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Abstract 

Nowadays, polysomnography (PSG) is the gold-standard to diagnose obstructive sleep 

apnoea syndrome (OSAS). However, it is complex, time-consuming and expensive. 

Nocturnal pulse oximetry, which provides oxygen saturation (SaO2) recordings, allows 

us to overcome these difficulties and could be an alternative to PSG. In the present 

study, multilayer perceptron (MLP) neural networks were applied to help in OSAS 

diagnosis using information from SaO2 signals. We performed time and spectral 

analysis of these recordings to extract 14 features related to OSAS. According to the 

principle used for network optimisation, wWe compared the performance of two 

different MLP classifiers: maximum likelihood (ML) and Bayesian (BY) MLP 

networks. A total of 187 subjects suspected of suffering from OSAS took part in the 

study. Their SaO2 signals were divided into a training set with 74 recordings and a test 

set with 113 recordings to develop and validate the classifiers. BY-MLP networks 

achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity 

and 82.39% specificity). These results were substantially better than those provided by 

ML-MLP networks, which were affected by overfitting and achieved an accuracy of 

76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the 

Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-

MLP networks could be used for early OSAS detection, contributing to and thus reduce 

the number of required PSGs. 

Keywords: obstructive sleep apnoea syndrome (OSAS), nocturnal pulse oximetry, 

multilayer perceptron (MLP), maximum likelihood, Bayesian inference 
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1 Introduction 

Feedforward neural networks represent a powerful tool for pattern recognition tasks. Several 

advantages can be found onare associated with these algorithms. Firstly, neural networks can 

learn from the environment in which they operate without the requirement of any previous 

assumption (Haykin 1996, Zhang 2000). In addition, neural networks are capable of universal 

approximation, i.e. they can approximate any continuous mapping, provided that sufficiently 

many hidden units are available (Hornik 1991). Finally, neural networks are nonlinear models. 

Thus, they can be applied to model real-world complex relationships (Zhang 2000). 

The multilayer perceptron (MLP) is the most commonly studied and used feedforward neural 

network. It is usually used for classification purposes since MLP networks can estimate 

posterior probabilities (Bishop 1995, Haykin 1999): see equation (6). These neural networks 

have provided promising results in a wide variety of pattern recognition problems such as 

handwritten digit recognition, fault diagnosis, bankruptcity prediction and medical diagnosis 

(Zhang 2000). Traditionally, MLP networks were based on the maximum likelihood (ML) 

approach were applied to solve these problems. According to this principle, network weights (w 

(which are the parameters of the model in a statistical sense)) are determined by minimising an 

objective function that represents the error between the desired output and the network output. 

As a result, a single set of weights is obtained as optimum. In this context, more complex 

models are typically better able to fit the training data. However, this does not involve 

necessarily imply good generalisation capability (Bishop 1995). The Bayesian (BY) framework 

provides an alternative approach to implement MLP algorithms. Twhich accounts for the 

uncertainty on in the network weights is taken into account by considering a prior probability 

distribution function p(w) over weight space. The prior assumption is that networks with small 

weights are preferred: these give rise to smoother mappings and hence the network is likely to 

overfit. Once the training data D is observed, the posterior probability p(w|D) can be obtained 

(Bishop 1995). This distribution is concentrated on weight values that are more consistent with 

data in the training setcan be used to integrate over all possible parameters, weighted by their 

probability. Moreover, it can be used to evaluate the relevance of each input variable for the 

network predictions (Neal 1996, Nabney 2002). 

The aim of this study is to analyse the performance of Bayesian MLP networks to assist in 

the diagnosis of the obstructive sleep apnoea syndrome (OSAS). Moreover, we compared these 

algorithms with maximum likelihood MLP networks. Both network models were applied in 

OSAS detection using information from nocturnal oxygen saturation signals. Patients affected 

by OSAS suffer repetitive occlusion of the upper airway during sleep, leading to a complete 

(apnoea) or partial (hypopnoea) cessation of the airflow (Qureshi and Ballard 2003). The 

recurrence of these episodes has severe implications on for the health of the patient. Indeed: for 

example, OSAS is considered a risk factor for the development of cardiovascular diseases such 

as hypertension, cardiac failure, arrhythmias and atherosclerosis (Lattimore et al 2003). 

Additionally, excessive daytime sleepiness due to sleep fragmentation has been pointed out as a 

major cause of traffic and industrial accidents (George 2001). As a result, early diagnosis of 

OSAS is required in order to apply an effective treatment. NowadaysCurrently, nocturnal 

polysomnography (PSG) is the gold standard in for OSAS diagnosis (Qureshi and Ballard 

2003). This test is performed in a special sleep unit and must be supervised by a trained 

technician. Usually, the following recordings are monitored during PSG: electroencephalogram 

(EEG), electrocardiogram (ECG), electromyiogram (EMG), electro-oculogram (EOG), 

oximetry, nasal airflow and respiratory effort. Subsequently, a medical expert must analyse 

these this data to provide a final diagnosis. Despite its diagnostic reliability, PSG is complex, 

time-consuming and expensive (Bennet and Kinnear 1999). Therefore, simplified diagnostic 

techniques would be of great practical interest. 

Arterial oxygen saturation (SaO2) recordings from nocturnal pulse oximetry represent an 

alternative to PSG. These could be acquired in the home of the patient, resulting in reduced 

complexity and cost. Pulse oximetry is widely known in pulmonary medicine (Netzer et al 

2001). It provides useful information about respiratory dynamics during sleep. Subjects 

suffering from OSAS are usually characterised by SaO2 signals with high instability. The 
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repetition of apnoeas is reflected by frequent drops and the corresponding restorations of the 

saturation value due to the lack of oxygen during each apnoeic event. In contrast, control 

subjects tend to present a constant SaO2 value around 97% (Netzer et al 2001). Thus, oximetry 

data could be usefulis useful forto detecting OSAS. 

Different methodologies have been previously proposed to perform OSAS diagnosis from 

SaO2 recordings. Visual inspection represents the easiest analysis technique (Rodríguez et al 

1996). However, automated analysis would allow to reduce the time required for a final 

diagnosis. Conventional oximetry indices were suggested for this purpose. These indices are 

usually provided by the oximetry equipment. They include the oxygen desaturation index over 

2% (ODI2), 3% (ODI3) and 4% (ODI4), and the cumulative time spent below a given level of 

saturation. Typically, a saturation level of 90% (CT90) is applied (Lévy et al 1996, Roche et al 

2002, Vázquez et al 2000, Netzer et al 2001, Magalang et al 2003). Recently, signal processing 

techniques have been also used for automated analysis of oximetry recordings through spectral 

and nonlinear methods (Zamarrón et al 2003, Álvarez et al 2006, Del Campo et al 2006, 

Álvarez et al 2007, Hornero et al 2007). MoreoverIn addition, pattern classification techniques 

such as neural networks have been applied for the development of diagnostic algorithms (El-

Solh et al 2003, Marcos et al 2008, Polat et al 2008). 

In the present study, we modelled the OSAS diagnosis problem as a pattern recognition task. 

Subjects must be assigned to one of two possible groups: OSAS positive or negative. Several 

features extracted from SaO2 recordings were fed into MLP network classifiers to identify 

subjects with OSAS. We evaluated and compared the capability of MLP networks developed 

within two different frameworks: the maximum likelihood and the Bayesian approaches. 

2 Subjects and signals 

A total of 187 SaO2 recordings from subjects suspected of suffering from OSAS were 

available for the study. Usually, sleep analysis was carried out from midnight to 8:00 AM in the 

Sleep Unit of the Hospital Clínico Universitario of Santiago de Compostela (Spain). The 

Review Board on Human Studies at this institution approved the protocol. Conventional PSG 

and nocturnal pulse oximetry were simultaneously performed on each of the subjects. Oximetry 

signals were recorded by means of a Criticare 504 oximeter (CSI, Waukeska, U.S.A.) at a 

sampling frequency of 0.2 Hz. The equipment used to perform PSG was a polygraph (Ultrasom 

Network, Nicolet, Madison, W.I., U.S.A.). Signals obtained in the polysomnographic study 

were EEG, EOG, chin EMG, airflow (three-port thermistor), ECG and measurement of chest 

wall movement. These recordings were analysed by an expert according to the system by 

Rechtschaffen and Kales to obtain a diagnosis for each subject (Rechtschaffen and Kales 1968). 

Apnoea was defined as a cessation of airflow for 10 seconds or longer. Hypopnoea was defined 

as a reduction, without complete cessation, in airflow of at least 50%, accompanied by a 

decrease of more than 4% in the saturation of haemoglobin. The average apnoea-hypopnoea 

index (AHI) was calculated for hourly periods of sleep from apnoeic/hypopnoeic episodes 

captured in PSG. Finally, a threshold of AHI ≥ 10 events/h was established to determine the 

presence of OSAS in a subject. 

A positive diagnosis of OSAS was confirmed in 111 subjects, i.e. 59.36% of the population 

under study. There were no significant differences between OSAS OSAS-positive and negative 

groups in age, body mass index (BMI) and recording time. On the other hand, the percentage of 

males was higher in the OSAS OSAS-positive group (84.68%) than in the OSAS OSAS-

negative (69.74%). The initial population was randomly divided into training and test sets to 

develop both types of neural network classifiers. The proportion of OSAS OSAS-positive and 

negative subjects was preserved in each of these sets. The training set (74 subjects) was used for 

network optimisation. The test set (113 subjects) was applied to estimate the generalisation 

capability of the classifiers. Table 1 summarises the demographic and clinical data for the whole 

population as well as for training and test sets. 
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3 Methods 

Pattern recognition techniques were applied to model the OSAS diagnosis problem using 

oxymetry data. Our methodology involved several stages: 1) feature extraction, 2) feature 

preprocessing and 3) pattern classification. 

3.1 Feature extraction 

The purpose of the feature extraction stage was to summarise the information in SaO2 

recordings using a reduced set of parameters or features. Events of apnoea are accompanied by 

hypoxaemia, which is reflected in oximetry signals with a marked decrease in the saturation 

value. These recordings tend to present a different behaviour for OSAS positive and negative 

subjects. Therefore, they can be useful for OSAS detection. 

The extracted features must provide suitable measures in order to differentiate signals from 

both populations. We used signal processing techniques to extract features from oximetry data. 

Initially, conventional statistical analysis was applied. Moreover, we analysed SaO2 signals 

using spectral and nonlinear methods. As stated in our previous research (Zamarrón et al 2003, 

Álvarez et al 2006, Del Campo et al 2006, Álvarez et al 2007, Hornero et al 2007), spectral and 

nonlinear features from oximetry signals provided significant statistical differences between 

OSAS positive and negative subjects. Finally, a total of 14 features were computed from SaO2 

recordings. These can be divided into two groups: time-domain and frequency-domain features. 

3.1.1 Time-domain analysis of oximetry data 

Time representation of oximetry signals reflects respiratory dynamics during sleep. Apnoea 

events are characterised by a decrease in the SaO2 value due to airway obstruction and reduced 

airflow. Therefore, signals from positive subjects are usually associated to instability. They 

reflect continuous drops and subsequent restorations of the saturation value because of the 

repetition of apnoeas. In contrast, signals from OSAS negative subjects tend to present a near 

Table 1. Demographic and clinical statistics of all subjects, training set and test 

set. Data are presented as mean  standard deviation. n: number of subjects; 

BMI: body mass index; AHI: apnoea/hypopnoea index computed as events for 

hourly periods. 

 
All subjects 

 All (n = 187) OSAS Positive (n = 111) OSAS Negative (n = 76) 

Age (years) 57.97  12.84 58.30  12.88 57.57  12.87 

Males (%) 78.61 84.68 69.74 

BMI (kg/m2) 29.54  5.51 30.45  4.92 28.42  6.02 

Recording Time (h) 8.19  0.62 8.17  0.75 8.22  0.33 

AHI (events/h)  40.07  19.64 2.04  2.36 

Training set 

 All (n = 74) OSAS Positive (n = 44) OSAS Negative (n = 30) 

Age (years) 58.25  12.14 56.73  13.61 59.59  10.19 

Males (%) 75.68 79.55 70.00 

BMI (kg/m2) 29.62  5.71 30.19  5.09 28.93  6.40 

Recording Time (h) 8.22  0.41 8.20  0.49 8.25  0.27 

AHI (events/h)  38.11  18.18 2.60  2.51 

Test set 

 All (n = 113) OSAS Positive (n = 67) OSAS Negative (n = 46) 

Age (years) 57.91  13.39 59.37  12.38 56.03  14.54 

Males (%) 80.53 88.06 69.57 

BMI (kg/m2) 29.49  5.41 30.63  4.84 28.07  5.80 

Recording Time (h) 8.17  0.72 8.14  0.88 8.20  0.37 

AHI (events/h)  41.36  20.58 1.67  2.21 

 

 



constant saturation value around 97% (Netzer et al 2001). To illustrate this, the oximetry 

recordings corresponding to a control subject (AHI = 0 events/h), a patient suffering from 

OSAS (AHI = 44 events/h) and an uncertain OSAS positive patient (AHI = 14 events/h) from 

our database are depicted in figure 1. In order to quantify these dynamic differences, we 

analysed SaO2 signals in the time domain using conventional statistics and nonlinear methods. 

We estimated the first four standard moments for the distribution of the variable representing 

the SaO2 value. The probability density function of this variable was modelled with a discrete 

uniform distribution. Each standard moment was estimated by averaging the values computed 

from signal epochs of 200 samples. The following features were extracted: 

 

 Feature 1. First statistical moment in the time domain (SMT1). SMT1 represents the 

expected value for of the distribution of SaO2 samples. It is supposed to beusually lower 

for positive patients due to frequent drops in the saturation value. 

 

 Feature 2. Second statistical moment in the time domain (SMT2). SMT2 represents the 

variance for of the distribution of SaO2 samples. Positive patients are expected to 

provide higher values of SMT2 due to instability of their recordings. 

 

 Feature 3. Third statistical moment in the time domain (SMT3). SMT3 measures the 

asymmetry for of the distribution of SaO2 samples. Typically, it is negative for subjects 

from both populations. However, its magnitude is usually greater in positive subjects 

due to the higher concentration of samples with low values of saturation. 

 

 Feature 4. Fourth statistical moment in the time domain (SMT4). SMT4 evaluates the 

sharpness for of the distribution of SaO2 samples. It is expected to be higher in control 

subjects since their oximetry signals tend to be constant. 

 

In addition, we analysed oximetry recordings with three different nonlinear methods: 

approximate entropy (ApEn), central tendency measure (CTM) and Lempel-Ziv complexity 

 

 
 

Figure 1. Time representation of oximetry recordings corresponding to (a) an 

OSAS negative subject (AHI = 0 events/h), (b) an OSAS positive subject (AHI 

= 44 events/h) and (c) an uncertain OSAS positive subject (AHI = 14 events/h). 



(LZC). According to our previous research, these methods can be used to evaluate properties of 

oximetry signals that are related to OSAS (Álvarez et al 2006, Del Campo et al 2006, Álvarez et 

al 2007, Hornero et al 2007). Signals were divided into epochs of 200 samples to compute these 

features. For each of them, the average value from all signal epochs represented the final 

estimate. The following nonlinear methods were applied on SaO2 signals: 

 

 Feature 5. Approximate entropy (ApEn). ApEn estimates irregularity of time series, 

with high values of ApEn corresponding to irregular signals (Pincus 2001). This method 

requires to specifythe specification of two design parameters: a run length m and a 

tolerance window r. These were set to 1 and 0.25 times the standard deviation of the 

original sequence, respectively (Hornero et al 2007). ApEn measures the logarithmic 

likelihood that runs of patterns that are close (within r) for m contiguous observations 

remain close (within the same tolerance window width r) on subsequent incremental 

comparisons (Pincus 2001). Usually, high values of ApEn are associated with SaO2 

signals from OSAS positive subjects. These tend to present a more irregular behaviour 

due to frequent changes in the saturation value (Hornero et al 2007). 

 

 Feature 6. Central tendency measure (CTM). CTM quantifies the variability of the 

signal (Cohen et al 1996), assigning low values to signals with a high degree of chaos. 

It is computed from second-order difference plots representing (st+2 – st+1) vs. (st+1 – st), 

where s = (s1,…, st,…, sT) is the a time series of length T. The number of points that fall 

inside a circular region of radius  centred on the origin is obtained. Then, it is divided 

by the total number of points to compute CTM. In the present study, a radius  = 0.25 

was applied to estimate CTM from our SaO2 signals (Álvarez et al 2006). Oximetry 

recordings from OSAS positive patients are characterised by high variability due to the 

recurrence of apnoeas, which is reflected in low CTM values for these subjects (Álvarez 

et al 2006). 

 

 Feature 7. Lempel-Ziv complexity (LZC). LZC estimates the complexity of the signal 

(Lempel and Ziv 1976). Series with high complexity provide high values of LZC. It is 

related to the number of distinct substrings and the rate of their recurrence along a given 

sequence. The signal is transformed into a finite symbol sequence by comparing each 

sample with a fixed threshold. In this study, LZC was computed by converting SaO2 

signals into 0-1 sequences. The median value of the signal samples was used as 

threshold (Álvarez et al 2006). The resulting sequence is scanned from left to right, 

increasing the complexity counter by one unit every time a new subsequence of 

consecutive characters is encountered (Lempel and Ziv 1976). High values of LZC are 

expected for SaO2 signals from OSAS positive subjects (Álvarez et al 2006). 

3.1.2 Frequency-domain analysis of oximetry data 

Our preceding studies concluded that spectral analysis of oximetry signals reflects significant 

differences between positive and negative subjects. The signal power associated with frequency 

components located in the band between 0.010 and 0.033 Hz is usually higher in subjects with 

OSAS than in normal controls (Zamarrón et al 2003). The duration of an apnoea usually ranges 

from 30 s to 2 min, including the awakening response after the event. The repetition of apnoeas 

during sleep originates phase-lagged changes in SaO2 signals with the same periodicity. Thus, 

the minimum and maximum frequencies for the occurrence of apnoeas would approximately 

correspond to the limits of that band. This behaviour is illustrated in figure 2. It depicts the 

power spectral density (PSD) function computed from the SaO2 recordings shown in figure 1. 

As it can be observed, frequent changes in the saturation value due to apnoeas lead to a higher 

bandwidth in SaO2 signals from positive subjects. In addition, a peak in the band between 0.010 

and 0.033 Hz reflects a periodic component in the oximetry recording from the patient with 

severe OSAS.  

Different methods can be used to compute the PSD from non-stationary data such as our 

SaO2 signals. We applied the non-parametric Welch’s method to estimate the PSD using a 



Hanning window with a length of 300 samples (50% overlapping) (Welch 1967). Initially, we 

analysed the statistical properties of the variable representing the frequency component of 

oximetry signals. The normalised PSD was used as the probability density function of this 

variable. The following features were computed: 

 

 Feature 8. First statistical moment in the frequency domain (SMF1). SMF1 estimates 

the expected value of the variable defined by the frequency component. It is expected to 

beusually higher larger for OSA-S positive patients since their SaO2 signals tends to 

present have a higher larger bandwidth. 

 

 Feature 9. Second statistical moment in the frequency domain (SMF2). SMF2 

represents the variance of the variable defined by the frequency component. Similarly, 

higher values of this feature are associated to patients affected by OSAS. 

 

 Feature 10. Third statistical moment in the frequency domain (SMF3). SMF3 measures 

the asymmetry of the variable defined by the frequency component. It is positive for 

both groups of subjects. High values are associated to OSAS- negative subjects since 

the PSD of their signals tend to be concentrated on frequencies close to zero. 

 

 Feature 11. Fourth statistical moment in the frequency domain (SMF4). SMF4 evaluates 

the sharpness of the distribution defined by the frequency component. It is expected to 

be higher for OSAS- negative subjects since the power of the signal is concentrated in 

low frequency components. 

 

In addition, other three spectral features were computed from SaO2 signals. These are 

directly related to the analysis of the PSD in the frequency band between 0.010 and 0.033 Hz 

(Zamarrón et al 2003). We computed the following features: 

 

 
 

Figure 2. Power spectral density (PSD) computed from oximetry recordings 

corresponding to (a) an OSAS negative subject (AHI = 0 events/h), (b) an OSAS 

positive subject (AHI = 44 events/h) and (c) an uncertain OSAS positive subject 

(AHI = 14 events/h). The dashed line indicates the limits for the band between 

0.010 and 0.033 Hz. 



 Feature 12. Total area under the PSD (ST). ST evaluates the power of the signal under 

study. High values are associated to signals from positive subjects due to frequent 

changes and variability. 

 

 Feature 13. Area enclosed in the band of interest (SB). SB measures the signal power 

corresponding to frequencies in the band between 0.010 and 0.033 Hz. As indicated 

beforeabove, it is usually higher for OSAS- positive patients. 

 

 Feature 14. Peak amplitude of the PSD in the band of interest (PA). PA represents the 

most significant frequency component contained in the band between 0.010 and 0.033 

Hz. It is expected to be higher in OSAS- positive patients due to periodic changes in 

SaO2 signals corresponding to these frequencies. 

3.2 Feature preprocessing 

The preprocessing stage avoids possible differences between the magnitudes of the input 

features (Bishop 1995). Each of them was normalised to have zero mean and unit variance. The 

following linear transformation was applied: 

i

i
n

in
i

x
x

~
, (1) 

where n and i are the sample and feature indices, respectively, 
n
ix  is the normalised value of 

feature i for sample n, 
n

ix~  is its corresponding raw value, i  is the mean value of feature i and 

i  is its standard deviation. 

3.3 Classification 

We used multilayer perceptron (MLP) neural network classifiers to process the normalised 

features. The purpose of this stage is to classify patterns from SaO2 recordings into one of two 

possible groups: OSAS positive or negative. MLP neural networks suitably adapt to 

classification tasks since they are capable of estimating posterior probabilities (Bishop 1995, 

Haykin 1999). Classifiers based on MLP present some advantages in comparison with other 

conventional techniques such as discriminant analysis. Mainly, they avoid prior assumptions 

about the statistical distribution of the input data (Zhang 2000). Moreover, MLP networks can 

establish complex nonlinear decision boundaries in the input space (Bishop 1995, Haykin 

1999). 

For a given problem, designing neural networks requires to take some decisions about 

network architecture and training. In this study, input patterns must be labelled as OSAS 

positive or negative, which represents a two-class classification problem. A single node is 

required in the output layer of the network. A logistic activation function was used for this node 

in order to interpret network outputs as probabilities (Bishop 1995). On the other hand, we 

decided to evaluate MLP networks with a single hidden layer. As indicated in (Hornik 1991), 

networks with this architecture are capable of universal approximation. The hyperbolic tangent 

activation function was used for hidden nodes units since it provides faster convergence of the 

training algorithms (Haykin 1999). 

We trained our MLP networks using a coding scheme t = 1 if the input pattern belongs to 

class C1 (OSAS- positive group) and t = 0 if it belongs to class C0 (OSAS- negative group), with 

t representing the target value and Cj the membership variable. As a result, the network output 

can be interpreted as the probability of having OSAS given the input pattern. Therefore, the 

Bayes decision rule can be applied to perform pattern classification in order to minimise the 

probability of misclassification (Bishop 1995). It states the following: 

Decide jC  for x if )(max)(
1,0

xx j
j

j CpCp , (2) 

where p(Cj|x) represents the posterior probability of class Cj for the input pattern x.  



Training MLP networks involves to adjusting network weights from based on a finite set of 

data that represents the statistical properties of the problem. In this context, two different 

techniques can be applied: the maximum likelihood criterion and the Bayesian inference 

approach. In this study, we propose to compare the performance of MLP classifiers from both 

frameworks to assist in OSAS diagnosis using oximetry data. 

3.3.1 Maximum likelihood 

In classification problems, the probability of observing the target value t (represented by a 0-

1 encoding) is modelled with a Bernoulli distribution (Bishop 1995). It is expressed as: 

tt yyxtp
1

1 , (3) 

where y is the network output value, i.e. the estimate for the posterior probability p(C1|x). 

According to this, the likelihood (L) of observing the training set is given by the following 

expression: 

N

n

t

n

t

n
nn yyL

1

1
1 , (4) 

where N is the size of the training set and it has been assumed that training samples are 

statistically independent. The aim of the maximum likelihood approach is to adjust network 

weights in order to maximise L. Usually, the negative logarithm of the likelihood is considered. 

Then, the optimisation process is equivalent to minimise the expression resulted from that 

transformation. It is referred to as the cross-entropy error function (ED) and is expressed as 

(Bishop 1995): 

N

n

nnnnD ytytE
1

)1ln()1(ln . (5) 

As a result, the maximum likelihood approach allows to obtain the weight vector w that best fits 

the training dataThe optimal weights cannot be found directly since there is a non-linear 

dependence on the weights.  Instead, an iterative approach is used: partial derivatives of the 

error function with respect to the weights can be determined analytically, and these are used in 

second-order non-linear optimisation algorithms. SubsequentlyAfter weight optimisation, 

network predictions for new input patterns are computed as: 

H

h

o

I

i

hiihthol bbxwgwgfy
1 1

),( wx , (6) 

where I is the number of features in the input vector, H is the number of hidden neuronsunits, 

who is the weight connecting hidden neuron unit h with output neuron unit o, bo is the bias 

associated to output neuron o, wih is the weight connecting the feature i of the input pattern with 

hidden neuron unit h, bh is the bias associated to hidden neuron unit h, gt(·) is the activation 

function for neurons units in the hidden layer and gl(·) is the activation function for the output 

layer neuronunit. 

3.3.2 Bayesian inference 

The Bayesian approach suggests to models the posterior probability density function of the 

weight vector rather than determining an optimum set of network weights (Bishop 1995, 

Nabney 2002). When the maximum likelihood approach is applied, dDifferent (representative) 

training sets representing the problem under study lead to different network weights when the 

maximum likelihood approach is applied. Bayesian techniques aim to consider account for this 

uncertainty by representing the degrees of belief in the values of the weight vector (Bishop 

1995) with a probability distribution. According to the Bayes’ theorem, the posterior 

distribution of the weights (w) given the training set (D) is expressed as: 
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where p(w) is the prior probability function over weight space, p(D|w) is the likelihood of the 

training data (computed using equation (4)) and p(D) is a normalisation factor known as the 

evidence (Nabney 2002). Once the posterior has been calculated, it can be used to infer the 

distribution of output values by computing the following expression: 

wwwxx dDptpDtp ,,  (8) 

where p(t|x,w) is the model for the distribution of the noise on the target for a given weight 

vector. In pattern classification problems, it is given by the expression in (3). Therefore, the 

probability of membership of an input pattern to the OSAS positive group is obtained as: 

wwwxwwwxx dDpydDpCpDCp ,,, 11  (9) 

We used the evidence procedure (Mackay 1992) to implement Bayesian MLP networks. A 

Gaussian approximation to the posterior (Laplace approximation) is used to solve compute 

integrals such as those mentioned before (Nabney 2002)in equations (8) and (9). In the absence 

of data, the prior probability distribution is chosen in order to favour small weights. Smooth 

mappings are preferred since they provide better generalisation (Bishop 1995). Thus, the prior is 

modelled using the following zero-mean exponential Gaussian function: 
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where ZW is a normalisation factor and ,  is referred to as a hyperparameter, is the inverse 

variance of the Gaussian. It controls the distribution of other the network parameters, i.e. 

network weights and biases. On the other hand, the likelihood function for the training data 

given in (4) can be written as: 
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where G(D|w) = ED is the cross-entropy error function as in equation (5). According to the 

expression in (7), the Bayes’ theorem is applied to compute the posterior probability from p(w) 

and p(D|w). It is given by: 
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where ZS is a normalisation factor for the Gaussian, 
2

2

1
wWE  and S(w) = G(D|w) + EW(w). 

In practice, this distribution is approximated by a Gaussian centred on the maximum 

posterior weight vector (wMP): 
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where ZS
*
 is the normalisation factor for the Gaussian, Δw = w – wMP and A is the Hessian 

matrix of the error function S(w). The implementation of the Bayesian MLP network requires 

the use of a nonlinear optimisation algorithm to find wMP, which is found by minimising S(w). 

Additionally, the hyperparameter  is periodically updated during this optimisation process. The 

maximum posterior value for the hyperparameter is found by maximising the likelihood p(D|α) 

(Bishop 1995, Nabney 2002). 



The hyperparameter controls the shape of the prior distribution of weights. Complex forms 

of this hyperparameter can be specified. Specifically, different values of  can be used to model 

the distribution of the weights associated to each input feature. This procedure is known as 

automatic relevance determination (ARD) (Neal 1996, Nabney 2002). Once the network has 

been trained, the importance of an input feature (xi) can be evaluated by analysing its associated 

hyperparameter ( i). A low value of i corresponds to a large variance prior, which allows 

weights of large magnitude. Thus, the feature xi is very relevant for predicting the output. 

Conversely, a large value of i is interpreted as low influence of the input feature on network 

output. As a result, feature selection is implemented in the network training process. 

4 Results 

We computed the proposed 14 features from each SaO2 signal in our database. Table 2 

summarises the mean value of each feature for the complete set of signals. Subsequently, the 

preprocessing stage was applied on each feature. The obtained patterns were fed into a MLP 

classifier. We developed MLP networks using the two optimisation frameworks described 

before: maximum likelihood (ML) and Bayesian inference (BY). The Netlab software was used 

to implement these algorithms (Nabney 2002). 

4.1 Training 

The training set with 74 subjects was used to develop our classification algorithms. The 

scaled conjugate gradient was used to optimise both types of MLP classifiers (Moller 1993). It 

was applied to minimise the cross-entropy error function given by ED in order to determine the 

optimum weight vector for networks corresponding to the ML criterion. In the BY framework, 

the optimisation algorithm was used to find the most probable set of weights by minimising the 

error function S(w); this is alternated with re-estimation of hyperparameters using the evidence 

framework (Mackay 1992). 



Different network architectures of both types were evaluated by varying the number of 

hidden nodes from 2 to 20. The generalisation performance of each network configuration was 

measured with sensitivity, specificity and accuracy. Additionally, we used receiver operating 

characteristics (ROC) analysis. The area under the ROC curve (AUROC) was computed as a 

measure of classification ability (Hanley and McNeil 1982). Given the random nature of 

network initialisation, the performance measures were averaged for a total of 10 runs, i.e. a total 

of 10 different networks were trained for each configuration. Table 3 summarises the results 

achieved on the training set for both types of MLP networks. 

As it can be observed, ML-MLP networks can correctly classify all the samples in the 

training set. This is achieved for network configurations with more than 4 nodes in the hidden 

layer. In contrast, BY-MLP networks provided lower classification ability on the training data, 

reaching an accuracy value around 90% and an AUROC close to 0.95. 

Table 2. Time and spectral features extracted from nocturnal oximetry 

recordings for all subjects under study. Data are presented as mean  standard 

deviation. n: number of subjects; SMT1: first statistical moment in the time 

domain; SMT2: second statistical moment in the time domain; SMT3: third 

statistical moment in the time domain; SMT4: fourth statistical moment in the 

time domain; ApEn: approximate entropy; CTM: central tendency measure; 

LZC: Lempel-Ziv complexity; SMF1: first statistical moment in the frequency 

domain; SMF2: second statistical moment in the frequency domain; SMF3: third 

statistical moment in the frequency domain; SMF4: fourth statistical moment in 

the frequency domain; ST: total area under the power spectral density; SB: area 

enclosed in the band of interest; PA: peak amplitude of the power spectral 

density in the band of interest. 

 
TIME FEATURES 

 All (n = 187) OSAS Positive (n = 111) OSAS Negative (n = 76) 

SMT1 93.36  5.29 91.78  5.37 95.67  4.26 

SMT2 2.29  2.02 3.18  2.08 0.98  0.93 

SMT3 -0.50  0.50 -0.60  0.46 -0.35  0.54 

SMT4 4.92  2.16 4.25  1.64 5.89  2.44 

ApEn 0.80  0.38 1.03  0.28 0.47  0.25 

CTM 0.47  0.28 0.30  0.20 0.71  0.18 

LZC 0.49  0.18 0.60  0.13 0.34  0.14 

SPECTRAL FEATURES 

 All (n = 187) OSAS Positive (n = 111) OSAS Negative (n = 76) 

SMF1 0.0104  0.0050 0.0121  0.0051 0.0079  0.0037 

SMF2 0.0135  0.0031 0.0139  0.0031 0.0130  0.0031 

SMF3 2.85  1.56 2.27  1.08 3.69  1.76 

SMF4 17.03  23.41 12.11  9.71 24.22  33.64 

ST 15.21  25.75 23.31  29.54 3.37  11.22 

SB 5.88  11.51 9.51  13.78 0.59  1.53 

PA 840.75  1841.80 1363.05  2239.52 77.93  251.64 

 

 

 



4.2 Test 

The trained networks were also evaluated on previously unseen data to obtain a more reliable 

measure of generalisation capability. The test set with 113 subjects was used. The results 

achieved by ML-MLP and BY-MLP networks are summarised in table 4. 

As expected, the results on the test set were lower than those achieved on the training set by 

both types of MLP networks. However, the decrease was significantly marked for ML-MLP 

networks. This was not very surprising. The networks have 16H+1 parameters (where H is the 

number of hidden units) and hence when H>4 there are more parameters than training data 

samples. In addition, it was observed that there were slight differences between network 

configurations with a different number of hidden nodes. It which was observed for both ML-

MLP and BY-MLP networks. Thus, less complex algorithms such as networks with 2 hidden 

nodes are preferred. The ML-MLP algorithm with this configuration provided a mean accuracy 

of 76.81% (86.42% sensitivity and 62.83% specificity) and a mean AUROC of 0.86. The 

accuracy reached by BY-MLP classifiers on the test set was substantially higher. The BY-MLP 

network with 2 nodes in the hidden layer achieved a mean accuracy of 85.58% (87.76% 

sensitivity and 82.39 % specificity) and a mean AUROC of 0.90. 

 

 

 

 

Table 3. Classification results achieved by maximum likelihood and Bayesian 

MLP classifiers on the training set. Se: sensitivity; Sp: specificity; Ac: accuracy; 

AUROC: area under the ROC curve. 

 
 Maximum likelihood Bayesian inference 

Hidden 

nodesunits 
Se (%) Sp (%) Ac (%) AUROC Se (%) Sp (%) Ac (%) AUROC 

2 99.77 ± 0.72 90.33 ± 3.67 95.95 ± 1.56 0.98 ± 0.01 92.50 ± 1.53 86.70 ± 0.00 90.10 ± 0.91 0.96 ± 0.00 

4 99.77 ± 0.72 100.00 ± 0.00 99.86 ± 0.43 1.00 ± 0.00 90.20 ± 2.64 87.00 ± 1.05 88.90 ± 1.66 0.95 ± 0.01 

6 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 90.90 ± 1.86 87.70 ± 2.25 89.60 ± 1.28 0.95 ± 0.00 

8 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 89.80 ± 1.20 89.00 ± 1.61 89.50 ± 0.57 0.95 ± 0.00 

10 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 88.90 ± 1.29 88.70 ± 1.72 88.80 ± 1.11 0.95 ± 0.00 

12 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 88.60 ± 1.07 88.00 ± 2.33 88.40 ± 0.70 0.95 ± 0.00 

14 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 88.00 ± 1.53 87.70 ± 1.61 87.80 ± 1.27 0.95 ± 0.01 

16 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 88.60 ± 0.00 88.00 ± 1.72 88.40 ± 0.70 0.95 ± 0.00 

18 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 88.90 ± 0.72 87.00 ± 1.05 88.10 ± 0.57 0.95 ± 0.00 

20 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 88.40 ± 0.72 86.70 ± 0.00 87.70 ± 0.43 0.95 ± 0.00 

 

Table 4. Classification results achieved by maximum likelihood and Bayesian 

MLP classifiers on the test set. Se: sensitivity; Sp: specificity; Ac: accuracy; 

AUROC: area under the ROC curve. 

 
 Maximum likelihood Bayesian inference 

Hidden 

nodesunits 
Se (%) Sp (%) Ac (%) AUROC Se (%) Sp (%) Ac (%) AUROC 

2 86.42 ± 1.79 62.83 ± 3.90 76.81 ± 0.91 0.86 ± 0.04 87.76 ± 0.63 82.39 ± 2.39 85.58 ± 0.84 0.90 ± 0.00 

4 82.39 ± 5.53 67.39 ± 3.24 76.28 ± 3.68 0.84 ± 0.02 85.07 ± 4.39 84.57 ± 0.69 84.87 ± 2.87 0.89 ± 0.01 

6 84.48 ± 5.37 68.04 ± 2.91 77.79 ± 3.08 0.84 ± 0.03 86.42 ± 0.47 84.13 ± 1.05 85.49 ± 0.62 0.90 ± 0.01 

8 84.33 ± 3.32 66.74 ± 3.56 77.17 ± 1.71 0.81 ± 0.03 86.27 ± 0.63 84.78 ± 0.00 85.66 ± 0.37 0.90 ± 0.00 

10 85.37 ± 3.57 66.74 ± 2.72 77.79 ± 2.45 0.82 ± 0.03 86.42 ± 1.10 84.78 ± 0.00 85.75 ± 0.65 0.90 ± 0.00 

12 85.97 ± 1.75 65.87 ± 3.56 77.79 ± 1.93 0.82 ± 0.02 85.82 ± 1.61 84.78 ± 0.00 85.40 ± 0.96 0.90 ± 0.00 

14 84.93 ± 2.77 66.74 ± 1.79 77.52 ± 1.68 0.82 ± 0.01 85.37 ± 1.37 84.78 ± 0.00 85.13 ± 0.81 0.90 ± 0.00 

16 84.78 ± 4.15 65.87 ± 2.06 77.08 ± 2.75 0.81 ± 0.03 85.82 ± 1.27 84.78 ± 0.00 85.40 ± 0.75 0.90 ± 0.00 

18 84.33 ± 3.39 67.39 ± 3.69 77.43 ± 1.78 0.81 ± 0.03 85.37 ± 1.54 84.78 ± 0.00 85.13 ± 0.91 0.90 ± 0.00 

20 85.67 ± 1.04 64.57 ± 2.30 77.08 ± 1.14 0.80 ± 0.01 85.37 ± 1.54 85.00 ± 0.69 85.22 ± 0.84 0.90 ± 0.00 
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5 Discussion 

Classifiers based on Bayesian MLP networks were evaluated as an assistant tool to assist in 

OSAS diagnosis from nocturnal oximetry data. A total of 14 features computed from time-

domain and frequency-domain analysis of SaO2 signals were used as inputs. The performance of 

these classifiers was compared with that achieved by common ML-MLP networks. We found 

that the classification ability of these algorithms was improved by BY-MLP. Our results 

indicate thatusing Bayesian inference represents a more effective optimisation technique to 

implement our MLP classifiers. It is often preferred in applications with a reduced small dataset 

such as that presented in this study. 

BY-MLP networks provided the best classification performance with an accuracy of 85.58% 

and an AUROC of 0.90 on the test set. These networks significantly outperformed classifiers 

based on ML-MLP (76.81% accuracy and 0.86 AUROC). The opposite situation was observed 

for data in the training set. The accuracy reached on this set by BY-MLP networks ranged from 

87.70% (BY-MLP with 20 hidden nodes) to 90.10% (BY-MLP with 2 hidden nodes). For ML-

MLP networks, it was close or equal to 100%. The comparison of the results achieved on both 

sets indicates that ML-MLP networks overfitted the training data. These networks are more 

likely to be affected by overfitting since their inherent complexity is greater than that of BY-

MLP networks (Bishop 1995). For a given training set, the bias-variance trade-off requires the 

best compromise between a good representation of the data and network complexity in order to 

achieve high generalisation capability. A simple or inflexible model (large bias) can lead to 

underfit the data. The model may not have the ability to learn enough the underlying 

distribution. On the other hand, a too complex or flexible model (large variance) could capture 

the noise present in the training data, leading to overfitting. Both situations result in poor 

generalisation (Bishop 1995, Haykin 1999). 

The main advantage of BY-MLP networks is that the effect of the bias-variance dilemma is 

no relevantreduced. They implement regularisation by including the hyperparameter , which 

controls the distribution of the weights and the network complexity during training (Nabney 

2002). Many real applications such as the proposed OSAS diagnosis problem present a training 

set with a limited size. Thus, regularisation techniques are required to develop effective neural 

network algorithms. In our preceding work, an MLP network with nonlinear features from 

oximetry data was developed to help in OSAS diagnosis (Marcos et al 2008). It provided an 

accuracy of 85.5% and an AUROC of 0.90 on a test set with 83 subjects using weight decay 

regularisation. These results were similar to those obtained with BY-MLP networks developed 

in this study. However, weight decay requires the user to adjust an additional regularisation 

parameter, which controls the trade-off between reducing training error and favouring small 

weight values. A high large number of experimental runs are needed to optimise this parameter. 

Therefore, the Bayesian approach represents a more efficient regularisation technique since the 

hyperparameter is automatically updated in the training process. Moreover, it allows us to 

specify complex priors to implement automatic relevance determination. This procedure 

provides a means to perform feature selection in the network training algorithm (Nabney 2002). 

From our experiments, we found that ApEn, LZC, SMT1 and SMT4 were determined as the 

most relevant features to classify SaO2 recordings as OSAS- positive or negative. This result 

suggests that time-domain features from oximetry data provided the most relevant information 

to detect OSAS. 

Other methodologies to analyse oximetry signals for OSAS diagnosis were have been 

previously proposed to analyse oximetry signals for OSAS diagnosis. Visual inspection of these 

recordings provided a sensitivity of 91% and a specificity of 69% (Rodríguez et al 1996).  

However, this is a time-consuming technique and the interpretation of the signals may differ 

from one expert to another. Conventional oximetry indices were proposed for automated 

analysis of SaO2 recordings. Most of the commercial oximeters can provide ODI2, ODI3, ODI4 

and the cumulative time spent below 90% of saturation. The diagnostic capability of these 

indices has been evaluated in other studies. The reported results varied among different 

researchers: the sensitivity ranged from 31% to 98% and the specificity from 41% to 100% 

(Netzer et al 2001). Vázquez et al (2000) reported 98% sensitivity and 88% specificity by 
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means of ODI4 when a threshold of 15 events/h was applied to define OSAS. It represents the 

highest diagnostic accuracy reported by these indices. However, a definition of arousal different 

to the criteria proposed by the Atlas Task Force was applied (The Atlas Task Force 1992). Lévy 

et al (1996) proposed an additional index (Δ index) from oximetry signals to detect OSAS. It is 

a measure of the variability of the SaO2 recordings. This parameter achieved 98% sensitivity 

and 46% specificity using a threshold of 15 events/h on the AHI to determine the presence of 

OSAS. Magalang et al (2003) achieved similar results using the Δ index, with a sensitivity of 

91% and a specificity of 59%. These results were improved by using the Δ index together with 

the other conventional indices, which yielded a sensitivity of 90% and a specificity of 70%. 

Finally, Roche et al (2002) suggested to combine information from oximetry data with clinical 

features using logistic regression. This model achieved an accuracy of 62.1%. 

The presented algorithms improved the classification accuracy reported in the cited studies. 

Moreover, we used our database of SaO2 recordings to compare the diagnostic capability of our 

networks and conventional oximetry indices. In order to do this, we computed the classification 

results of these indices on our signal database. For each index, the threshold (l) that provided the 

highest accuracy on the training set was selected. Subsequently, it was applied on signals in the 

test set to compute sensitivity, specificity and accuracy values. In addition, we computed the 

AUROC from data in the test set. The obtained results are summarised in table 5. 

The best diagnostic performance was provided by ODI2 and ODI3, which achieved a 

sensitivity of 76.12%, a specificity of 93.48% and an accuracy of 83.19%. In addition, CT90 

provided the best AUROC value with 0.77. As it can be observed, the BY-MLP classifiers 

clearly outperformed conventional oximetry indexes. The proposed algorithms represent a more 

effective technique for automated OSAS diagnosis from SaO2 data. 

Some limitations can be found in our methodology. A larger population would be desirable 

to obtain a better representation of the statistical properties of our classification problem. The 

generalisation capability of our networks could be improved by using a larger training set. 

Similarly, a more accurate estimate of our classification results could be obtained through a 

larger test set. Moreover, our results were computed as the average value of several runs. A 

model selection stage is required in order to select an optimum classification algorithm from 

those trained in our experiments. 

In summary, BY-MLP classifiers have shown to be a useful tool to assist in OSAS diagnosis 

from oximetry data. They achieved an accuracy of 85.58% (87.76% sensitivity and 82.39% 

specificity) and an AUROC of 0.90. They outperformed ML-MLP networks, which provided an 

accuracy of 76.81% and an AUROC of 0.86. Our results suggest that Bayesian techniques are 

preferred for the optimisation of our MLP networks. In addition, the proposed BY-MLP 

algorithms improved the diagnostic capability of visual inspection of SaO2 recordings and 

conventional oximetry indices. Our BY-MLP networks could be used to assist medical experts 

for early detection of OSAS only using oximetry signals. These algorithms could be applied as 

an effective technique for OSAS screening, contributing to reduce the number of required PSG 

tests. 

Other possible future work – classification of segments of dataset so that a more refined 

diagnosis can be given; it might also increase performance. 

 

 

Table 5. Diagnostic results achieved by conventional oximetry indices. ODI2: 

oxygen desaturation index over 2%; ODI3: oxygen desaturation index over 3%; 

ODI4: oxygen desaturation index over 4%; CT90: cumulative time spent below 

90% of saturation; l: threshold value determined on the training set; Se: 

sensitivity; Sp: specificity; Ac: accuracy; AUROC: area under the ROC curve. 

 
Index l Se (%) Sp (%) Ac (%) AUROC 

ODI2 9 76.12 93.48 83.19 0.706 

ODI3 8 76.12 93.48 83.19 0.725 

ODI4 7.6 73.13 95.65 82.30 0.758 

CT90 11 68.66 95.65 79.65 0.774 
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