21 research outputs found

    Classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome

    Get PDF
    In the present study, multilayer perceptron (MLP) neural networks were applied to help in the diagnosis of obstructive sleep apnoea syndrome (OSAS). Oxygen saturation (SaO2) recordings from nocturnal pulse oximetry were used for this purpose. We performed time and spectral analysis of these signals to extract 14 features related to OSAS. The performance of two different MLP classifiers was compared: maximum likelihood (ML) and Bayesian (BY) MLP networks. A total of 187 subjects suspected of suffering from OSAS took part in the study. Their SaO2 signals were divided into a training set with 74 recordings and a test set with 113 recordings. BY-MLP networks achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity and 82.39% specificity). These results were substantially better than those provided by ML-MLP networks, which were affected by overfitting and achieved an accuracy of 76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-MLP networks could be used for early OSAS detection. They could contribute to overcome the difficulties of nocturnal polysomnography (PSG) and thus reduce the demand for these studies

    Automated Analysis of Unattended Portable Oximetry by means of Bayesian Neural Networks to Assist in the Diagnosis of Sleep Apnea

    Get PDF
    Producción CientíficaSleep apnea-hypopnea syndrome (SAHS) is a chronic sleep-related breathing disorder, which is currently considered a major health problem. In-lab nocturnal polysomnography (NPSG) is the gold standard diagnostic technique though it is complex and relatively unavailable. On the other hand, the analysis of blood oxygen saturation (SpO2) from nocturnal pulse oximetry (NPO) is a simple, noninvasive, highly available and effective alternative. This study focused on the design and assessment of a neural network (NN) aimed at detecting SAHS using information from at-home unsupervised portable SpO2 recordings. A Bayesian multilayer perceptron NN (MLP-NN) was proposed, fed with complementary oximetric features properly selected. A dataset composed of 320 unattended SpO2 recordings was analyzed (60% for training and 40% for validation). The proposed Bayesian MLP-NN achieved 94.2% sensitivity, 69.6% specificity, and 89.8% accuracy in the test set. Our results suggest that automated analysis of at-home portable NPO recordings by means of Bayesian MLP-NN could be an effective and highly available technique in the context of SAHS diagnosis.Junta de Castilla y León (project VA059U13)Pneumology and Thoracic Surgery Spanish Society (265/2012

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad

    Assessment of Time and Frequency Domain Entropies to Detect Sleep Apnoea in Heart Rate Variability Recordings from Men and Women

    Get PDF
    Producción CientíficaHeart rate variability (HRV) provides useful information about heart dynamics both under healthy and pathological conditions. Entropy measures have shown their utility to characterize these dynamics. In this paper, we assess the ability of spectral entropy (SE) and multiscale entropy (MsE) to characterize the sleep apnoea-hypopnea syndrome (SAHS) in HRV recordings from 188 subjects. Additionally, we evaluate eventual differences in these analyses depending on the gender. We found that the SE computed from the very low frequency band and the low frequency band showed ability to characterize SAHS regardless the gender; and that MsE features may be able to distinguish gender specificities. SE and MsE showed complementarity to detect SAHS, since several features from both analyses were automatically selected by the forward-selection backward-elimination algorithm. Finally, SAHS was modelled through logistic regression (LR) by using optimum sets of selected features. Modelling SAHS by genders reached significant higher performance than doing it in a jointly way. The highest diagnostic ability was reached by modelling SAHS in women. The LR classifier achieved 85.2% accuracy (Acc) and 0.951 area under the ROC curve (AROC). LR for men reached 77.6% Acc and 0.895 AROC, whereas LR for the whole set reached 72.3% Acc and 0.885 AROC. Our results show the usefulness of the SE and MsE analyses of HRV to detect SAHS, as well as suggest that, when using HRV, SAHS may be more accurately modelled if data are separated by gender.Ministerio de Economía, Industria y Competitividad (TEC2011-22987)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA059U13

    Diseño y evaluación de metodologías de análisis automático de la oximetría nocturna como método simplificado de detección del síndrome de apnea-hipopnea obstructiva del sueño en niños. Validación en el hospital y en el domicilio.

    Get PDF
    El síndrome de apnea-hipopnea obstructiva del sueño (SAHOS) es una enfermedad de alta prevalencia en la población infantil, con una importante morbilidad y elevado impacto sociosanitario, en la que la detección precoz es esencial para iniciar un adecuado tratamiento, el cual debe ser siempre individualizado. El SAHOS es una alteración fisiopatológica compleja y multifactorial, en la que no sólo influye una susceptibilidad genética e individual (factores anatómicos y dinámicos), sino también de estilo de vida. Los factores de riesgo más frecuentes son la hipertrofia adenoamigdalar y la obesidad. Los síntomas en los niños son escasos, son principalmente nocturnos y requieren un alto nivel de sospecha. El SAHOS no diagnosticado o no tratado se relaciona con diferentes consecuencias metabólicas, cardiovasculares, neurocognitivas, inflamatorias, conductuales y falta de desarrollo estaturoponderal, lo que conduce a un empeoramiento del estado de salud en términos generales y disminución de calidad de vida.Departamento de Anatomía y RadiologíaDoctorado en Investigación en Ciencias de la Salu

    Pattern recognition applied to airflow recordings to help in sleep Apnea-Hypopnea Syndrome diagnosis

    Get PDF
    El Síndrome de la Apnea Hipopnea del Sueño (SAHS) es un trastorno caracterizado por pausas respiratorias durante el sueño. Se considera un grave problema de salud que afecta muy negativamente a la calidad de vida y está relacionada con las principales causas de mortalidad, como los accidentes cardiovasculares y cerebrovasculares. A pesar de su elevada prevalencia (2–7%) se considera una enfermedad infradiagnosticada. El diagnóstico estándar se realiza mediante polisomnografía (PSG) nocturna, que es un método complejo y de alto coste. Estas limitaciones han originado largas listas de espera. Esta Tesis Doctoral tiene como principal objetivo simplificar la metodología de diagnóstico del SAHS . Para ello, se propone el análisis exhaustivo de la señal de flujo aéreo monocanal. La metodología propuesta se basa en tres fases (i) extracción de características, (ii) selección de características, y (iii) procesado de la señal mediante métodos de reconocimiento de patrones. Los resultados obtenidos muestran un alto rendimiento diagnóstico de la propuesta tanto en la detección como en la determinación del grado de severidad del SAHS. Por ello, la principal conclusión de la Tesis Doctoral es que los métodos de reconocimiento automático de patrones aplicados sobre la señal de flujo aéreo monocanal resultan de utilidad para reducir la complejidad del proceso de diagnóstico del SAHS.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemátic

    Evaluación de la oximetría nocturna portátil como método simplificado de ayuda al diagnóstico del síndrome de apnea-hipopnea del sueño en pacientes con enfermedad pulmonar obstructiva crónica

    Get PDF
    La Enfermedad Pulmonar Obstructiva Crónica (EPOC) es una enfermedad frecuente, prevenible y tratable, caracterizada por una limitación persistente al flujo aéreo, que usualmente es progresiva y se asocia con una respuesta anormal inflamatoria en las vías aéreas y en los pulmones a partículas nocivas o gases. Los trastornos del sueño son frecuentes en pacientes con EPOC, principalmente el Síndrome de Apnea-Hipopnea del Sueño (SAHS), el insomnio y el movimiento periódico de piernas. Tanto el SAHS como la EPOC son dos enfermedades muy prevalentes en la práctica clínica. Ambas presentan una elevada morbilidad y su asociación conlleva importantes consecuencias sociosanitarias, especialmente en el ámbito de las enfermedades cardiovasculares, así como un aumento del coste anual de la enfermedad. Por todo ello, es esencial un diagnóstico precoz que permita instaurar un tratamiento y disminuir la morbimortalidad de estos pacientes. El método de diagnóstico estándar del SAHS es la polisomnografía (PSG) nocturna en una unidad del sueño especializada. Aunque la PSG es una prueba efectiva, presenta numerosas limitaciones en cuanto a disponibilidad, complejidad, tiempo y coste. Estos inconvenientes han generado grandes listas de espera que retrasan significativamente el diagnóstico y tratamiento de la enfermedad. Esta situación ha puesto de manifiesto la necesidad de nuevas metodologías diagnósticas que permitan reducir la complejidad en el proceso de detección de esta patología. En este sentido, las redes neuronales artificiales (RN) han demostrado una gran utilidad en numerosas aplicaciones dentro de la medicina en general y del contexto del diagnóstico del SAHS en particular. Sin embargo, no hay estudios que hayan validado exhaustivamente el rendimiento de técnicas automáticas aplicadas sobre señales adquiridas en el domicilio de pacientes con EPOC y sospecha de SAHS. Esta necesidad justifica el diseño y evaluación de técnicas automáticas de procesado de la señal de oximetría domiciliaria para la detección de SAHS en pacientes con EPOC. La presente Tesis Doctoral se ha desarrollado bajo la hipótesis de que el empleo de una RN basada en la información procedente de la oximetría nocturna portátil puede ser de utilidad para el diagnóstico del SAHS independientemente de la presencia de EPOC. Por ello, el objetivo principal de este estudio consiste en analizar la utilidad de una RN de detección de SAHS basada en la oximetría nocturna portátil, evaluando exhaustivamente cómo influye en su rendimiento diagnóstico la presencia de una EPOC asociada.Departamento de Biología Celular, Histología y FarmacologíaDoctorado en Investigación en Ciencias de la Salu

    Utilidad de las señales de oximetría y flujo aéreo en el diagnóstico simplificado de la apnea obstructiva del sueño. Diseño de un test automático domiciliario

    Get PDF
    Obstructive Sleep Apnea (OSA) is a respiratory disorder characterized by recurrent episodes of total (apnea) or partial (hypopnea) absence of airflow during sleep. Untreated OSA produces a significant decrease in quality of life and is associated with the main causes of mortality in industrialized countries.However, OSA is considered an underdiagnosed chronic disease. Continuous positive airway pressure (CPAP) is the most common therapeutic option. Nocturnal polysomnography (PSG) in a specialized sleep unit is the reference diagnostic method, although it has low availability and accessibility. Consequently, in recent years there has been a significant demand for abbreviated methods, most of them at home, to reduce waiting lists. The fundamental hypothesis that the use of automatic processing techniques based on machine learning tools could allow maximizing the diagnostic accuracy of a reduced set of combined biomedical signals: overnight oximetry and airflow recorded at patient&#8217;s home. The main objective was to evaluate whether the joint analysis by means of machine learning algorithms of unsupervised SpO2 and AF signals acquired at patient's home leads to a significant increase in diagnostic performance compared to single-channel approaches. A prospective observational study was carried out in which a population referred consecutively to the Sleep Unit showing moderate-to-high clinical suspicion of having OSA was analyzed.All patients underwent an unsupervised PSG at home(gold standard) from which the SpO2 and AF signals were extracted, which were subsequently processed offline.The apnea-hypopnea index(AHI) derived from the PSG was used to confirm or rule out the presence of the disease.Three different approaches for screening patients with suspected OSA were assessed in terms of the source of information used: single-channel based on SpO2, single-channel based on AF, and two-channel combining information from both SpO2 and AF.The automatic processing of the SpO2 and AF signals was developed in 4 stages: preprocessing, feature extraction, feature selection, and pattern recognition. Unsupervised SpO2 and AF recordings were parameterized using the fast correlation-based filter(FCBF)algorithm.The following machine learning methods were used: linear regression(MLR), multilayer perceptron neural networks(MLP) and support vector machines(SVM). The population was divided into independent training and test groups. Agreement between the estimated and the actual AHIderived from at-home PSG was assessed, and typical OSA cutoff points(5, 15, and 30 events/h) were applied. A total of 299 unattended PSGs were performed at home, with a validity percentage of 85.6%. The highest agreement between the estimated AHI and the PSG AHI was reached by the SVMSpO2+AF model, with an CCI 0.93 and a 4-class kappa index 0.71, as well as with an overall accuracy for the 4 OSA severity categories equal to 81.25%, significantly higher than the individual analysis of the SpO2 signal and the airflow signal.The SVMSpO2+AF model achieved the highest diagnostic performance of all algorithms for the detection of severe OSA, with an accuracy of 95.83% and AUC ROC 0.98. In addition, the AUC ROC of the dual-channel models was significantly higher (p<0.01) than that achieved by all the single-channel approaches for the cutoff of 15events/h. The proposed methodology based on the joint automatic analysis of the SpO2 and AF signals acquired at home showed a high complementarity that led to a remarkable increase in diagnostic performance compared to single-channel approaches. The automatic models outperformed the conventional indices(desaturation and airflow-derived indexes) both in terms of correlation and concordance with the AHI from PSG, as well as in terms of overall diagnostic accuracy, providing a moderate increase in diagnostic performance, particularly in the detection of moderate-to-severe OSA.Our findings suggest that the joint analysis of oximetry and airflow signals by means of machine learning methods allows a simplified as well as accurate screening of OSA at patient's home.La Apnea Obstructiva del Sueño (AOS) es un trastorno respiratorio crónico infradiagnosticado caracterizado por la repetición recurrente de episodios de ausencia total (apnea) o parcial (hipopnea) del flujo aéreo (FA) durante el sueño, que disminuye la calidad de vida y aumenta la mortalidad. La CPAP es el tratamiento más habitual, no invasivo, eficaz y coste-efectivo, por lo que favorecer el proceso de diagnóstico es fundamental. La PSG nocturna es el método diagnóstico de referencia, presentando baja disponibilidad y accesibilidad, lo que ha contribuido a desbordar los recursos disponibles, retrasando el diagnóstico y el tratamiento. En contexto de la simplificación diagnóstica portátil, en auge, el uso de únicamente una (monocanal) o dos (bi-canal) señales, como las de SpO2 y FA ha sido ampliamente explorado, aunque la mayoría en entornos hospitalarios controlados. La hipótesis se fundamenta en que las técnicas de procesado automático basadas en machine learning podrían maximizar la precisión diagnóstica de un conjunto reducido de señales combinadas. El objetivo consistió en evaluar si el análisis conjunto mediante algoritmos de aprendizaje automático de las señales de SpO2 y FA no supervisadas adquiridas en el domicilio aumenta el rendimiento diagnóstico en comparación con los enfoques de un solo canal. Se llevó a cabo un estudio observacional prospectivo en pacientes con sospecha moderada-alta de AOS. Se realizó una PSG no supervisada en su domicilio (gold standard de referencia), de la que se extrajeron las señales de SpO2 y FA, procesadas offline posteriormente. El índice de apnea-hipopnea (IAH) derivado de la PSG se empleó para confirmar o descartar la presencia de la enfermedad. Se implementaron y compararon 3 metodologías de screening en función de la fuente de información empleada: (1) monocanal basado en SpO2, (2) monocanal basado en FA, (3) bi-canal combinando SpO2 y FA. El procesado automático de las señales de SpO2 y FA se desarrolló en 4 etapas: preprocesado, extracción de características, selección de características (mediante fast correlation-based filter, FCBF) y reconocimiento de patrones. Cada enfoque de screening se empleó para estimar automáticamente el IAH utilizando los siguientes métodos de machine learning: (1) regresión lineal múltiple (MLR), (2) redes neuronales perceptrón multicapa (MLP) y (3) máquinas vector soporte (SVM). La población se dividió en grupos independientes de entrenamiento (60%) y test (40%). Se realizaron un total de 299 PSGs domiciliarias. Los modelos de enfoque combinado bi-canal alcanzaron valores de concordancia entre el IAH estimado y el IAH de la PSG domiciliaria y de rendimiento diagnóstico para todos los puntos de corte típicos de AOS (5, 15 y 30 e/h) superiores al enfoque monocanal. La mayor concordancia fue alcanzada por el modelo SVMSpO2+FA (CCI 0.93, kappa4 clases 0.71, precisión global 81.25%), significativamente superior a los análisis individuales. El modelo SVMSpO2+FA alcanzó el mayor rendimiento diagnóstico de todos los algoritmos para la detección de AOS grave (precisión 95.83% y AUC ROC 0.98). Además, el AUC ROC de los modelos bi-canal fue superior (p <0.01) al de los enfoques monocanal para el punto de corte de 15 e/h. La metodología propuesta basada en el análisis automático conjunto de las señales de SpO2 y FA adquiridas en el domicilio mostró una alta complementariedad y un notable aumento del rendimiento diagnóstico en comparación con los enfoques monocanal. Los modelos automáticos superaron globalmente a los índices clásicos (de desaturación y de eventos de flujo aéreo), aportando un incremento moderado del rendimiento diagnóstico particularmente en la detección de AOS moderado-grave. Los resultados obtenidos indican que el análisis conjunto de las señales de oximetría y flujo mediante métodos de aprendizaje automático permite un screening simplificado a la vez que preciso de la AOS en el domicilio del paciente.Escuela de DoctoradoDoctorado en Investigación en Ciencias de la Salu

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature
    corecore