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ABSTRACT

Unmanned aerial vehicles (a.k.a. drones) have a wide range of applications in

e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations, par-

cel delivery, and disaster response management. Their operations require reliable

networking environments and location-based services in air-to-air links with co-

operative drones, or air-to-ground links in concert with ground control stations.

When equipped with high-resolution video cameras or sensors to gain environ-

mental situation awareness through object detection/tracking, precise location

predictions of individual or groups of drones at any instant possible is critical

for continuous guidance. The location predictions then can be used in trajec-

tory optimization for achieving efficient operations (i.e., through effective resource

utilization in terms of energy or network bandwidth consumption) and safe oper-

ations (i.e., through avoidance of obstacles or sudden landing) within application

missions. In this thesis, we explain a diverse set of techniques involved in drone

location prediction, position and velocity estimation and trajectory optimization

involving: (i) Kalman Filtering techniques, and (ii) Machine Learning models such

as reinforcement learning and deep-reinforcement learning. These techniques fa-

cilitate the drones to follow intelligent paths and establish optimal trajectories

while carrying out successful application missions under given resource and net-

work constraints. We detail the techniques using two scenarios. The first scenario

involves location prediction based intelligent packet transfer between drones in

a disaster response scenario using the various Kalman Filtering techniques. The

second scenario involves a learning-based trajectory optimization that uses various

reinforcement learning models for maintaining high video resolution and effective

network performance in a civil application scenario such as aerial monitoring of

persons/objects. We conclude with a list of open challenges and future works

for intelligent path planning of drones using location prediction and trajectory

optimization techniques.
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Chapter 1

Introduction

The use of drones has been increasing at a rapid pace for a diverse range of ap-

plications in e.g., aerial surveillance, mapping, imaging, monitoring, maritime op-

erations, parcel delivery, and disaster response management. Many applications

involve multi-UAV configurations [1], wherein several drones act as either car-

rier devices to carry supplies [2], or are used for aerial surveillance for intelligent

information gathering [3]. They also are deployed as aerial base stations to pro-

vide bandwidth and network coverage for ground users in certain applications [4].

An example of air-to-air links with co-operative drones surveying over a desig-

nated area is shown in Figure 1.1. These operations require location-aided drone

movement and optimal drone paths for reduced energy consumption and efficient

resource allocation. We discuss salient challenges in realizing these drone loca-

tion prediction and trajectory optimization techniques and show their advantages

through two scenarios involving: (i) network and video analytics orchestration,

and (ii) intelligent packet transfer in a disaster response management scenario.

This chapter will illustrate how various predicted location information and intelli-

gent path planning schemes help in achieving efficient performance of application

missions.
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Figure 1.1: Overview of multi-drone setup based on air-to-air and air-to-ground
links.

1.1 Use of Drone Location Prediction information
in Application Scenarios

To explain the significance of drone location prediction in real-time applications,

we consider a multi-drone co-ordination and networking system for a critical appli-

cation mission such as e.g., a disaster response scenario (DRS) [5, 6]. This scenario

involves critical tasks such as monitoring the disaster affected area, search and res-

cue operations, and providing supplies to victims.

This system features a Flying Ad-Hoc Network Topology (FANET) [7] to sup-

port air-to-air, as well as air-to-ground links. The ground control station (GCS)

sends requests to the drones to execute certain tasks and the drones send back

situational awareness information to the GCS. Such a scenario, however involves

challenges related to drone positioning and path planning. Particularly, the lo-

cation estimation of drones is necessary for multi-drone co-operation in order to

stay on-course and avoid mid-air collisions. Furthermore, trajectory planning and

optimization is required to efficiently carry out the application mission considering

the limitations of energy and resources. To explicitly understand how these two

essential methods impact the performance of drones in application missions, we

elaborate them in the following:

1. Location Estimation and Prediction: Tracking and predicting the lo-
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cations of drones is important in order to get real-time estimates of drone

positions for autonomous control and to improve the accuracy of delivery

tasks execution in a specific application scenario. It measures how closely

the drones are being monitored and also measures the reliability of the path

computation algorithm performance. This can be achieved by using motion

models of the drone movements, and by using such models within a track-

ing algorithm or a recursive filter. To get the near-optimal estimates with

the motion model, prior works use the Kalman Filter [8] technique which

is widely-used for estimation purposes. The popularity of Kalman Filter is

due to the fact that this technique takes in the current values as input data

(i.e., measurement) along with noises (i.e., measurement noise and process

noise) to produce unbiased estimates of system states [9]. Leveraging this

state estimation technique can help achieve predicted positions of drones.

2. Trajectory Optimization The path that a drone follows during its op-

eration is crucial for effective communication, computation offloading [10],

energy consumption and information transfer. A drone’s trajectory design

unquestionably plays an important role in the application performance en-

hancement and effectiveness. During its operation, the drone flies over ar-

eas which are prone to network and communication vulnerabilities such as

signal-loss, cyber-attacks, coverage and range limitations that could severely

impact the drones’ performance and put the application mission at risk. Ma-

chine learning techniques such as model-free reinforcement learning [11] and

deep reinforcement learning [12] provide effective reliable solutions for tack-

ling these implications. They use trial-and-error path learning techniques

for a drone to establish optimal and intelligent trajectory during its overall

flight time during an application mission.

This thesis addresses the concepts of drone position and trajectory optimiza-

tion techniques related to intelligent path planning. We will first discuss the

challenges related to drone location prediction and trajectory optimization. Next,
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methods for location prediction will be discussed that involve various Kalman fil-

tering techniques and methods of trajectory optimization using reinforcement and

deep reinforcement learning techniques. In this context, we also discuss non-ML-

based methods for trajectory optimization. They together provide motivation for

localization and intelligent path planning of drones for a given application scenario.

Furthermore, we discuss how trajectory optimization of UAVs can aid the opera-

tions of public safety networks. These techniques are based on the theoretical and

experimental research conducted by the author in the Virtulization, Multimedia

and Networking (VIMAN) Lab at University of Missouri Columbia. Lastly, we

discuss the main findings of this thesis and list out the open challenges and future

works that can be implemented using our approaches to carry out drone-based

application missions effectively and efficiently.

1.2 Challenges in Drone-based Application Mis-
sions

Since drones are classified under unmanned aerial vehicles, it can be presumed that

the navigation, operation and controlling is carried out externally by a ground con-

trol station or a ground (human) pilot. In most of the applications today, however

the drones flight is increasingly becoming autonomous and may require minimal or

almost no external (human) guidance. This is possible due to the variety of sensors

on-board that constitute the inertial measurement unit (IMU), global positioning

system (GPS), inertial navigation system (INS), gyroscope, accelerometer, barom-

eter and high resolution cameras. These sensors facilitate the autonomous drone

flights with high accuracy. Nevertheless, these sensors are prone to external noises

that can cause inaccuracies malfunctioning. Anther critical elements on which a

drone’s fight is dependent is the battery that powers the drones flying mechanism,

its flight controller and the above-mentioned sensors. Some of the major challenges

pertaining to localization and path-planning relating to the above issues are:
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Collision avoidance: Real-world application missions are carried out in com-

plex environments and sometimes, civil applications involving drones are con-

ducted in urban areas. The UAVs are only dependent on their on-board sensor

capabilities for their traversal through these environments. It is not always feasi-

ble to rely on these sensor readings for navigation and the drones may run into

obstacles, hit trees, buildings or other drones mid-operation. Many techniques

have been proposed for collision avoidance using decentralized control [13, 14].

The drone has to be aware of the location of its neighbor (drone) and itself at any

given instant of time. Leveraging this information can help tackle the problem

of mid-air collisions. Object detection using computer vision can help in identi-

fying certain objects by training on datasets of images of common environment

obstacles [15]. However, drone’s system reliance and communication within the

network is usually difficult and challenging in large-scale application missions in-

volving complex environments.

System Security: A wide range of drone-based applications are carried out

by the military that operate on highly confidential information gathering within

classified missions. Also, many civil applications involve sensitive data collection

when drones are deployed as aerial base stations or network providers that handle

ground user data (e.g., faces and postures of individuals in crowds). Drones are

at risk of cyber-attacks and can be hacked, without the drone being physically

captured. The information gathered can become vulnerable and exposed to hack-

ers. Mostly, the camera modules are targeted and video captured is received by

hackers which may expose the operations that are carried out in the surveillance

area. The work in [16] uses Blockchain technology that encrypts the data being

transmitted to base stations. An approach for threat analysis of drone based sys-

tems is described in [17]. Countermeasures to security issues in professional drone

based networks are shown in [18].
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Energy Limitations: Drones require energy for total flight time including

hovering over an area for surveillance and data transmission. Additionally, the

on-board sensors constantly consume energy to function properly and provide lo-

calization of the drones. Energy consumption can also be increased due to attached

payloads [19], wind resistance [20] and network issues [21]. The total energy on

a drone is limited thus restricting the flight-time of the application mission. The

work in [22] provides an energy-aware approach that uses trajectory planning of

drones used as mobile anchors to save energy.

Location Awareness and Blockage of Line-of-Sight: In the context of

location estimation of drones, blockage of line-of-sight for drones is a very triv-

ial problem that surfaces in the rarest of times [23]. As drones tend to fly long

distances based on their application missions, the location awareness becomes es-

sential in order for them to remain in their trajectory and under a predefined

network connection for information transfer. It is necessary that they avoid col-

lisions and interference. It becomes a problem if a drone’s flight is affected due

to external factors and it might become susceptible to unknown attacks. In the

worst case scenario, the drone can be thrown off-path and after consuming all its

power, it can land or fall in an unknown territory. Thus, it can render itself and

the information collected vulnerable, and any expensive sensors or video camera

components are subject to expensive damage or loss. Various types of research is

being conducted by many groups to realize location awareness [24] of drones.

In the next section, we provide the background for location estimation using

various techniques and compare them.
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Chapter 2

Methods for Drone Location
Estimation and Prediction

In our DRS application the drone environment is considered to be a 2D dynamic

and non-linear horizontal plane. As discussed in subsection 1.1, we assume that

all the drones are connected forming a FANET. They communicate the mapping

and monitoring information over the same network to the delivery drones in order

to carry out a delivery task. Consequently, the network topology of the multi-

drone system keeps on changing based on the mobility of the drones. The position

estimation of the drones must be performed in very short intervals of time using

the new coordinates being updated rapidly within the FANET. Each drone in the

FANET is considered to have a GPS module and an IMU to record its current

location. This information is broadcast to the FANET so that the other drones in

the vicinity are recognized for packet or information transfers when needed. We get

Roll
φ

Pitch
θYaw

µ

Figure 2.1: Motion angles of a drone responsible for movement with six degrees
of freedom controlled by the gyroscope and flight controller.
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the initial measurement data of the drone using GPS and other on-board sensors

such as gyroscope, barometer, accelerometer and magnetometer that are all part

of the IMU. The drone’s rotational movement angles observed and controlled by

a gyroscope and rotary movements, for stability are shown in Figure 2.1. The

accelerations and rotations of the drone can be observed over time to give an

estimated position by learning the next measurement values for different time-

steps.

The position, velocity, acceleration and heading of a UAV are considered as

dynamic states at a given time-step. In order to get the location prediction of an

UAV, a state estimator is required to get the true values along with a prediction

of these states for the next time-step. Kalman filter can be used to observe state

estimates over time along with process noise and measurement noise from sensors

to give estimates on which drone position state estimates are closer to true values

that cannot be calculated directly [25]. Since the inception of Kalman filter in

1960, it has evolved over time, and the most popular Kalman filters for UAV

location estimation are the original Kalman filter, the extended Kalman filter

(EKF) [26] and the unscented Kalman filter (UKF) [27].

2.1 State Estimation of Drone Parameters using
Kalman Filter

The functionality of Kalman filter relies on consecutive iterations of prediction

and filtering i.e., it follows a sequence of prediction and update equations. Along

with the inertial navigation system (INS) data, a predefined motion model of the

drones’ movement is given as input to the Kalman filter. The motion model is

basically a state transition matrix having time-periods of the states i.e., x and y

coordinate, acceleration and angular velocity. The prediction equations give priori

estimates and the update equations give posterior estimates. The update equations

take up the previous state’s mean and noise covariance and produce the updated
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mean and noise covariance values for the next state. The filter then combines

the predicted states and noisy measurements to produce unbiased estimates of

drone system states. In this process, data with process noise and measurement

noise from sensors is used as input, and the Kalman filter produces a statistically

optimal estimate of the underlying state by recursively acting on the series of

observed inputs.

2.2 Extended Kalman Filtering for Non-linear
Drone State Estimation

The major limitation of a Kalman filter is that it can only process estimates of lin-

ear systems, and it suffers from linearization when operated on nonlinear models.

Drone flight operation is generally non-linear and time varying and system param-

eters with a dynamic motion model cannot be measured directly with on-board

sensors because they may be subject to noise and malfunctioning. To overcome

this non-linearity issue of drone position estimation, one of the widely used filter

for non-linear state estimation, i.e the extended Kalman filter (EKF) is used. It

uses Taylor series expansion and linearizes and approximates the state estimates

of a non-linear function around the conditional mean. EKF can be reliable while

estimating the drone positions using the drones’ dynamic state parameters.

The dynamic motion model is solved by learning the non-linear transition of

measurement noise covariance and process noise covariance along with the change

in states to give an optimal estimate of the UAV position. The EKF also follows

a series of prediction and update equations. The priori estimates calculated dur-

ing the prediction process are updated to give the posterior estimates and their

covariance. Additionally, Jacobians of dynamic functions are used with respect

to system state of the UAV to map its states to observations. Additionally, by

recursive operations, the covariance of the estimated error is minimized. Hence,
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the EKF can be used to get the more accurate positions of the drones through pre-

diction of future positions with insignificant errors, when compared to the original

Kalman filter. The work in [29] shows the non-linear estimation of drone’s state

along with sensor data for localization and [30] shows an approach for determining

the locations of drones using inter-drone distances in 2D co-ordinates.

2.3 Unscented Kalman Filter for Position
Estimation and Orientation Tracking of UAVs

The EKF is computationally complex but its accuracy is reliable in real-time.

Though the EKF is widely used, another advancement of the Kalman filter called

the unscented Kalman filter (UKF) is used for the same applications requiring

higher accuracy. It is a deterministic sampling approach involving sampling of

distributions using a Gaussian random variable. It employs the unscented trans-

form method to select a set of samples called sigma points around the mean to

calculate the mean and covariance of the estimation that eradicates the require-

ment of using Jacobians, as in the EKF. This preserves the linear update structure

of the original Kalman of estimates filter unlike the EKF. Table 2.1 shows the com-

parison of various Kalman filtering schemes used for location estimation of UAVs;

for a detailed comparison, readers can refer to [31].

In drone localization application, the system dynamics is expanded as the

drone’s cartesian location i.e., position, velocity and acceleration. These provide a

non-liner relationship between the system states and measurements, and thereby

the implementation becomes simpler. The orientation tracking of a drone is also

carried out using the UKF [32] by considering rigid body dynamics using vari-

ous types of measurements like acceleration, angular velocity and magnetic field

strength. It uses quaternions and UKF, thus proving its computational effective-

ness of tracking. Another approach for position estimation using UKF samples

10



Table 2.1: Comparison of Kalman filtering scheme variants for location estimation
and prediction of UAVs.

Type of Filter Type of System Accuracy Model Design Computation Time
Kalman Filter Linear Least accurate Least Complex Slowest
Linearized Kalman Filter Non-Linear Moderately accurate Moderately Complex Slow
Extended Kalman Filter (EKF) Non-Linear Accurate Most Complex Fastest
Unscented Kalman Filter (UKF) Non-Linear Most Accurate Complex Fast

images uses a visual target. It uses weights (difference of observed value and esti-

mated value of vision sensor) for observations to prevent divergence in estimated

values by UKF [33]. Table 2.1 shows the comparison between different Kalman

filtering techniques.

2.4 Sensor Fusion for UAV Localization

Multi-sensor fusion is another technique that shows the importance of using data

from distinct sensors to predict the dynamic state estimates of drones for aerial

applications. The work in [34] shows how data collected from the GPS, IMU,

and INS are fused together for UAV localization using state-dependent Ricatti-

equation non-linear filter along with a UKF. Drone path planning involves nav-

igating the drone to a desired destination travelling over a predefined path that

constitutes obstacles and other environment constraints. The work in [35] shows

how the sensor fusion along with real-time kinematic GPS sensors is used to accu-

rately calculate the altitude and position of the drone. They generate a data-set

using instantaneous positions of the drone in different directions along with the

roll, pitch and yaw angles. Further, they compare this data with the output of

the sensor fusion model estimations that are carried out using an EKF to produce

position and altitude estimates of drones.

Table 2.2 summarizes how different methods of location prediction of drones

have been proposed in prior works to achieve goals in different application missions.
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Table 2.2: Methods and Applications of Location Estimation of Drones.

Case Study Method Solution Application Goal
Xiong et al. [25] Kalman Filter Linear Estimation State estimation Autonomous Flight
Mao et al.[30] Extended Kalman Filter Non-Linear Estimation Localization of UAVs Localization without GPS
Kraft et al.[32] Unscented Kalman Filter Linearized Estimation Localization of UAVs Orientation Computation
Abdelfatah et al. [35] Sensor Fusion Non-Linear Estimation Localization of UAVs Altitude, Position Estimation

12



Chapter 3

Methods for Drone Trajectory
Optimization using Machine
Learning

In context of drone trajectory optimization, we consider an area that is prone

to signal-losses, cyber-attacks and potential obstacles like trees, buildings, tall-

standing structures which affect the drones’ performance and cause hindrance in

the application mission. An overview of a drone’s trajectory during an application

is shown in Figure 3.1. To overcome these problems there is a need for intelligent

path planning that can enable the drones follow an optimal trajectory, flying in

areas free of all the impediments and attacks.

INITIAL STATE

TERMINAL STATE

Figure 3.1: Overview of drone’s trajectory in a learning based environment com-
prising of potential obstacles.
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The details of the salient methods used to optimize the drones’ trajectories

while operating in an application are described in the following:

Reinforcement Learning: Path planning of drones is a crucial aspect of re-

search in drone-based applications because the efficiency of missions is dependent

on the traversal of the drones in a given area. It correlates with autonomy and

has a profound impact on guidance, operation and endurance of the drones. Most

drone based application missions are defined in unknown environments. There-

fore, Markov Decision Process (MDP) is employed to solve such environments and

the Q-Learning algorithm is used that follows the Markov property [36]. It is a

model-free reinforcement learning algorithm that puts emphasis on an agent to

learn actions under given circumstances to handle problems with stochastic tran-

sitions. For any finite MDP, the Q-learning algorithm finds an optimal policy

by maximizing the expected value of cumulative rewards over successive actions

taken in given states, starting from a current state. There has been a wide usage

of reinforcement learning algorithms in varied areas of drone-based application

research where drones are allowed to directly and continuously interact with the

environment.

Deep Reinforcement learning (DRL): This concept can be considered as

a combination of deep learning and reinforcement learning. It employs a deep

neural network (DNN) to estimate the Q funtion Q(s, a) for a given set of state-

action pairs. Often reinforcement learning requires the state space and the action

space to be fixed and discrete, and the agent learns to make decisions by using

a trial and error method. It basically involves employing a Q learning algorithm

that maintains a record of values of what actions have been taken in given state

spaces and also the rewards associated with the corresponding states and actions

in a limited format where the state space is predefined. The DRL method allows

the agent to act in an environment that has a continuous and mostly undefined
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state space. It also uses a set of discrete or continuous actions which are given

as a stack of inputs in contrast to the single inputs in case of a simple reinforce-

ment learning. In other words, the DRL makes sure that the agent performs well

with extensive input data coming from a large state space to optimize the given

objective of any application e.g., it uses pixels as input data in Atari games [37].

The DNN approximates the Q function which estimates the cummulative reward

for each state-action pair. A DNN may often suffer with divergence, so it uses

a set of experience replay memory and target network to overcome this issue.

DQN based RL solutions for drones are necessary because a drone’s operation in

a given environment is considered as a continuous state space and multi drone

scenarios require more robust algorithms such as the multi-agent DQN [38] and

the actor-critic [39] networks, which also employ DNNs to generate an optimal

policy solution.

3.1 Q-learning

Q-learning is a type of model-free reinforcement learning as described in [40],

which is used to solve MDP based problems with dynamic programming. The

Q-learning algorithm creates a table (i.e., Q-table) containing the corresponding

values of each state-action pair and keeps updating them along with the reward

values. The scores obtained in the Q-table are represented as the values of the

Q-function Q(st, at), and are given by -

Q(st, at) = E[
∑
k

γkRt+k+1|(st, at)] (3.1)

where t is the time step and k is the episode. The Q-function is updated for each

episode when the agent performs certain actions in a given state to maximize its

cumulative reward using the Bellman’s equation [41], which is given as -
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Q(st+1, at+1)←− (1− α)Q(st, at)

+ α[Rt + γ.maxaQ(st+1, at+1)−Q(st, at)]; (3.2)

The algorithm converges when maximum reward is reached. The policy encour-

ages the agent to choose optimal actions and receive greater scores in an iterative

fashion, which results in the model rendering high Q-values. The interaction of

the agent with the environment to generate rewards and to establish a policy is

shown in Figure 3.2. The output of the Q-learning is the drone trajectory up-

date guidance that is used to keep the drones as much as possible in the optimal

trajectory.

Action 
(At)State

(St)

Environment

Agent

Policy
Reward 

(Rt)

Observations

Figure 3.2: Overview of Reinforcement learning showing the agent’s interaction
with the environment corresponding to given states and actions to generate a
policy.

Ensuing the design of the drone’s optimal trajectory selection scenario using

an MDP, we can evaluate the overall performance by tuning the values of the

discount factor γ for obtaining the optimal policy π∗
t : St → At , which maps the

state space with best suitable actions.
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3.2 Deep Q-Network

To implement the Q-Learning based algorithm that render optimal trajectories of

the drones, we choose a DQN that allows for maximum exploration and exploita-

tion [42] of the learning environment by the agent. The actions in this case are

dependent on the weights of the primary DNN, which adds flexibility in the over-

all learning process i.e., as the weights update, the rewards update accordingly.

The intelligent trajectory learning application for DRS scenario renders network

performance in terms of throughput and the video quality scores (i.e., rewards)

obtained in the process of learning. The DQN is trained using a experience re-

play, which is memory buffer that stores the sequence of state-action pairs from

previous episodes. The process of utilizing replay memory to gain experience by

random sampling is called experience replay.

The DQN utilizes the mini-batch from experience replay with the observed

state transition samples to update its DNNs after each episode during the train-

ing process. Thereby, it breaks any correlation made using sequential state-action

pairs in the previous episodes. Sometimes, drones are used as swarms in appli-

cation missions that are connected via wireless links. For any broken link, the

drones have to position themselves to make up the broken link to maintain the

same QoS requirements. The work in [43] gives an approach that uses DQN to

determine optimal links between drones in swarms and to localize the drones to

improve overall network performance of the swarm’s wireless network.

3.3 Double Deep Q Network

The Deep Q Network has a single action value function and while updating the

primary DNN, same values are used for selection and evaluation of actions. This

in turn leads to overestimation that renders over optimistic action value estimates.

To avoid this issue, Double Deep Q Learning decouples the selection and evaluation

of value function using two separate DNNs (primary and target). It employs two
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value functions that learn by selecting random experiences that produce two set of

weights [44]. It aims to get the most out of Double Q learning with slight increase

in computation. For civil and military based application missions, Double Deep Q

Network (DDQN) is used for 3 Dimensional path planning of drones using greedy

exploitation strategy to improve learning in complex environments [45].

3.4 Dueling Deep Q Network

The Dueling Deep Q Network (Dueling DQN) is another form of a deep reinforce-

ment learning algorithm. It consists of two separate estimators (DNNs) for state

value function and action value function. It is used to overcome the impact caused

by similar action values in multiple episodes [46]. Some application missions in-

volve multi-drone connections using cellular networks with each drone acting as a

base station. To improve the connectivity over the cellular network, Dueling DQN

is used to provide trajectory optimization and coverage-aware navigation for ra-

dio mapping [47]. Also in other dynamic environments with unrealized threats,

Dueling DQN can provide intelligent path-planning using epsilon greedy policy to

render optimal trajectories of the drones [48].

3.5 Actor Critic Networks

Some of the most recent and popular reinforcement learning algorithms are the

actor critic networks that aim to achieve optimal policies using low-gradient esti-

mates. The actor network is a DNN that takes in the current environment state

and computes continuous actions and the critic judges the performance of the

actor network with respect to the input states. It also provides feedback to deter-

mine the best possible actions that render higher rewards [49, 50]. An approach to

achieve efficient communication and band allocation in the drone network involves

determining their 3D trajectory under energy constraints using deep deterministic

policy gradient (DDPG) [51] actor-critic networks as shown in [52].
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Chapter 4

Non-ML-based Trajectory
Optimization Techniques for Drones

Although machine learning is gaining traction in solutions for autonomous vehicles,

trajectory optimization of UAVs in real-time scenarios is challenging because it is

a non-convex optimization problem. There have been advances in drone trajectory

planning and optimization techniques for single-UAV, dual-UAV and multi-UAV

based applications. A survey for long-distance trajectory optimization of small

UAVs is given in [61], and a survey of techniques involving joint trajectory opti-

mization with resource allocation is given in [62]. An approach to perform joint

trajectory and communication co-design can be found in [63]. Advances in path-

planning techniques feature techniques that are quite different from learning-based

methods. To provide high-mobility and flexibility in FANETs, many techniques

have been proposed. However, there are several open challenges when it comes

to path planning of UAVs. A series of latest works that try to solve the open

challenges are as follows:
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4.1 Quantization Theory-Lagrangian Approach

An approach to provide optimal UAV positions in static networks under spatial

user density is described in [64]. This approach uses uniform distribution of ground

terminals at zero altitude and determines optimal placement of UAVs in static en-

vironments along with ways to reduce power consumption. The optimizations for

the static case are done by considering the UAVs at varying altitudes, followed by

characterizing optimal UAV deployments in dynamic scenarios. These optimiza-

tions are performed by varying ground terminal density in any given dimension

for a fixed number of UAVs which are placed at moderate distances from each

other. Two two cases are considered: (i) UAVs with no movement, and (ii) UAVs

with unlimited movement. This approach aims to achieve lowest possible average

power consumption followed by providing a Lagrangian-based descent trajectory

optimization technique. The Lagrangian technique is similar to Voronoi based

coverage control algorithms and is based on time discretization.

4.2 Joint Optimization of UAV 3D Placement and
Path Loss

An approach in [65] aims to fill the gaps of joint aerial base station (ABS) de-

ployments and path loss compensation for ABS placements at certain heights. It

puts stress on the power control mechanism needed to establish reliable communi-

cation, and on the propagation path-loss that hinders the overall communication

performance. The 3D UAV placement procedure involves altitude optimization

for maximum coverage along with horizontal position optimization for 2D place-

ment that uses a modified K-means algorithm for aerial base station height with

a compensation factor.
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4.3 Flexible Path Discretization and
Path Compression

This technique considers a piecewise-linear continuous trajectory of a UAV whose

path comprises of consecutive line segments connected through a finite number of

points in 3D called way-points. It provides a solution to render an optimal path

by using a flexible path discretization technique to optimize number of way-points

in the path to reduce the complexity in the design of the UAV trajectory [66]. The

variables that tend to solve the path-planning are considered in two sets of design-

able and non-design-able way-points. The way-points are generated using their

sub-path representations that ensure a desired trajectory discretization accuracy.

They also help to obtain utility and constraint functions that retain accuracy in

e.g., aerial data harvesting using distributed sensors. Following this, a path com-

pression technique is performed that takes the 3D UAV trajectory and decomposes

it into a 1D (sub-path) signal to further reduce the path-design complexity.

4.4 Connectivity Constrained Trajectory Optimiza-
tion

This technique provides a solution to optimize an UAV’s trajectory in an energy

and connectivity constrained application to reduce the overall mission comple-

tion time. It uses graph theory and convex optimizations to achieve high-quality

solutions in various scenarios involving: (i) altitude mask constraints, (ii) coor-

dinated multi point (CoMP)-based cellular enabled UAV communications, (iii)

QoS requirements based communication using UAVs, and (iv) non-LoS channel

model. The degree of freedom of UAV movement is exploited to increase the

design flexibility of UAV trajectories with respect to the locations of GCS, and

ground users for effective communication. By applying structural properties, effec-

tive bounding and approximation techniques, the non-convex trajectory problem

is converted into a simple shortest path problem between two vertices and solved
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using two graph theory based algorithms [67]. A similar technique involving ef-

fective trajectory planning under connectivity constraints using graph theory is

shown in [68].

4.5 3D Optimal Surveillance and Trajectory Plan-
ning

Public safety is another crucial application domain for designing drone based com-

munication systems. Prior works such as [69] have proposed approaches to solve

challenges for the public safety application domain. Specifically, a swarm opti-

mization based trajectory planner is provided with surveillance-area-importance

updating apparatus. The apparatus aims to derive 3D surveillance trajectories

of several monitoring drones along with a multi-objective fitness function. The

fitness function is used as a metric for various factors of the trajectories generated

by the planner such as energy consumption, area priority and flight risk. This

approach renders collision-free UAV trajectories with high fitness values and ex-

hibits dynamic environment adaptability and preferential important area selection

for multiple drones. Table 4.1 summarizes how different methods of trajectory es-

timation and optimization have been proposed to achieve certain goals in various

applications.
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Chapter 5

How can trajectory optimization aid
UAV-assisted PSNs?

Public safety networks (PSNs) are established for public welfare and safety. They

are essential means of communication for first responders, security agencies and

healthcare facilities. Nowadays, PSNs have been widely relying on wireless tech-

nologies such as long range WiFi networks, mobile communication and broadband

services that use satellite-aided communication links. In addition, PSNs operate

extensively during natural disasters, during times when there is a threat to na-

tional security such as terrorist attacks, and any large-scale hazards caused due to

human activities. As wireless communication is the backbone of PSNs, advanced

and efficient communication technologies such as LTE and 5G-based communi-

cations can help establish broadband services that provide improved situational

awareness with security and reliability characteristics in the network. In this sec-

tion, we will discuss how UAVs could be a choice for public safety networks in

terms of various use cases, provide case studies on trajectory optimization and

localization for UAV-assisted PSNs, and discuss open challenges in UAV-assisted

PSNs. Figure 5.1 provides an overview of multi-UAV operations spanning diverse

applications ranging from civil applications to public safety networks.
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Figure 5.1: Overview of multi-UAV operations across various applications ranging
from civil applications to public safety networks.

5.1 UAV-assisted PSNs

Since wireless communications play a fundamental role in PSN operations, their

effectiveness and responsiveness to emergency situations becomes critical [70]. A

few issues that affect the functioning of PSNs include: communication equipment

deployment costs, spectrum availability, network coverage and quality of service

(QoS). A few of these issues can be solved by improving the ground-based com-

munication systems by fully exploiting the potential of situational awareness and

enabling advanced tracking, navigation and localization services [71]. However,

to eradicate these issues of PSNs as a whole, UAVs with enhanced functionalities

that can operate as aerial base stations with high-end communication equipment

can be used to amplify the effectiveness of communication, improve coverage, re-

liability, and energy efficiency of wireless networks. In such UAV-assisted PSNS,

UAVs are operated by acting as flying mobile terminals within a cellular network

or broadband service while monitoring the area, simultaneously. The other advan-

tage on UAV-assisted PSNs is that the UAV base stations are faster and easier to

deploy, which provides effectively on cost and can be flexibly reconfigured based

on mobility.
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5.2 Trajectory Optimization and Path-Planning for
UAV-Assisted PSNs

Trajectory Optimization and localization of UAVs can significantly impact the

3D-deployment of the aerial base-stations serving non-stationary users. Optimal

path planning can help strengthen the carrier channel transmitting and receiving

characteristics. The cellular networks involving aerial base stations can be con-

verted to FANETs, which can help to establish efficient wireless communication in

the PSNs. A case study in [72] used path-planning for UAVs in a disaster resilient

network. They showed how drones can be used in an wireless infrastructure, al-

lowing a large number of users to establish line-of-sight links for communication.

Another approach in [73] uses fast K-means based user cluster model for joint

optimization of UAV deployment and resource allocation along with joint optimal

power and time transfer allocation for restoring network connectivity during a

disaster response scenario. Similarly, research in [74] discusses the role of UAVs

in PSNs in terms of energy efficiency and provides a multi-layered architecture

that involves UAVs to establish efficient communication by considering the energy

consumption considerations.

5.3 Open Challenges in UAV-assisted PSNs

As we can observe from the previous subsections, UAVs when used as aerial base

stations can significantly improve the performance and operation of PSNs. How-

ever, there are sill open challenges that need to be resolved. For example, the

monitoring of moving objects/target-users becomes an issue after deployment in

a disaster scenario. Few challenges such as traffic estimation, frequency allocation

and cell association are addressed in [75]. An approach in [76] propose a disaster

resilient communications architecture that facilitates edge-computing by provid-

ing a UAV cloudlet layer to aid emergency services communication links. Another
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approach in [77] has a uplink/downlink architecture for a Full-Duplex UAV relay

to facilitate ground base stations around the UAVs. The UAVs communicate to

distant ground users using non-orthogonal multiple access (NOMA) assisted net-

works.

Another important concern raised with UAV-based PSNs is security (see Sec-

tion 1.2). In most cases, These PSNs are handling confidential information and

may become vulnerable. They can also be subject to cyber and physical attacks.

A variety of security concerns and challenges in drone-assisted PSNs are addressed

in [78] such as: WiFi attacks, channel-jams, grey hole attacks, GPS spoofing and

other issues relating to interruption, modification, interception and fabrication of

information along with procedures to handle them.
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Chapter 6

Online Learning in Multi-UAV
Application Missions

This section aims to illustrate the location prediction and trajectory optimization

schemes for the application mission explained in Section 1.1 using two scenarios

that involve location prediction and trajectory optimization of drones. As dis-

cussed earlier, we assume that all the drones are connected forming a FANET.

By this, they communicate the mapping and monitoring information over the

same network to the delivery drones in order to carry out a delivery task. Conse-

quently, the network topology of the multi-drone system keeps on changing based

on the mobility of the drones. Firstly, our multi-drone coordination and network-

ing scheme features a location-aided prediction algorithm coupled with a packet

forwarding algorithm for drone-to-ground network establishment. Our novelty is

in the approach of using Reinforcement Learning (RL) to estimate future drones’

trajectories based on their coordination status and their on-board sensors informa-

tion. Specifically, once the intermediate drone gets the accurate predicted position

information of the destination drone, then a list of preliminary decisions on where

to forward the packets is made. Secondly, the performance in the network links

across multi-drone FANETs vary due to certain factors such as, application re-

quirements, weather conditions, obstacles in the path, etc that cause frequent or
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Figure 6.1: Overview of drone location prediction using Extended Kalman Filter.

intermittent outages in transmission and reception of crucial information inside

the FANET. This could also affect the drone’s video analytics, when used for civil

applications or aerial surveillance. Our proposed orchestration process solves the

network links and video analytics disruption by employing an online learning based

technique. It analyzes each drone’s position and trajectory during the flight, and

find ways to optimize the drone’s path and even the video quality by selection of

pertinent network protocol and video properties during the drone flight.

For simplicity, the drone environment in the FANET is considered to be a 2D

dynamic and non-linear horizontal plane, assuming the drones are deployed at

a fixed altitude. For location prediction, we use EKF with inter-drone distance

measurements and a fixed motion model to obtain optimal position estimates of

a drone. In our application mission, we get the initial measurement data using a

GPS. The accelerations and rotations of the drone can be observed over time to

give an estimated position by learning the next measurement values for different

time-steps. The position estimate of the drone is the average of the predictions

made using previous positions and new measurements obtained as shown in Fig-

ure 6.1.

Predicting the trajectory of drones is crucial for improving the global perfor-

mance. The non-linear, dynamic motion model for a single drone is defined by the

discrete-time state vector:
S = [xt, yt, ϕt, v]

T
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Figure 6.2: Workflow diagram of Extended Kalman Filter based drone state esti-
mation.

where, (xt, yt) are coordinates of the drone, ϕt is the drone’s heading, and v is the

constant drone’s velocity. The workflow diagram of an EKF to produce dynamic

state estimates is shown in Figure 6.2.

The motion model remains the same for all the drones, and the measurement

equation h[S] gives the relative distance between the drone’s current position and

next position estimate:

h[S] =
√

(x̂k − xt)2 + (ŷk − yt)2

where (x̂K , ŷk) are the predicted coordinates of drones for kth time-step. The state

prediction of a drone for kth time-step is given as:

Sk = g[Sk−1] + wk

zk = h[Sk] + vk

where zk is the observation vector, wk is process noise, and vk is the measurement

noise used to model the distance measurements (both are uncorrelated sequences

of white Gaussian noise).

The dynamic function g maps the measurement to the state, and it is modeled

using at, which is the drone’s acceleration as follows:
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g =



at · v cos(ϕ) + x

at · v sin(ϕ) + y

ϕ

v


The process and measurement noise covariances are given by Q and R respectively:

Q =



at 0 0 0

0 at 0 0

0 0 ϕ 0

0 0 0 v


, R =

σ(ϕ) 0

0 σ(ϕ)



The position estimates from the EKF are obtained via a two-step process that

involves: (i) performing a series of predictions, and (ii) updating the produced

estimate data. The dynamic motion model is solved by learning the non-linear

transition of Q and R along with change in states to give optimal estimates of the

position data. The state prediction covariance is computed as:

P̂k+1 = g[Sk] · Pk · Jg[Sk] + Q̂k

ẑk+1 = h[Sk+1]

while the predicted measurement covariance is given by:

Ĉk = Jh[Sk] · P̂k+1 · Jh[Sk]
T + R̂k

where Jg and Jh are the Jacobians of dynamic functions g and h with respect

to Sk that map states along with uncertainties, to observations. The prediction

step involves process covariance Q̂k estimation. The measurement step produces

measurement noise covariance R̂k, which is also required by the prediction step.The

priori estimates calculated during the prediction process are updated to give the

posterior estimates and their covariance. The corresponding updated equations
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Figure 6.3: Drone position, heading and velocity estimation using EKF.

are given as follows:

Kg = P̂k+1 · Jh[Sk]
T · [Ĉk]

−1

Sk+1 = Sk +Kg(zk+1 − ẑk+1)

where Kg, (0 ≤ Kg ≤ 1) is the Kalman gain, Sk+1 is the next state estimated, and

the updated state covariance matrix is given by:

Pk+1 = (I −Kg · Jh[Sk]) · P̂k+1

The optimal position estimates are produced by recursively operating on pre-

vious values of noisy data. Figure 6.3 shows the position, heading and velocity

estimation of the drone.
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Figure 6.4: Drone location prediction using Extended Kalman Filter.

Additionally, by recursive operations, the covariance of the estimated error is

minimized. Thus, the EKF can be used to get the most accurate position of the

drone through prediction of future positions with insignificant errors as shown in

Figure 6.4.

Thus, location prediction information of all the drones in the FANET can be

collected and and fed to the online trajectory learning algorithm to make advance

decisions by using future location information of the mapping drones, monitoring

drones and the delivery drones in the FANET. Thus, the FANET in the DRS sce-

nario can utilize theses location estimation techniques to facilitate efficient packet

transfer.

6.1 Online-based Multi-Drone Approach for
Intelligent Packet Transfer using A3C Network

We allot a hexagonal area as in [60] of side C for each drone as shown in Figure 6.5,

in order to maneuver inside them and change their heading to any direction to

efficiently cover a surveillance area and discover POIs. For initiating a packet

transfer between the drones in the environment, we consider the location of the

drones as Pn = (xn, yn, hn), where xn, yn are the location coordinates, and hn
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Figure 6.5: Deployment of multi-drones in the intelligent packet transfer applica-
tion scenario.

denotes the altitude. Moreover, Dij is the distance among any two drones i ̸= j.

Due to the potential uncertainties in the environment that affect the drones’

localization and orientation, the location prediction of the drones can be formu-

lated as a Partially-Observable Markov Decision Process (POMDP) defined by

the tuple [S,A, P, Z,O,R], where S, A, P , Z, O, and R denote the states, actions,

probability of transition, probability distribution function for observing states,

observations, and rewards, respectively.

The environment states are defined as st = (Pi, ϕi, Pj, ϕj, Dij) where Pi and

Pj are the positions, while ϕi and ϕj are the headings of the packet transferring

and receiving drones. The actions performed by the agents are defined as a set

of 7 flight operations at, i.e., hover, forward, backward, up, down, yaw-left, and

yaw-right. Moreover, the rewards Rt are defined as follows:

Rt =



+10 every drone action

−50 going out of Hexagonal cell

−100 collision with obstacles/drones

+100 successful packet transfer

Let T be the episode in which the drone performs action in the state space. The
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drone does not track the exact states st ∈ S, but uses the observations o ∈ O in any

given episode T . Therefore, it has to rely on the history of actions and observations

St = (at, ot; at−1, ot−1; . . . ; a0, o0) to perform intelligent actions that allow higher

rewards. However, this history St exponentially grows with every action taken and

every state observed. The drone rather chooses to utilize the belief states b which

are single valued and represent the probability distribution Z = p(ot|st, at) over all

possible states st in a given episode. These belief states are a sufficient measure of

history, and given the current belief state bt, the POMDP aims to find an optimal

policy π∗ that maximizes a value function V π while following a sequence of actions

and observations. The value function V π is thus given by -

V π(b) = E[
∞∑
i=0

γi−tRi|b, π]. (6.1)

Our approach, aims to solve the POMDP problem using a multi-drone Asyn-

chronous Advantage Actor Critic (A3C) Network such that the best possible ac-

tions are chosen in given states, and the cumulative reward Gt (i.e., the accumu-

lated discounted return) gets maximized, as follows:

Gt = E[
∞∑
t=0

γtR(bt, at)] (6.2)

where γ is the discount factor. Finally, the action value function is given by:

Qπ(bt, at) = E[
∞∑
n=0

γnR(bt, at)|bt, at] (6.3)

Each episode in the A3C network stochastically progresses, and each corre-

sponding action is probabilistically sampled. The actor and related critic net-

works within the A3C network are deep neural networks (DNNs) and have target

networks. In the following, we detail the proposed A3C network functioning.

A master network has an actor network that generates a policy π(at|bt; θa) =

P (at|bt; θa) and a critic network that generates the state value function to test

the expected return under belief state Vπ(bt; θv), where, bt is the belief state of an
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Figure 6.6: Multi-agent Asynchronous Advantage Actor Critic (A3C) Network

episode, θa denotes weights of actor network, and θv denotes the weight of critic

network. The weights in these cases are updated using back-propagation. Each

copy of the Master Network is sent to the agents as shown in Figure 6.6. The

actor network is trained with the loss function:

L(θa) =
1

Nbatch

n∑
i=1

[−Q(bt(i), πb(i); θa)]2 (6.4)

where, Nbatch is the batch size and the critic network is trained with the loss

function given by:

L(θv) =
1

Nbatch

n∑
i=1

[yt(i)−Q(bt(i), at(i); θv)]2 (6.5)

where yt(i) = Rt+γ ·Q
′
(bt+1, π

′
(bt+1; θ

′
a)|θ

′
v) and π′

(b|θ′
a) and Q′

(b, a|θ′
v) are target

networks of actor and critic networks. Due to the fact that gradient methods are

used to optimize the network weights, there are chances of high variance occurrence

in the critic network. Therefore, we use employ an advantage function Ω(bt, at) =

Q(b, a) − V π(bt, θv) to overcome this high variance problem. Upon solving the
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POMDP using the proposed A3C network, we get a policy π : b → a that maps

the actions to belief states b. The optimal policy obtained from the actor and

critic network operations is given by -

π∗(b) = argmaxb · V π(b) (6.6)

The A3C network allows multiple drones to interact in a parallel fashion with

the environment in order to generate individual policies that are the outputs.

Thus, we can use the RL based location prediction A3C method to enhance the

packet forwarding performance in the presence of environment obstacles, while

using the residual energy from the forwarding drone candidates. Based on the

drone position prediction information, we can obtain the local relative distance

between the drones in advance.

6.2 Online-based Trajectory Optimization with
Network and Video Orchestration

When the drones are operating in the environment, the time intervals in which

the drones carry out surveillance are considered to be irregular, and we refer to

each of these time steps as an episode. During each episode, the drones (n ̸= 0)

hover over specific regions in discrete time steps. At each time step ∆t where

t = 0, 1, 2, 3, ..n, the drones enter states s(n)t, performs a set of actions a(n)t,

receives rewards rt and learns where to move depending on the reward values in

the observed state. This observed state forms the basis for the next set of actions.

The states in the learning environment are defined below -

s(n)t =



S0(random_area)

S1(secure_area)

S2(precarious_area)

S3(terminal_state)

(6.7)
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To ensure that the near optimal actions at can be chosen at every time step

∆t, we consider the following actions that the drone can perform -

a(n)t =


A0(hover)

A1(move_rapidly)

A2(land_to_recharge)

(6.8)

The state-action pairs result in various rewards. The rewards are independent

of observed states as the probabilities of state transitions are different for each

action for a given state. The reward function is constructed using two distinct

rewards in this scenario. In our proposed approach, there are both positive and

negative rewards associated with the actions that the drones perform in the defined

state space. Let C be the cost associated with the network protocol and video

parameters selection, and i be the task of switching the video codec along with

resolution i.e., H.265 HEVC and H.264 AVC between 720p, 1080p and 2K. The

immediate costs of actions at(i) are given by -

ψ(s(n)t, a(n)t(i)) =

Cswitch(s(n)t, a(n)t(i)), ifa(n)t(i) ≥ 1

Cstable(s(n)t, a(n)t(i)), ifa(n)t(i) = 0
(6.9)

Where Cswitch represents the cost of switching resolution of the video stream

due to increased traffic in a particular state, and Cstable is the cost related to the

change in network performance in the stable state. The total long term cost is the

expected sum of all the components’ immediate costs, given by -

ψπ(s(n)) =
∑
i∈ξ

ψ(s(n)t, a(n)t(i)) (6.10)

Let d be the distance that the drones travel in the secure area, λ is the network

wavelength and β is the bandwidth of the network and frequency lies in the range

(2.4 GHz to 5.8 GHz). It is assumed that the best network conditions are available

when drones hover in S1, and transmit high resolution video. As the drones keep

taking actions to reach the secure state, there is a possibility of a large number
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of drones accumulating in the same space. This creates a traffic and β is over-

utilized. This results in frame stalling, distortion and blurring of the video [59]. To

effectively use β, the agent has to remain in the secure region and simultaneously

continue to use the network protocol.

Agents

UAV 1 UAV 2 UAV 3 UAV 4

Actions
(at)

Multi-Agent DQN

Observed State

Environment
(st, at)

R(network)

R(net)

Reward
(rt)

DNN

}Q(st,at)

weights (wi)

(st)

State

R 
(video)

Figure 6.7: Deep Q Network based Intelligent Trajectory Optimization Design

The reward associated with the reliable connection establishment after entering

a new state at cost Cstable is given by -

R[s(n)t, a(n)t]network =
ψπ(s(n))

λ
log10(β) (6.11)

The reward associated with the agent hovering over the secure state that allows

for highest quality video resolution at cost Cswitch is given by -

R[s(n)t, a(n)t]video = α

[
1− [ d

dmax
]0.4

]
.ψπ(s(n)) (6.12)

where α is the security parameter associated with S1. The net reward function

of a state-action episode is given as the sum of the two intermediate rewards.

R[s(n)t, a(n)t]net = R[s(n)t, a(n)t]video +R[s(n)t, a(n)t]network (6.13)
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The trajectory learning of the drones occurs by maximizing the gain Gt along their

path which is a function of expected cumulative discounted rewards.

Gt = E[
∞∑

m=0

γmRnet(s(n)t, a(n)t)] (6.14)

where γ is the discount factor (0 ≤ γ ≤ 1). Each action change may only produce

a small reward. Thus, we require the value of the discount factor γ to be such

that it maximizes the cumulative reward. From our empirical observations, our

proposed DQN best converges at γ = 0.8. The optimal policy which maps the

state-space and actions after the algorithm converges is obtained as -

π∗
t = argminπ

∑
i∈ξ

ψπ(s(n)t, a(n)t(i)) (6.15)

The optimal Q function is given as -

Q∗
π[s(n)t, a(n)t] = E[

∑
k

γk(Rnet|s(n), a(n))] (6.16)

The optimal policy governs the convergence of the algorithm and leads the

drones in intelligent traversals during their operational path in their optimal tra-

jectory.

6.3 Online RL-based Model Evaluation

We have used a single-agent Q-learning algorithm to optimize the trajectory of

the drone considering a discrete learning environment of states having secure and

precarious surveillance area conditions in terms of network packet loss, video ana-

lytics impairments during a drone flight. We then implement a multi-agent Deep

Q Network (DQN) that using similar policy by considering a continuous state

space that allows the drones to explore and exploit the learning environment to

the largest extent possible.
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Our DQN has pre-defined weights that take state space values (s(n)t) of a drone

as input, forward passes the values and generates optimal action value function

Q[s(n)t, a(n)t], and compares it with the optimal values of action value function

Q∗
π[s(n)t, a(n)t]. While back-propagating, updates are performed to the weights

of the neurons so that in the later iterations the output values come close to the

optimal value. Once the optimal value is reached, our DQN algorithm converges.

This way the agent learns to take actions and generates the optimal policy, fol-

lowing which the intelligent trajectory of the drone is obtained. This applies to

all the drones involved in the operation. The DQN is modelled using a custom en-

vironment created using OpenAI’s gym and is solved using the keras-rl2 library

that provides the DQN agent, Boltzmann Q policy and sequential memory, which

is used as a replay memory to store the state-action pairs along with rewards for

reinforcement learning based simulations. The constituent neural network model

is created using Tensorflow. The model is sequential with Adam optimizer and

the mean absolute error (MAE) is chosen as the loss function. Figures 6.8 shows

the performance of the RL-based drone trajectory optimization algorithm for all

the three possible state spaces for a drone to reach the terminal state during oper-

ation: (i) Random Area, (ii) Secure Area, and (iii) Precarious Area. The rewards

R(st, at)network and R(st, at)video are calculated to give the network performance

and video quality scores as R(st, at)net. The terminal state is where the score

becomes maximum and the algorithm converges. Since the Secure area has the

strongest network performance, the drone reaches the terminal state quickly (in

relatively less number of episodes) as compared to the Random state. In the

Random state, the network performance is relatively weaker, and hence the drone

reaches the terminal state later (in relatively higher number of episodes). The

Precarious state is prone to network losses which causes poor video quality, and

hence the drone reaches the terminal state much later (after several episodes)

when compared to the other two states. Considering e.g., the drone flying over a

network frequency of 4 GHz and supposing the maximum distance dmax travelled
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(a) Random area (b) Precarious area

(c) Secure area

Figure 6.8: Rewards obtained by a drone in various surveillance regions

is 5000m considering adequate available network bandwidth, the maximum score

obtained at the terminal state is 715 (convergence level) for all the three state

spaces.

Using a continuous state space that includes all three state spaces (st) i.e.,

Secure area, Random area and Precarious area and discrete actions (at) with

different discount factors (γ) by trial and error method, we obtain the scores in

the same manner as single-drone Q-learning method as shown in Figure 6.8. We

observe that the scores are less at γ = 0.6 and subsequently the scores reach a

maximum at γ = 0.8 for the multi-drone DQN as shown in Figure 6.9.

Thus, a simple Q-learning algorithm which generates a policy on finite MDP

does not help. Given the complexity of our environment that accounts for both

network and video protocols, the algorithm becomes non-convex and temporal

credit assignment becomes hard which results in the algorithm yielding immediate

extremely high or low rewards consecutively. The continuous state algorithm does

not converge easily because any given drone keeps moving between different states
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Figure 6.9: Incremental reward distribution with different discount factors (γ)

within the state space (st) throughout its trajectory. This phenomenon of lack

of convergence can be overcome using the DQN. To evaluate the benefit of DQN,

we trained the DQN, and its variants i.e., Double-DQN, and Dueling-DQN, each

for 50,000 steps. We then tested the agent’s parameters performance for every

500 steps, and saved the resulting network parameters for the best performance as

shown in Figure 6.10. Although we find the performance of the three algorithms to

be comparable with each other, the proposed DQN renders slightly higher scores.

Therefore, we can conclude that DQN and its variants provide better trajectory

optimization than the Q-learning approach in the online learning based approach.

As we can observe from Figure 6.11, it is clear that - with the DQN model, trace-

based experiments can achieve better throughput performance when employed in

various application missions involving multi-drone co-ordination.
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0 20 40 60 80 100 120

Rewards

0

0.2

0.4

0.6

0.8

1

cd
f

Q-Learning

DQN

DDQN

Dueling DQN
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Chapter 7

Conclusion

In this thesis, we have presented multi-UAV co-operation applications and ex-

plained how drone location prediction and trajectory optimization can be per-

formed. We have learnt how location estimation prediction and trajectory opti-

mization of drones can be beneficial in diverse application missions such as disaster

response and other civil applications relating e.g., transportation. Various chal-

lenges in drone localization, path-planning and trajectory prediction were detailed.

To cope up with the challenges of localization of drones in application sce-

narios, we studied how techniques such as non-linear dynamic parameter state

estimation of drones using distinct Kalman filtering techniques and sensor fusion

can solve the drone localization and position prediction problem. We have also

seen how Kalman filter can be used for position and velocity estimation of drones

followed by location prediction with inter-drone distances and sensory measure-

ments using the Extended Kalman filter. To cope up with sensory malfunctions

and other inconsistencies of the filtering techniques, we detailed various machine

learning techniques such as reinforcement learning and deep reinforcement learn-

ing. Furthermore, to cope up with the challenges of collision avoidance, trajectory

optimization and path planning as well as handling of energy constraints, we have

seen how a variety of reinforcement and deep reinforcement learning techniques

can be used to realize the potential of multi-UAV co-operation.
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Further, we presented a scenario corresponding to online orchestration and

learning of network and video analytics for civil applications using multi-agent re-

inforcement learning techniques. These techniques feature prominent mechanisms

that can be used for the 2-D and 3-D path-planning of UAVs along with network

and resource allocation under bandwidth and energy constraints. Moreover, we

discussed non-ML-based trajectory optimization techniques and explained how

UAV-based applications can aid public safety networks.

The Road Ahead to More Open Challenges: We conclude this thesis

with a list of more open challenges for multi-drone co-ordination in application

missions. Addressing these challenges is essential for a variety of multi-drone

applications such as aerial surveillance, deployment of UAVs as base stations and

aerial mapping and monitoring that are relevant for location estimation and path

planning. Few approaches such as [79] shows how joint positioning of UAVs as

aerial base stations is done to provide a smart backhaul-fronthaul connectivity

network. Other issues are shown in the following-

• Excessive movements during flight with no hovering: When the

drones are in complex environments or unknown territories with unrealized

threats, they tend to fly more rapidly and in different directions in a short

span of time. This may be a result of collision avoidance of obstacles in

the path or ineffectual attempts to explore the environment to learn threats.

This leads to increased energy consumption and affects the battery capacity

of drones, thus shortening their overall flight time. To avoid this issue, dy-

namic programming and scheduling algorithm could be useful if the drone

flight plan in the mission is known apriori. The work in [80] provides two

cases that show how data services using UAVs is maximized using hover time

management for resource allocation, where the optimal hover time can be

derived using service load requirements of ground users.

• Air-resistance due to strong winds: Severe wind gusts can throw the

drones off-course and deviate a drone from following its optimal path. The
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on-board sensors are subject to vibrations during severe wind conditions and

can produce noisy data that may lead to inaccurate estimates of drones pa-

rameters. Unexpected wind resistance can also hinder the trajectory learn-

ing of the drone using DRL techniques. This hindrance is possible when

the drone traversing in optimal path may change course due to the im-

pacts wind. Further research on EKF and UKF based state estimation of

gryoscope readings to study the effects of wind could help in developing suit-

able solutions. The approach in [81] addresses the altitude control problem

of UAVs in presence of wind gusts and proposes a control strategy along

with stability analysis to solve the issue of air-resistance.

• Combining LSTMs with Kalman Filters and DQN: The non-linear

state etsimation of drone’s dynamic parameters is done using individual

time-steps of data by on-board sensors and use of the Kalman filter. Also,

for the DRL techniques, the drone (agent) takes actions in a given state

in independent episodes. Long short term memorys (LSTMs) can be used

to utilize the information of previous time-steps of drones instead of just

one time step or one episode to make predictions. This way LSTM based

Kalman Filtering mechanisms and LSTMs based DRL mechanisms can use

past information of the drone(s) and make much accurate predictions. There

are works that show how coupling a Kalman Filter with LSTM network im-

proves performance and provides faster convergence of algorithms for various

application purposes [82, 83].

• Multi-drone Co-ordination under energy constraints: In missions in-

volving a drone swarm or a fleet of drones, it is difficult to monitor each of

the drones’ parameters. Factors such as malfunctioning or loss of one drone

due to total battery utilization can affect the operation of other drones and

compromise the overall application mission. Off-line path planning along

with online path-planning can help UAVs find the nearest base stations

with recharge units and help alleviate this issue and support multi-drone
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co-ordination even under available energy limitations. One such approach

to solve the issue of multi-drone coordination under energy constraints is

detailed in [84].
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