to bring the dynamic system to stability, which will be

explained later in the mathematical part.

The third part of the equation provides initial perturbation or actuation to the

system, and it will disappear when the system enters into a state that we can consider

most of the cells living in a local colony. When the system starts from 6 = 0, or a very

close region around the origin, it is obvious that for all the entries in the M matrix,

mij ~ 0, and also #(M - D)G53 ~ 6, so that the system will stay around the origin

or evolve slowly, which is not acceptable for an algorithm. So we add in this initial

actuation term finit = 0.5a x 1nxi - M x fnx1, which is used to measure whether

a cell is already recognized by other cells, so that for the neighbors around cell i,
n

the incoming density E mij reaches a certain level. When fit reaches around 0, the
j:Ai

former two components in the evolving equation have already begun impacting, so the

initial actuation can disappear from then on. Consequently, we can choose a standard
EZdi

when the initial actuation disappears, such as if -n > 2, we can regard most cells

recognized by the environment and cancel the initial actuation. The explanation of

initial actuation also can be found in nature: when cells are transferred into an entirely

new environment, they will secrete the pheromones to see whether they currently live

in a quorum. We can think of this process as an exploration stage of quorum sensing

when stable interactions between cells and colonies have not yet been established.

The natural exploration stage is restrained by cells' secreting capability. Also in our

algorithm, it is constrained by the early stopping rule, so that no cell can explore

indefinitely, and thus outliers data would regard themselves as "not surrounded",

and impact little on well established colonies.

Finally, the combination of all the three components above forms the local evolving

rule modeling the quorum sensing policy. It is worth noting that, no matter what extra

information is included in the virtual pheromones, such as the "hunger factor" or the

34

local influence radius, for the receptors, they can sense the information just from the

environment without knowing the origin of any pheromones nor their locations. This

policy modulates cell-to-cell communications into cell-to-environment interactions,

which makes more sense for distributed computation. Based on the results we can

achieve as a sparsely connected M matrix, and in the following section, we will

introduce details about colony interactions.

2.1.3 Colony Establishments and Interactions

In quorum sensing, when the concentration surpass a predefined threshold, cells in

the colony will begin to produce relevant functional genes to perform group behavior.

In our algorithm, we use this trait as the criterion for establishing a colony. When

the density of a cell di surpasses a predefined threshold b < a, and the cell is not

recognized by any colony, then we can establish a new colony originating from this

cell and build a n x 1 colony vector, with the only non-zero entry as 1 in the ith term.

The origin cell will be regarded as a core cell. For example, if the jth colony derives

from the ith cell, then a new vector c will be added into the colony matrix C, where

C =[ci, , ..., c ,). The only non-zero entry in c is its ith term, which is also C,,

that is initialized as 1. In the meantime, the colony vectors keep evolving following

the rules:

ci - Z (M MT) (-* + 7(M + MT),,(.5

which can also be written as: ci -(M + MT)(c - ci) ± 7(M + MT)c, where

Summing all the colony vectors to achieve the environmental colony vector c also

follows the idea of quorum sensing to simplify the calculation through using global

variable updates instead of calculating every component. All entries in the colony

vectors are saturated in the [0, 1] range, which means that they will not increase

after reaching 1, nor decrease after reaching 0. It is also worth noting that c is

the criterion judging whether a potential core cell candidate has been recognized by

existing colonies or not. Moreover, for the interaction equations, we can also write

35

the series of interaction equations in a matrix view:

C = -(M + MT)(cei xk - C) + Y(M + MT)C (2.6)

where k is the number of existing colonies. As we can see from the equation, the

interaction of colonies is consisted of two parts: the first part is a single colony to

environments interaction; and the second part is a single colony to self evolving. The

equation is designed to realized a continuous optimization on a Normalized Cuts alike

cost function. We will introduce the mathematical analysis on the two parts and also

the parameter y in more details in the later section 2.2.2.

2.1.4 Colony Merging and Splitting

After the cell interactions and colony interactions above, we will have a sparsely and

locally connected weighted graph, described by matrix M, and some distributed core

cells along with related colonies. Among these distributed colonies, some may be

well connected to each other; some may share a small amount of cells in each colony;

or maybe a part of one colony moved from the previous colony into another one; or

maybe there are new colonies appear. These scenarios require rules for merging the

colonies parts and updating existing colony numbers. The criterion we are using is

similar with the Normalized Cuts method by calculating a ratio between inter colony

connections and inner colony connections, which is meant to describe the merging

potential for one colony into another one:

c-T,(M + MT)c)
rj(C +M(2.7)

c(M + MT %C

We can set a threshold, such that if there exists any rij > 0.2, i # j, then we can

merge the colony i into colony j. Also if we have a predefined number of clusters and

current cluster number is larger than the expected one, we can choose the largest rij

and merge colony i into colony j.
On the other hand, there will be occasions that new clusters are split from previous

36

colonies, or a previous cluster is not continuously connected any more. As we men-

tioned previously in section 2.1.1, we can set a threshold to make the M matrix much

sparser. This threshold can also make sure that inter colony connections between

two well segmented clusters are all zero, which also means that certain pheromones

from one colony can not diffuse into other colonies. Thus, to detect whether a new

cluster appears, we can set a continuity detecting vector s; for each colony with the

only non-zero entry corresponding to the colony's core cell as 1. The evolution of

continuity detecting vectors also follows the rules of colony interactions:

-(M + M)(s; - s) + -y(M + M T >s (2.8)

where S-e si and also in a matrix view,

5= -(M + MT)('ixk - S) + (M + MT)S (2.9)

When the saturated continuity detecting process reaches a stable equilibrium, that 5
has no non-zero entry, we restart the process all over again. Actually, this detecting

process is to redo the colony interaction part again and again, while preserving the

current clustering results in C matrix. Cells indentified as outliers in every conti-

nuity detecting iteration will be marked as "not recognized by any colony" and will

be available for forming new colony following the colony establishment process in-

troduced in section 2.1.2. Since the calculation for interactions between colonies is

only a relatively small amount of the whole algorithm, such update will not influence

much on the overall computing speed.

2.1.5 Clustering Result

Finally, we can get the clustering by analyzing the colony vectors. By choosing the

maximum entry of each row in matrix C, and finding out to which column it belongs

to for each cell, we can determine the belongings of each cell among the existing

colonies. If for some cell, the related row in C is a zero vector, then the cell or rep-

37

resenting data can be regarded as an outlier. The scenario that there are more than

one non zero entries in a row in C will not happen if we tune the parameter -y to

1, which we will explain later in section 2.2.2. Thus, we can achieve the clustering

results by simply counting the C matrix, without further K-means process used by

other algorithms such as Power Iteration Clustering.

Pseudo Code:

1. Initialize ' as 0, form the M matrix, set the parameters a, b, /,y

2. Begin the process:

o = M(a -Inxi - M - lnx1) + (M - D)d+ Y+
Detect new cluster:

if Idi > b(b ; a) and cell i not recognized by any colony

create a new colony using cell i as core cell

end

O -(M + MT)(c~fixk - C) + -y(M + MT)C

5 = -(M + MT)(;fxk - S) + i(M + MT)S

Cluster segmented detection:

if in the stable state, S # C

update C = S and accept new born clusters

end
r. c(M+MT)63

Cij f(M+mT)e

Cluster merging:

if 3rij > 0.2, iZ

then we can merge the colony i into colony j
end

3. Achieve the clustering results by counting the C matrix

38

2.2 Mathematical Analysis

In this section, we will introduce the mathematical background of the proposed al-

gorithm. We will show that the influence radius tuning policy is an approximation

for the optimization of a goal function l1a - Inxi - M- i-nxill. For the colony interac-

tions, the designed rule is meant to optimize a Normalized Cuts alike cost function,

while the merging policy follows the same goal. Finally, we provide some analysis on

analogies to other algorithms, such as spectral clustering, power iteration clustering

and normalized cuts.

2.2.1 Convergence of Diffusion Tuning

As we introduced in section 2.1.2, the local tuning policy is:

a = M(a. nxi - M - inxi) + #(M - D)d + fint

Through the tuning of influence radius vector, finally we can get the local density

of each cell around a predefined value a, while we can also allow some errors, so

that outliers or local dense groups won't harm the overall result. Actually, if we

want to make sure that every cell's local reaches exactly at a, we can minimize the

Ila 11*i~i 2.la-Inxi - M - inx1|l

dd2-d
- a nxi - M - inx1 2 =xi - M Inx1)TGa inxi - M -nx 1)

dt= -2(a -nxi - M X -)Td(M -ix1)

--2(a -inxi - M -)T(M - i< 1)d (2.10)

Thus, if = (AM- inx1)T(a -nxi - M - inx 1)(*), then

lla nx - M - Inx1|2 -2(a - Inxi - M - nx 1)T(M inx)(- In

-(a -nxi - M - inx1) <; 0

39

2(xxi-Xj 2

We name the Jacobian matrix as J = (M-fx 1), then J i

j, and Jjj = 0. So we can have:

di-2 Y, - 3 (a - d3) (2.11)

In the equation, every term is composed of two parts: the (a - dj) term represents the
(Xi-_xj)

2

"hunger factor" of surrounding cells, and the e "3 represents the ability of

cell i's influence on other cells to satisfy their needs. The latter part reaches to nearly

zero when either oij is too small to influence on some cells, or when it is already large

enough that the influence from cell i already reaches to almost 1, that increasing the

influence radius wont help much about solving the "hunger problem".

However, the equation shown above is not a perfect candidate for the tuning policy.

On one hand, such optimization is easy to cause the "over-fitting" problem. To

achieve the goal that every cell's local density reaches a certain value, we may get

some ill-posed results, such as some "super cells" with infinite large influence radius

and keeps increasing, while all the other cells' influence radius are reduced to 0. On

the other hand, even if we can regularize with the 3(M - D)d to avoid the over-fitting

problem, but the whole process is not suitable for distributed computation especially

for swarms of robots since for any single agent to make decisions, it will need the

complete information of all the other agents including locations. This is all due to

the second term which provides useful information on how changing of one agent's

radius can influence on the others, which is required for every agent to make decisions

based on cell-to-cell feedbacks instead of cell-to-environment feedbacks. Such agent-

to-agent communication would form a much more complex network, that makes any

algorithm lack of efficiency.

Consequently, in our final proposed algorithm, we are using

a = M(a - inxi - M - Inx1) + #(M - D)Y + fnit

instead as an approximation. By comparing to equation (*), we replace (A2M - I 1x)T

40

with matrix M, and keep the "hunger factor" term. By doing so, our algorithm is

much more reasonable in biological view: the pheromones secreted by cells carry

the information of hunger degree, and also follows the influence density distribution.

In this way, the hunger factor represents the amplitude of a Gaussian distribution

function with the same influence radius. This replacement ignores the information

of capability that changing cell i's radius will influence on satisfying other cells' de-

mands. It will cause problem in the occasions, such as there are only two cells in a

local environment who can sense each other's hunger factor quite well, however, the

influence radius will keep increasing because if a > 1, their demand will never be

satisfied. To deal with this problem, we add in the #(M - D)9 to make sure that the

influence radius distribution is more unified within colonies. Also, an early stopping

rule of initial actuation is also helpful for avoiding the problem. Also, we can set a

dynamic upper bound for oi's or add a inhibiting term -ad at the end of the tuning

equation, so that at any time, no "super cell" will happen despite of local needs.

For the proposed tuning policy:

SM(a - 1,xi - M - Inx1) + #(M - D)+ ± +

The convergence and stability of the system is relatively hard to prove directly.

This is because that the Jacobian matrix associated with variable d is not feasible

to analyze about the eigenvalues for such a complex and nonlinear dynamic system.

There is also no typical way to segment the large matrix into feedback, parallel, or

hierarchical structures that could possibly reduce the complexity. Also, since this is

not typical problems like synchronization or trajectory tracking, powerful tools like

contraction analysis and partial contraction analysis are not suitable for theoretical

analysis. So for the stability problem, we will provide several supportive theoretical

analysis combined with further experiments in Chapter 3 to show that the system

can arrive in an acceptable state space region and stay there.

First of all, the system 0= (AM- a - inx1 - M - 1nx1)(*) is a stable system.

41

If we use the Lyapunov function

V = a -1 x -- M-x (2.12)

then,

V = -2(a.nxi M-nx1)T(_M X1)(M-Inx1) -(a-nxi-M-nx1) ; 0 (2.13)

and since V is bounded, V -+ 0 asymptotically, and thus the system is stable,

that 6 will converge to a certain equilibrium. Although our real algorithm replaces

(a -nx 1)T with matrix M, we have all other parts remained the same. And also, if

we assume that influence radius in the same colony are mostly similar, then M e MT,

thus all entries in (AM - in)T only adds a proportional term before mij.

So inherently, M should be a good approximation, so that the stability of the real

system can be partially inferred from the its approximating equation.

Secondly, adding the term #(M - D)9 would help stabilize the system. As we know

that the matrix (M - D) is a semi-negative definite matrix. Although it is impossi-

ble to determine the eigenvalue distribution of the first part of the Jacobian matrix

y' M(a - f x1 - M - f x1), by tuning the beta into a large enough value, it is plausible

to bring the system to a stable equilibrium. Assume that # is so large that all o7's

in the same cluster are constrained to be the same value. Then M = MT, then

for the single variable in a cluster, it is obvious that the system will converge to an

equilibrium that averages the demands of the belonging cells and erases this average

"hunger" to zero. By tuning / down to an acceptable value, #(M - D)7 provides

a soft constraint that cells in a colony have similar influence secreting ability that

can be referred to nature. It also helps to stabilize the system by counteracting any

positive eigenvalue in the first part of the Jacobian matrix. Moreover, what is more

obvious is that we can add the term -ac at the end of the tuning equation, not only

to help restrain "super cells", but also stabilize the system in a much more direct

way. Consequently, the stability and convergence of the tuning equation, although

not feasible to be proved directly, can be ensured by tuning relevant parameters and

42

won't cause any problem to the whole algorithm. Actually, existence of some minor

fluctuations in an acceptable range, yet not converging to a static equilibrium, is

reasonable from biological view.

2.2.2 Colony Interaction Analysis

In the Normalized Cuts algorithm[41, it is designed to minimize the function:

Ncuts(A B)Cut (A) + ct(A)(2.14)
assoc(A, V) assoc(B, V)

where

cut(A, B) = m (2.15)
i EA,jEB

and

assoc(A, V) = mi (2.16)
iEA

By normalizing the previously MinCut problem, the unnatural bias for partitioning

out srnall sets of points is avoided. While in our algorithm, we are having a set

of distributed core cells, thus by weakening some small colonies down to 1 cell and

finally eliminating them, we can also avoid the problem. Also, if we use the Normal-

ized Cuts function, minimizing the function through dynamic evolutions by taking

time derivatives would cause more complex problems. Thus we simply use a modified

version of MinCut, by adding a term trying to maximize inner colony bonding. This

added term not only performs the role of normalization in normalized cuts, but also

simulates the process of diffusing the colony recognition from the core cell to its local

environment and naturally all connected neighbors. Moreover, we changed the binary

clustering problem into a multi cluster interaction problem using continuous colony

vectors.

The Colony interactions are meant to minimize a cost function similar to the Nor-

43

malized Cuts and MinCut:

o
T (M + MT)c - cEJ (M + MT) (2.1

Ecolony = cT(M + MT)c - ycT(M + MT)c (2.18)

=S (M T)(-) - + (1)c-

Consequently, by making cd = -(M + MT)c-; + ('- + 1)(M + MT)c5

Ecolny =- (c- -- (7y + 1)ci) T (M +1 M T)2 (-- - (i + 1)dQ

<;0

We can also transform the interaction equations into a matrix view:

C -(M + MT)c-fxk ± (m+ 1)(M + MT)C

Also need to remember here that all entries in C are strictly restricted in the range

of [0, 1]. The interactions between colonies are composed of two parts, one part is the

mutual inhibitions between colonies, and the other part is self promotion of one colony

into the whole environment through diffusion. When initially the colonies have niot

yet been well developed, but just established on distributed core cells, it is obvious

that there will be no inter colony interactions, but only colony self-expanding through

O= (C + 1)(M + MT)C. This simulates a neighbor-to-neighbor infection, and this

infection realizes that cells recognized already can activate their neighbors and pass

on the colony identities. So it is natural that if one cell is already recognized by one

colony, then it can not establish a new cluster as a core cell, because it can already be

well connected to an existing core cell directly or indirectly. When the colonies have

been expanding for a certain period of time, some colonies that are not well separated

become neighboring to each other, and the mutual inhibition comes into effect. So

finally, it will be a natural balance between inhibitions from other colonies and self

44

expanding forces, which can be further tuned by the parameter -Y.

Furthermore, we can explain the interaction in a micro view at the boundary of

two stable neighboring colonies: suppose that we have two colonies A and B closely

neighboring with each other, with colony vector as c1 and c' respectively. For a

single cell i in the boundary area between the two colonies, following the interaction

rules,

CAi = - ±Ti mji) C~, + ~y>(mij + mi) cAj

CBi - - Mi + mji) CAj + (Mi + mji) CBj

When y 1, it is obvious that aAi = -ai, so if accumulated bonding from colony A

is larger than accumulated bonding from colony B, as oj(mij + myj)cAj > o-j(mij --

mji)cBj, then finally aAi = 1, asi = 0, otherwise, 6 Ai = 0, aBi = 1. So if we set y = 1,

then in the final result every row in matrix C will have at most one non-zero entry as

1, on the column, whose colony has most accumulated bonding weights towards the

cell.

So what if -y / 1? Actually, -y is the parameter tuning the relative strength of inhi-

bition and expanding forces, when -y < 1, the inhibition force is relatively enhanced,

naturally, there might exist some blank boundaries between clusters, as the inhibi-

tion force from neighboring colonies are so strong that expanding from neither colony

could reach the cell. On the other hand, when -y > 1, the expanding force is rela-

tively enhanced, so it is more easy for the colony factors to spread into well connected

neighboring colonies despite of mutual inhibition. As shown in Fig.2-1 -y here mea-

sures the ability to "cross the chasm", since as long as the expanding force is over j
of the inhibition force, the penetration can happen to make the neighboring colonies

more connected to each other. So at the beginning, it would be wise to tune up 'y,

to not only speed up new born colony growing, but also enhance distributed small

colonies merging. By strengthening the ability to "cross the chasm", it will also help

the algorithm avoid being trapped in local optimum. At the late stage of the process,

when all colonies have become stable, we can tune -y back to 1 to achieve a distinct

45

clustering result.

Figure 2-1: The interactions between two colonies

Thus, the algorithm have successfully optimized a cost function similar to Nor-

malized Cuts and MinCut, to coordinate the interactions between colonies so that

we can achieve clustering result that is reasonable both in a biological view and a

mathematical view.

2.2.3 Analogy to Other Algorithms

Although a purely biology inspired algorithm, our algorithm still has various connec-

tions to some other existing algorithms, like density based clustering algorithms(DBSCAN,

DENCLUE[36]), and spectral clustering algorithms(Normalized Cuts, Power Iteration

Method[37]):

Like DBSCAN algorithm, we also have the concept of growing radius, and also we

both regard a cluster as locally well connected groups of data. However, the radius

in our algorithm is not used to define a connected territory, yet to influence the local

environment in order to tune the M matrix to a sparsely connected graph. Also,

our algorithm performs distributed computation and is much more flexible to time

varying data.

Similar to the spectral clustering algorithms, like normalized cuts and diffusion maps,

46

we also utilize the M matrix alone for analysis, and we even borrow the idea from

normalized cuts to build a cost function. However, we take different paths to segment

the clusters. The spectral clustering algorithms dig deep into the mathmatical anal-

ysis on eigenvalue and eigenvector distributions of the M matrix or its modifications,

while actually, it can also be explained in the markov process theory. However, we

focus more on the local connectivity and diffusion properties that can be inspired by

nature. We use similar cost functions to value the quality of clustering results, and it

is reasonable to say, the spectral clustering methods provide great theoretical support

to our method, and the solution in our way is most likely to be the same when using

the second largest eigenvector to segment clusters in normalized cuts. Nonetheless,

our algorithm is self organizing, which makes it more adaptive to problems, where

o- can not be predefined. Also, we don't need to calculate the eigenvalues again and

again if the data is time varying continuously. Actually, when dealing with shifting

data, we can think of our clustering result as an integral process where historical

results can provide reference information to future result, so that calculations in the

past are not wasted. Consequently, in the long run, our algorithm is more efficient

and flexible.

Further, we will test our algorithm in various benchmark datasets in Chapter 3.

47

48

Chapter 3

Experimental Applications

In this chapter, we will introduce the experiment results of the proposed algorithm.

First we will provide clustering results on some typical synthetic benchmarks, whose

data structures are not linearly separable, so that cannot be solved by K-means or dis-

tribution based algorithms. Then we will test on some real benchmarks applications,

and compare with clustering results with current popular algorithms including Nor-

malized Cuts[4], Ng-Jordan-Weiss algorithm[3] and Power Iteration Clustering[37).

Then we will test the algorithm on some novel applications, such as using the algo-

rithm on alleles classifications. And finally, we will discuss the possibility of applying

the algorithm on clustering dynamic systems.

3.1 Synthetic Benchmarks Experiments

We provide the clustering results on four occasions that are commonly considered as

difficult clustering scenarios: the two-chain model, the double-spiral model, the two

moon model and the island model. The parameters setting we are using here are:

a = 5, b= 5,3 = 2,,y = 5

Two-chain model

The two chain dataset is to test the capability of the algorithm to diffuse the influence

in a chain pattern. In the dataset, we have 224 samples forming two chain-shaped

data cluster, as shown in Fig.3-1. After tuning the influence radius a's, we can have

49

two well separated colonies with the density distribution shown in Fig.3-2. We can

have the clustering results shown as Fig.3-3.

Figure 3-1: The two-chain shaped data model

Figure 3-2: Density distribution of two-chain shaped data model

Two-spirals model

Then we try to test the algorithm on more entangled datasets, such as two spirals-

shaped data model. In this way, we can make sure that the tuning rules guarantee

50

......~ .%.

Figure 3-3: Clustering result of the two-chain shaped data model

Figure 3-4: The two-spiral shaped data model

51

.~**

I

-I
/

*1

Figure 3-5: Density distribution of two-spiral shaped data model

Al

Figure 3-6: Clustering result of the two-spiral shaped data model

52

that cells are only connected to their local neighbors, and also see whether the colony

factors diffuse faster along dense area than sparse area. In the dataset, we have 525

samples distributed in a two-spiral way, as shown in Fig.3-4. After the tuning process,

the density distribution map of the double spirals is shown in Fig.3-5. The clustering

result of the two clusters is shown in Fig.3-6

Figure 3-7: The two-moon shaped data model

Figure 3-8: Density distribution of two-moon shaped data model

53

* 40.

Figure 3-9: Clustering result of the two-moon shaped data model

Two-moon model

To test the performance on more dense datasets, we are using the two-moon data

model which is widely used in supervised learning and semi-supervised learning re-

searches. As we can see from Fig.3-7, the dataset is composed of two clusters with

200 samples that can not be linearly separated. Also, it can be segmented into four

clusters if considering the separation within the two clusters, which is a result that

can also be achieved with our algorithm with other parameter settings. We can see

from Fig.3-8, the influence tuning make sure that the final density distribution closely

fits the original data distribution, which can be quite useful for further classification

and outliers detection. And the clustering result is shown in Fig.3-9.

Island model

Finally, we test our algorithm on a dataset shaped like an island, to make sure that

the island cluster can be isolated from the ring like cluster. The 236 samples and the

corresponding density maps along with clustering results are shown respectively in

Fig.3-10, Fig.3-11, and Fig.3-12.

54

2*.

V

1.

Figure 3-10: The island shaped data model

Figure 3-11: Density distribution of island shaped data model

55

Figure 3-12: Clustering result of the island shaped data model

3.2 Real Benchmarks Experiments

In this section, we will present the experimental results of our algorithm on a variety

of real datasets including the Iris datasets and the Pendigits datasets.

Iris flower dataset

The Iris flower dataset or Fisher's Iris dataset[38], introduced by Sir Ronald Fisher(1936),

consists of 150 instances forming 3 clusters, of which two are only nonlinearly sep-

arable. The dataset is to quantify the morphologic variation of Iris flowers of three

species(Iris setosa, Iris virginica and Iris versicolor) on four features, the length and

the width of the sepals and petals. The dataset is widely used for measuring super-

vised clustering algorithms, however, not so popular in the clustering analysis field,

since two of the clusters are not easily separable. Actually, in our algorithm, it is also

normal that with some parameter settings, we can only detect two clusters out of the

dataset. Or sometimes we can get results of three clusters while the segmentation,

although not accurate, that are still good segmentations if we just look at the data

structure and forget the labeled information. Finally, with the parameters set as:

a = 3, b = 2.5, # = 2, -y = 2, we can successfully cluster the dataset into three clusters

with 4 errors out of 150, a 97.3% correctness rate. One thing worth noting here is

that, the reason we are tuning down a, b and y is due to the concern that overly dif-

fusing and merging may cause the problem that a third cluster can not be separated

56

*I.

.* .

I.

* . .

from the dataset. So we tune down a to 3, so that cells will seek less recognition from

neighborhood, and we tune down -y, so that clusters will merge less. The clustering

result is shown in Fig.3-13

Sepal.Length

0 0 0

0
'Doe 0

0 ~
0 0

0 0 00

Sepal.Width

0

00
0. 0

0* Petal.Length

Figure 3-13: The clustering result of Iris dataset

Pen digits dataset

The Pen-based recognition of hand written digits datasets[39] (Alimoglu & Alpaydin,

1997) is a multivariate dataset of 10992 instances, each with 16 attributes. The

dataset is a handwritten dataset of ten digits written by 44 writers. Consequently,

the dataset is a good benchmark for testing the ability of the algorithm to cluster

the data into much more than 2 clusters simultaneously in a high dimensional space.

We randomly choose 1000 instances and set the parameters as: a = 3, b = 3, =

57

Petal.Width

I

2, 7 = 1.5. The clustering results are shown in Table 3.1. The overall correctness rate

is 86.6%. This level of accuracy at clustering is not yet achieved in many existing

algorithms, such as Normalized cuts.

Also, we have tested the algorithm on two subsets of the dataset, PenDigits01 and

PenDigits17, containing the digits "0, "1 and "1, "7, respectively. Each dataset

contains 200 instances, 100 per digit. PenDigits01 is an easier dataset since the

writing of "0" and "1" is more differentiable and PenDigits17 represents a more

difficult dataset since the latter two digits are more difficult to differentiate in hand

writing. For the set of parameters, we are using a = 5, b = 5,# = 2,7 = 5, and

a = 3, b 3,# 2,7 = 2 respectively. The comparison results are shown in Table

3.2.

Table 3.1: Clustering result of Pendigits dataset

Cluster Number 0 1 2 3 4 5 6 7 8 9 Hit
of data rate(%)

1 84 82 0 0 0 0 0 0 0 2 0 97.6
2 81 0 76 0 0 0 0 0 5 0 0 93.8
3 31 31 0 0 0 0 0 0 0 0 0 100.0
4 81 0 3 0 0 0 0 78 0 0 0 96.3
5 143 0 25 115 0 0 0 0 2 1 0 80.4
6 107 0 0 0 0 102 0 0 1 0 4 95.3
7 63 0 0 0 0 0 0 0 63 0 0 100.0
8 134 0 8 0 90 0 9 0 3 6 18 67.2
9 60 0 0 0 0 0 7 0 0 0 53 88.3
10 11 0 0 0 0 0 0 0 11 0 0 100.0
11 61 0 0 0 0 0 61 0 0 0 100.0
12 18 0 0 0 0 0 0 0 0 0 18 100.0
13 7 7 0 0 0 0 0 0 0 0 0 100.0
14 21 0 0 0 0 0 0 0 0 21 0 100.0
15 20 0 0 0 0 0 0 0 0 20 0 100.0
16 14 0 0 0 0 0 1 0 0 0 13 92.8
17 25 0 0 0 0 0 0 0 0 25 0 100.0

961
Overall (39 as outliers) 86.6

Polbooks dataset

We have also tested our algorithm on Polbooks dataset for network segmentation

58

tasks, although our algorithm works better on numeric clustering problems. Yet, the

segmentation result is still satisfying comparing to cutting edge algorithms. For the

experiment here, we are using a = 3, b = 2, # 2, y = 1. The comparison results are

shown in Table 3.2.

Table 3.2: Clustering result comparison with NCut, NJW and PIC

Dataset Instances Clusters NCut NJW PIC Ours

Iris 150 3 67.3 80.7 98.0 97.3
Pendigits 1000 10 86.6

PenDigitsOl 200 2 100.0 100.0 100.0 100.0
PenDigits17 200 2 75.5 75.5 75.5 81.5

Polbooks 105 3 84.8 82.3 86.7 83.8

3.3 Novel Experiment on Application for Alleles

Clustering

This section specifies the application of classifying the supertypes of the major his-

tocompatibility complex (MHC, also called HLA in humans) alleles, especially the

DRB (HLA-DR chain) alleles. We utilize the BLOSUM62 matrix and kernel matrix

between alleles series in [40] to conduct data clustering. As introduced in [40], it

is very important to understand the similarities of DRB for the designation of high

population coverage vaccines. There are only no more than 12 HLA II alleles in each

HLA gene, and an HLA gene has the ability to produce a large amount of allelic

variants. It is difficult to design a vaccine that can be effective when dealing with

a large population. Yet, the HLA molecules have overlapping peptide binding sets,

so by grouping them into clusters, or supertypes, molecules in the same supertype

will have similar peptide binding specificity. Although the Nomenclature Commit-

tee of the World Health Organization havs given extensive tables on serological type

assignments to DRB alleles, the information is not yet complete. So the work of

grouping the alleles into groups and compare them with the WHO labels would be

59

helpful to the understanding of similarities of alleles and also provide predictions to

the unlabeled DRB alleles.

In the work of [40], Wen-Jun et al analyzed on 559 DRB alleles, and proposed a kernel

matrix based on BLOSUM62 matrix:

K': A x A -+ R as

Kl(x,y) - (x') ,# > 0
p(x)p(y)

where

p(x) = Q(x, y), Vx E A
yEA

Based on this, for two amino acid strings of the same length k, u (ui, u2 , --., uk),

V (V1i, V2, ... ,V k)
k

K(u, v) = fl K(ui, vi)
i=1

and further, for two amino acid with different length f and g

K 3 (f, g)= K K u, v)
uCf,vcg

||u|j=||v||=k
allk=1,2,...

and the normalized kernel k

K(xy) K(x,y)
K(x, y)K(y, y)

And finally, based on the kernel matrix, for the alleles set N with 559 components,

the distance between the alleles is

DL2(a,b) = (E(k(a, c) - k(b, c))2)

So we can utilize this distance to replace the Euclidean distance (Xi - x,) 2 in the

Gaussian kernel, while still use the tuning policy introduced before. Finally, we can

have the clustering result shown in Table 3.3, with the parameter setting a = 3, b =

2,4# = 5,y = 4

60

Table 3.3: Clustering result of the alleles data

Cluster Allele Allele Allele

DRB1*0107

DRB1*0127

DRB1*0119

DRB1*0118

DRB1*0131

DRB1*0128

DRB1*0114

DRB1*0126

DRB1*0137

DRB1*0103

DRB1*0115

DRB1*0123

DRB1*0109

DRB1*0106

DRB1*0110

DRB1*0117

DRB1*0112

DRB1*0135

DRB1*0111

DRB1*0104

DRB1*0121

DRB1*0102

DRB1*0101

DRB1*0132

DRB1*0129

DRB1*0136

DRB1*0130

DRB1*0105

DRB1*0108

DRB1*0134

DRB1*0125

DRB1*0124

DRB1*0120

DRB1*0122

61

1

DRB1*1528 DRB1*1518

DRB1*1514

DRB1*1526

DRB1*1542

DRB1*1551

DRB1*1524

DRB1*1557

DRB1*1503

DRB1*1523

DRB1*1554

DRB1*1556

DRB1*1509

DRB1*1506

DRB1*1547

DRB1*1522

DRB1*1538

DRB1*1504

DRB1*1546

DRB1*1537

DRB1*1535

DRB1*1502

DRB1*1501

DRB1*1520

DRB1*1536

DRB1*1544

DRB1*1531

DRB1*1552

DRB1*1515

DRB1*1553

DRB1*1533

DRB1*1541

DRB1*1543

DRB1*1549

DRB1*1508

DRB1*1539

DRB1*1530

DRB1*1512

DRB1*1529

DRB1*1545

DRB1*1548

DRB1*1511

DRB1*1507

DRB1*1516

DRB1*1555

DRB1*1532

DRB1*1558

DRB1*1540

DRB1*1505

DRB1*0910 DRB1*0903 DRB1*0905

DRB1*0913 DRB1*0915 DRB1*0904

DRB1*0911 DRB1*0916 DRB1*0912
3

DRB1*0914 DRB1*0909 DRB1*0907

DRB1*0906 DRB1*0901 DRB5*0112

DRB1*0908

62

2

DRB1*0712
DRB1*0715 DRB1*0717

DRB1*0704
DRB1*0716 DRB1*0705

DRB1*0720
DRB1*0709 DRB1*0707

4 DRB1*0701
DRB1*0719 DRB1*0708

DRB1*0711
DRB1*0713 DRB1*0714

DRB1*0718
DRB1*0703 DRB1*0721

DRB1*1220 DRB1*1234 DRB1*1225

DRB1*1213 DRB1*1202 DRB1*1233

DRB1*1208 DRB1*1216 DRB1*1218

DRB1*1215 DRB1*1219 DRB1*1211

5 DRB1*1205 DRB1*1222 DRB1*1221

DRB1*1214 DRB1*1201 DRB1*1229

DRB1*1230 DRB1*1203 DRB1*1226

DRB1*1228 DRB1*1207 DRB1*1232

DRB1*1223 DRB1*1212

63

DRB1*0342

DRB1*0345

DRB1*0354

DRB1*0321

DRB1*0324

DRB1*0307

DRB1*0349

DRB1*0340

DRB1*0317

DRB1*0341

DRB1*0329

DRB1*0327

DRB1*0302

DRB1*0303

DRB1*0364

DRB1*0353

DRB1*0360

DRB1*0322

DRB1*0336

DRB1*0343

DRB1*0330

DRB1*0326

DRB1*0337

DRB1*0310

DRB1*0313

DRB1*0359

DRB1*0358

DRBI*0319

DRB1*0311

DRB1*0355

DRB1*0320

DRB1*0348

DRB1*0363

DRB1*0305

DRB1*0301

DRB1*0356

DRB1*0351

DRB1*0314

DRB1*0315

DRB1*0334

DRB1*0347

DRB1*0333

DRB1*0361

DRB1*0328

DRB1*0362

DRB1*0308

DRB1*0346

DRB1*0312

DRB1*0306

DRB1*0318

DRB1*0304

DRB1*0344

DRB1*0325

DRB1*0331

DRB1*0309

DRB1*0323

DRB1*0352

DRB1*0339

DRB1*0332

DRB1*0357

DRB1*0335

DRBI*0365

DRB3*0115

64

6

DRBI*0488

DRB1*0437

DRBI*0458

DRB1*0472

DRBI*0401

DRB1*0413

DRBI*0444

DRBI*0408

DRBI*0423

DRBI*0404

DRBI*0470

DRB1*0474

DRBI*0495

DRBI*0450

DRBI*0427

DRBI*0407

DRB1*0452

DRBI*0403

DRBI*0451

DRBI*0431

DRBI*0455

DRB1*0497

DRBI*0475

DRB1*04101

DRB1*0414

DRB1*0493

DRBI*0416

DRB1*0415

DRBI*0461

DRB1*0440

DRBI*0426

DRBI*0457

DRBI*0480

DRB1*0486

DRBI*0412

DRB1*0409

DRBI*0467

DRBI*0490

DRBI*0405

DRBI*0410

DRB1*0487

DRB1*0417

DRBI*0411

DRBI*0448

DRB1*0424

DRB1*0482

DRBI*0476

DRB1*0430

DRBI*0489

DRB1*0496

DRBI*0483

DRB1*0463

DRB1*0466

DRB1*0449

DRBI*0445

DRBI*04102

DRBI*0441

DRB1*0477

DRB1*0446

DRBI*0421

DRB1*0419

DRBI*0468

DRBI*0406

DRBI*0465

DRBI*0478

DRBI*0484

DRB1*0491

DRBI*0485

DRBI*0433

DRB1*0439

DRBI*0435

DRB1*0443

DRBI*0442

DRBI*0459

DRB1*0428

DRBI*0479

DRBI*0429

DRB1*0462

7

65

9

66

DRBI*0471

DRBI*0434

DRB1*0464

DRB1*04100

DRB1*0456

10 DRB4*0104 DRB4*0101 DRB4*0107

DRB4*0105 DRB4*0108 DRB4*0102

DRB1*0402

DRBI*0453

DRBI*0418

DRBI*0473

DRB1*0438

DRB1*0460

DRBI*0447

DRBI*0436

DRBI*0454

DRB1*0425

DRB1*1612

DRB1*1608

DRB1*1609

DRB1*1610

DRB1*1603

DRB1*1601

DRB1*1614

DRBI*1615

DRBI*1604

DRBI*1605

DRBI*1602

DRBI*1618

DRBI*1616

DRBI*1607

DRBI*1617

DRBI*1611

DRBI*1534

DRB1*1527

DRBI*1521

8

DRBI*0338

DRB3*0102

DRB3*0111

DRB3*0101

DRB3*0112

DRB3*0109

DRB3*0110

DRB3*0106

DRB3*0113

DRB3*0108

DRB3*0107

DRB3*0103

DRB3*0105

DRB3*0114

DRB3*0204

DRB3*0220

DRB3*0203

DRB3*0223

DRB3*0216

DRB3*0225

DRB3*0219

DRB3*0217

DRB3*0211

DRB3*0227

DRB3*0214

DRB3*0202

DRB3*0201

DRB3*0215

DRB3*0222

DRB3*0226

DRB3*0206

DRB3*0218

DRB3*0208

DRB3*0221

DRB3*0207

DRB3*0210

DRB3*0209

DRB3*0205

DRB3*0213

DRB3*0212

DRB3*0302

DRB3*0301

DRB3*0303

DRB5*0101 DRB5*0111 DRB5*0103

DRB5*0104 DRB5*0113 DRB5*0204

11 DRB5*0109 DRB5*0105 DRB5*0202

DRB5*0107 DRB5*0114 DRB5*0203

DRB5*0106 DRB5*0102 DRB5*0205

DRB1*0821

DRB1*0814

DRB1*0826

DRB1*0809

DRB1*0835

DRB1*0836

DRB1*0838

DRB1*0816

DRB1*0842

DRB1*0828

DRB1*0845

DRB1*0817

DRB1*0837

DRB1*0844

DRB1*0808

DRB1*0811

DRB1*0829

DRB1*0812

DRB1*0802

DRB1*0804

DRB1*0830

DRB1*0813

DRB1*0841

DRB1*0819

DRB1*0847

DRB1*0805

DRB1*0822

DRB1*0839

DRB1*0801

DRB1*0806

DRB1*0843

DRB1*0840

DRB1*0818

DRB1*0803

DRB1*0846

DRB1*0810

DRB1*0848

DRB1*0825

DRB1*0834

DRB1*0807

DRB1*0833

DRB1*0823

DRB1*0827

DRB1*0815

DRB1*0824

DRB1*0820

DRB1*1415

DRB1*14116

DRB1*1477

DRB1*1440

DRB1*14102

DRB1*1484

67

12

DRB1*1446

DRB1*1410

DRB1*1457

DRB1*1439

DRB1*1461

DRB1*1473

DRB1*1479

DRB1*14107

DRB1*1431

DRB1*1493

DRB1*1450

DRB1*1428

DRB1*1468

DRB1*1471

DRB1*1404

DRB1*1476

DRB1*1475

DRB1*1411

DRB1*1452

DRB1*14117

DRB1*14112

DRB1*1426

DRB1*1470

DRB1*14110

DRB1*1435

DRB1*1472

DRB1*1465

DRB1*1455

DRB1*14104

DRB1*14101

DRB1*1434

DRB1*1408

DRB1*1414

DRB1*1423

DRB1*1462

DRB1*1460

DRB1*1436

DRB1*1464

DRB1*1421

DRB1*1430

DRB1*1417

DRB1*1433

DRB1*1459

DRB1*1409

DRB1*1480

DRB1*1497

DRB1*1422

DRB1*1441

DRB1*1449

DRB1*1420

DRB1*14109

DRB1*14108

DRB1*1424

DRB1*1419

DRB1*1406

DRB1*1451

DRB1*14106

DRB1*1489

DRB1*1481

DRB1*1418

DRB1*1413

DRB1*1494

DRB1*1483

DRB1*1482

DRB1*1495

DRB1*1496

DRB1*1437

DRB1*1445

DRB1*14105

DRB1*1416

DRB1*1474

DRB1*14111

DRB1*14100

DRB1*1443

DRB1*1444

DRB1*1405

DRB1*14103

DRB1*1456

DRB1*1491

DRB1*1432

DRB1*1487

68

13

DRB1*1438 DRB1*1486 DRB1*1447

DRB1*1499 DRB1*1490 DRB1*1429

DRB1*1407 DRB1*1488 DRB1*1402

DRB1* 1401

DRB1*14115 DRB1*1498 DRB1*1463

14 DRB1*1427 DRB1*1403 DRB1*1478

DRB1*1467 DRB1*1412 DRB1*1485

DRB1*0113 DRB1*0420 DRB1*1209

DRB1*0116 DRB1*0499 DRB1*1204

DRB1*1003 DRB1*0469 DRB1*0832

DRB1*1001 DRB1*0498 DRB1*1442

Outliers DRB1*1002 DRB1*0482 DRB1*1425

DRB1*1510 DRB1*0706 DRB1*1469

DRB1*1525 DRB1*0902 DRB1*1458

DRB1*0316 DRB5*0112 DRB1*1448

DRB1*1227

As we can see by comparing our result to the result in [401, we can have a match

table as Table 3.4. Also, detailed comparison with results in each supertype is shown

in Table 3.5, we can see that our result has no misclassification errors if we treat

their results as correct. All the difference between our result and theirs, is that

the 25 alleles classified as outliers in our result have been put into some clusters

in their result. However, as they also suggest that some outliers in our result such

as DR35*0112, DRB1*1525, DRB1*1425, DRB1*1442, DRB1*1469 and DRB1*0832

are exceptional, the combination of both results make the classification of these alleles

doubtful. We also share same results on the clustering of several other exceptions,

such as DRB1*0338, DRB3*0115. Moreover, we support their results on classifi-

cation of , DRB1*1440 , DRB1*1469, DRB1*1477, DRB1*1484, DRB1*14116 and

DRB1*14102 into the ST8 supertype. The experiment on this problem suggests that

our algorithm is effective on clustering multiple clusters simultaneously for alleles

69

clustering data, and also our results support the conclusions of Wen-jun et al's work

on the mathematical foundation analysis of amino acid chains. The ability of detect-

ing outliers may lead further analysis on the controversial results in the clustering

and provide potential directions on biological researches.

Table 3.4: Clustering result match-up of alleles clustering
Supertype Serotype Cluster

ST52 DR52 9
ST3 DR3, DR17, DR18 6
ST6 DR14, DR1404, DR1403, DR6 13, 14
ST8 DR8 12
ST4 DR4 7
ST2 DR15, DR16, DR2 2, 8
ST5 DR12 5

ST53 DR53 10
ST9 DR9 3
ST7 DR7 4

ST51 DR51 11
STI DRI, DR103 1

DRB1*1003 (outlier)
ST1O DR10 DRB1*1001(outlier)

DRB 1* 1002 (outlier)

3.4 Experiments on Dynamic System Grouping

In this section, we will introduce the applications of our algorithm on clustering dy-

namic systems or dynamic data. The applications in this part show the capability

of our algorithm to deal with time varying data in a continuous way. The cluster-

ing result that our algorithm can achieve is flexible and changing according to the

distribution of data, which can be regarded as an integration of distribution over a

certain period of time. We will introduce the applications of mobile robots cluster-

ing, adaptive system self grouping and potential multi-model system embedding in

the following sections.

70

Table 3.5: Clustering result comparison of alleles clustering

Supertype Not included Misclassified Outliers

ST52 0 0 0
ST3 6 0 6
ST6 2 0 2
ST8 2 0 2
ST4 6 0 6
ST2 1 0 1
ST5 1 0 1
ST53 0 0 0
ST9 1 0 1
ST7 1 0 1

ST51 0 0 0
STI 2 0 2

ST1O 3 0 3
Overall 25 0 25

3.4.1 Motivation

It is fascinating to see the occasion that tens of thousands of fish, birds, insects or buf-

falos moving together with perfect coordination and flexible formation. There are no

absolute leaders or regional coordinators in the herd, yet the members coordinate and

interact with local neighbors, that eventually realizes global coordination. There are

already researchers working on the projects of swarm intelligence and swarm robotics,

such as Vijay Kumar's group in University of Pennsylvania and The Kilobot Project

from Radhika Nagpal's group in Harvard University. However, current researches

mostly focus on the grouping behavior of tens of robots. When considering commu-

nications among thousands of robot agents, we need to design a novel mechanism

for agents to communicate and interact within neighborhoods efficiently and quickly.

Using bio-inspired strategy on the study of this problem is highly attractive, since we

have already seen the fact that flocks of birds and schools of fish can move elegantly

with flexibility and ability to avoid obstacles. It would be significantly meaningful,

if we can combine research on clustering, synchronization and control strategy to

achieve real-time learning and decision making. So we test our algorithm inspired by

quorum sensing on three applications related to dynamic systems to show the poten-

tial and real advantage of our algorithm comparing to other existing ones, the ability

71

to make real machines more intelligent.

3.4.2 Application I. Clustering of mobile robots

The first application is to cluster working mobile robots into groups so that in fur-

ther tasks, they can have better coordination and synchronization. We design the

scenario as 200 robots distributed at the locations of the previous introduced two-

moon dataset. The 200 robots are moving around their center locations with the

radius of 0.5, random angular speed in the range of [2,4], and random initial angular

position in the range of [0, 27r]. The whole algorithm remains the same as in the

applications in previous applications. It is only the distance matrix D and influence

matrix M, that are updated continually. Although it seems to be a lot of calculation,

actually, in the real world application, we can attach electromagnetic field emitters,

and electromagnetic field intensity sensors on each of the robot agent. The intensity

of electromagnetic field at a certain location is the superposition of all neighboring

electromagnetic fields influence. In this way, by tuning the influence radius of electro-

magnetic fields, which is most likely to be Gaussian distributions, we can change the

communications mechanism from agent-to-agent interactions to agent-environment-

agent interactions, which is the basic idea of quorum sensing.

Back to our experiment, in Fig.3-14, it is shown that even if the locations of robots

are changing over time, our influence radius tuning process is capable of dealing

with local density variations. Over the simulation, the density distribution map

fits closely with the data distribution which is helpful for segmenting clusters and

detecting outliers. Also in Fig.3-15, we can see that the influence radius is tuning

down regarding to a local high density, and tuning up corresponding to a local low

density, to achieve balance. Finally, in Fig.3-16, we can see that the cluster number

is merged all the way down to 2 clusters, and the final result is exactly what we want,
same as in the static two-moon model clustering.

72

t=Os t=1s

t=3s t=4s t=5s

t=6s t=7s t=8s

t=9s t=10s t=1s

t=12s t=13s t=14s

Figure 3-14: The distribution map of data and density in 14 seconds

73

t=2s

0 20 40 60 80 100 120 140 160 180 200

Figure 3-15: Variation of density and influence radius of a single cell

20-

15-
E

5

0
0 2 4 6 8 10 12 14 16 18 20

Time(s)

Figure 3-16: Cluster numbers of over the simulation time

74

3.4.3 Application II. Clustering of adaptive systems

One problem on adaptive control is that the adapting parameters cannot be guaran-

teed to converge to the true value. However, it is important to know the true sets

of parameters to enhance transient response and improve further performance in the

long run. Suppose we have many unknown dynamic systems to control, while we have

the information that the parameters configurations can only fall into certain limited

choices. So it would be possible to cluster the dynamic systems and figure out who

share the same parameters configuration as one group. Further, we can even couple

the systems in the same group, to achieve synchronization by forming contracting

Lagrangian systems as introduced in [41] and [42]. As explained in [43], synchro-

nization will enhance the ability to resist noise and improve robustness of the whole

network. Consequently, such grouping and coupling would be beneficial for better

control performance, and can be analyzed in further research.

Also, as we see in many natural colonies, the group merging and splitting is so

smooth and elegant, which gives the colonies flexibility to deal with obstacles and

danger. So we want to also realize this dynamic clustering in a natural way by

merging similar clusters and split clusters that are already not connected. We design

our experiment as follow.

Suppose we have 60 dynamic systems as mizi + bidi + kixi = ui, mi, bi, ki are

unknown constants. The 60 dynamic systems are in mainly 3 groups. The parameters

mi, bi, ki of the first 20 systems follows the Gaussian distribution around [2, 4,3] with

the standard variation as 0.2. The parameters mi, bi, ki of the 20-40 systems follows

the Gaussian distribution around [4,3, 2] with the standard variation as 0.2. And the

parameters of the last 20 systems follows the Gaussian distribution around [3,2, 4]

with the standard variation as 0.2. The initial distribution of the parameter space

is shown in Fig.3-17. During the simulation time between 25s and 35s after the

systems is stable, the parameters of the last 20 systems are changed to follow the

Gaussian distribution around [4,3,2] with the standard variation as 0.2, so that there

are actually 2 clusters during that time. And after 35s, the parameters of the last

75

20 systems are changed to follow the Gaussian distribution around [6,6,6] with the

standard variation as 0.2, when there will be again 3 clusters existing then. We believe

such experiments would be adequate to test the dynamic clustering by merging and

splitting colonies.

The goal of controlling the system would be to track the trajectory of Xd(t)

sin(27rt), so obviously ad(t) = 2wcos(27rt), zd(t) = -4w 2 sin(27rt). Generally to make

sure a system like mz- + b1 + kx = u follows the predefined trajectory, we can design

adaptive control strategy as follows: Define s =- d + A(x - Xd)

and the Lyapunov function as

V = 0.5ms 2 + 0.5(fh - rM) 2 + 0.5(b - b)2 + 0.5(k - k)2 > 0 (3.1)

then

V m-rss +^n*rn+b*b+kk

= n + b* b+ kk + ms(- d+A(- d))

= ^+ b* b + k * k + s(u-mza-b- kx + Am(v-d))

So by designing

u = in(d- A(d)) + b+kx - ks (3.2)

where ki is a positive number, and

^n = -s(Xd - 4(i - Xd)) (3.3)

b (3.4)

k = -sx (3.5)

We can get 1 = -kis 2 < 0. Also since 17 is bounded, by using Barbalat's lemma, we

76

can have V converging to 0 asymptotically. And thus s and x - Xd will converge to

0 asymptotically since s can be considered as a first order filter for x - Xd. So this it

the rule we use to control the system by using

U =^n (zd - A (± - td)) +Yt + kx - k1s

Also, we assume that systems with similar parameter configurations would need sim-

ilar inputs since we know that

will converge to 0 asymptotically in adaptive control theory and thus

u m(sa - A(.i - Xe)) + bdx + kx

. Consequently, systems with similar parameter settings are likely to get similar

inputs. By conducting fast Fourier transform of the input signal over 1 second which

is the period time of the sinusoidal trajectory, we can use the Fourier transform vector

to calculate distance matrix between agents and then put into our algorithm for

clustering the systems. In our experiment, we have A = 4, and we use the normalized

20 point Fourier transform vector as the feature vector. The final clustering result

is shown in Fig.3-18. As we can see, during 0-25 seconds, the cluster number is

merged down to 3, and further to 2 approximately only 1 second after the parameters

configuration is changed. And moreover, a third cluster is split out from the merged

40 systems again only 1 second after the parameters configuration variation. With

the correct clustering result of the 60 systems during all parameter variations, we are

confident to say that our system is capable of dealing with time varying data by using

the accumulating information to do dynamic clustering, while also capable of handling

variations of cluster numbers as well. The results also suggest that using our algorithm

to group dynamic system is feasible and further applications on synchronization and

coordination are very promising.

77

4.5,

3.5,

3,

2.5,

2,

1.5,
5

.. I

5

2 2 3
2i

Figure 3-17: Initial parameters configuration of the 60 systems

25

20

15
E

i 10

5

0
0 5 10 15 20 25 30 35

Time(s)

Figure 3-18: Cluster numbers during the simulation

78

3.4.4 Application III. Multi-model switching

As introduced in [7] [8], multi-model switching control could help the system with

better transient control performance and higher precision. Suppose we have a sys-

tem with unknown parameters settings, however we know that there are only three

choices of parameters configuration. We are suggesting a new method for multi-model

switching control as follows:

1. Initially, we use adaptive control to make sure the system is working with ac-

epetable performance. While at the same time, we have tens of virtual systems

simulating with the same control input and parameters scattering around the

pre-known choices.

2. After the density map is stable by tuning the influence radius of the virtual

systems, we can get the local density of the real system as

dr = e (3.6)

where f, and fi are Fourier transform vectors of the input of the real system

and virtual systems.

3. If d, exceed a predefined threshold, we can consider that the real system belongs

to a virtual cluster, and by analyzing the virtual cluster's parameters settings,

we will be able to realize the parameters choice of the real system.

4. Further, if the parameters of the system vary again, by detecting d, dropping

down, we can resume adaptive control and wait for the next time that dr su-

passes the threshold.

In our experiment, we are still using the same 60 dynamic systems and control laws

as introduced in the previous section. And we have a new "real" system, whose

parameters mr, br, krare set as [4,3,2] initially, and then changed to [2,4,3]. When the

system is recognized by a cluster, we will set the estimation parameters to the true

value of the cluster belonging parameters. As we can see from the simulation results

79

3.5 P

0.5-

0 10 20 30
Time (s)

m(estimation)
b(estimation) _
k(estimation)

40 50 60

Figure 3-19: Parameter estimations of the real system

II I II

20 30 40 50
Time (s)

60

Figure 3-20: Density of the real system

80

4.5

4

3

25k

E

a-

2

1.5

0

12

10

E
(D

0

2

0 10
11

1

Z 0

-0.

-1 -

0 10 20 30 40 50 60
Time (s)

Figure 3-21: Trajectory of the real system

0.5 I

0-

-0.5-

0 10 20 30 40 50 60
Time (s)

Figure 3-22: Error of the real system

Fig.3-19 and Fig.3-20, soon after the multi-model switching starts at t = 10 seconds,

the density of the real system surpasses the threshold 5, and the parameter estimations

is tuned to the true value. The real system parameters are changed at t = 20 seconds,

and in a short period of time the density drops along with the control mode changed

to adaptive control. After about another 10 seconds, the density is high again, and

the system is recognized by the new correct cluster with true parameters set. Also,

as we can see from Fig.3-21 and Fig.3-22, the system quickly adopts adaptive control

when the robust control with parameter prediction fails and the over all performance

is quite good during the transition.

With the three applications above, we show the ability of combining our algorithm

with dynamic systems in order to give mechanical control "real intelligence". The

overall strategy mimics the idea of smooth variations in natural colonies and the

results prove the reliability of the proposed algorithm.

81

82

Chapter 4

Conclusions

4.1 Summary

As we introduced at the beginning the whole thesis, our goal of this thesis is to present

our clustering algorithm inspired by quorum sensing as a potential bridge between

modern machine learning technologies and adaptive estimation and control. With

the background of huge improvements in calculation power, it is now reasonable to

take another look at the adaptive control theory, whose main body was developed

around 1980s. However, most current machine learning algorithms are not suitable

to be used on "machines", since these algorithms take mathematical methods to

realize optimizations, which is difficult to be combined with dynamic systems in real-

time use. So we choose the clustering problem as a breakthrough point, attempting

to bridge the two parts. When considering online clustering problems, it reminds

us that many natural colonies such as schools of fish, flocks of birds, and hordes of

buffalos have great coordination and synchronizations with in the colony. It is natural

to search answers and solutions from inspirations in nature. The natural phenomenon

that inspires us is quorum sensing, which is a decentralized process among colonies of

cells. In quorum sensing, cells do not communicate with each other directly, yet they

influence and sense from the local environment, which assures simple local decision

making policy and global optimization simultaneously.

Inspired by quorum sensing, we design a clustering algorithm mainly consisted

83

of two parts. The first part is an influence radius tuning process which helps to

build and stabilize a sparsely connected networks. When density of some certain

cells surpasses a predefined threshold, we can establish new colonies originating from

the corresponding "core cell". And further, the colonies interact with each other

following a rule that tends to optimize a cost function similar with the one used in

Normalized Cuts. Finally when the whole system becomes stable, we can extract

clustering results by counting the colony vectors, which is rather simple.

In the experiments, we first test our designed algorithm on some synthetic datasets,

such as two-moon model, two-spiral model, two-chain model and the island model.

The results show that our algorithm performs nicely on both linearly separable

datasets and non-linearly separable datasets, which is not available for K-means clus-

tering and Distribution-based clustering methods. Then we test the algorithms on

some real datasets like Iris dataset, Pendigits dataset and Polbooks dataset. Our

results show that the proposed algorithm is capable of clustering multiple clusters

simultaneously and the performance is no worse or even better than cutting-edge

algorithms on these static datasets. When using our algorithm on some novel appli-

cations such as alleles clustering, we achieve highly similar results comparing to the

results of Smale's group. We not only get most alleles labeled the same as theirs,

but also support their conclusions on some exceptional classification. Moreover, we

detect several outliers that are also exceptional samples in their result, which could

lead further biological research to emphasize on these specific alleles. Finally, we

put our algorithm into the applications of mobile robots clustering, adaptive sys-

tems clustering and multi-model switching control. The performances have shown

that our algorithm is capable of dealing with data variation and cluster merging and

splitting efficiently, just like the smooth and elegant group coordination in nature.

Our algorithm realizes dynamic clustering and can be easily incorporated into control

strategy, which is a breakthrough in bridging adaptive estimation and control with

modern machine learning techniques.

Our algorithm's advantage over existing algorithms can be concluded as the fol-

lowing points:

84

1. Our algorithms defines cluster as a local region where density is high and con-

tinually distributed. Thus our algorithm is capable of clustering datasets that

are not linearly separable.

2. By mimicking quorum sensing, we make our algorithm decentralized, so that it

is suitable for parallel and distributed computation, which may further improve

algorithm speed. Especially if we use the algorithm on real mobile robots with

individual onboard processors, the local decision making policy would be really

easy since the agents are only interacting with their local environments.

3. Since the whole system is decentralized, our algorithm handles noise and outliers

well, and can detect outliers easily by choosing the cells with their density close

to zero.

4. We can cluster multiple colonies simultaneous during the process. And such

segmentation is dynamically adjusted due to the optimization of a reasonable

cost function.

5. Our algorithm can adapt to clusters with different sizes and variations, since

the influence radius is tuned to preserve local connectivity.

6. Though cluster merging and splitting, our algorithm can even adapt to cluster

variations during any period of time with quick response time.

7. The biggest advantage of our algorithm is that the clustering process itself

is dynamically evolved, which makes the algorithm easy to be conbined with

real mechanical systems with no modifications. Such combination could shed

light upon new control theory development and new ideas that could make the

controlled systems more flexible, coordinated and robust.

Also inevitably, our algorithm has several drawbacks. First, the overall computa-

tion complexity would be 0(n)3 if all the calculations are undertaken by one single

processor. However, this is due to the reason that the advantage of quorum sensing

as a decentralized process hasn't been utilized. Actually, if we use the algorithm

85

in real robots clustering scenarios, with distributed computation, the computation

complexity of any single robot would be hugely reduced to linear time. Secondly, the

algorithm tends to be sensitive to the parameter settings, and cluster segmentation

through colony interaction could be trapped in local optimum. Through the analysis

in Chapter 2 for colony interaction, we know that y defines the ability of mutual

penetration and crossing density gaps. So with larger 7y, coloniesare more inclined

to merge into each other. The parameter # measures how much we want the ori's

in a cluster to be similar with each other. Larger # would result in smoother oh's

distribution, yet potentially rugged density distribution, since the cells may not be so

homogeneously distributed. Parameters a and b measure how sparse do we want for

the connection graphs. With more connected graphs, we tend to have fewer clusters,

and vice versa. Hence, we have some basic rules to tune the parameters: if the result

suggests fewer clusters than we expect, we can tune down a, and b, and tune up y,

and if the influence radius of some cells become too large, we can tune up /5. It is

also worth noting that, even though the system is somehow sensitive to parameter

settings, all the possible clustering results make sense in different views, for exam-

ple, the two-moon dataset can be segmented into two, three or four clusters, that all

seem plausible. Further, we can design some rules tuning parameters dynamically

according to our expectations, which can be part of the future work.

4.2 Future Work

For future work, we will develop the algorithm in several directions. First, we will

conduct further research on stabilizing the algorithm and reduce sensitivity of the

parameters. Secondly, for describing dynamic systems, we may need various better

methods for extracting feature vectors rather than just analyzing the fast Fourier

transform vector of the inputs. Thirdly, we will look into the possibilities of using

our clustering algorithm on much more application scenarios involved with dynamic

systems. And last but not least, we will develop new control theories to utilize the

information that such modern machine learning techniques could further improve

86

control performance, synchronization and more natural self-organizing behaviors.

87

88

Bibliography

[1] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-
ing, 20(3):273-297, 1995.

[2] J.A. Hartigan and M.A. Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100-108, 1979.

[3] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. Advances in neural information processing systems, 2:849-856, 2002.

[4] Shi Jianbo. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22:888-905, 2000.

[5] J. J. E. Slotine and Weiping Li. Applied nonlinear control. Prentice Hall, 1991.

[6] R.M. Sanner and J.J.E. Slotine. Gaussian networks for direct adaptive control.
IEEE Transactions on Neural Networks, 3(6):837-863, 1992.

[7] K.S. Narendra and J. Balakrishnan. Adaptive control using multiple models.
IEEE Transactions on Automatic Control, 42(2):171-187, 1997.

[8] K.S. Narendra, J. Balakrishnan, and M.K. Ciliz. Adaptation and learning using
multiple models, switching, and tuning. Control Systems, IEEE, 15(3):37-51,
1995.

[9] D.M. Wolpert and M. Kawato. Multiple paired forward and inverse models for
motor control. Neural Networks, 11(7-8):1317-1329, 1998.

[10] A. Paul and M.G. Safonov. Model reference adaptive control using multiple
controllers and switching. In Proceedings of 42nd IEEE Conference on Decision
and Control, volume 4, pages 3256-3261 vol. 4, 2003.

[11] L. Li, M. Gariel, R.J. Hansman, and R. Palacios. Anomaly detection in onboard-
recorded flight data using cluster analysis. In Digital Avionics Systems Confer-
ence, pages 4A4-1-4A4-11. IEEE, 2011.

[12] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3):645-678, 2005.

89

[13 S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for
large databases. volume 27, pages 73-84. ACM SIGMOD Record, 1998.

[14] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for
categorical attributes. In 15th International Conference on Data Engineering,
pages 512-521. IEEE, 1999.

[15] G. Karypis, E.H. Han, and V. Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8):68-75, 1999.

[16] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data
clustering method for very large databases, 1996.

[17] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. volume 1996, pages
226-231. AAAI Press, 1996.

[18] Y. Afek, N. Alon, 0. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A
biological solution to a fundamental distributed computing problem. Science's
STKE, 331(6014):183, 2011.

[19] C.M. Bishop. Neural networks for pattern recognition. 1995.

[20] J.J. Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences,
79(8):2554, 1982.

[21] David E. Goldberg and John H. Holland. Genetic algorithms and machine learn-
ing. Machine Learning, 3(2):95-99, 1988.

[22] M. Waibel, D. Floreano, and L. Keller. A quantitative test of hamilton's rule for
the evolution of altruism. PLoS Biology, 9(5):e1000615, 2011.

[23] M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic.
In Proceedings of the Congress on Evolutionary Computation, volume 2. IEEE,
1999.

[24] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of Global
Optimization, 39(3):459-471, 2007.

[25] X.S. Yang. Nature-inspired metaheuristic algorithms. Luniver Press, 2011.

[26] K.E. Parsopoulos and M.N. Vrahatis. Recent approaches to global optimization
problems through particle swarm optimization. Natural computing, 1(2):235-306,
2002.

[27] A.H. Gandomi and A.H. Alavi. Krill herd: a new bio-inspired optimization
algorithm. Communications in Nonlinear Science and Numerical Simulation,
2012.

90

[28] M.B. Miller and B.L. Bassler. Quorum sensing in bacteria. Annual Reviews in
Microbiology, 55(1):165-199, 2001.

[29 C.M. Waters and B.L. Bassler. Quorum sensing: cell-to-cell communication in
bacteria. Annual Review of Cell and Developmental Biology, 21:319-346, 2005.

[30] T.D. Seeley and P.K. Visscher. Group decision making in nest-site selection by
honey bees. Apidologie, 35(2):101-116, 2004.

[31] S.C. Pratt. Quorum sensing by encounter rates in the ant temnothorax albipen-
nis. Behavioral Ecology, 16(2):488-496, 2005.

[32] K.H. Nealson, T. Platt, and J.W. Hastings. Cellular control of the synthesis and
activity of the bacterial luminescent system. Journal of bacteriology, 104(1):313-
322, 1970.

[33] E. Mallon, S. Pratt, and N. Franks. Individual and collective decision-making
during nest site selection by the ant leptothorax albipennis. Behavioral Ecology
and Sociobiology, 50(4):352-359, 2001.

[34] K.G. Chan, S.D. Puthucheary, X.Y. Chan, W.F. Yin, C.S. Wong, W.S.S. Too,
and K.H. Chua. Quorum sensing in aeromonas species isolated from patients in
malaysia. Current microbiology, 62(1):167-172, 2011.

[35] B.M.M. Ahmer. Cell-to-cell signalling in escherichia coli and salmonella enterica.
Molecular microbiology, 52(4):933-945, 2004.

[36] Alexander Hinneburg and Hans-Henning Gabriel. DENCL UE 2.0: Fast Cluster-
ing Based on Kernel Density Estimation, volume 4723, pages 70-80. Springer
Berlin / Heidelberg, 2007.

[37] F. Lin and W.W. Cohen. Power iteration clustering. ICML (to appear), 2010.

[38] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Human Genetics, 7(2):179-188, 1936.

[39] F. Alimoglu and E. Alpaydin. Combining multiple representations and classifiers
for pen-based handwritten digit recognition. In Proceedings of the Fourth Inter-
national Conference on Document Analysis and Recognition, volume 2, pages
637-640 vol. 2. IEEE, 1997.

[40] W.J. Shen, H.S. Wong, Q.W. Xiao, X. Guo, and S. Smale. Towards a math-
enatical foundation of immunology and amino acid chains. Arxiv preprint
arXiv:1205.6031, 2012.

[41] Quang-Cuong Pham and Jean-Jacques Slotine. Stable concurrent synchroniza-
tion in dynamic system networks. Neural Networks, 20(1):62-77, 2007.

91

[42] S.J. Chung and J.J.E. Slotine. Cooperative robot control and concurrent synchro-
nization of lagrangian systems. IEEE Transactions on Robotics, 25(3):686-700,
2009.

[43] N. Tabareau, J.J. Slotine, and Q.C. Pham. How synchronization protects from
noise. PLoS Computational Biology, 6(1):e1000637, 2010.

92

