454 research outputs found

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    Dynamic Capacity Enhancement using Air Computing: An Earthquake Case

    Full text link
    Earthquakes are one of the most destructive natural disasters harming life and the infrastructure of cities. After an earthquake, functioning communication and computational capacity are crucial for rescue teams and healthcare of victims. Therefore, an earthquake can be investigated for dynamic capacity enhancement in which additional resources are deployed since the surviving portion of the infrastructure may not meet the demand of the users. In this study, we propose a new computation paradigm, air computing, which is the air vehicle assisted next generation edge computing through different air platforms, in order to enhance the capacity of the areas affected by an earthquake. To this end, we put forward a novel paradigm that presents a dynamic, responsive, and high-resolution computation environment by explaining its corresponding components, air layers, and essential advantages. Moreover, we focus on the unmanned aerial vehicle (UAV) deployment problem and apply three different methods including the emergency method, the load balancing method, and the location selection index (LSI) method in which we take the delay requirements of applications into account. To test and compare their performance in terms of the task success rate, we developed an earthquake scenario in which three towns are affected with different severity. The experimental results showed that each method can be beneficial considering the circumstances, and goal of the rescue.Comment: 10 pages, 7 figure

    Transceiver design and multi-hop D2D for UAV IoT coverage in disasters

    Get PDF
    When natural disasters strike, the coverage for Internet of Things (IoT) may be severely destroyed, due to the damaged communications infrastructure. Unmanned aerial vehicles (UAVs) can be exploited as flying base stations to provide emergency coverage for IoT, due to its mobility and flexibility. In this paper, we propose multi-antenna transceiver design and multi-hop device-to-device (D2D) communication to guarantee the reliable transmission and extend the UAV coverage for IoT in disasters. Firstly, multi-hop D2D links are established to extend the coverage of UAV emergency networks due to the constrained transmit power of the UAV. In particular, a shortest-path-routing algorithm is proposed to establish the D2D links rapidly with minimum nodes. The closed-form solutions for the number of hops and the outage probability are derived for the uplink and downlink. Secondly, the transceiver designs for the UAV uplink and downlink are studied to optimize the performance of UAV transmission. Due to the non-convexity of the problem, they are first transformed into convex ones and then, low-complexity algorithms are proposed to solve them efficiently. Simulation results show the performance improvement in the throughput and outage probability by the proposed schemes for UAV wireless coverage of IoT in disasters

    Dynamic Resource Management in Integrated NOMA Terrestrial-Satellite Networks using Multi-Agent Reinforcement Learning

    Full text link
    This study introduces a resource allocation framework for integrated satellite-terrestrial networks to address these challenges. The framework leverages local cache pool deployments and non-orthogonal multiple access (NOMA) to reduce time delays and improve energy efficiency. Our proposed approach utilizes a multi-agent enabled deep deterministic policy gradient algorithm (MADDPG) to optimize user association, cache design, and transmission power control, resulting in enhanced energy efficiency. The approach comprises two phases: User Association and Power Control, where users are treated as agents, and Cache Optimization, where the satellite (Bs) is considered the agent. Through extensive simulations, we demonstrate that our approach surpasses conventional single-agent deep reinforcement learning algorithms in addressing cache design and resource allocation challenges in integrated terrestrial-satellite networks. Specifically, our proposed approach achieves significantly higher energy efficiency and reduced time delays compared to existing methods.Comment: 16, 1

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Drone location and scheduling problems in humanitarian logistics.

    Get PDF
    Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, are a promising technology for the last-mile delivery of medical and aid items in humanitarian logistics. In emergency scenarios, like disasters, where transportation networks are destroyed and people are stranded, drones can accelerate the delivery of urgently needed items, e.g., food and water, insulin shots and blood pressure pills, to those trapped in the disaster-affected areas. Drones can also provide logistics services in many non-emergency situations by delivering medical items, e.g., vaccine shots and lab specimens, to remote communities and hard-to-access locations. The contribution of using UAVs goes beyond merely having access to remote and disaster-affected areas. With inexpensive launching infrastructures and no need for on-board pilots, drones can offer an inexpensive, agile, and ready-to-use alternative to traditional last-mile delivery modes. Motivated by the challenges associated with the last-mile delivery of aid items to hard-to-access areas, this dissertation studies the problem of drone-based delivery of aid items, e.g., medical and relief packages, to hard-to-access areas in humanitarian logistics. The main goal of this dissertation is to design the logistics and orchestrate a fleet of drones to provide the timely delivery of items to hard-to-access areas in emergency and non-emergency scenarios. In this dissertation, we develop multiple extensions of a drone location and scheduling problem while taking into account the critical aspects of drone- based delivery systems in humanitarian logistics. These critical aspects include: i) limited coverage range, ii) limited payload capacity, iii) energy consumption, iv) timeliness, and v) uncertainty. Chapter II presents a general case of the drone location and scheduling (DLS) problem for the delivery of aid items in disaster-affected areas. In this chapter, we first develop a time-slot formulation to address the problem of optimally locating drone take- off platforms and concurrently scheduling and sequencing a set of trips for each drone to minimize total disutility for product delivery. We extend a two-period problem of DLS where the platforms can be relocated using useable road networks after the first period in order to provide a higher level of coverage. Chapter III proposes a multi-stop drone location and scheduling (MDLS) problem for the delivery of medical items in rural and suburban areas. In this chapter, we assume drones are allowed to stop at one or multiple charging stations, installed on existing platforms having access to electricity, e.g., streetlights, during each trip in order to improve the drones’ coverage range while considering the drones’ energy consumption. The problem is to find optimum locations for medical item providers and charging stations as well as optimally scheduling and sequencing drone trips over a long-term horizon. Chapter IV presents a stochastic extension for the drone location and scheduling (SDLS) problem. Due to the lack of information and instability of the situation, we assume the set of demand locations is not known. The main problem is to locate a set of drone take-off platforms so that with a given probability, the maximum total disutility (or cost) under all realizations of the demand locations is minimized. Finally, Chapter V presents a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas in humanitarian logistics. Our goal is to develop a simulation-based system to perform analytical/numerical studies, evaluate the performance of a drone delivery system in humanitarian logistics, and support the decision-making process in such a context while considering multiple sources of variabilities

    Location prediction and trajectory optimization in multi-UAV application missions

    Get PDF
    Unmanned aerial vehicles (a.k.a. drones) have a wide range of applications in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations, parcel delivery, and disaster response management. Their operations require reliable networking environments and location-based services in air-to-air links with cooperative drones, or air-to-ground links in concert with ground control stations. When equipped with high-resolution video cameras or sensors to gain environmental situation awareness through object detection/tracking, precise location predictions of individual or groups of drones at any instant possible is critical for continuous guidance. The location predictions then can be used in trajectory optimization for achieving efficient operations (i.e., through effective resource utilization in terms of energy or network bandwidth consumption) and safe operations (i.e., through avoidance of obstacles or sudden landing) within application missions. In this thesis, we explain a diverse set of techniques involved in drone location prediction, position and velocity estimation and trajectory optimization involving: (i) Kalman Filtering techniques, and (ii) Machine Learning models such as reinforcement learning and deep-reinforcement learning. These techniques facilitate the drones to follow intelligent paths and establish optimal trajectories while carrying out successful application missions under given resource and network constraints. We detail the techniques using two scenarios. The first scenario involves location prediction based intelligent packet transfer between drones in a disaster response scenario using the various Kalman Filtering techniques. The second scenario involves a learning-based trajectory optimization that uses various reinforcement learning models for maintaining high video resolution and effective network performance in a civil application scenario such as aerial monitoring of persons/objects. We conclude with a list of open challenges and future works for intelligent path planning of drones using location prediction and trajectory optimization techniques.Includes bibliographical references
    • …
    corecore