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ABSTRACT 
Providing connectivity in areas out of reach of the cellular infrastructure 

is a very active area of research.  This connectivity is particularly needed 

in case of the deployment of machine type communication devices 

(MTCDs) for critical purposes such as homeland security. In such 

applications, MTCDs are deployed in areas that are hard to reach using 

regular communications infrastructure while the collected data is timely 

critical. Drone-supported communications constitute a new trend in 

complementing the reach of the terrestrial communication infrastructure. 

In this study, drones are used as base stations to provide real-time 

communication services to gather critical data out of a group of MTCDs 

that are sparsely deployed in a marine environment.  

Studying different communication technologies as LTE, WiFi, LPWAN 

and Free-Space Optical communication (FSOC) incorporated with the 

drone communications was important in the first phase of this research to 

identify the best candidate for addressing this need. We have determined 

the cellular technology, and particularly LTE, to be the most suitable 

candidate to support such applications. In this case, an LTE base station 

would be mounted on the drone which will help communicate with the 

different MTCDs to transmit their data to the network backhaul. We then 

formulate the problem model mathematically and devise the trajectory 

planning and scheduling algorithm that decides the drone path and the 

resulting scheduling. 

Based on this formulation, we decided to compare between an Ant 

Colony Optimization (ACO) based technique that optimizes the drone 

movement among the sparsely-deployed MTCDs and a Genetic Algorithm 

(GA) based solution that achieves the same purpose. This optimization is 

based on minimizing the energy cost of the drone movement while 

ensuring the data transmission deadline missing is minimized. We present 

the results of several simulation experiments that validate the different 

performance aspects of the technique.  
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CHAPTER 1. INTRODUCTION 

1.1  Introduction  

In this chapter, an overview about drones along with their applications 

and challenges is given. We then introduce the problem statement that is 

addressed through this research, the motivation and the research objectives 

and contributions as discussed in this thesis.  

1.1.1 Drones: An Overview 

As defined in [1] and [2], Unmanned Aerial Vehicles (UAVs), commonly 

known as drones (we will be using the two terms interchangeably 

throughout this thesis), are aircraft that have no onboard human pilot. The 

Federal Aviation Administration (FAA) has also defined a UAV as “A 

device used or intended to be used for flight in the air that has no onboard 

pilot”. Since the start of the twenty-first century, one can notice a fast 

proliferation of the drones’ technologies impacting a wide range of 

industries and performing critical tasks. Drones’ use has been permitted in 

Hollywood film production by producing high-definition imaging drones 

[2].  UAVs’ sizes vary from large military UAVs of 200 feet to commercial 

inch-wide UAVs. UAVs’ flight height can range from few feet to 17,000 

miles. Typical commercial UAVs’ design is as illustrated in Figure 1.1.  

 

 
Figure 1.1 Commercial drone design [2] 
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Several industrial giants are increasingly relying on the use of drones to 

provide Internet access for developing countries [3]. The use of drones for 

providing communications is also expanding to include different 

applications such as civil applications and public safety communication 

(PSC) applications. 

 

The study in [4], has predicted a huge increase in the number of drones in 

the coming years. Hence, some regulations should be set to maintain safety 

requirements to support this large expansion. Since this expansion might 

take an international level, international legalization and regulation should 

be there for drones’ manufacturing and usage.  

1.1.2 Applications of Drones 

Despite the limited application scope of drones at their beginnings, they 

are now used in a wide range of applications that touch all aspects of life 

[1]. The predicted extensive use of the drones in the future, however, 

depends on the possibility of their safe maneuver in specified areas and the 

removal of stringent legal requirements on their operation. There are still 

important technical roadblocks that pertain to the reliability and safety 

issues facing the operation of small drones that are being addressed by 

many researchers around the world [5].   

 

The applications of drones can be categorized into four domains [6]. The 

Search and Rescue (SAR) application is one of the main applications where 

the drones are used to search for any target(s) and help rescuers reach these 

targets.  The second domain includes coverage which is subdivided into 

area coverage and network coverage. Area coverage primarily deals with 

monitoring and surveillance applications while in network coverage drones 

act as communication relays. The third domain is the construction domain 

which deals with lifting building elements from one place to another. 

Delivery of goods is the last domain, according to this classification.  

 

    The study in [7], drones were described for temporarily recovering 

communications networks and for medicine and post disaster delivery 

purposes. Drones  have also been used in different natural disaster 

management applications through different arrangements such as 



4 
 

integrating them with Wireless Sensor Networks (WSN). These 

applications may be classified along the lines of monitoring, forecast and 

early warning systems (EWS), disaster information fusion and sharing, 

standalone communication systems and search and rescue missions [8]. 

There are several challenges facing these disaster management 

applications. The main of which have been identified as coverage, mobility 

and connectivity, robustness and reliability, security, privacy and safety, 

interoperability and quality of service (QoS) [8].  

 

Drones are also used in maritime unmanned tasks and missions [9]. This 

includes sea-border patrolling, search and rescue (SAR) applications, 

marine oil spill clean-up and environmental monitoring.  

 

The work in [10] discusses novel technologies for UAVs’ search and 

rescue (SAR) applications. Drones in their context scan for the Bluetooth 

low-energy (BLE) signals emitted by missing people’s smartphones. The 

use of the BLE technology reduces the time and the cost of the operation. 

The study finds that LPWAN communication technology could be an 

effective alternative for the BLE if it was supported by the smartphones. 

 

Swarms of drones will soon be involved in numerous applications that 

span civil and military purposes. Each of these applications involves 

requirements that are potentially different from those of the other 

applications. However, for applications that require the drones to exchange 

large amounts of data, high data-rate communication means would be 

needed. Free-space optical communications (FSOC) present a strong 

contender for such communications as opposed to RF-based 

communications [11]. FSOC is a line-of-sight (LOS) technology that 

operates at wavelengths of 850 nm, 1300 nm and 1550 nm [12]. FSOC data 

rate ranges from 1-2 Gbps and covers a distance that varies between 1-3 km 

[13]. FSOC links are not requiring any spectrum allocation or FCC license 

[14]. In addition, FSOC does not need any additional infrastructure. It can 

be installed easily with low cost of installation and maintenance, with no 

cabling involved [15].  
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In [16], LoRa is considered suitable for long-range low power wireless 

sensor/actuator networks (WSANs) till now. UAVs can be deployed as 

WSANs for localization and tracking applications. The QoS was the main 

metric for all the work cited in this study.  

1.1.3 Drone Communications  

Communications nowadays rely on backbone networks without planning 

for aerial communications systems which could replace the terrestrial 

communication systems in case of any disastrous situations [17] i.e. for 

PSC purposes. PSC is one of the key uses of communication systems in 5G 

and beyond. PSC applications come at the top of the list of applications 

need drone communication coverage. 

 

The studies in [1]-[4] and [34] mainly investigate the use of drones in 

different classes of applications under different conditions such as the 

terrestrial and maritime environments. The common factor among these 

applications is the need to communicate between the drones, from one side, 

and fixed locations, from the other side. We notice that such 

communications are performed using different technologies. Moreover, the 

drones could assume different roles in the communication process 

depending on the application needs and conditions.   

 

As far as communication coverage is concerned, the utilization of drones 

has been classified into three main cases, namely, drone-aided ubiquitous 

coverage, drone-aided relaying and drone-aided information dissemination 

[18]. The focus in this case is on the networking architecture and channel 

characteristics. As shown in Figure 1.2, the network architecture is 

proposed where the additional control and non-payload communication 

(CNPC) is an additional link with “more stringent latency and security 

requirements for supporting safety-critical functions”.  
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Figure 1.2 Networking Architecture of UAV-aided wireless 

communications [18] 

In [19], the authors focus on the importance of having a wireless 

communication to assist the drones’ flight. So, the drones need both 

wireless communication with a pilot on the ground and communication 

with a payload, like a camera or sensor. A frequency spectrum is needed to 

grant this communication. This spectrum is identified based on the drone 

type, the flight characteristics and the payload. For the short-range 

communication, WiFi is used. However, to avoid the interference due to the 

flight height, the WiFi frequency should be used within the line of sight of 

the pilot. For long-distance flying drones, the low frequency will not be 

applicable, as for instance, in the Netherlands it is expected that a part of 

the 7 GHz band will be used for this purpose.  

1.1.4 Drones’ Challenges and Opportunities 

As discussed in [20] the opportunities of using drone-cell 

communications include the following: 

 

1- Drone cells are useful in scenarios that need agility and resiliency of 

wireless networks. 

2-  Drone cells can help prevent unexpected congestion in the network 

as it may provide additional coverage in case of a natural disaster. 
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3- Mobility of drone cells enables them to serve users with high 

mobility and data rate demand thus reducing the handover done 

through terrestrial base stations.   

However, an efficient design of drone base stations is one of the 

challenges. Determining their mechanics as size, aerodynamics, and the 

maximum takeoff weight is very crucial. A drone-BS is defined by [21] as 

a low altitude UAV equipped with transceivers to assist wireless networks. 

So, the drone-cell configurations can vary from drone relay, small drone-

BS and macro drone-BS. FSO and mmWave are considered promising 

technologies for high rate and low spectrum cost.  

The study in [2] has presented some of the challenges encountered by the 

drones and solutions for them were also provided. So, for example, the 

jamming and spoofing issues, which hits the drone’s security challenge, 

could be solved by collaborating with the drones manufacturer to encrypt 

the signals. Flying over prohibited zones, on the other hand, might be 

solved by creating no-fly zones.  

Drones have some licensing challenges, where the Federal Aviation 

Administration (FAA) has launched B4UFLY application to inform people 

of the drone uses and regulations [22]. Another challenge facing the 

massive deployment of drones is their usage without jeopardizing cellular 

services [3].  

1.2  Problem Statement and Research Objectives 

Homeland security or coastal safety precautions require the deployment 

of monitoring machine-type communication devices (MTCDs) at sea. The 

purpose is to monitor and report hostile movements (e.g. activities of 

smugglers or enemy troops) or catastrophic natural phenomena such as 

tsunamis. These MTCDs, which are sparsely deployed, thus detect specific 

events and generate real-time data that need to be transmitted under 

stringent delay requirements. The regular terrestrial network range does 

not cover such areas in the sea that are usually far away from shores. For 

this purpose and given that we are dealing with critical timely data, drones 

present themselves as flying alternatives to terrestrial fixed base stations to 

augment the terrestrial networks and provide the required coverage. 
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Therefore, a drone can be used as a base station that flies to the location of 

the MTCD that has data to transmit, according to a certain scheme. The 

requirement is to ensure that the used drone can tend to the delay needs of 

these MTCDs that are deployed according to a certain pattern with 

specified distances in between.  

Therefore, the UAV trajectory should be optimized such that the 

transmission deadlines of the different MTCDs are fulfilled. In addition, 

the power consumed in such drone movement is optimized with the 

purpose of maximizing the battery of the drone. This is done via ensuring 

that the distance traveled by the drone as it collects the MTCDs’ data is 

minimized. 

 

The objectives of this research can therefore be summarized in the 

following: 

• Studying the use of drones in different roles in communication 

services using different technologies 

• Studying the optimization techniques most suitable for addressing 

the trajectory planning subject to specific transmission constraints 

• Utilizing the most suitable optimization technique as the core of the 

scheduling technique for drone-mounted base stations using LTE-

based cellular communications 

 

1.3  Motivation   

    It is important to direct the scientific research to serve the society and 

address citizens’ needs. Egypt has large coastal line that requires constant 

monitoring. The study in this thesis can be applied to serve/monitor 

Egypt’s marine environment such as the Suez Canal and other maritime 

areas along its coastal line. The use of modern technologies such as drone 

communications can prove invaluable to securing areas that are difficult to 

reach and monitor by regular communications means.  

 

1.4 Thesis Contributions and Organization  

The contributions of this research can be summarized as follows: 
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• Investigating and classifying the use of drones in different roles in 

communication services 

• Investigating the most suitable optimization scheme to use for optimal 

path planning for the purpose delivery of communication services by a 

flying drone-mounted base station 

• Formulating the problem of optimal drone trajectory planning subject 

to specific MTCD data transmission constraints 

• Devising an optimal drone-based LTE scheduling technique that 

minimizes the deadline missing ratio of MTCD data transmission. 

 

The rest of this thesis is organized as follows. In Chapter 2, a novel 

classification of drone communications is introduced. The necessary 

background and literature review for the trajectory planning technique that 

we propose in this research is also covered in this chapter. In Chapter 3, 

the ACO trajectory planning and scheduling technique is discussed. In 

Chapter 4, the evaluation results of the ACO technique are presented. This 

is done under different operating conditions. In addition, the results of 

comparing the ACO technique to another GA technique from the literature 

are presented. The thesis is concluded in Chapter 5. 
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CHAPTER 2. BACKGROUND AND DRONE 

COMMUNICATIONS CLASSIFICATION 

2.1 Introduction  

In this chapter, we present a novel classification of drone 

communications from a technological perspective. We therefore 

categorize studies performed about using drones in communication tasks 

along the lines of used technology and the drones’ role in the 

communication process.  

We then provide a review about the marine environment, UAV-Marine 

environment communications, Machine-to-Machine (M2M) 

communications, UAV-Trajectory management and the traveling 

salesman problem (TSP) related papers. These issues form the basis for 

our ACO technique that we present in Chapter 3 and evaluate in Chapter 

4. 

2.2 UAVs Communication Techniques  

Many studies have dealt with drone communications using different 

communication techniques and standards. The most widely used 

technologies are the cellular technology (particularly LTE), WiFi, low 

power WAN (LPWAN), and Free Space Optical Communications 

(FSOC). 

2.2.1 Cellular/LTE 

The UAV needs essential communication links towards its operator for 

various reasons. For example, such communication links are important for 

piloting the UAV itself, wireless relay services, and real-time update of 

telemetry data. For these reasons cellular network is considered for 

providing connectivity for UAV infrastructure [23].  

The 4G cellular network technology is considered one of the best 

candidate to improve the public safety communication (PSC) as it sustains 

real-time “mission critical communication” by its “interference 

coordination and coverage range extension” capabilities[24]. LTE 

technology has quality-of-service(QoS) management, congestion control 

capability, interference management and adaptive modulation and carrier 

aggregation [25].  
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2.2.2 WiFi 

Some of the recent studies, however, addressed the problem of using 

drones over a WiFi network. The study in [22] for example, stated that the 

drones are more vulnerable of cyber-attacks being over a WiFi network. 

De-authentication  attacks and GPS spoofing are the two main focus of 

[22] to present the disadvantages of using unencrypted WiFi.  

The study in [26] also introduces the drones’ usage as a rogue access 

point to prove the feasibility of hijacking the WiFi home networks by using 

the Man-in-the-Middle type attack on APs and connected client devices. 

This flying WiFi-sniffing machine is a cheap solution. Therefore, the study 

concludes that a set of regulations are needed to prevent attacks on the 

existing networks.  

2.2.3 LPWAN 

The Low Power Wide-Area Network (LPWAN) technology is an 

emering technology for IoT as in [27]. LPWAN technology is defined in 

[28] as a network technology which was developed for low power M2M 

communication over the Internet of Things (IoT). LPWAN technologies 

are considered quite promising for IoT applications since they provide 

low-power and long-range connectivity solutions [29] which are the 

communication features crucially needed by IoT applications, in general. 

The study in [30] focuses on the technology diversity for the IoT 

applications, which includes LPWANs. LPWANs are characterized by 

“low power consumption, affordable cost, high communication range, and 

the capability to handle massive deployments of infrequently transmitting 

devices”. SIGFOX and LoRaWAN are two emerging LPWAN solutions. 

Both technologies operate on ALOHA-based channel access with 

frequency hopping.   

2.2.4 FSO 

Free-space optical (FSO) is a “wireless communication system that uses 

an optical carrier to transfer information through free space” [12]. The FSO 

communication is established when the transmitter modulates the data into 

an optical carrier to be transmitted to the receiver through an optical 

channel. The study in [12] determined that the simplest modulation 

technique is the intensity modulation (IM) where the “source data is 

modulated on the intensity of light”. Then, the transmitter directs the light 
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source, Laser, towards the receiver. The receiver focuses the light beam 

directed on to its photodetector to have the optical signal converted to an 

electrical signal. With the aid of a bandpass filter, the received signal gets 

rid of the background noise. The sent signal is then restored after some 

amplification and filtering [12].   

Swarms of drones will soon be involved in numerous applications that 

span civil and military purposes. Each of these applications involves 

requirements that are potentially different from those of other applications. 

However, for applications that require the drones to exchange large 

amounts of data, high data-rate communication means would be needed. 

Free-space optical communication presents a strong contender for such 

communications as opposed to RF-based communication [11]. FSOC is a 

line-of-sight (LOS) technology that operates at wavelengths of 850 nm, 

1300 nm and 1550 nm [12]. FSOC data rate ranges from 1-2 Gbps and 

covers a distance that varies between 1-3 km [13]. FSOC links are not 

requiring any spectrum allocation or FCC license [14]. In addition, FSO 

does not need any additional infrastructure. It can be installed easily with 

low cost of installation and maintenance, with no cabling involved [15].  

2.3 Classification of Drone Communications: A Technological 

Perspective  

In this section, we introduce our novel classification of drone 

communications. This classification divides the communication process, 

where drones are involved, based on the used technology and the role of 

the drone in the communication process. We cover 4 technologies, as 

discussed in Section 2.2, and we classify the roles of the drones into, 

communication providers, communication consumers and relays. Figure 

2.1 illustrates this classification. 
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Figure 2.1 Our Proposed Drones’ Classification 

2.3.1 Drones as Communication Providers 
According to this category, drones are used to provide communication 

services to other entities. This is usually done when the fixed infrastructure 

is not accessible either due to distance, damage or inadequacy. We study 

the literature that pertains to this category along the 4 technology lines as 

we previously stated. 

2.3.1.1 Cellular  

Using a stochastic geometry-based network planning approach, the 

study in [31] finds the optimal placements for on demand UAV-BSs (BSs 

mounted on UAVs) for a cellular network densification application. The 

UAV’s horizontal location is found through a strategic horizontal 

placement algorithm where the terrestrial BSs (T-BSs) locations, possible 

horizontal UAV-BSs locations and the desired number of UAV-BSs are 

inputted such that the algorithm maximizes the network spatial regularity, 

output. For the vertical placement of the UAV-BSs, the height is calculated 

as follows. 

 ℎ𝑗 = 𝑘 × 𝑅𝑗  𝑡𝑎𝑛 (𝜃𝑜𝑝𝑡) (2.1) 

where 0 < k ≤ 1 is a scaling factor used to reduce the interference, θopt is 

the optimal elevation angle and Rj is the radius of the UAV’s coverage 

disk. The results presented in the paper showed that using the strategic 
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horizontal algorithm improves the spatial regularity of the network and 

results in the best SINR.   

However, the results exhibit some changes when adding the power/energy 

consumptions to the constraints. This is mainly due to the persistent 

repositioning of the UAVs which is not studied from the energy 

consumption point of view due to high computational complexity.  

 

In paper [32], the authors studied the mounting of LTE femtocell BSs on 

drones to cover unreachable area which may result due to the saturated 

existing wireless infrastructure. The paper bases the study on the use and 

comparison of two types of drones. The drone of type 1 has an average 

carrier speed of 15.0 m/s, a carrier power usage of 5.0 A, a carrier power 

capacity of 2.0 Ah and a carrier battery voltage of 14.3 V. While, the more 

expensive type drone has an average speed of 12.0 m/s, a power usage of 

13.0 A, a power capacity of 17.33 Ah and a carrier battery voltage of 22.2 

V. The results showed that with the two drones type, only 400 drones are 

needed to have a coverage of 99%, to cover a suburban area of 6.85 Km2 

as compared to 1100 drones that used with the first drones type. As time 

passes, both drone types cannot sustain the same users’ coverage 

percentage. However, the use of two drone types converges to 10% 

coverage over 24-hour period as compared to only 3.5% in case of using 

the first drone type alone. As would normally be expected, the authors also 

found that the flying height of the drones increases the user coverage. This 

is due the fact that when the drone is getting higher, it will experience less 

obstructions and users will be on LOS of the BSs. However, the drone’s 

power consumption will suffer since it will need an extra 0.5A for a 15-

meter height increase.  

  

The study in [33] introduced a load balancing framework between LTE-

U UABSs and WiFi access points (APs). It discusses maximizing the 

capacity of LTE-Unlicensed technology for UABSs while minimizing the 

interference affecting WiFi networks. The bandwidth scarcity led the 

authors to resort to utilizing unlicensed frequency bands (LTE-U) for 

public safety networks (PSNs). However, the challenge lies in deploying 

the heterogeneous network without jeopardizing the WiFi APs users’ 
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performance. To address this, the authors developed a regret-based 

learning (RBL) dynamic duty cycle selection (DDCS) technique to 

configure LTE-U transmission gaps for them to show that both LTE-U and 

WiFi can coexist in the unlicensed band thus achieving satisfactory 

throughput. This is done without reducing the LTE-U radio access 

technology (RAT) or the WiFi RAT performances.  

2.3.1.2 WiFi 

In [34] a flying communication server is presented. It consists of a drone 

equipped with a single board computer (Raspberry Pi) implemented in a 

WiFi base station, a web server and a WebRTC server. The proposed 

application is to offer a wireless network function shared by rescue teams 

in a disastrous situation. The system requirements include having a 50-

meter WiFi distance, the minimum video stream frame rate defined is 5fps 

and the ability of five rescue teams to use the channel simultaneously. The 

paper verifies the performance of the flying communication server 

according to the quality of the effective area video sharing and the text 

chat. Further work should be done to improve the performance when 

dealing with real time communications.  

 

The study in [35], investigates the use of drones to provide high-speed 

WiFi wireless infrastructure. In this case drones are used to serve a military 

environment by using a wireless mesh network. The drone in this 

environment communicates events that occur in the field via collecting 

real-time data through an attached camera. The range of coverage is 200 

m. The supported throughput is 160 Mbps and the video transmission 

coverage is almost 120 m.  

2.3.1.3 LPWAN 

 

The study in [36] consider a point-to-point communication model where 

a drone is flying over a number of nodes to collect data using the 

LoRaWAN communication protocol. The ALOHA transmission policy is 

modified to introduce an efficient time-scheduled transmission mechanism 

to eliminate potential packet collisions. The authors developed an 

algorithm to reduce the packet collisions. Simulation results show that a 

single drone can collect the data of an entire day of an area of more than 

1500 × 1500 m2 that has 80 nodes, without packet collisions. 
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The authors in [37] propose a multi-technology opportunistic platform 

for environmental data gathering. It’s opportunistic in such a way that the 

nodes collect a wide range of data to a fixed station for analysis purposes. 

This is done through multi-technology communications that include both 

long range and short-range communication technologies, LoRa and WiFi. 

Both technologies are used opportunistically to gather data to the server. 

Increasing the number of LoRa sinks increases the channel occupancy and 

reduces the transmission delay. This reduction is done through the 

proposed MAC protocol which manages the medium access of each data 

gathering unit. 

2.3.1.4 FSO 

 

The study in [38] introduced an energy-efficient wireless transmission 

FSO model using laser and LED optical links for collecting sensory data 

from an unreachable environment. The model can be viewed as a UAV 

drops some mission-specific sensors to collect some sensory data and 

transmit back to the UAV using FSO links. The authors pinpoint the 4-

phase operational flow of the model. The first phase, namely, the pre-

initialization phase, specifies the sink node/UAV by hard-coding within 

the sensor nodes’ software stack. The second phase is the spreading phase 

where the sensor nodes are dropped from the UAV. The third phase is the 

ground initialization which takes place once sensors hit the ground where 

they start calibrating the FSO model. Finally, the operational phase where 

the sensors start collecting data and transmitting them using FSO. The 

suggested model is tested practically to study its applicability.  

 

As communication backhauls are moving from terrestrial one to flying 

vehicles, the need for high rate links emerged. The study in [39], revised 

the challenges FSO communications faced between a swarm of UAVs and 

between High Altitude Platforms (HAPs). As per previous works revised 

by [39], the ground-to-UAV FSO links were tested for three different 

wavelength (0.85 𝝶m, 1.55 𝝶m and 10 𝝶m) for different link distances (4 

km and 8 km). Results supported the three wavelengths for FSO links.  
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2.3.2 Drones as Communication Consumer  
In this category, the drones act as end users from communications 

perspective. This is usually the case when the drone is engaged in some 

application such as search and rescue, goods delivery or military 

operations. In this case, the drone requires to communicate with a source 

of communication to receive guidance or to deliver data that it has 

collected from the field. 

2.3.2.1 Cellular  

The study in [40] analyzes different supervised machine learning (ML) 

algorithms can be used to identify the airborne users (UAVs) and normal 

ground users (UEs) in the network based on LTE radio measurements. In 

this scenario, the airborne data is collected by attaching an Andriod smart 

phone underneath the UAV. The three main ML classifiers’ algorithms 

used were the Support Vector Machines (SVM), Multi-Layer perceptron 

(MLP) and the Bayesian classifier. The classifiers will evaluate the radio 

measurements and set a “positive” if the user is an airborne and a 

“negative” if not. The Bayesian estimator provides reasonable separation 

of the data, and can be tuned by changing the a priori probability of the 

data. It is indicated that the Bayesian estimator is more insensitive to the 

distribution or size of the training set. The SVM estimator also provides 

good results with lower specificity and higher sensibility. The MLP, 

however, showed high dependency with the training set distribution. It also 

was outperformed by the other two algorithms. The advantages of the MLP 

was made clear through the study where using the MLP method will save 

the BS storage cost since can be trained without the need of storing all the 

previous examples learned in its memory.  

 

The work in [41] investigated the use of 4G LTE outdoors macro cells 

and indoor femto cells for UAV based building surveillance networks. The 

main target was using camera mounted on UAVs for a video streaming 

application. The throughput for the macro UEs (outdoor UAVs) is 600kbps 

when stationary. However, the throughput drops to 2/3rd of the previous 

value when the UAV is mobile. The performance gets better when 

increasing the UAV speed as the number of microcells increases. The 

throughput for the femto UEs (stationary Indoor UAVs) increases with the 
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increase of the number of femtocells. This increase is linear when the 

number of floors equals to 1 and exponential for 2 and 3 floors.  

 

   The work in [42], studies the radio channel between UAV and LTE 

cellular network. The path loss regression line is gathered from scenarios 

done on the UAV flying at different heights operating on a 800 MHz LTE 

network. They presented three main causes for signal-to-interference level 

degradation which are expanded radio horizon at higher levels, LOS 

clearing and decreased obstruction of the first Fresnel zone.  

2.3.2.2 WiFi 

The study in [43] introduces the award-winning design of an 

autonomous quadrotor multi-robot architecture in order to take part in the 

indoor challenge of the international micro air vehicles (IMAV) 2013 [44].  

This multi-robot architecture mainly consists of low-cost AR Drone 2.0 

platforms [45], their ground computers and WiFi links within the Robot 

Operating System (ROS) middleware [46]. Each drone is expected to 

navigate and avoid any other drones or obstacles. Despite the apparent 

robustness of the design, its dependence on WiFi communication links 

limits its practical prospects as well as the number of drones hovering 

simultaneously due to limited WiFi bandwidth.  

 

In [47], drones were used in an indoor application specifically 

transferring products in a warehouse. The main challenge in this 

application is the strong wireless network interference in indoor 

environment. This may affect the drone’s control performance. Therefore, 

the study’s objective is reducing this interference to achieve a better 

controllability of drones’ position. The authors in [47] conducted two 

experiments one using the same WiFi channel of two drones (high 

interference) another using different WiFi channels of two drones (low 

interference). However, using different WiFi channels between the two-

drone resulted in a better overall performance. The controllability of both 

drones showed improvement due to the reduction in interference. The 

study also showed that after altering the drones’ WiFi channel to different 

a frequency, the wireless network interference is reduced and thus 

achieving the study’s objective. 
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2.3.2.3 LPWAN 

The study in this journal article [16], LoRa is declared to be suitable for 

long-range low power wireless sensor/ actuator networks (WSANs) till 

now. UAVs can be deployed as WSANs for localization and tracking 

applications. The QoS was the main metric for all the papers cited in this 

journal.  

 

The study in  [48] expects the use of the LPWAN communications to 

spread among major countries around the globe through IoT applications. 

It therefore studies the use of drones to assess the effect of malicious IoT 

implants. These IoT implants, “low-cost electronic implant to facilitate 

hardware-level attacks, are connected to the internet over an IoT 

infrastructure”. These implants use the LoRa technology as the wireless 

communication interface. The drone has a gyroscope and accelerometer 

sensor and a microcontroller that takes readings from this sensor every 3 

ms to stabilize the drone’s rotor using 𝐼2C communication. Simulating an 

attacker, eavesdropping and denial of service (DoS) were done through the 

implants over the data transmitted from the sensor to the microcontroller. 

These attacks caused the drone to lose its stability and hit the ground.   

2.3.2.4 FSO 

The study in [49], studied the design of short-length Raptor codes for a 

ground-to-UAV mobile UAV FSO channel. These codes are characterized 

by low complexity and independency of the channel state, which make 

them convenient for mobile FSO applications. The Raptor-coded mobile 

FSO channel provides 560 Mbps average rate and a low decoding cost of 

4.14 operations per packet using 20 dBm transmit power.  

 

The study in [50] explores the characteristics of a mechanical gimbal for 

the alignment and tracking of a ground-to UAV FSO link. The results show 

the effectiveness of the use of this FSO-based arrangement which could 

replace the RF-based technologies. The results also show that there is a 

very low probability of signal fading for the FSO link. In addition, the 

errors introduced by the alignment could be alleviated by the amount of 

beam divergence in the FSO link. Moreover, the geometric loss in the FSO 

link was not proven to influence the link performance. 
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2.3.3 Drones as Communication Relay/Helper  
In this category, the drones connect communication points where the 

communications infrastructure does not reach the end users. 

2.3.3.1 Cellular  

As pointed out in [51] UAVs are used as static aerial relay in 

environments where it is hard or risky to deploy terrestrial base stations. 

The study presented only one drone which is meant to assist multi-hop 

device-to-device (D2D) communication between the base station and the 

terminal device thus presenting two hops in this experiment. Since the used 

QoS metric is the data rate of the communication links, the drone’s optimal 

position is analyzed to maximize the data rate using efficient algorithms 

under both time division and frequency division resource allocation. The 

results show that the drone’s only needed when the distance between the 

base station and the terminal device exceeds a certain threshold or its 

transmit power exceed another threshold [51]. 

 

The study in [52] main objective was to determine the path loss exponent 

and the shadowing models for the radio channel between the cellular 

network and UAVs. It was proven through system level simulations that 

the path loss exponent and shadowing parameters for the UAVs are 

functions of height dependent models. Empowering such models preserve 

an efficient spatial prediction where the UAVs’ height in this case becomes 

less effective with respect to path loss. 

2.3.3.2 WiFi 

The study in [53] demonstrates experimentally the throughput 

performance of a UAV using IEEE 802.11ac technology. The aim of the 

study is creating a swarm of UAVs where the UAVs and the ground client 

can join in an ad-hoc mode. The demand to have a protocol to handle a 

multi sender system is so high, with a certain degree of fairness in addition.  

In a scenario of two UAVs transmitting downlink traffic in an ad-hoc mode 

to the ground station, the performance of 802.11ac outperforms 802.11n in 

the TCP and UDP throughputs by a factor of 33%. This is also the case 

when considering the UDP packet loss. The authors have demonstrated a 

higher throughput for 802.11n than in any other study in this area. They 
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further discuss fairness in multi-sender aerial network where in their 

scenario the first UAV’s throughput outperformed the second one. The 

mobility of the second UAV which negatively affects the chosen adaptive 

rate control in 802.11n, was the main reason behind [53].  

 

The study in [54] enables the UAV as a WiFi  node by deploying an Intel 

Galileo development board onboard the UAV. This WiFi node has two 

modes of operation that were both tested in this study; either an access 

point (AP) in the infrastructure mode or an intermediate hop in the ad-hoc 

mode. The study used two Linux Ubuntu laptops compatible with the IEEE 

802.11 a/b/g/n standard which resemble the receiver and transmitter. The 

study focused on three metrics, namely, the system coverage area, 

transmission rate and energy efficiency. The system coverage was tested 

theoretically using Friis and WINNER D1 propagation loss models where 

the WINNER D1 model was the most restrictive. Then experimental 

scenarios were used to compare the modes of operations using the three 

metrics. The infrastructure mode exhibits better performance in all metrics 

except for the energy consumption, which was determined by the amount 

of current drained by the Galileo board where the ad-hoc mode 

demonstrated better performance. 

   

2.3.3.3 LPWAN 

Several studies e.g. [55] and [56] illustrate the use of LPWAN 

technologies by UAV assisted wireless sensor networks (WSN) systems. 

The main objective of the study in [56] is to achieve lower delay in data 

transmission and an acceptable level of packet loss in the Flying 

Ubiquitous Sensor Networks (FUSNs). In a FUSN that is based on the 

LoRa technology, the UAVs are used as mobile data collector from sensor 

nodes in the WSN network, where the UAVs act as a 6LoWPAN-LoRa 

gateway. The UAVs then, relay these data to a LoRa-IP base station. After 

running the simulation for the queuing system model of the FUSN network 

over AnyLogic simulator, the optimal bit-rate was found to be 240-480 

bits/sec which corresponds to the minimal packets queuing time. The 

transmission delay is in range of 11-14 s with 3-10% packet loss [56].  
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 Since the marine environment has special challenges as discussed in 

[55], such as high level of salinity and humidity. The SIMMA project, 

discussed in [55], is implemented through  the deployment of UAV 

assisted WSN using the LPWAN’s LoRa technology. The sensing buoys’ 

network is the WSN network this time. The SIMMA project is concerned 

with data collection in connection to research and rescue operations. 

Through sets of simulations and network field test validation, the authors 

compared their findings to other studies to get the following results. With 

a transmission rate of 4 km and data–rate of 5.4 kbps, the study in [55] 

outperforms the one in [57] by the same author by almost 10 times. LoRa 

transceivers have very low transmission and receiving power consumption 

of 28.8 mA and 14.2 mA respectively. 

 

      In [57], the UAVs are used as data mules for retrieving data from 

underwater sensors using a custom buoy node where the buoy should be 

carrying the underwater sensors, giving access to their data and control 

interfaces. The authors study the data link performance in different cases 

for their field experimentally conducted scenario in a sub-arctic Norwegian 

fjord. The scenario is consisting of two buoys, 50m away, and a flying 

UAV using IEEE 802.15.4 network. The UAV takes off to gather the data 

collected by each buoy since it has underwater sensors for acoustic fish 

data and water quality parameters as salinity, density, dissolved oxygen, 

pH, water level and temperature. Short range surface to air and long-range 

surface to air cases are tested. In the short-range surface to air case, the DJI 

Phantom quadcopter having Tiny Mesh radio node hovers four meters 

from the first buoy and 59 away from the second one. The first buoy has 

an average PDR of 99.87% with 4793.29 bps average speed while in the 

second one the PDR was hard to attain because of some errors in the log 

file however the attained data rate was 3340.53bps. The long-range surface 

to air scenario was done by having the UAV 402 m away from the first 

buoy and 420 m away from the second one and hovering about 9 m high 

from the surface of the water. The first buoy transferred its datasets with a 

99.63% average PDR and 3402.16 bps average speed and the second one 

with 99.64% average PDR and 4399.97 bps average speed.  

 

2.3.3.4 FSO 

In [58], the authors presented a data collection protocol for FSO based 

drones. An identification tree is built using optical codewords to serve the 
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drone’s hierarchical topology network architecture shown in Figure 2.2. 

Each drone is assigned a certain codeword where a child drone can forward 

a packet after identifying its parent drone’s codeword as well. The results 

in [58] showed that using the identification tree reduces the data delivery 

latency which is the summation of the FSO transmission links delay, the 

optical switching delay in each transitional node plus the delay that results 

from the delivery of data from the root drone to the collection one. Another 

useful result of this paper is studying the quality of end-to-end FSO link, 

which concluded that the FSO link in the identification tree should not 

exceed 4km to reduce the BER. However, the paper did not specify how a 

drone is going to calculate its QoS to get attached to the collection tree.  

 
Figure 2.2 Drone Network Architecture [58] 

The study in [59] studies the UAVs utilization in the formation of a relay 

assisted FSO system. A comparison is made between the conventional 

FSO system and the UAVs relay assisted FSO system in terms of the FSO 

outage probability where the FSO link is said to be available when its SNR 

is above a certain threshold. Incorporating UAVs in the FSO system has 

three main benefits as described in [59]. The UAVs’ mobility decreases 

the cloud attenuation effect on the FSO links and roams between the source 

and the destination. Usage of UAVs also allows both source to relay and 

relay to destination links to be activated in the same time slot in contrast to 

conventional FSO system which has its transmission done in two-time 

slots. Two main cases are studied, shown in Figure 2.3, where the first case 

uses quasi-stationary buffer-aided UAVs while the second case uses 

moving buffer-aided UAVs. The outage probability was calculated for 
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both cases versus the conventional relay- assisted FSO system. The first 

case of the conventional system is compared with four buffer free 

stationary relays while the second case was compared with three buffer 

free stationary relays. The outage probability was enhanced tremendously 

in both cases since the mobility of the UAVs increases the packet delivery 

performance to the destination. The study however left UAVs’ energy 

consumption according to different weather or hovering circumstances for 

further research [59].   

 

 
Figure 2.3 Two cases for relay-assisted FSO systems [59] 

2.4 Marine Environment  

Marine environment monitoring has lately attracted considerable 

research attention [60]. There is a significant challenge in retrieving data 

from the sensors distributed in remote coastal and oceanic sites. The 

presence of some restrictions as lack of mobile and terrestrial network 

coverage, satellite availability and the data transmission costs [57] were 

also among the reasons behind the motivation to address this issue. UAVs 

can be used as data mules where they collect and store the data from the 

sensor, then delivering these data whenever the user station is available 

[57].  

 

The study in [9] discussed the unmanned maritime systems tasks which 

include sea-border patrolling, search and rescue (SAR) applications, 

marine oil spill clean-up and environmental monitoring. As presented in 

[60], Wireless sensor networks (WSN) are used for monitoring marine 

environments for numerous reasons including low cost, real-time 

monitoring and ease of deployment. The study also discusses many WSN-
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based marine environment monitoring applications examples as coral reef 

monitoring, ocean sensing, water quality monitoring and marine fish farm 

monitoring. The coral reef monitoring system is used to monitor the corals 

habitats and any bleaching that might occur. While, the water quality 

monitoring application can extend to include all water related conditions 

as pH, turbidity, dissolved oxygen (DO) and temperature. The marine fish 

farm monitoring system are used for detecting and measure any fecal waste 

in a fish farm.  

 

2.4.1 Marine Environment Path Loss Profile 

The study in [61] which examined the near-surface LOS radiowave 

propagation at 5 GHz, clarified that the propagation distance 

𝑑𝑏𝑟𝑒𝑎𝑘threshold that decides on using 2 Ray path loss model or 3 Ray path 

loss one. In the study when 𝑑𝑏𝑟𝑒𝑎𝑘 exceeds 2000 m, the 3- Ray path loss 

model behaves better. 

 
𝑑𝑏𝑟𝑒𝑎𝑘 =

4ℎ𝑡ℎ𝑟
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The study in [62] stated that the LTE in the sea environment differs than 

the LTE performance in normal urban landscape and not much has been 

done on as well. The formation of evaporation duct in the sea always 

influences the path loss propagation model to be a 3-Ray path loss instead 

of 2-Ray path loss in the urban environment. The 3-Ray model mainly 

consists of 2-Ray model of the LOS direct link and the reflections from the 

sea surface, in addition to the reflection from the evaporation duct. 

The 3-Ray path loss model is incorporated in the SINR calculation which 

used by the throughput space matrix (defined as the throughput per RB 

between the user and eNodeB) in the MCS table to get the rates of the 

users.  
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2.4.2 UAV- Marine Communications  

In [57], the UAVs are used as data mules for retrieving data from 

underwater sensors using a custom buoy node where the buoy should be 

carrying the underwater sensors, giving access to their data and control 

interfaces. The authors study the data link performance in different cases 

for their field experimentally conducted scenario in a sub-arctic Norwegian 

fjord. The scenario is consisting of two buoys, 50m away, and a flying 

UAV using IEEE 802.15.4 network. The UAV takes off to gather the data 

collected by each buoy since it has underwater sensors for acoustic fish 

data and water quality parameters as salinity, density, dissolved oxygen, 

pH, water level and temperature. Short range surface to air and long-range 

surface to air cases are tested. In the short-range surface to air case, the DJI 

Phantom quadcopter having Tiny Mesh radio node hovers four meters 

from the first buoy and 59 away from the second one. The first buoy has 

an average packet delivery ratio (PDR) of 99.87% with 4793.29 bps 

average speed while in the second one the PDR was hard to attain because 

of some errors in the log file however the attained data rate was 

3340.53bps. The long-range surface to air scenario was done by having the 

UAV 402 m away from the first buoy and 420 m away from the second 

one and hovering about 9 m high from the surface of the water. The first 

buoy transferred its datasets with a 99.63% average PDR and 3402.16 bps 

average speed and the second one with 99.64% average PDR and 4399.97 

bps average speed.  

The study referred to wild Salmon migration tracking and monitoring 

campaign as future work to include the buoys in.  

 

Since the environmental monitoring is one famous application in which 

sensor networks are used, the study in [63] shows how to further develop 

deploying and collecting information from clusters of LPWAN sensors 

nodes using Unmanned Aerial Systems (UAS). The UAS-SN system goes 

through a sequence of missions. The average Packet Reception Rate (PRR) 

measured in this experiment is 86% where the UAV collects data from 

9236 different measurements done by each node. Clustering the sensor 

nodes has a positive impact on the battery lifetime which is measured to 

be considerably larger than one-by-one sensor node.   
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2.5 Machine-to-Machine (M2M) Communication 

Machine-to-Machine (M2M) communication is the flow of data among 

different intelligent machines without any human intervention. M2M 

connects those machines by wired and wireless links [64]. M2M has very 

wide applications, which may include smart grids, vehicle to vehicle 

communications (V2V) systems, vehicle to infrastructure communication 

(V2I) systems, industrial automation and environmental monitoring [64]. 

The research in [65], the M2M communications is explained widely where 

the  M2M infrastructure-based system is reviewed  However, M2M suffers 

some challenges that are jeopardizing its implementation. The study in [66] 

highlighted the challenges facing the M2M communications as congestion 

and random channel access. Another problematic challenge is the use of 

LTE in M2M. LTE is mainly designed for human to human (H2H) 

communication where there’s a cap for the number of users and humans 

can tolerate delays in voice connections. So, permitting M2M 

communication to work on the same H2H communications creates a 

network overhead problem since the “machines identifiers should be 

assigned to MTC devices” [67]. So, M2M accommodation requires a huge 

shift where applications are most likely delay intolerant, and 

machines/nodes need to run for a long period of time which puts a 

constraint on the power consumption and the lifetime of the battery. 

Enabling M2M on LTE network can also cause interference with the 

existing communication links.  

 

The term Machine-to-Machine (M2M) communication arises to serve 

the future need of having billions of internet connected machines talking 

to each other without any human intervention [66]. M2M has very wide 

applications, which may include smart grids, vehicle to vehicle 

communications (V2V) systems, vehicle to infrastructure communication 

(V2I) systems, industrial automation and environmental monitoring [64]. 

 

The study in [64], clarified the system model of the M2M 

communication. In the M2M device domain, the network mainly consists 

of a huge number of devices/sensors and gateways which collect the data, 

send and receive them as well. Some of the intelligent nodes/devices take 
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decisions as well based on these data. The second domain is the network 

domain. The network domain is responsible for relaying data from the 

device domain to the application domain. To guarantee a reliable coverage, 

wired or wireless network protocols can be used i.e. telephone network and 

cellular network [64]. The application domain, the final/last domain, is 

considered the integration point. The application domain contains mainly 

back-end server(s) that extracts, process and gather the data coming from 

the devices through the network domain. These servers also control and 

direct the M2M devices.   

 

M2M communication has some serious challenges/characteristics that 

are quite different than that we are familiar dealing with human 

communications i.e. cellular networks. Challenges facing the M2M 

communication starts with the embedded system installed on its machines 

[66]. The embedded system installed in a machine like a sensor for 

example won’t be only collecting data but also, it should be relaying this 

data to a sink node to further take an action about the sensor’s reading.  So, 

this installed embedded system should be suitable for the M2M application 

itself and should support exchanging data as well. The M2M 

communication also needs to be communicating with other technologies 

communications as well. However, moving between different types of 

communications technologies with different protocols and platforms, 

creates many difficulties as in the billing and automated security 

mechanisms. Lack of M2M communication standards, in addition, doesn’t 

support interoperability between different machines/devices. These 

challenges hinder the scalability of the M2M communication technology. 

Another challenge encountering M2M communication is data handling. 

Since M2M communication is dealing with billions of devices, not all 

these devices will provide significant data to be processed. So, data 

handling is an essential parameter to take into consideration otherwise we 

will exceed our need storing/exchanging insignificant data [66]. Moreover, 

the M2M devices need to be extremely power efficient as they could be 

implanted in harsh environments where there’s no way to recharge them 

back. However, there’s a tradeoff between high data transmission and the 
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node power consumption that we must deal with according to the 

application we are tackling.  

 

Communication, however, is one of the crucial challenges facing M2M 

interactions. Each device has its own set of requirements i.e. bandwidth, 

reliability, mobility and power efficiency but there’re some standard 

infrastructure technologies which can handle these M2M communication 

issues. LTE, for example, is mainly designed for human to human (H2H) 

communication where there’s a cap for the number of users and humans 

can tolerate delays in voice connections. Humans depend more on 

downloading so they usually use high-bandwidth data where LTE 

downlink data rate is 50Mbps while 25Mbps for the uplink. Although 

cellular network was made to tolerate human to human communication, 

LTE-M is an enhanced version of LTE to reinforce M2M communication 

as well. This latest release of LTE serves M2M devices, using typical LTE 

infrastructure, by only upgrading the base stations’ baseband software. The 

LTE based M2M system architecture consists of User Equipment (UE), 

Evolved UMTS Terrestrial Radio Access Network (E-UTRAN), Evolved 

Packet Core (EPC) where the E-UTRAN connects between M2M devices 

and the EPC.   

 

Another standardized wide area network that could be used in M2M 

communication is Worldwide Interoperability for Microwave Access 

(WiMAX). However, deploying M2M on WiMAX technologies suffers 

from some problems. For instance, M2M needs large scale networks, 

however, WiMAX is still experiencing some coverage gaps. The need to 

have an optimized modulation schemes, to reduce the capacity of the 

applications installed on the M2M devices, is another crucial issue. So, 

WiMAX should be using optimized modulation techniques, to cut down 

the capacity and the communication cost.   

 

Beside using standard wide area networks as LTE-M or WiMAX, short 

range networks can be used for M2M communication as well [66]. The 

capillary M2M mainly forms a tree architecture network of a given area, 

then gets connected to the cellular network via a gateway to guarantee a 
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universal connection. So capillary M2M in this case acts as a Wireless 

Sensor Network (WSN). The advantage of using the capillary M2M is ease 

of shaping and aggregating the M2M traffic to send to the M2M back-end 

servers [68]. 

 

From studying different communication technologies to deploy the M2M 

networks, LTE cellular technology, however, is still be considered as the 

best candidate for M2M networks due to their native IP connectivity and 

scalability for massive number of devices. So, my research statement will 

be finding a way/ways to tailor the LTE to accommodate M2M networks 

by different resource allocation techniques/algorithms for massive M2M 

deployment. 

2.6 Drone LTE-based Communications 

Drones are increasingly involved in communications in LTE-based 

cellular systems. Many studies deal with different arrangements of such 

involvement. 

In [69], a drone-mounted base station placement solution is implemented 

using a divide and conquer algorithm. Since the proposed algorithm has 

low complexity and minimal requirements on storage, it presents a good 

candidate for storage- and energy-constrained drones. Moreover, the 

authors propose a soft frequency reuse scheme where the transmit power 

and spectrum segment are not predefined. Instead, they are dynamically 

changed according to the position and interference of adjacent drones.  

 

In [57], drones are used as data mules for retrieving data from underwater 

sensors using a custom buoy node where the buoy holds the underwater 

sensors, giving access to their data and control interfaces. The authors 

study the data link performance in different cases for their field 

experimentally conducted scenario in a sub-arctic Norwegian fjord. The 

layout consists of two buoys, 50 m apart, and a flying drone that uses a 

IEEE 802.15.4 network. The UAV takes off to gather the data collected by 

each buoy’s sensors’ acoustic fish data and water quality parameters such 

as salinity, density, dissolved oxygen, pH, water level and temperature. 

Short range surface to air and long-range surface to air cases are tested.  
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As discussed in [51], drones are used as static aerial relays in 

environments where it is hard or risky to deploy terrestrial base stations. 

The study focuses on the deployment of only one drone which is meant to 

assist in multi-hop device-to-device (D2D) communications between the 

base station and the terminal device thus presenting two hops in this 

experiment. Since the used QoS metric is the data rate of the 

communication links, the drone’s optimal position is analyzed to maximize 

the data rate using efficient algorithms that belong to both time-division 

and frequency-division resource allocation techniques. The results show 

that the drone is only needed when the distance between the base station 

and the terminal device or its transmit power reach certain thresholds.  

2.7  Drone Path Planning  

The authors in [70] investigate the advantages of using drone-based 

architecture of wireless sensor network (WSN). Line-of-sight (LOS) 

communication channel and topology adjustment for the sensor nodes’ 

location and linking the isolated WSN to other networks are among those 

advantages. They also report that the main important requirement of WSN 

application is to plan the path of the drone to ensure data collection from all 

nodes and to minimize the total path length at the same time. The paper also 

discussed why a sparse placement for the sensor nodes should be 

considered where, in some monitoring applications, the nodes could be 

sparsely distributed.  

 

The study in [71] uses the drone as a sink node to collect data from WSNs. 

The authors propose the use of Particle Swarm Optimization (PSO) method 

for clustering and cluster heads selections such that the energy 

consumption, bit error rate (BER) and drone travel time are reduced. So, 

they assessed/compared the performance of the PSO method with the 

LEACH method to identify the optimal selection of the nodes to be visited 

by the drone [72]. PSO outperforms LEACH-C when simulated on wider 

WSNs, where the nodes are not close to each other.  
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In [73], the path and the number of  drones required to cover and collect 

data for a WSN data gathering application are investigated. The problem 

can be formulated as a multiple traveling salesman problems (mTSPs) with 

additional constraints. Since it is an NP-Hard problem, the authors used the 

Set Covering Problem (SCP), which is an alternative integer linear 

programming formulation for the mTSP. The authors in this study 

concluded that some improvements should be done in terms of the heuristic 

methods for future developments.  

 

Our ACO technique in this thesis is based on optimizing the path 

movements of a drone that acts as a flying base station. The optimization is 

based on ensuring the drone takes the path with minimum energy 

consumption in such a way that minimizes the data deadline missing of a 

set of MTCDs sparsely deployed at sea. This mimics the TSP with 

constraints that are based on the communication needs of deployed M2M 

formations.  

2.8 The Traveling Salesman Problem (TSP) 

The TSP is a very well-known problem where a salesman starts from his 

hometown and wants to take the shortest path passing by a given number 

of other cities and to visit each only once, then return home [74]. The TSP 

can be represented by a complete weighted graph 𝐺 = (𝑁, 𝐴) with N being 

the number of cities and 𝐴 is the set of arcs. Each arc (𝑖, 𝑗) ∈ 𝐴 has a certain 

length 𝑑𝑖𝑗 which is the distance between city 𝑖 and 𝑗 with (𝑖, 𝑗) ∈ 𝑁. 𝑑𝑖𝑗 is 

the Euclidean distance between city 𝑖 and 𝑗 [74], [75]. TSP goal is to find 

the shortest Hamiltonian circuit of the graph. This Hamiltonian circuit is 

mainly visiting all the cities N and passing only once by each and returning 

back to the initial one at the end of the tour.    

 

The TSP could be generalized to serve n clusters of number of cities each 

as in [76]. The study demonstrates an exact algorithm for a generalized 

version of the TSP (GTSP) that consists of finding the minimum length 

Hamiltonian circuit through n clusters of nodes. Computational results are 

reported for problems including up to 100 nodes and 8 clusters.  
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Another study talked about TSP with profits (TSPwP) where the salesman 

passes only by the cities maximizing the profit such that the tour length 

does not exceed a given constraint 𝐶𝑚𝑎𝑥 [77]. TSPwP is a version of TSP 

where it is not necessary to visit all vertices, instead salesman only passing 

by the cities having the highest profits associated to them. The problem is 

to find a cycle in a graph which maximizes collected profit but does not 

exceed a given cost constraint. Visiting a given vertex/city more than once 

is allowed in addition, but with an assumption that a profit is realized only 

during initial visit [77].   

The contribution of study [78] is an extension for TSP available Held-

Karp’s lower bound to the Multiple Depot UAV Routing Problem 

(MDURP). Several UAVs are distributed among different depots. Each 

UAV should visit at least one unvisited depot such that the path length is 

the shortest among the UAVs. So, the authors presented 2-approximation 

algorithms for the UAVs’ routing problem, where they only discussed the 

constraints’ changes needed for their extension.   

 

The paper in [79], presented three modified algorithms for the Nearest 

Neighbor (NN) algorithm to solve TSP problem. The main aim of the paper 

is to reduce data acquisition latency of UAV relay WSN. By-Passing of 

Nodes in the NN (PPN), Directional NN (DNN) and Directional NN 

algorithm Directed to the Next Nearest Node (DDNN) are the three 

modified algorithms of the NN. The main objective of PNN is to “by-pass 

a given node if the line that connects its neighboring nodes lies within the 

transmission range of the node”. In DNN, the idea is to “enforce the drone 

tour direction to be changed on each of the first point where the normal path 

of the previous NN-TSP algorithm meets the boundary of the transmission 

range of each node to the next move until all the nodes are visited”. While 

in DDNN, the idea is to “amend the previous TSP-NN algorithm to let the 

drone initially move directly to the first node until it reaches to the boundary 

of the transmission range of this node”. The three modified algorithms show 

better performance in terms of the latency with DDNN achieving the 

shortest path tour.  
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2.9 The Research of This Thesis and its Dependence on 

Covered Concepts 

The various, yet related, review we have presented earlier in this 

chapter, has built our knowledge in such a way to benefit from all of it in 

formulating our problem. Our problem formulation presented in the 

chapter 3, section 3.2 will mimic the TSP, explained in section 2.8. The 

constraints, however, are based LTE and M2M formations. We would 

need to deploy number of MTCDs having stringent transmission 

deadlines. These transmission deadlines are part of the LTE TDD uplink 

latency.  

2.10 Chapter Summary  

In this chapter, we introduced a novel classification of drone 

communications from a technological perspective. Then we, discussed the 

marine environment, UAV-Marine environment communications, 

Machine-to-Machine (M2M) communications, UAV-Trajectory 

management and the traveling salesman problem (TSP). Finally, we 

discussed the relationship of the discussed concepts with the technique that 

we introduce in the subsequent chapter. We indicated that our problem 

formulation mimics the TSP with constraints that are based on the 

communication needs of deployed M2M formations, mainly, stringent 

transmission deadlines.  
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CHAPTER 3. OPTIMAL TRAJECTORY 

PLANNING AND SCHEDULING – THE ACO 

TECHNIQUE 

3.1  Introduction 

As previously discussed, we see that the problem of deploying MTCDs 

for monitoring purposes off-shores requires a solution that augments the 

terrestrial networks and connects the deployed devices to the backhaul. In 

this chapter, we present our ACO algorithm which aims at providing LTE-

based cellular services to such MTCDs. We first introduce the problem 

formulation with its constraints. We then discuss the methods for solving 

this problem. Then, we present the design and description of the technique 

that we propose to solve this problem.  

3.2  Problem Formulation  

Our ACO technique is based on optimizing the path movements of a 

drone that acts as an LTE-based flying base station. The optimization is 

based on ensuring the drone takes the minimum path (minimum distance 

covered), and hence consumes the least energy, in such a way that 

minimizes the data deadline missing of a set of MTCDs sparsely deployed 

at sea. This mimics the TSP with constraints that are based on the 

communication needs of deployed M2M formations, mainly, stringent 

transmission deadlines.  

The problem can be formulated as    

 

 

𝑚𝑖𝑛 ∑ ∑ 𝑃. 𝐶𝑖𝑗 . 𝑋𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

      

                                                                                        

 

(3.1) 

subject to 

 

 ∑ 𝑋𝑖𝑗 = 1 ;  

𝑁

𝑖=1,𝑖≠𝑗

∑ 𝑋𝑖𝑗 = 1   

𝑁

𝑗=1,𝑗≠𝑖

 

 𝑖 = 1, … . . , 𝑁;   𝑗 = 1, … . , 𝑁;      

 

(3.2) 
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 ∑ 𝑋𝑖𝑗 ≤ |𝑆| − 1

𝑖,𝑗 𝜖 𝑆

 
 

(3.3) 

 

 𝑆 ⊂ 𝑉;   2 ≤ |𝑆| ≤ 𝑁 − 2;  

                                                                                        

(3.4) 

 𝑋𝑖𝑗 𝜖 {0,1} (3.5) 

 

 𝐷𝑖 <  𝐷𝑖𝑚𝑎𝑥   ,    𝑖=1,2,3….𝑁 (3.6) 

The cost function in 3.1 minimizes the tour length (optimal tour) passing 

through all MTCDs, where N is the total number of MTCDs. Therefore, 

this cost function minimizes the drone’s battery power consumption, P, 

given that 𝐶𝑖𝑗 is the distance covered from node i to node j and 𝑋𝑖𝑗 is a 

binary indicator that takes the value 1 if the path from node i to node j is in 

the tour and 0 otherwise. It should be noted that the summation in 3.1 is 

done such that i ≠ j. The constraints in 3.2 ensures that for a certain node, i, 

only one path/edge is chosen to a given node, j.  

 

So, the first constraint in 3.2 makes sure that each node is visited once 

and only one path from certain node i to node j is taken. So, if we have 3 

nodes, then the first equation in 3.2 will give the following equations 3.7, 

3.8 and 3.9. This summation in 3.7 must be equal to 1 which means only 

one path should be taken either 𝑋12 or 𝑋13 (the other one should equal to 

zero). Same will apply for 𝑗 ≠ 2 and 𝑗 ≠ 3. 

 

 

∑ 𝑋𝑖𝑗 =  ∑ 𝑋𝑖𝑗 = 𝑋12 + 𝑋13 , 𝑓𝑜𝑟 𝑗 ≠ 1

3

𝑖=1,   𝑖=𝑗

𝑁

𝑖=1,   𝑖≠𝑗

 

 

(3.7) 

  

∑ 𝑋𝑖𝑗 =  ∑ 𝑋𝑖𝑗 = 𝑋21 + 𝑋23 , 𝑓𝑜𝑟 𝑗 ≠ 2

3

𝑖=1,   𝑖=𝑗

𝑁

𝑖=1,   𝑖≠𝑗

 

 

 

(3.8) 
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∑ 𝑋𝑖𝑗 =  ∑ 𝑋𝑖𝑗 = 𝑋31 + 𝑋32 , 𝑓𝑜𝑟 𝑗 ≠ 3

3

𝑖=1,   𝑖=𝑗

𝑁

𝑖=1,   𝑖≠𝑗

 

 

(3.9) 

The same goes for the second constraint in 3.2, where 𝑋12  is equivalent 

to 𝑋21 , which assures that the path 𝑋21 is as taking the path 𝑋12 . This 

further confirms that this path should be set as 1 in both cases, so if 𝑋12 =

1  then 𝑋21 must be equal to 1 as well.   

 

Equations 3.3 and 3.4 prevent the creation of sub-tours. Sub-tours usually 

result from tours which have less than V vertices (N MTCDs). So, for 

example if we have 4 nodes, the tour 1231 is considered a subtour. To 

eliminate that, we have 𝑆 = 3, where 𝑆 is the number of nodes in the 

subtour formed, but ∑ 𝑋𝑖𝑗 can not be ≤ 2𝑖,𝑗 𝜖 𝑆 . So, this constraint would 

be violated if a subtour is formed.  

 

 However, the constraint in 3.5 ensures that 𝑋𝑖𝑗 can only take binary 

values either 0 or 1. This indicates if this edge is passed by or not. In 

equation 3.6, the transmission deadline missing constraint is introduced. 

The deadline missing is defined as the time by which data must be 

transmitted to avoid unwanted consequences e.g. in the case of emergency 

alerts. In [80], an equation for the LTE TDD uplink latency 𝑇𝑈𝑝𝑙𝑖𝑛𝑘was 

formulated as follows  

 𝑇𝑈𝑝𝑙𝑖𝑛𝑘 = 𝑇1 + 𝑇2 + 𝑇3, (3.10) 

where 𝑇1 is the time spent by a packet in the transmit buffer of the device 

before a scheduling request (SR) is sent, 𝑇2 is the duration between sending 

the SR and receiving the associated grant and 𝑇3 is the time for which the 

device has to wait until it can send the actual data within the assigned 

physical resource block(s) (PRB). To ensure the system meets the deadlines 

for delay sensitive M2M applications, the maximum of 𝑇𝑈𝑝𝑙𝑖𝑛𝑘  should not 

exceed 𝑇𝐵𝑢𝑑𝑔𝑒𝑡. In delay sensitive M2M networks, the traffic is prioritized 

based on the packet delay budget 𝑇𝐵𝑢𝑑𝑔𝑒𝑡 [81]. This results in the following 

equation 

 𝑚𝑎𝑥{𝑇2} ≤ 𝑇𝐵𝑢𝑑𝑔𝑒𝑡 − 𝑇𝑆𝑅−𝑃𝐸𝑅𝐼𝑂𝐷 − 𝑇3,, (3.11) 

where 
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 max{T3} = 7 subframes = 7 ms (3.12) 

 𝑚𝑎𝑥{𝑇1} = 𝑇𝑆𝑅−𝑃𝐸𝑅𝐼𝑂𝐷 (3.13) 

The absolute deadline, Di, in 3.6 , is for the scheduler to provide an uplink 

grant in response to the request. Its maximum value  is given by 

 Dimax = t + TiBUDGET − TSR−Period − 7, (3.14) 

where t is the current time.  

 

A combinatorial optimization, also, refers to the problem of finding 

elements of 𝑋 that minimize or maximize 𝑓, where 𝑓 is a real-valued 

objective function defined on a large set of states 𝑋 [82]. 

 

The complexity characterization of the optimization problems has been 

established by connections between “combinatorial properties and 

complexity decision and optimization technique”.  In addition, the NP- 

completeness concept has been proven in the “theory of approximation of 

optimization problems” [83].   

 

Many combinatorial search algorithms employ some perturbation 

operator, mathematical methods/algorithms to find approximate solution 

to the given problem.  These algorithms are “state of the art for many 

classes of NP-hard combinatorial optimization problems such as maximum 

k-satisfiability, scheduling, and problems of graph theory” [82]. 

 

 Many of them are NP-hard problems that cannot be solved within a 

polynomial computation time [84]. TSP is a famous example of a 

combinatorial optimization problems. To be able to solve them and get 

near optimal solutions in short time, we need to use approximate methods. 

These algorithms are named heuristics. In addition, a set of heuristic 

methods is called a metaheuristic algorithm which is suited for a set of 

different problems. Metaheuristics with other optimization techniques, like 

branch-and-bound, are also ubiquitous nowadays [85]. 

3.3  Path Planning Algorithms  

Path planning is one of the most important areas of research when it 

comes to drone deployment. To better understand path planning 
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algorithms, we need to differentiate between its four categories, namely, 

Grid-based Algorithms, Evolutionary Algorithms, Geometry Algorithms 

and Linear Algorithms [84]. Both Geometry and Linear Algorithms are 

combined under what is termed as the Curve Algorithm.  

3.3.1 Grid-based Algorithms 

Path planning in Grid-based Algorithms is divided into three main 

processes, feasible path grid generation, path cost calculation and feasible 

path selection. However, to generate the grid in the first place, the 

environment and the mission objectives should be studied. The data 

generated by the environment being static or dynamic could be online or 

offline data. 

The Grid-based algorithm is an effective path planning algorithm 

whenever the minimal cost between two nodes is needed. Grid-based 

algorithm computes iteratively all the waypoints between the two nodes to 

identify the optimal path. Although it can be easily implemented for static 

path planning, its disadvantage is the large number of iterations and the 

computational time [84].   

3.3.2 Curve Algorithm  

Curve algorithm has one main process which is defined as a polynomial 

equation. The equation builds the path planning from the initial point till 

the final one. Curve algorithm is affected by the environment. It is difficult 

to apply the curve algorithm to a dynamic environment and this difficulty 

lies in constructing the static path planning from initial point to the end.  

3.3.3 Evolutionary Algorithms 

Path planning in Evolutionary Algorithms depends on generating all the 

possible candidates. Then, by using several parameters, the fitness values 

will be calculated by all these candidates. Lastly, the best path is obtained 

once convergence occurs. Once the best path is calculated the drone can 

follow it.     

The most famous evolutionary algorithms are Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO), Artificial Immune Algorithm (AIA) 

and Ant Colony Optimization (ACO). All of these algorithms were applied 

in UAV path planning such as in [84] and [86].  

One of the big advantages of the evolutionary path planning is its ability 

to be used in both static and dynamic path planning. The ability to create 



40 
 

static and dynamic path planning is one of evolutionary algorithm 

advantages.  

We now elaborate more on GA and ACO due to their extensive use in 

path planning techniques. We also use evolutionary techniques as basis for 

our proposed path planning and scheduling technique. 

 

3.3.3.1 Genetic Algorithm (GA)   

GA was first introduced by Holland in his book Adaptation in Natural 

and Artificial Systems in 1975. GA has six main steps , as explained in 

[87]: 

1- It undergoes generating an initial population called chromosomes, 

each chromosome represents a unique candidate solution of the 

problem, that uniformly covers the search space. 

2- It then uses a fitness function to evaluate the population. This fitness 

function is mainly the optimization problem at hand. 

3- Parent selection is done when the algorithm decides which 

chromosomes are best fit to undergo the reproductive phase of the 

GA. This is based on the fitness function evaluation. 

4- Two main genetic operators are then applied. The first is 

“crossover”. Crossover is achieved by randomly pairing every two 

chromosomes (parents) in the population together to produce an 

offspring (child) that contains portions of both of their codes. 

5- The second genetic operator is “mutation”. Mutation creates a new 

child by altering a randomly chosen part of a selected parent.  

6- Final selection is done for parents and offspring to form a new 

population. 

Figure 3.1 illustrates the GA process. 
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Figure 3.1 GA Steps 

GA has been used in path planning. In [17], the authors developed a 

technique to optimize the Unmanned Aerial Base Stations (UABSs) 

locations through a genetic algorithm (GA). This technique is basically 

done to maximize the fifth percentile throughput of the network. The GA 

can run simultaneous candidate solutions, chromosomes, at the same time 

since, it has a parallel search capability. The results show that the 

throughput coverage and the fifth percentile throughput are enhanced 

significantly when the UAVs’ locations are optimized through the GA. 

Deploying more UAVs also increases the gains when using range 

expansion bias. 

In [24], the authors compare between 3GPP Release 11 further-enhanced 

inter-cell interference coordination (FeICIC) and the PSC application in 
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Release 10 using 2-tier LTE-Advanced HetNet with Mobile Base Stations 

(MBSs) and UABSs. The UABSs deployment is studied in two cases. 

First, when the deployment is done on a hexagonal grid in deterministic 

locations. Second, when the deployment is optimally done using a genetic 

algorithm (GA) which has shown to be more effective in case of high inter-

cell inference. The UABSs’ locations and inter-cell interference 

coordination (ICIC) parameters for the GA and the hexagonal grid are 

identified respectively, such that they result in the maximum 5th percentile 

spectrum efficiency (5pSE) [24].  

3.3.3.2 Ant Colony Optimization (ACO) 

According to [84], ACO is one of the famous evolutionary algorithms 

that has been used in many studies for path planning such as [88], [89] and 

[90]. ACO is an example of a metaheuristic technique for solving hard 

combinatorial optimization problems [85]. In [85], Metaheuristics are 

defined as “solution methods that orchestrate an interaction between local 

improvement procedures and higher level strategies to create a process 

capable of escaping from local optima and performing a robust search of a 

solution space”.  

 

The ACO algorithm was inspired by real ants searching for food. It is 

widely applicable for any combinatorial optimization problem. ACO is a 

stochastic search method based on indirect communications between a 

colony of ants, as defined by [74] and [91], through updating the 

pheromone trails of a set of ants. The ants use these pheromone trails to 

construct solution to the problem. In addition, the ants reflect their search 

experience where they keep modifying the pheromone trails during 

execution. 

The ACO is particularly applied for [74]: 

1- NP- hard problems, that needs to be efficiently solved. 

2- Dynamic shortest path problems. 

3- Problems having spatially distributed computational architecture. 

 

ACO has a unique approach based on population which utilizes a 

memory for the previous performance. These exceptional characteristics 

are what distinguish the ACO over any other metaheuristic technique. 
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In the following, we explain in some detail the merits of using the ACO 

in solving problems like ours. This will serve as the basis for our rationale 

of using it as the core of our proposed solution. We also provide the main 

elements of ACO’s functionality. 

 

ACO Algorithm mainly goes through the following steps: 

1- An initialization for the ACO parameters is done. 

2- Ants are located randomly across the grid to construct the initial 

solutions 

3- The quality of the constructed solutions is measured by the objective 

function of the optimization problem, which is sometimes referred 

by as the fitness function. In section 3.3.3.2.3, we will present the 

ACO tour construction in details.  

4- The pheromone levels are then updated. The pheromone levels of the 

edges included in the solutions with higher fitness than those of less 

fit solutions give these edges a higher chance of being 

 included in tours in the next iterations.  

5- The algorithm terminates either after a given number of iterations or 

when a solution with the desired fitness or higher is obtained.  

3.3.3.2.1 ACO versus GA  

In [92], a comparison was made between ACO algorithm and other 

heuristic techniques for machine scheduling problem. Comparison with 

branch and bound, local search method, has also been made. Results 

showed that ACO has advantages over these techniques. 

 

According to [84], [93] and [94], ACO performs faster in terms of speed 

of convergence and computational time. GA shows slow speed to converge. 

The reason behind this lies in the way GA initializes the population. It is 

based on random approaches. Using this random process, the algorithm 

requires to go through the process of selection to determine the optimal path 

[94]. This is mainly why the number of iterations needed for convergence 

is quite high as the number of nodes increases. Also as stated in [95] and 

[96], ACO is the best approach for TSP like problems.  
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So, we decided to compare between an ant colony optimization (ACO) 

based technique that optimizes the drone movement among the sparsely-

deployed MTCDs and Genetic Algorithm (GA) based solution from the 

literature. However, we expect that the ACO will outperforms the GA in 

terms of convergence speed, based on the literature. So, we decided to 

perform the ACO algorithm and compare it to GA-based solution that 

serves the same purpose.  

3.3.3.2.2 Using ACO for the TSP 

As we now know, TSP is an intriguing problem that has been extensively 

studied in the literature.  

The ACO has two main phases; ants’ solution construction, when each 

ant decides on the next point to visit, and pheromone update. The 

pheromone trails in the ACO is referred to by 𝜏𝑖𝑗 which indicates the 

desirability to visit point 𝑗 after point 𝑖. The heuristic desirability from point 

𝑖 to point 𝑗 is inversely proportional to distance between them where 𝜂𝑖𝑗 =

1/𝑑𝑖𝑗:  

 

Each ant tour is created by applying the following steps: 

 

1- A start point is chosen by each ant to start from. 

2- The ant uses pheromones and heuristic values to construct the tour, 

passing by all the points but only once for each. 

3- The ant returns to the start point at the end. 

After the above steps, we would now have all the ants’ tours. The 

pheromone levels are updated for all the tours [74].  

3.3.3.2.3 ACO Tour Construction 

The ants are positioned on randomly chosen points. At each step ant k 

applies the below probability rule to decide on the next point to visit. This 

probability value, 𝑃𝑖𝑗
𝑘 , indicates the probability for ant k to go from point 𝑖 

to point 𝑗.   
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𝑃𝑖𝑗
𝑘 =

[𝜏𝑖𝑗
𝛼 ][𝜂𝑖𝑗

𝛽
]

∑ [𝜏𝑖𝑙
𝛼][𝜂𝑖𝑙

𝛽
]𝑙∈𝑁𝑖

𝑘

,     𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘 , 

 

(3.15) 

where α and β are the parameters set to determine the relative influence of 

the pheromone trail and the heuristic information, and 𝑁𝑖
𝑘 is the set of points 

not visited by ant k measured at point 𝑖.  

 

As for the optimal values for these parameters as stated in [74], α should 

be equal to 1, β’s optimal range is 2 ≤ β ≤ 5, and 𝜌, the pheromone 

evaporation that we will talk about in the next section, is 0.5.  

3.3.3.2.4 ACO Pheromone Trail Update 

After each ant constructs its tour, the pheromone trails are to be updated. 

This is done by adding pheromones on the arcs the ants have passed by, 

where the pheromone evaporation is carried out as follows 

 

 𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐿, (3.16) 

where 0 < 𝜌 ≤ 1 is the rate of pheromone evaporation. This parameter 

is used to prevent the pheromone trails accumulation and hence forgetting 

previously taken bad decisions.  After the evaporation step above, all the 

ants deposit pheromones on the arcs they passed by in their tours:  

 

 
𝜏𝑖𝑗 ← 𝜏𝑖𝑗 +  ∑ ∆𝜏𝑖𝑗

𝑘
𝑚

𝑘=1
 , ∀(𝑖, 𝑗) ∈ 𝐿, 

(3.17) 

where ∆𝜏𝑖𝑗
𝑘  is the amount of pheromone ant k deposited on the arcs it has 

visited.  

  

∆𝜏𝑖𝑗
𝑘 = {

1
𝐶𝑘⁄ ,  𝑖𝑓 𝑎𝑟𝑐(𝑖, 𝑗) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑇𝑘

0      , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

(3.18) 

where 𝐶𝑘 is the length of tour, 𝑇𝑘, made by ant k, and is calculated as the 

summation of the all the arcs lengths for tour 𝑇𝑘.  

 

There are several studies that used ACO for path planning. The study in 

[97], presents a swarm intelligence based method for UAVs’ path 

optimization. The problem mimics TSP where the aim is to find the route 
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having the shortest path passing by a given number of waypoints while 

visiting each point only once. The ACO algorithm is implemented and 

compared to Nearest Neighbor search. The Nearest Neighbor search is to 

build the tour such that to select the closest unvisited city before returning 

back to the initial one [85]. Results showed that the proposed algorithm is 

more effective especially as the number of waypoints increases.  

 

The study in [95], investigates the feasibility of a 2-layered approach for 

path planning mission using probabilistic roadmaps and ACO for task 

planning. The path planner explores paths in a finite, obstacle-constrained 

3D space. However, task planning, which is an instance of the TSP 

problem, discovers a near optimal task order for a set of tasks and 

heterogeneous UAV agents. The study found that at lower speeds, the UAV 

can follow a linear path with a certain error distance. If the speed gets 

higher, flight dynamics should be taken into consideration.  

 

The study in [96], proposes a new obstacle avoidance UAV path planning 

by using a mutli-colony ACO algorithm. The authors conducted a 

comparison between their proposed approach and the typical single colony 

ACO approach. The proposed approach showed better results in terms of 

the cost function in comparison with the typical one colony ACO. However, 

the performance degrades with increasing the number of control points.  

 

The study in [98], discusses multi-UAVs coordination trajectory planning 

using Max-Min adaptive ACO method in dynamic environments. This 

coordination is done through two phases; air-space collision avoidance and 

simultaneous arrivals. The collision avoidance between UAVs is obtained 

by setting the minimum and maximum pheromone trails in ACO to improve 

the searching capabilities. While, for the simultaneous arrival, an Estimated 

Time of Arrival (ETA) is determined.  Then each UAV trajectory and 

velocity are decided. The results shown in the paper are in favor of the 

proposed approach feasibility.    

 

3.3.4 Algorithms’ Comparison  
TABLE 3.1 shows the comparison among different path planning 

approaches that we discussed in the previous sub-sections. We listed 
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different algorithms under each family. A* and triangulation are based on 

grid-based algorithms. While, GA, PSO, AIA and ACO are evolutionary 

algorithms. Finally, dubins algorithm belongs to curve algorithm. We can 

also see that computational complexity of both the grid-based and the 

evolutionary is O(𝑛2) as they need to iteratively run to reach their target. 

In [84], the author stated that the grid-based algorithm can only be applied 

within a camera range when it deals with tracking a moving target. This is 

also the case for curve algorithm where it is very challenging for it to be 

used for dynamic path planning. However, evolutionary algorithm can be 

used for dynamic path planning but not for a moving target interception.  

TABLE 3.1 Comparison of path planning approaches [84] 

Approach Example 

Algorithms 

Concept Minimum 

Computational 

Complexity 

Path 

Planning 

constrains 

Grid A*, 

Triangulation 

Iterations, 

Minimum 

cost between 

two nodes 

O(𝑛2) Static and 

dynamic 

Evolutionary GA, PSO, 

AIA, ACO 

Iteration O(𝑛2) Static and 

dynamic 

Curve Dubins Polynomial Depend on the 

polynomial 

equation 

Static and 

dynamic 

3.4 System Model  

We assume a set of N MTCDs that are sparsely deployed according to a 

certain distribution in a given 2D marine environment area. The drone flies 

above all the MTCDs to provide cellular communications for gathering 

their delay-sensitive data. 

 

The objective is to plan the path of the drone in such a way that ensures 

that the deadlines of the MTCD data transmissions do not exceed certain 

thresholds. This is done by minimizing the total drone’s path distance as it 
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visits the sparsely deployed MTCDs. The problem formulations has been 

introduced in Section 3.2 

 

3.5 Algorithm Design  

Since TSP falls under NP-hard combinatorial optimization problems, it 

is hard to find an exact solution for it. Therefore, the model formulated 

above could be solved using a heuristic approach and we would need to 

use a path planning algorithm such as evolutionary algorithms [84]. Genetic 

Algorithm (GA) and Ant Colony Optimization (ACO) Algorithm are most 

commonly used in drone path planning. So, we will compare both 

techniques. However ACO was shown to converge faster than GA, with the 

increase of the number of nodes [94]. ACO, also, is most commonly used 

in path planning problems [99]. So, we decided to go with the literature and 

examine the ACO technique first. Then, we will compare the ACO results 

to the GA-based ones to see which technique performs better in terms of 

our chosen metrics.  

 

Our ACO-based algorithm is mainly used to plan the path of the base 

station-mounted drone for allocating communication resources to delay-

sensitive M2M communications data. Therefore, the algorithm uses data 

transmission deadlines as a constraint while it minimizes the total cost, as 

expressed in covered distance, of the tour. In terms of ACO procedures, the 

ants’ tours which should result in the minimum distance covered by the 

drone such that data deadlines missing would be minimized as well. To 

further study the effect of the resulting tour pattern on data transmission, 

we also calculate the packet delivery ratio (PDR).  

 

The technique is divided into the following phases: 

 

Phase 1: The MTCDs locations is generated using uniform distribution 

along with the distances between them. The MTCDs’ traffic is generated 

afterwards. The traffic profile used is present in chapter 4, section 4.2.  
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Phase 2: The ACO technique starts. UAV flies over the best path chosen to 

collect the data of the MTCDs, calculate Deadline Missing Ratio (DMR) 

and Packet Delivery Ratio (PDR). The UAV might apply ACO again if a 

sudden request came to it while the best path is executed. This repeated 

ACO will be done on the rest of unvisited MTCDs after serving the sudden 

request.   

    Figure 3.2 and Algorithm 1 summarize the proposed ACO-based 

algorithm.  

 

 

 
Figure 3.2 ACO path planning algorithm flowchart 
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Algorithm 1: Pseudo-Code of the Proposed Algorithm  

1: Input: Population Size, Number of MTCDs, MTCDs 2D Coordinates, 

Max number of iterations, TBUDGET for each node, TSR−PERIOD 

2: Initialize: Number of ants, pheromones evaporation coefficient, 

pheromones deposited for transitions, effect of ant’s sight, trace’s effect 

and elimination cost 

3: Output: Optimum Path, Minimum distance (cost of the best route), 

deadline missing ratio and PDR  

4: Generate the MTCDs coordinates using uniform distribution 

5: Calculate the distances between the located MTCDs  

6: Calculate the edge desirability (heuristic visibility) for each MTCD 

7: Generate MTCDs traffic, and hence calculate the Dimax for each MTCD. 

8: For iterations < Maximum number of iterations then  

9: Start ACO 

10: Generate the initial places for the ants 

11: Forward the ants and formulate the ants’ tours  

12: Calculate the cost of each tour (formulated solution)  

13: Calculate the tour distance   

14: Update the pheromones level of the paths. 

15:       Determine the best solution 

16: ACO end 

17: Start executing the best tour 

18: Create a loop that iterates through the MTCDs of the best path 

19: Calculate the interim cost 

20: Calculate the interim Deadline Missing Ratio (DMR) 

21: Calculate the interim Packet Delivery Ratio (PDR) 

22: If a sudden request emerged   

23: Break, taking the new request and rest of the path and feed into step 9 

24: Done with the whole path 

25: Calculate the final/whole tour cost, DMR and PDR 

3.6 Chapter Summary  

In this chapter, we introduced the problem formulation for our path 

planning and scheduling technique. Then, to investigate problem solution 

methods, we discussed the different path planning techniques and 
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algorithms, and then focused our attention on two of the most popular 

heuristic algorithms that are suitable for solving our problem, namely, the 

GA and ACO. We also discussed why we chose to solve our problem using 

ACO. Then, we presented our system model. Finally, we concluded the 

chapter with the ACO-based algorithm design.   
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CHAPTER 4: EXPERIMENTAL EVALUATION 

RESULTS 

4.1 Introduction 

The technique that we introduced in Chapter 3 is designed in such a way 

that optimizes the distance traveled, and hence the energy consumption, by 

a drone that provides communication services to sparsely deployed 

MTCDs.  

 

In this chapter, conduct several simulation experiments to validate the 

performance of the ACO-based technique. We first evaluate the use of the 

ACO-related parameters and their effect on algorithm performance. Then, 

we use the best performing set of parameters to conduct the experiments 

that evaluate the performance of the scheduling function associated with 

the proposed drone trajectory optimization technique. We use several 

metrics for assessing the performance of the technique as follows 

1. Deadline missing ratio (DMR): The number of the missed data 

deadlines divided by the total number of required transmissions.  

2. Packet Delivery Ratio (PDR): This is calculated by dividing the 

number of data packets received by the drone over the total number 

of packets generated by the MTCDs. 

3. Algorithm speed of convergence: The convergence of the 

algorithm is expressed as the number of ACO algorithm iterations 

required to reach a certain accuracy. 

4. Total cost: This is the used cost function and has been measured in 

terms of the drone distance to cover a certain round of scheduling 

for a certain experimental run.  

 

To evaluate the scheduling performance, we perform the following 

experiments 

• Varying the number of MTCDs for a given area 

• Varying the deployment area size 
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Finally, we compare the performance of the ACO-based technique to a 

GA-based technique from the literature along the same comparison 

experiments and metrics. 

4.2 Experimental Set up and Parameters 

 

In all experiments, the MTCDs are uniformly distributed within the 

deployment area. The results are the averages of 100 experimental runs. 

The 95% confidence interval is also calculated and plotted for every 

experimental scenario which was calculated over 1000 runs. The used 

traffic profile values and parameters are given in TABLE 4.1. 

TBUDGET is uniformly distributed random variable generated at the 

beginning of the simulation. TBUDGET varies for the different nodes. 

TSR−PERIOD is determined before the start of the experiments. Time, t, is 

the clock/current time of the simulation. The velocity of the drone is set to 

13 m/sec to mimic the DJI Spark drone available in the market [100]. 

Finally, the generated alarm MTCDs’ data are uniformly generated in 1 

second interval. 

TABLE 4.1 Default Traffic Profile and Parameters 

Category  Value  

Number of MTCDs (N) 5-10-15-20 

TBUDGET (min) 10-15 

TSR−PERIOD (m sec) 10 m sec 

𝑇3  7 m sec 

Packet Size (bits) 168 

Arrival Rate (pkts/s) 1 

Data Size/node (bits) 168 

Drone’s Velocity (m/sec) 13 

 

4.3 ACO Algorithm Performance Evaluation 

In this section, we first evaluate the ACO algorithm performance under 

two different sets of ACO-specific parameters. We refer to these 
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experiments as case 1 and case 2, respectively, where each case uses a 

given set of ACO parameters. 

 

The parameters used in the experiments for this case are as given in Table 

4.2. They are defined as follows. The parameter α is used for controlling 

the relative importance of pheromone. The parameter β is used for 

controlling the relative importance of the local heuristic factor η [101].  

 

TABLE 4.2 ACO Algorithm Simulation Parameters 

Parameter Value  

Max. number of iterations 500 

Number of Ants 10 

Pheromones evaporation Coefficient  0.5 

Trace effect (β) 4 

Effect of Ants’ sight (α) 1 

Elimination Cost 0.6 

Simulation Time (sec) 1 

 

We change some of the parameters in TABLE 4.2 to take values as 

specified in in TABLE 4.3 and measure the performance changes. 

Comparing cases 1 and 2 we get the results shown in Figures 4.1, 4.2, 4.3 

and 4.4 with 20 deployed MTCDs. We notice that the modified parameters 

(case 1) result in better performance for all the metrics.  According to [102] 

and [103] , β best range is from 3 to 5. In the second case we have increased 

β to 4 instead of 2 and we notice such a great improvement for all metrics. 

While the pheromone evaporation is mainly to prevent the unlimited 

increase of pheromone values and to provide the ant colony the ability to 

forget poor choices done previously [104]. So, we have chosen the 

evaporation coefficient to be equal to 0.5, as in [94] ,with equal probability 

to forget and remember the choices. The optimal value for the pheromones 

evaporation coefficient , as stated by [102], is around 0.6.  

 

Figures 4.1, 4.2, 4.3 and 4.4 show the DMR, PDR, cost and convergence 

speed between case 1 and 2. As we can see from these results that TABLE 
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4.2 parameters performed better than Table 4.3 ones. We will therefore 

proceed with these parameters in our further scenarios and experiments in 

the next sections.  

 

TABLE 4.3 ACO Algorithm Tuned Parameters 

Parameter Value  

Pheromones evaporation Coefficient 0.15 

Trace effect 2 

Effects of Ants’ sight  0.9 

Elimination cost  0.97 

 

 

Figure 4.1 ACO Algorithm DMR Case 1 and 2 Comparison 
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Figure 4.2 ACO Algorithm PDR Case 1 and 2 Comparison 

 

Figure 4.3 ACO Algorithm Cost Case 1 and 2 Comparison 
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Figure 4.4 ACO Algorithm Convergence Case 1 and 2 Comparison 

4.4 Scheduling Performance Evaluation  

In this section, we evaluate the performance of the scheduling aspect of 

the proposed technique under different operating conditions. For this 

purpose, we experiment with three different scenarios: 

1. Scenario 1: One data point per MTCD 

2. Scenario 2: Multiple generated data points 

3. Scenario 3: Receiving sudden requests while already in tour 

 

4.4.1 Scenario 1: One Data Point per MTCD  
In this scenario, we are trying to solve our optimization problem 

explained in chapter 3 section 3.2. Our metrics’ results collected for this 

scenario are shown in Figures 4.5, 4.6, 4.7 and 4.8.  

In Figure 4.5 The DMR is shown, as we can see the following,  
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1- The trend with respect to the area is as follows: As the area, where 

the MTCDs are uniformly distributed in, increases, the DMR 

performances degrades. 

2- As the number of nodes per certain area increases, the performance 

of DMR gets improved. 

These observations can be explained as follows,  

1- As the area increases, the chances of missing deadlines for a certain 

number of uniformly distributed MTCDs increases because of 

increasing the distances covered/flight time by the UAV. 

2- As the density of the MTCDs increases for a certain area, the 

MTCDs become closer to each other in such a way that missing 

their deadlines decreases. That is why we notice a considerably 

better performance when increasing the number of the MTCDs. 

In Figure 4.6 The PDR is shown, as we can see the following,  

1- As the area increases, the PDR performance deteriorates. 

2- The performance gets improved by increasing the number of 

MTCDs. 

These observations can be explained as follows,  

1- It is expected that the PDR performance would also decrease as per 

increasing the area, because of decreasing the DMR. We might 

think of them as inverse pair i.e. as increasing the DMR would 

affect the PDR to be degraded.  

In Figure 4.7 The total cost is shown, as we can see the following  

1- As the area increases, the total distant cost covered by the UAV 

increases. 

These observations can be explained as follows, 

1- As the nodes are being distributed in a larger area, an increase in 

the covered distance is expected. 
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2- As the number of nodes increases, the distance covered by the 

UAV is expected to increase.  

3- Increasing the total cost per area also verifies both DMR and PDR 

performance as the area increases. 

In Figure 4.8 The convergence of our proposed algorithm is shown, as we 

can see the following  

1- The number of iterations needed for our proposed algorithm to 

converge is slightly affected by the area. 

2- Increasing the number of MTCDs slightly increases the number of 

iterations needed. 

These observations can be explained as follows, 

1- As stated by [94], ACO has an efficient state transition rules which 

enables it to find the optimal path. This efficient approach helps 

reducing the number of iterations needed by the ACO to converge, 

in contrast to the GA as we will see in section 4.5.  

 
Figure 4.5 ACO Algorithm Scenario 1 DMR  
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Figure 4.6 ACO Algorithm Scenario 1 PDR 

 

Figure 4.7 ACO Algorithm Scenario 1 Cost  
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Figure 4.8 ACO Algorithm Scenario 1 Convergence 

 
4.4.2 Scenario 2: Multiple Generated Data 

 

The nodes’ transmission schedules have been already reported via the 

Buffer Status Report (BSRs) of the different nodes. BSRs include the 

amount of data queued in the buffers of devices [105]. In this case, the 

drone will collect all generated data by the node all at once, assuming the 

involved total transmission time is negligible compared to the travel/flying 

time. Best solution in this case is to flush the whole queue of the current 

node. Each MTCD generates different numbers of packets at different 

times, between the interval [0 1000] msec. The maximum of these number 

of arrivals times will be added to the total delay allowed for this MTCD.  

Our metrics’ results collected for this scenario are shown in Figures 4.9, 

4.10, 4.11 and 4.12.  

In Figure 4.9. The DMR is shown. Comparing this scenario’s DMR with 

scenario 1, we notice slight increase. Since the only difference between 
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this scenario and scenario 1 is the data size transmitted per node.  Here 

each node can generate more than 1 packet and the UAV collect them all 

at once.  

In Figure 4.10. The PDR is shown. Comparing it to the PDR plot in 

scenario 1, we would conclude that, both plots are very similar. A slight 

decrease, however, is noticeable.  

In Figure 4.11. The total cost plot is shown. It exhibits almost same cost 

appeared for varying the number of MTCDs and area size in scenario 1 

also. 

In Figure 4.12. The speed of convergence is illustrated. Comparing it with 

the pervious scenario, one would notice that convergence speed in this 

scenario almost remains the same.  

 
Figure 4.9 ACO Algorithm Scenario 2 DMR 



63 
 

 

Figure 4.10 ACO Algorithm Scenario 2 PDR  

 

Figure 4.11 ACO Algorithm Scenario 2 Cost  
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Figure 4.12 ACO Algorithm Scenario 2 Convergence  

4.4.3 Scenario 3: Receiving Sudden Requests While Already in Tour 
 

In this scenario, we address the case of nodes receiving sudden requests 

after the original tour path has been decided and already started by the 

drone. In this case, while the drone is carrying out the originally calculated 

tour, it gets information of the change of the sequence of MTCD 

communication requests that should be served. This information is supplied 

to the drone from a satellite link or a feedback channel. Therefore, it should 

abort the current tour, recalculate the new optimal tour of the new set of 

requests and then restart the new tour. It is expected that the costs will be a 

bit higher than if the whole set of requests was readily available from the 

beginning.  

Our metrics’ results collected for this scenario are shown in Figures 4.13, 

4.14, 4.15 and 4.16. The effect of serving sudden requests while executing 

the best tour chosen by our purposed algorithm, is obvious in the results of 

all the metrics compared to scenario 1 and 2 results.   
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In Figure 4.13 The DMR is shown. Comparing this scenario’s DMR with 

both scenarios 1 and 2, we notice the following: 

1- Having the number of MTCDs to be equal to 5, exhibits the 

worst/highest DMR.  

2- As the number of nodes increases beyond 10 MTCDs, the DMR 

performance improves. 

3- Increasing the area size degrades the DMR performance 

These observations can be explained as follows, 

1- Since the performance of the DMR was affected by the number of 

deployed MTCDs from scenario 1, it was expected that DMR would 

be negatively affected when random requests to be served.   

2- As the density of the MTCDs increases for a certain area, the MTCDs 

become closer to each other in such a way that missing their deadlines 

decreases. That is why we notice a better performance when 

increasing the number of the MTCDs. 

In Figure 4.14 The PDR is shown. As we have agreed that the DMR and 

PDR are inverse pair i.e. as increasing the DMR would affect the PDR to 

be degraded, it is quite expected that the PDR plot would look like that for 

the same reasons stated in scenario 1.  

In Figure 4.15 The total cost plot is shown. The total cost in this scenario 

was calculated to be higher than the previous scenarios as accounted for 

traveling to the suddenly requested MTCD node. Also, as the number of 

MTCDs increases, the total cost calculated would be much higher as the 

size of the area also increase.  

In Figure 4.16 The speed of convergence is illustrated. The speed of 

convergence in this scenario turned to be a bit higher than the previous 

ones, yet stable for the different number of MTCDs and the different area 

sizes. 
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Figure 4.13 ACO Algorithm Scenario 3 DMR 

 

 
Figure 4.14 ACO Algorithm PDR Scenario 3 
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Figure 4.15 ACO Algorithm Cost Scenario 3 

 

Figure 4.16 ACO Algorithm Convergence Scenario 3 
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4.5 Comparing the ACO Technique with a GA-Based 

Technique 

In this section, we compare the ACO based technique performance to that 

of a GA-based technique from the literature [106] using the same evaluation 

experiments and metrics. The GA algorithm’s specifications are given in 

TABLE 4.4. We have also applied the same exact scenarios done in the 

ACO algorithm to have a fair comparison. For the scenarios description, 

please refer to Section 4.4.  

TABLE 4.4 GA parameters 

Parameter Value 

Selection operator  Tournament Selection  

Crossover operator  Partially mapped crossover 

Mutation operator Reciprocal exchange mutation  

Probability of crossover  0.6 

Probability of mutation  0.05 

Population size 100 

Maximum number of generations  5000 
 

According to [84], [93] and [94], ACO performs faster in terms of speed 

of convergence and computational time. The reason behind this lies in the 

way GA initializes the population. It is based on random approaches. Using 

this random process, the algorithm requires to go through the process of 

selection to determine the optimal path [94]. This is mainly why the number 

of iterations needed for convergence is quite high as the number of nodes 

increases. 

Therefore, we would expect that our results using the GA would reflect 

the same conclusion reached by these studies.  

In our experiments, we compare the two techniques using 20 deployed 

MTCDs.  
4.5.1 GA Scenario 1: One Data Point per MTCD 

As we have discussed in the previous section 4.4, DMR and PDR can be 

through of as inverse pair. In this section, we will relate all four plots 

together and we will clarify the relation between them. So, first we will 

discuss the trend of each plot, then provide an analysis to all of them 

together.  

In Figure 4.17 The DMR is shown, as we can see the following,  
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1- The trend with respect to the area is as follows: As the area, where 

the MTCDs are uniformly distributed in, increases, the DMR 

performances degrades, for both ACO and GA cases. 

2- The difference between the GA and ACO DMR performance 

increases with increasing the deployment area. 

3- The GA exhibits a better performance than the ACO especially 

with decreasing the area.  

In Figure 4.18 The PDR is shown, as we can see the following,  

1- As the deployment area increases, the PDR performance 

deteriorates. 

2- The difference between the GA and ACO DMR performance 

increases with increasing the deployment area. 

In Figure 4.19 The cost is shown, as we can see the following,  

1- As the area increases, the total distant cost covered by the UAV 

increases. 

2- ACO and GA exhibit almost the same distance covered, however 

as the deployment area increases ACO has slightly less covered 

distance.  

In Figure 4.17 The convergence speed is shown, as we can see the 

following,  

1- The number of iterations needed for our ACO algorithm to 

converge is slightly affected by the area. 

2- The huge difference in the speed of convergence is obvious. GA 

needs thousands of iterations to converge.   

3- It is worth mentioning that the computational time for the ACO is 

almost 25 mins, however for the GA it is almost 50 hours.  

These observations can be explained as follows,  

1- As we have previously explained, when the area increases, the 

chances of missing deadlines for a certain number of uniformly 

distributed MTCDs increases because of increasing the distances 

covered/flight time by the UAV. And therefore, the PDR 

deteriorates.  
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2- As the nodes are being distributed in a larger area, an increase in 

the covered distance is expected. 

3- Increasing the total cost per area also verifies both DMR and PDR 

performance as the area increases. 

4- The distance covered by the GA shows that it does not follow the 

best solution as it has slightly higher cost than the ACO as the area 

increases. This might be the reason why the GA exhibits a better 

DMR and PDR performance.  

5- As presented by [94], [84] and [93], GA is slower in terms of 

convergence relative to the ACO. We also expect the number of 

iterations to be increased as the number of MTCDs increases. This 

gives the ACO algorithm a large advantage in terms of speed which 

is much needed in the real-time application at hand. 

6- There is an obvious tradeoff between the ACO and GA. The 

number of iterations and computational time needed for GA to 

reach good solution is quite large and exceeds that is needed for the 

ACO by 20 times. In addition, the DMR and PDR performances 

for both techniques are close if compared to the huge difference in 

the convergence speed.  

 
Figure 4.17 Comparison between GA and ACO algorithm in terms of 

DMR for Scenario 1 



71 
 

 
Figure 4.18 Comparison between GA and ACO algorithm in terms of 

PDR for Scenario 1 

 
Figure 4.19 Comparison between GA and ACO algorithm in terms of 

Cost for Scenario 1 
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Figure 4.20 Comparison between GA and ACO algorithm in terms of 

Speed of Convergence for Scenario 1 

4.5.2 GA Scenario 2: Multiple Generated Data 
Comparing this scenario’s results to scenario 1, we notice that it exhibits 

almost the same behaviors for all metrics. Having quite similar results for 

both scenarios 1 and 2 is also the case in our ACO algorithm.  

Our metrics’ results collected for this scenario are shown in Figures 4.21, 

4.22, 4.23 and 4.24.  

In Figure 4.21. The DMR is shown. Comparing this scenario’s DMR with 

scenario 1, we notice slight differences. Since the only difference between 

this scenario and scenario 1 is the data size transmitted per node.  Here 

each node can generate more than 1 packet and the UAV collect them all 

at once. The DMR performance slightly deteriorates than the previous 

scenario for both techniques.   

In Figure 4.22. The PDR is shown. Comparing it to the PDR plot in 

scenario 1, we would conclude that, both plots are very similar with a slight 

decrease in the performance.  

In Figure 4.23. The total cost plot is shown. It exhibits the same cost 

appeared for both the GA and ACO in scenario 1 also. 
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In Figure 4.24. The speed of convergence is illustrated. Comparing it with 

the pervious scenario, one would notice that convergence speed in this 

scenario almost remains the same for both techniques.   

 
 

Figure 4.21 Comparison between GA and ACO algorithm in terms of 

DMR for Scenario 2 

 
Figure 4.22 Comparison between GA and ACO algorithm in terms of 

PDR for Scenario 2 
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Figure 4.23 Comparison between GA and ACO algorithm in terms of 

Cost for Scenario 2 

 
Figure 4.24 Comparison between GA and ACO algorithm in terms of 

Speed of Convergence for Scenario 2 
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4.5.3 GA Scenario 3: Receiving Sudden Requests 

Our metrics’ results collected for this scenario are shown in Figures 4.25, 

4.26, 4.27 and 4.28. The effect of serving sudden requests while executing 

the best tour chosen by our purposed algorithm, is obvious in the results of 

all the metrics compared to scenario 1 and 2 results.   

In Figure 4.25. The DMR is shown. Comparing this scenario’s DMR with 

scenario 1 and/or 2, we notice slight differences in both techniques. Since 

the only difference is that we are now serving sudden request/s, we 

expected a degradation in the DMR performance.  

In Figure 4.26. The PDR is shown. Because of getting a degradation in the 

DMR performance, we notice a deterioration in the PDR performance as 

well. 

In Figure 4.27. The total cost plot is shown. The ACO calculated cost is 

expected to be higher than the previous scenarios as accounted for 

traveling to the suddenly requested MTCD node. The GA also has got a 

higher cost, however not higher than the ACO, which assures that the GA 

didn’t follow the best path. However, we can’t really judge the increase in 

the distance covered in this scenario as the random requests received might 

be unequal, so we can only judge if there’s an increase or not.  

In Figure 4.28. The speed of convergence is illustrated. Comparing it with 

the pervious scenario, one would notice that convergence speed in this 

scenario is a bit higher for both techniques.   
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Figure 4.25 Comparison between GA and ACO algorithm in terms of 

DMR for Scenario 3 

 

Figure 4.26 Comparison between GA and ACO algorithm in terms of 

PDR for Scenario 3 
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Figure 4.27 Comparison between GA and ACO algorithm in terms of 

Cost for Scenario 3 

 
 

Figure 4.28 Comparison between GA and ACO algorithm in terms of 

Convergence for Scenario 3 
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4.6 Chapter Summary 

 

In this chapter, we presented the evaluation results of simulating our ACO 

algorithm under different operating scenarios. We have also compared the 

ACO algorithm with a Genetic Algorithm (GA) from the literature.  

The ACO algorithm generally converges fast and offers good deadline 

missing and packet delivery performance that improve as the sparsity of the 

network decreases.  

We have also compared the ACO algorithm with a Genetic Algorithm 

(GA) from the literature. For the used dataset, GA performs better, however 

its convergence is slower than ACO. 

We also found the ACO algorithm to perform significantly better than the 

GA-base algorithm in terms of cost and convergence speed.  

The key differentiators of the ACO technique, based on these 

experiments, are the small number of iterations needed for convergence 

along with the total cost attained. This gives the ACO algorithm a large 

advantage in terms of speed which is much needed in the real-time 

application at hand. It is worth mentioning that the large speed advantage 

of the ACO algorithm does not come at the expense of the quality of the 

obtained solution (distance cost).  
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CHAPTER 5. CONCLUSION 

5.1 Thesis Summary  

 

Drones are increasingly used to provide communication services in areas 

out of reach of the terrestrial communication coverage. In this thesis, we 

gave an overview about drones along with their applications and 

challenges.  

We have investigated the use of drones with their different roles in 

communication services. For this reason, we have presented a novel 

classification of drone communications from a technological perspective. 

We have also presented a review about the marine environment, UAV-

marine environment communications, Machine-to-Machine (M2M) 

communications, UAV-Trajectory management and the traveling 

salesman problem (TSP) on which we base the drone trajectory planning 

and scheduling technique that we proposed in this research. 

We then studied the most suitable optimization scheme to use for optimal 

path planning for the purpose delivery of communication services by a 

flying drone-mounted base station. Then, we introduced a new technique 

to provide communication coverage by a flying base station-mounted 

drone to sparsely deployed MTCDs at sea. The technique is based on 

minimizing the distance covered by the drone, and hence its energy 

consumption, as it passes by the deployed MTCDs. This is done such that 

the MTCDs data deadline missing ratio is minimized. Since this is an NP-

hard problem, we used the Ant Colony Optimization (ACO) methodology 

as a basis for our solution. 

We validated the performance of the ACO technique along specific 

metrics and compared it to that of an existing GA-based solution.  

 

5.2 Future Work 

 

The work presented in this thesis can be further extended in the following 

directions:  

 



80 
 

• The problem formulation can be extended to include N number of 

clusters, which have many MTCDs in each. Interference among the 

different clusters will be a limiting factor that needs to be 

incorporated into the optimization problem in this case. 

• Multiple of drones can be deployed to serve massive MTCD 

deployments. The coordination and collision avoidance among the 

drones could also be another direction of extension.  

• Since drone height was not involved in our study, we may also include 

drone height optimization with the purpose of optimizing the energy 

consumed in communicating with deployed MTCDs  
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