Fruit Detection and Tree Segmentation for Yield Mapping in Orchards

Abstract

Accurate information gathering and processing is critical for precision horticulture, as growers aim to optimise their farm management practices. An accurate inventory of the crop that details its spatial distribution along with health and maturity, can help farmers efficiently target processes such as chemical and fertiliser spraying, crop thinning, harvest management, labour planning and marketing. Growers have traditionally obtained this information by using manual sampling techniques, which tend to be labour intensive, spatially sparse, expensive, inaccurate and prone to subjective biases. Recent advances in sensing and automation for field robotics allow for key measurements to be made for individual plants throughout an orchard in a timely and accurate manner. Farmer operated machines or unmanned robotic platforms can be equipped with a range of sensors to capture a detailed representation over large areas. Robust and accurate data processing techniques are therefore required to extract high level information needed by the grower to support precision farming. This thesis focuses on yield mapping in orchards using image and light detection and ranging (LiDAR) data captured using an unmanned ground vehicle (UGV). The contribution is the framework and algorithmic components for orchard mapping and yield estimation that is applicable to different fruit types and orchard configurations. The framework includes detection of fruits in individual images and tracking them over subsequent frames. The fruit counts are then associated to individual trees, which are segmented from image and LiDAR data, resulting in a structured spatial representation of yield. The first contribution of this thesis is the development of a generic and robust fruit detection algorithm. Images captured in the outdoor environment are susceptible to highly variable external factors that lead to significant appearance variations. Specifically in orchards, variability is caused by changes in illumination, target pose, tree types, etc. The proposed techniques address these issues by using state-of-the-art feature learning approaches for image classification, while investigating the utility of orchard domain knowledge for fruit detection. Detection is performed using both pixel-wise classification of images followed instance segmentation, and bounding-box regression approaches. The experimental results illustrate the versatility of complex deep learning approaches over a multitude of fruit types. The second contribution of this thesis is a tree segmentation approach to detect the individual trees that serve as a standard unit for structured orchard information systems. The work focuses on trellised trees, which present unique challenges for segmentation algorithms due to their intertwined nature. LiDAR data are used to segment the trellis face, and to generate proposals for individual trees trunks. Additional trunk proposals are provided using pixel-wise classification of the image data. The multi-modal observations are fine-tuned by modelling trunk locations using a hidden semi-Markov model (HSMM), within which prior knowledge of tree spacing is incorporated. The final component of this thesis addresses the visual occlusion of fruit within geometrically complex canopies by using a multi-view detection and tracking approach. Single image fruit detections are tracked over a sequence of images, and associated to individual trees or farm rows, with the spatial distribution of the fruit counting forming a yield map over the farm. The results show the advantage of using multi-view imagery (instead of single view analysis) for fruit counting and yield mapping. This thesis includes extensive experimentation in almond, apple and mango orchards, with data captured by a UGV spanning a total of 5 hectares of farm area, over 30 km of vehicle traversal and more than 7,000 trees. The validation of the different processes is performed using manual annotations, which includes fruit and tree locations in image and LiDAR data respectively. Additional evaluation of yield mapping is performed by comparison against fruit counts on trees at the farm and counts made by the growers post-harvest. The framework developed in this thesis is demonstrated to be accurate compared to ground truth at all scales of the pipeline, including fruit detection and tree mapping, leading to accurate yield estimation, per tree and per row, for the different crops. Through the multitude of field experiments conducted over multiple seasons and years, the thesis presents key practical insights necessary for commercial development of an information gathering system in orchards

    Similar works