336 research outputs found

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Local Binary Patterns in Focal-Plane Processing. Analysis and Applications

    Get PDF
    Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presentedSiirretty Doriast

    Robust and real-time hand detection and tracking in monocular video

    Get PDF
    In recent years, personal computing devices such as laptops, tablets and smartphones have become ubiquitous. Moreover, intelligent sensors are being integrated into many consumer devices such as eyeglasses, wristwatches and smart televisions. With the advent of touchscreen technology, a new human-computer interaction (HCI) paradigm arose that allows users to interface with their device in an intuitive manner. Using simple gestures, such as swipe or pinch movements, a touchscreen can be used to directly interact with a virtual environment. Nevertheless, touchscreens still form a physical barrier between the virtual interface and the real world. An increasingly popular field of research that tries to overcome this limitation, is video based gesture recognition, hand detection and hand tracking. Gesture based interaction allows the user to directly interact with the computer in a natural manner by exploring a virtual reality using nothing but his own body language. In this dissertation, we investigate how robust hand detection and tracking can be accomplished under real-time constraints. In the context of human-computer interaction, real-time is defined as both low latency and low complexity, such that a complete video frame can be processed before the next one becomes available. Furthermore, for practical applications, the algorithms should be robust to illumination changes, camera motion, and cluttered backgrounds in the scene. Finally, the system should be able to initialize automatically, and to detect and recover from tracking failure. We study a wide variety of existing algorithms, and propose significant improvements and novel methods to build a complete detection and tracking system that meets these requirements. Hand detection, hand tracking and hand segmentation are related yet technically different challenges. Whereas detection deals with finding an object in a static image, tracking considers temporal information and is used to track the position of an object over time, throughout a video sequence. Hand segmentation is the task of estimating the hand contour, thereby separating the object from its background. Detection of hands in individual video frames allows us to automatically initialize our tracking algorithm, and to detect and recover from tracking failure. Human hands are highly articulated objects, consisting of finger parts that are connected with joints. As a result, the appearance of a hand can vary greatly, depending on the assumed hand pose. Traditional detection algorithms often assume that the appearance of the object of interest can be described using a rigid model and therefore can not be used to robustly detect human hands. Therefore, we developed an algorithm that detects hands by exploiting their articulated nature. Instead of resorting to a template based approach, we probabilistically model the spatial relations between different hand parts, and the centroid of the hand. Detecting hand parts, such as fingertips, is much easier than detecting a complete hand. Based on our model of the spatial configuration of hand parts, the detected parts can be used to obtain an estimate of the complete hand's position. To comply with the real-time constraints, we developed techniques to speed-up the process by efficiently discarding unimportant information in the image. Experimental results show that our method is competitive with the state-of-the-art in object detection while providing a reduction in computational complexity with a factor 1 000. Furthermore, we showed that our algorithm can also be used to detect other articulated objects such as persons or animals and is therefore not restricted to the task of hand detection. Once a hand has been detected, a tracking algorithm can be used to continuously track its position in time. We developed a probabilistic tracking method that can cope with uncertainty caused by image noise, incorrect detections, changing illumination, and camera motion. Furthermore, our tracking system automatically determines the number of hands in the scene, and can cope with hands entering or leaving the video canvas. We introduced several novel techniques that greatly increase tracking robustness, and that can also be applied in other domains than hand tracking. To achieve real-time processing, we investigated several techniques to reduce the search space of the problem, and deliberately employ methods that are easily parallelized on modern hardware. Experimental results indicate that our methods outperform the state-of-the-art in hand tracking, while providing a much lower computational complexity. One of the methods used by our probabilistic tracking algorithm, is optical flow estimation. Optical flow is defined as a 2D vector field describing the apparent velocities of objects in a 3D scene, projected onto the image plane. Optical flow is known to be used by many insects and birds to visually track objects and to estimate their ego-motion. However, most optical flow estimation methods described in literature are either too slow to be used in real-time applications, or are not robust to illumination changes and fast motion. We therefore developed an optical flow algorithm that can cope with large displacements, and that is illumination independent. Furthermore, we introduce a regularization technique that ensures a smooth flow-field. This regularization scheme effectively reduces the number of noisy and incorrect flow-vector estimates, while maintaining the ability to handle motion discontinuities caused by object boundaries in the scene. The above methods are combined into a hand tracking framework which can be used for interactive applications in unconstrained environments. To demonstrate the possibilities of gesture based human-computer interaction, we developed a new type of computer display. This display is completely transparent, allowing multiple users to perform collaborative tasks while maintaining eye contact. Furthermore, our display produces an image that seems to float in thin air, such that users can touch the virtual image with their hands. This floating imaging display has been showcased on several national and international events and tradeshows. The research that is described in this dissertation has been evaluated thoroughly by comparing detection and tracking results with those obtained by state-of-the-art algorithms. These comparisons show that the proposed methods outperform most algorithms in terms of accuracy, while achieving a much lower computational complexity, resulting in a real-time implementation. Results are discussed in depth at the end of each chapter. This research further resulted in an international journal publication; a second journal paper that has been submitted and is under review at the time of writing this dissertation; nine international conference publications; a national conference publication; a commercial license agreement concerning the research results; two hardware prototypes of a new type of computer display; and a software demonstrator

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach

    Fine Art Pattern Extraction and Recognition

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open access journal Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/special issues/faper2020)

    Deep Learning for Detection and Segmentation in High-Content Microscopy Images

    Get PDF
    High-content microscopy led to many advances in biology and medicine. This fast emerging technology is transforming cell biology into a big data driven science. Computer vision methods are used to automate the analysis of microscopy image data. In recent years, deep learning became popular and had major success in computer vision. Most of the available methods are developed to process natural images. Compared to natural images, microscopy images pose domain specific challenges such as small training datasets, clustered objects, and class imbalance. In this thesis, new deep learning methods for object detection and cell segmentation in microscopy images are introduced. For particle detection in fluorescence microscopy images, a deep learning method based on a domain-adapted Deconvolution Network is presented. In addition, a method for mitotic cell detection in heterogeneous histopathology images is proposed, which combines a deep residual network with Hough voting. The method is used for grading of whole-slide histology images of breast carcinoma. Moreover, a method for both particle detection and cell detection based on object centroids is introduced, which is trainable end-to-end. It comprises a novel Centroid Proposal Network, a layer for ensembling detection hypotheses over image scales and anchors, an anchor regularization scheme which favours prior anchors over regressed locations, and an improved algorithm for Non-Maximum Suppression. Furthermore, a novel loss function based on Normalized Mutual Information is proposed which can cope with strong class imbalance and is derived within a Bayesian framework. For cell segmentation, a deep neural network with increased receptive field to capture rich semantic information is introduced. Moreover, a deep neural network which combines both paradigms of multi-scale feature aggregation of Convolutional Neural Networks and iterative refinement of Recurrent Neural Networks is proposed. To increase the robustness of the training and improve segmentation, a novel focal loss function is presented. In addition, a framework for black-box hyperparameter optimization for biomedical image analysis pipelines is proposed. The framework has a modular architecture that separates hyperparameter sampling and hyperparameter optimization. A visualization of the loss function based on infimum projections is suggested to obtain further insights into the optimization problem. Also, a transfer learning approach is presented, which uses only one color channel for pre-training and performs fine-tuning on more color channels. Furthermore, an approach for unsupervised domain adaptation for histopathological slides is presented. Finally, Galaxy Image Analysis is presented, a platform for web-based microscopy image analysis. Galaxy Image Analysis workflows for cell segmentation in cell cultures, particle detection in mice brain tissue, and MALDI/H&E image registration have been developed. The proposed methods were applied to challenging synthetic as well as real microscopy image data from various microscopy modalities. It turned out that the proposed methods yield state-of-the-art or improved results. The methods were benchmarked in international image analysis challenges and used in various cooperation projects with biomedical researchers

    Fruit Detection and Tree Segmentation for Yield Mapping in Orchards

    Get PDF
    Accurate information gathering and processing is critical for precision horticulture, as growers aim to optimise their farm management practices. An accurate inventory of the crop that details its spatial distribution along with health and maturity, can help farmers efficiently target processes such as chemical and fertiliser spraying, crop thinning, harvest management, labour planning and marketing. Growers have traditionally obtained this information by using manual sampling techniques, which tend to be labour intensive, spatially sparse, expensive, inaccurate and prone to subjective biases. Recent advances in sensing and automation for field robotics allow for key measurements to be made for individual plants throughout an orchard in a timely and accurate manner. Farmer operated machines or unmanned robotic platforms can be equipped with a range of sensors to capture a detailed representation over large areas. Robust and accurate data processing techniques are therefore required to extract high level information needed by the grower to support precision farming. This thesis focuses on yield mapping in orchards using image and light detection and ranging (LiDAR) data captured using an unmanned ground vehicle (UGV). The contribution is the framework and algorithmic components for orchard mapping and yield estimation that is applicable to different fruit types and orchard configurations. The framework includes detection of fruits in individual images and tracking them over subsequent frames. The fruit counts are then associated to individual trees, which are segmented from image and LiDAR data, resulting in a structured spatial representation of yield. The first contribution of this thesis is the development of a generic and robust fruit detection algorithm. Images captured in the outdoor environment are susceptible to highly variable external factors that lead to significant appearance variations. Specifically in orchards, variability is caused by changes in illumination, target pose, tree types, etc. The proposed techniques address these issues by using state-of-the-art feature learning approaches for image classification, while investigating the utility of orchard domain knowledge for fruit detection. Detection is performed using both pixel-wise classification of images followed instance segmentation, and bounding-box regression approaches. The experimental results illustrate the versatility of complex deep learning approaches over a multitude of fruit types. The second contribution of this thesis is a tree segmentation approach to detect the individual trees that serve as a standard unit for structured orchard information systems. The work focuses on trellised trees, which present unique challenges for segmentation algorithms due to their intertwined nature. LiDAR data are used to segment the trellis face, and to generate proposals for individual trees trunks. Additional trunk proposals are provided using pixel-wise classification of the image data. The multi-modal observations are fine-tuned by modelling trunk locations using a hidden semi-Markov model (HSMM), within which prior knowledge of tree spacing is incorporated. The final component of this thesis addresses the visual occlusion of fruit within geometrically complex canopies by using a multi-view detection and tracking approach. Single image fruit detections are tracked over a sequence of images, and associated to individual trees or farm rows, with the spatial distribution of the fruit counting forming a yield map over the farm. The results show the advantage of using multi-view imagery (instead of single view analysis) for fruit counting and yield mapping. This thesis includes extensive experimentation in almond, apple and mango orchards, with data captured by a UGV spanning a total of 5 hectares of farm area, over 30 km of vehicle traversal and more than 7,000 trees. The validation of the different processes is performed using manual annotations, which includes fruit and tree locations in image and LiDAR data respectively. Additional evaluation of yield mapping is performed by comparison against fruit counts on trees at the farm and counts made by the growers post-harvest. The framework developed in this thesis is demonstrated to be accurate compared to ground truth at all scales of the pipeline, including fruit detection and tree mapping, leading to accurate yield estimation, per tree and per row, for the different crops. Through the multitude of field experiments conducted over multiple seasons and years, the thesis presents key practical insights necessary for commercial development of an information gathering system in orchards
    • …
    corecore