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Nicolò Oreste Pinciroli Vago, Federico Milani, Piero Fraternali and Ricardo da Silva Torres

Comparing CAM Algorithms for the Identification of Salient Image Features in Iconography
Artwork Analysis
Reprinted from: J. Imaging 2021, 7, 106, doi:10.3390/jimaging7070106 . . . . . . . . . . . . . . . . 117

Mridul Ghosh, Sk Md Obaidullah, Francesco Gherardini and Maria Zdimalova

Classification of Geometric Forms in Mosaics Using Deep Neural Network
Reprinted from: J. Imaging 2021, 7, 149, doi:10.3390/jimaging7080149 . . . . . . . . . . . . . . . . 139

Tsegaye Misikir Tashu, Sakina Hajiyeva and Tomas Horvath

Multimodal Emotion Recognition from Art Using Sequential Co-Attention
Reprinted from: J. Imaging 2021, 7, 157, doi:10.3390/jimaging7080157 . . . . . . . . . . . . . . . . 151

Eva Cetinic

Towards Generating and Evaluating Iconographic Image Captions of Artworks
Reprinted from: J. Imaging 2021, 7, 123, doi:10.3390/jimaging7080123 . . . . . . . . . . . . . . . . 163

Yalemisew Abgaz, Renato Rocha Souza, Japesh Methuku, Gerda Koch and Amelie Dorn

A Methodology for Semantic Enrichment of Cultural Heritage Images Using Artificial
Intelligence Technologies
Reprinted from: J. Imaging 2021, 7, 121, doi:10.3390/jimaging7080121 . . . . . . . . . . . . . . . . 179

v



Aline Sindel, Thomas Klinke, Andreas Maier and Vincent Christlein

ChainLineNet: Deep-Learning-Based Segmentation and Parameterization of Chain Lines in
Historical Prints
Reprinted from: J. Imaging 2021, 7, 120, doi:10.3390/jimaging7070120 . . . . . . . . . . . . . . . . 201

vi



About the Editors

Fabio Bellavia is Assistant Professor at the Department of Math and Computer Science of

the University of Palermo. His research interests include computer vision and image processing,

focusing on local image detectors and descriptors, image matching, 3D reconstruction, image

mosaicing and stitching, color correction, and their applications to autonomous driving, forensic

science and cultural heritage. He actively collaborates with the CVG Lab of the University of Florence

he joined from 2012 to 2019 and, more recently, with the Center for Machine Perception of Czech

Technical University, Prague. His current position is founded by a European PON AIM project on

“Computational Methods for Cultural Heritage” and he is currently working on 3D reconstruction

applications for the preservation of archaeological sites in collaboration with the Parco Archeologico

e Paesaggistico della Valle dei Templi di Agrigento. He has co-authored several papers, which

appeared in both international journals and conferences, such as IEEE TPAMI, IJCV and IEEE TIP. He

is Associate Editor of IET Image Processing and serves as a reviewer for many international journals.

He is also part of the program committee of several international conferences.

Giovanna Castellano is Associate Professor at the Department of Computer Science of the

University of Bari and coordinator of the Computational Intelligence Laboratory. Her research

interests are in the area of computational intelligence and include fuzzy image processing and

computer vision, fuzzy systems, fuzzy clustering, image processing, image retrieval, neural

networks, neuro-fuzzy modeling, granular computing and recommender systems. She is co-author

of over 200 papers in peer-reviewed books, conference proceedings and international journals

covering the above topics. She is Associate Editor of Information Sciences, Evolving Systems and

International Journal of Intelligent Systems. She is member of the Program Committee of several

refereed conferences. She acts as a reviewer for several international scientific journals published by

high-rank publishers (Elsevier, IEEE, Springer) and for international conferences.

Gennaro Vessio is currently Assistant Professor at the Department of Computer Science of

the University of Bari. His position is currently founded by a European PON AIM project on

“Computational Methods for Cultural Heritage”. He is involved in the research activities of the

Computational Intelligence Laboratory, coordinated by Prof. Giovanna Castellano. His current

research interests include pattern recognition, machine and deep learning, and computer vision,

and their application to diverse domains, including biometrics, e-health and digital humanities.

He regularly serves as a reviewer for many international journals published by high-level publishers,

including Elsevier, IEEE and Springer, and as a member of the Program Committee of many

international conferences, such as SEKE.

vii





Journal of

Imaging

Editorial

Editorial for Special Issue “Fine Art Pattern Extraction
and Recognition”

Fabio Bellavia 1, Giovanna Castellano 2 and Gennaro Vessio 2,∗

��������	
�������

Citation: Bellavia, F.; Castellano, G.;

Vessio, G. Editorial for Special Issue

“Fine Art Pattern Extraction and

Recognition”. J. Imaging 2021, 7, 195.

https://doi.org/10.3390/

jimaging7100195

Received: 26 September 2021

Accepted: 26 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Math and Computer Science, University of Palermo, 90133 Palermo, Italy;
fabio.bellavia@unipa.it

2 Department of Computer Science, University of Bari, 70125 Bari, Italy; giovanna.castellano@uniba.it
* Correspondence: gennaro.vessio@uniba.it

Cultural heritage, especially the fine arts, plays an invaluable role in the cultural,
historical, and economic growth of our societies. Works of fine arts are primarily developed
for aesthetic purposes and are mainly expressed through painting, sculpture, and archi-
tecture. In recent years, owing to technological improvements and drastic cost reductions,
a large-scale digitization effort has been made, which has led to the increasing availability
of large, digitized fine art collections. Coupled with recent advances in pattern recognition
and computer vision, this availability has provided, especially researchers in these fields,
with new opportunities to assist the art community by using automatic tools to further
analyze and understand works of fine arts. Among other benefits, a deeper understanding
of the fine arts has the potential to make works more accessible to a wider population, both
in terms of fruition and creation, thus supporting the spread of culture.

The call for papers for the Special Issue “Fine Art Pattern Extraction and Recognition”
was opened to anyone wishing to present advancements in the state of the art, innovative
research, ongoing projects, and academic and industrial reports on the application of
visual pattern extraction and recognition, for a better understanding and fruition of works
of fine arts. The Special Issue solicited contributions from researchers in diverse areas
such as pattern recognition, computer vision, artificial intelligence, and image processing.
Furthermore, we also solicited the submission of papers as an extension of the works
presented at the homonymous workshop we organized at the 25th International Conference
on Pattern Recognition [1].

The Special Issue received several submissions, which underwent a rigorous peer
review process. After the review process, 11 articles were selected based on the ratings and
comments. The published articles cover various applications of cultural heritage and digital
humanities research; focus on different branches fine arts such as painting, architecture,
and photography; and develop and apply a range of techniques, from image processing to
computer vision, based on handcrafted features and deep learning.

Artworks are subject to alterations over time due to various factors such as natural
aging, external agents, inadequate conservation treatments, etc. Hence, techniques for
monitoring, preserving, and restoring cultural heritage artifacts have become crucial. To
this end, Daffara and Marini [2] present a non-destructive examination tool based on laser
interferometry that uses laser speckle imaging for the effective mapping of subsurface
defects in paintings. The system has been designed to be flexible, able to optimize its
performance through an easy parameter adjustment. Trombini et al. [3] focused instead
on the analysis and identification of color pigments using a digital camera, which served
as a non-invasive, inexpensive, and portable tool for studying large surfaces. In their
contribution, they propose a new supervised approach to camera characterization and
color correction based on clustered data in which pigments are grouped based on their
color or chemical properties. Fanfani et al. [4] focused on the restoration of historical
photos, which offer valuable information and is an important source for art historians as
they allow them to keep track of the changes that have occurred in a community and its
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living environment over time. To this end, they present a fully automatic method for the
digital restoration of historical stereo photos, which exploits the redundancy of the content
in stereo pairs to detect and correct defects in the original images while improving contrast
and illumination. Amura et al. [5] focused on graphic documentation, which refers to the
systematic collection of information derived from diagnostic investigation as well as the
restoration and monitoring processes. To facilitate and improve this investigation, and
to drastically reduce manual interventions, they propose a semi-automatic methodology
aimed at generating an objective and accurate graphic documentation to plan restoration,
monitoring, and conservation interventions.

In their contribution, Banfi and Mandelli [6] exploited computer vision in combination
with drone photogrammetry to develop a digital model of the Arco della Pace monument in
Milan for augmented reality applications. The proposed method can improve interactivity
and the sharing of information between users and digital heritage models, as well as the
accessibility of details that would not be visible from the ground (especially the sculpture
that crowns the top of the building).

Other contributions have addressed the problem of high-level semantic analysis
and the interpretation of artworks. With the advent of digitized art collections, such an
analysis has acquired increasing importance as a means of providing new information
within digital art image repositories, supporting both enthusiasts and experts in finding
and comparing artworks. To this end, computer vision techniques are good candidates
to aid in the automatic categorization and retrieval of artworks. Following this line of
research, Pinciroli Vago et al. [7] experimentally compare several Class Activation Map
techniques, which emphasize the areas of an image that contribute the most to the final
classification performed by a convolutional neural network. This effort represents a step
towards the creation of a computerized tool that is capable of highlighting variations in
the positioning of iconographic elements, particularly for the detection of iconographic
symbols in art images. Ghosh et al. [8] also focused on fine art classification, specifically
proposing a method based on deep learning to classify geometric forms such as triangles
and squares in mosaics. As a case study, a Roman mosaic is considered, which is digitally
reconstructed by close-range photogrammetry based on standard photos. On the other
hand, Tashu et al. [9] propose a multi-modal neural network based on sequential co-
attention to classify artworks according to the emotions aroused in the observer. Emotion
recognition in artworks is relevant as it can be used not only to group artworks, but also
to provide recommendations that accentuate or balance a particular mood, or to find
artworks of a specific style or genre that describe user-defined content in a user-defined
affecting state. In her contribution, Cetinic [10] investigated the challenging problem of
artwork captioning, which is the automatic generation of accurate and meaningful textual
descriptions of artworks. To address this issue, she presents a captioning system developed
by fine-tuning a transformer-based visual-language model. The results obtained suggest
that it is possible to generate iconographically significant captions that capture not only the
objects depicted, but also the historical and artistic context of an artwork. Abgaz et al. [11]
also focused on the semantic enrichment of digitized cultural images and introduce a
methodology for fully exploiting latent cultural information that is communicated visually
by applying a combination of computer vision and semantic web technologies. A case
study on food images is presented.

To support art historical research, Sindel et al. [12] did not focus on high-level concepts
but on the distance measurement of the chain lines in historical prints, which constitute a
sort of unique “fingerprint” of their paper structure. Since this process is typically manual,
they propose an end-to-end trainable model based on a conditional generative adversarial
network that performs line segmentation and parameterization in a multitask fashion.

We express our sincere gratitude to the authors for their contributions, to the reviewers
for their efforts in reviewing the manuscripts, and to the editorial staff of the MDPI Journal
of Imaging for their endless support in making this Special Issue possible. We hope it will
benefit the scientific community and increase interest in this exciting area of research.
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Abstract: Artworks have a layered structure subjected to alterations caused by various factors.
The monitoring of defects at sub-millimeter scale may be performed by laser interferometric
techniques. The aim of this work was to develop a compact system to perform laser speckle imaging in
situ for effective mapping of subsurface defects in paintings. The device was designed to be versatile
with the possibility of optimizing the performance by easy parameters adjustment. The system
exploits a laser speckle pattern generated through an optical diffuser and projected onto the artworks
and image correlation techniques for the analysis of the speckle intensity pattern. A protocol for the
optimal measurement was suggested, based on calibration curves for tuning the mean speckle size
in the acquired intensity pattern. The system was validated in the analysis of detachments in an
ancient painting model using a short pulse thermal stimulus to induce a surface deformation field
and standard decorrelation algorithms for speckle pattern matching. The device is equipped with
a compact thermal camera for preventing any overheating effects during the phase of the stimulus.
The developed system represents a valuable nondestructive tool for artwork diagnostics, allowing the
monitoring of subsurface defects in paintings in out-of-laboratory environment.

Keywords: laser speckle imaging; speckle pattern; digital image correlation; nondestructive
technique; artwork diagnostics; cultural heritage; portable system

1. Introduction

Artworks are subjected to structural alterations induced by various factors such as aging,
microclimatic conditions and conservation treatments. In particular, ancient paintings present
a complex layered structure that is susceptible to surface and subsurface decay, such as cracks,
delaminations and detachments. The monitoring of such “defects” at small scale (sub-millimeter) is
one of the objectives of nondestructive testing techniques applied to the conservation field [1,2].

Holographic interferometry [3] is a powerful technique that allows the detection of surface
displacements with sub-micrometric accuracy. It is non-contact and non-invasive, highly sensitive and
wide-field. Moreover, algorithms for processing image data are available, allowing fast and quantitative
nondestructive analysis of structural modifications of the object in real-time [4]. The drawback of
interferometry, generally speaking, is its sensitivity to external vibrations, which makes achieving
the optimal measurement conditions without controlled laboratory settings difficult. This issue and
the requirement of optics-skilled operators represent the major obstacle for a widespread use of such
technique in the routine diagnostics of artworks. More flexible interferometry-based techniques are
represented by the speckle-based methods [5], such as Electronic Speckle Pattern Interferometry (ESPI)
and Speckle Pattern Photography (SPP) [6,7].

J. Imaging 2020, 6, 119; doi:10.3390/jimaging6110119 www.mdpi.com/journal/jimaging5
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The effectiveness of holographic interferometry and speckle-based techniques for the analysis of
artworks is well demonstrated, as reviewed in [8–13]. The applications include the structural evaluation
of restoration processes (such as consolidation, cleaning or protective treatments), the detection of
alterations induced by aging (such as cracks or subsurface defects) and the real-time monitoring of
deformation due to microclimate variations [14–17]. As the nature of many artifacts makes their
transport to a dedicated facility not possible, many research efforts are addressing the problem of in
situ diagnostics with portable speckle-based techniques [14,18–26].

The speckle effect arises from the interaction of a coherent radiation with a random structure, as is
the case of reflection from a rough diffusing surface or transmission across a diffusive medium [27],
leading to an observed intensity pattern with a typical granular appearance, resulting from the
multi-interference of the dephased waves at microscopic scale. In particular, any deformation of the
surface micro-morphology turns into a modification of the corresponding anchored speckle pattern,
down to displacements in the order of multiples of the radiation wavelength [6].

Subsurface defects in artworks, such as a lack of adhesion among the constitutive layers,
can be detected by inducing an opportune thermal stress. In correspondence of the detachment,
the heat dispersion rate slows down the return to equilibrium causing an irregular deformation field,
observed at surface level.

Speckle metrology, in short, allows measuring the object deformations by acquiring and analyzing
a sequence of speckle patterns. The ESPI technique is based on a two-beam configuration similar
to holographic interferometry (as such, it is highly sensitive, up to sub-micron scale) and has found
advantageous applications in the conservation field [8,13,15,28–30]. The SPP technique, conversely,
is performed without the reference beam, by acquiring the speckle intensity pattern generated by the
object beam alone. By correlation analyses of speckle images acquired from the object in different states,
for example before and after a thermal stimulus, the deformation field can be obtained. SPP is especially
sensitive to in-plane displacement components and local tilting [6], down to tenth micrometers. For a
full characterization of the displacement field, speckle imaging and speckle shear interferometry can be
integrated in a single device [19]. Despite the lower sensitivity with respect to ESPI, the SPP technique
has the advantage of simpler setup, acquisition procedure and stability requirements. Speckle image
decorrelation was demonstrated effective in detecting defects on wooden paintings, frescoes and
mosaics, also in comparison with ESPI, as documented in early work [18,31,32].

While speckle diagnostics on interferometry basis with portable ESPI setup is being largely
reported in the above-mentioned literature, it seems that less interest has been given to speckle
imaging-based methods and SPP setup in the specific field of artwork diagnostics. Some recent works
are concerned with laser speckle imaging for the dynamic analysis of material processing in restoration
(drying and solvent actions [14,26]).

The aim of our work was the development of an effective, portable and compact system for
performing speckle correlation imaging on artworks in situ. The system exploits an indirect speckle
pattern projected onto the painting instead of the (more usual) speckle pattern generated by the surface.
The paper is focused on the instrumentation and optimal performance setup and presents a validation
of the measurement protocol on a layered painting sample to demonstrate that the developed system
is well dimensioned and that it is effective in the analysis of subsurface defects.

2. Material and Methods

2.1. An Effective System for Speckle Pattern Correlation Imaging of Artworks

This paper presents an effective system for laser speckle imaging of artworks. The following key
features have driven the design of the system:

• the hardware device should be compact and portable, with a versatile setup configuration,
for performing measurements in out-of-lab environments;

6
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• the overall measurement process should be completely noninvasive, with any effect potentially
harmful to the artwork (namely, the heating) under control;

• the sensitivity performance should be versatile, tailorable to the specific diagnostics by easy
parameters adjustment;

• a measurement protocol should be defined, and, ideally, the workflow should be as simple as
possible also for operators with non-optics (interferometry) skills; and

• the hardware and the software should be commercially available and cost-effective, with the
advantage of a system eventually at disposal of a wider conservation science community.

The designed system is shown in Figure 1. The setup is composed of the modules for generating,
acquiring and processing the laser speckle pattern; the thermography module; and an external heating
module. The modular design allows the fine adjustment of the components without affecting the
alignment of non-involved parts. The laser source, thermal camera and photographic camera are
fixed on a 10 × 30 cm optical breadboard and can be easily accessed and moved independently of one
another. The system is compact and portable for in situ diagnostics: the total weight is about 3 kg and
the optical breadboard can be easily mounted on a stiff photographic tripod. Of course, the setup with
the acquisition camera positioned in free-standing, in a separate tripod, is possible.

(a) (b)

Figure 1. (a) Setup scheme. LH, laser head; MO, microscope objective; GGD, ground glass diffuser;
OC, optical camera; TC, thermal camera. Approximate total weight: 3 kg. The supporting breadboard
can be mounted on a stiff photographic tripod. (b) Picture of the device.

The laser speckle-generator module includes:

• a DPSS laser source, 532 nm, 125 W power-controlled (RGB lasersystem);
• a microscope objective, serving as beam expander for a wide field of illumination (up to 1 m2) of

the artwork; and
• an optical thin diffuser placed after the objective microscope and mounted on a stage to control

the focused laser spot (as motivated later).

The speckle image acquisition module includes:

• a commercial high-resolution photographic camera able to image the speckle pattern (in this
work we tested two CMOS cameras: Nikon D810 (7360 × 4912 pixel) coupled to a 50 mm lens
with aperture f /9–11, controlled by the opensource software digiCamControl (Version 2.1.2) and
Canon EOS 760D (6000 × 4000 pixel) coupled to a 18–55 mm zoom lens with aperture f /3.5–22,
controlled by the smartphone app Camera Connect); and

• optical filters, with, optionally, a narrow-band filter for matching the laser wavelength and a
linear polarizer for cleaning the speckle pattern.

The speckle image correlation module includes:

7
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• software based on digital image correlation (DIC) for speckle pattern matching (in this
work, we tested two standard methods, discussed below: a speckle decorrelation algorithm,
used in cultural heritage applications [18], and a particle image velocimetry software,
MatPIV (Version 1.7) [33], available as Matlab toolbox (Version R2014b))

The thermography module includes:

• a bolometer-based thermal camera (FLIR C2, 80 × 60 sensor in the infrared range 7.5 μm to 14 μm
with thermal sensitivity <0.10 °C), mounted next to the camera, for monitoring the effects of the
thermal stimulus; and

• software (ResearchIR (Version 4.40.7.26)) for acquisition of radiometric thermal sequence in
real-time.

The external heating module includes:

• a set of 750 W quartz tungsten infrared elements to apply a controlled step-heating pulse to the
artwork, if the thermal stimulus is necessary; and

• a relay and a Theremino module to interface the lamps to the computer. It is important to shutter
the lamps at the end of the stimulus, to avoid residual heating from the switch-off transient effect.

The system can be configured in two working modes: the indirect mode, in which the speckle
pattern is generated by the diffuser in transmission geometry and projected on the artwork, and the
direct mode, without the diffuser, in which the speckle pattern is generated in reflection geometry by
the artwork surface (Figure 2).

Figure 2. Schematic setup in direct and indirect configuration. LS, laser source; MO, microscopic
objective; D, diffuser; S, surface; DP, diffuser speckle pattern; SP, surface speckle pattern.

2.2. Setup Characterization Tests

Tailoring a speckle-based imaging application to the heritage field requires a thorough control
of the setup as well as fine parameters tuning. The first laboratory tests were carried out to verify
the suitability of the components in the main speckle-generator module: the laser source (effective
output wavelength and wavelength variations with output power, beam divergence and polarization);
the beam expander (suitability of microscopic objectives, with respect to transmission and expansion);
the diffuser element (quality of the pattern, mainly with respect to transmission and diffusion level
and intensity distribution, of different optical diffusers, from fine to coarse scattering).

The laser module was verified to produce a coherent, polarized and monochromatic beam. In the
indirect configuration, a 10× microscopic objective (Olympus Plan Achromat (RMS10X)) coupled
to the diffuser was able to provide a highly expanded beam (field of illumination of ∼1 m2 at 1 m
distance), while higher magnification was needed in the direct configuration without the diffuser.
Among the optical diffusers (Thorlabs N-BK7 Ground Glass; 120, 220, 600 and 1500 grit polishes),
the finer grain was chosen for reducing the contribution from the zero-order beam, i.e., the component
not diffracted away from the optical axis, preserving most of its energy and not properly diffused.
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To address the problem of vibrations, the mirror-up mode of the camera must be enabled to
avoid the blurring caused by the movement of the reflex mirror. Furthermore, the camera electronic
front-curtain shutter could be employed instead of the mechanical one. In this regard, some tests were
conducted, showing significantly reduced noise thanks to this simple expedient.

2.3. Motivation for the Thermography Module

Prolonged exposure to direct laser radiation during the measuring process could be harmful
to delicate artifacts, in as far as it causes uncontrolled temperature rising. The thermal effect is
mainly due to the directionality of the collimated laser beam and is reduced by the presence of the
ground glass diffuser. Anyway, when applying the speckle technique to the analysis of subsurface
defects, an external thermal solicitation is necessary for stressing the sample and inducing the
displacement field. Following the request of the conservation scientists, to prevent any overheating
effects in non-homogeneous artwork materials, we planned to acquire the artwork surface with a
thermal camera, in continuous way, for the whole measuring session, thus allowing the temperature
gradients to be monitored in real time. Beside monitoring the overheating, the thermal camera allows
controlling the quality of the thermal stimulus during the excitation phase, i.e., that the infrared
sources provide uniform and full-field irradiation and that the switch-off transient effect is effectively
blocked (shuttering). The thermal load is quantified through a measurement of the raise of the surface
temperature. Speckle methods were demonstrated on paintings using a weak thermal solicitation,
with ΔT not exceeding few degrees [10,29,31,32].

The FLIR C2 mounted in the system is a low-cost compact thermal camera, recently available in
the market, with access to the radiometric data; the small-size of the sensor is not a limiting factor to
our application as this camera also acquires a visible image superimposed to the thermal one.

2.4. Performance Analysis

Since the laser source is characterized by high spatial and temporal coherence, the pattern
originated from (direct configuration) or projected onto (indirect configuration) the surface is very
stable in time and thus provides a valid “fingerprint” of the object. On the one hand, the speckle
pattern is generated from the surface asperities at microscopic scale; as such, it is intrinsic to the
surface itself. On the other hand, the speckle pattern is generated by the diffuser, which is a stationary
random medium, and then projected onto the object, where, again, multi-interference at wavelength
scale occurs and a “speckled-speckle” [27] pattern is formed. In principle, both the direct and the
indirect configuration can be used for probing the structure of the surface and its deformation in
time at micrometric scale. However, the pattern generated by the surface in the direct configuration
(without the diffuser) is expected to have finer granularity than the projected one, thus be more difficult
to handle.

Coming to the application of artworks analysis in situ, some considerations are needed concerning
the specific focus of the diagnostics, the most important one, if the investigation is aimed at detecting
surface defects or subsurface defects. Even if a rigid classification is not possible when dealing with
artworks, by surface defects, we mean those related to a degradation of the surface texture, e.g.,
abrasion and painting craquelure, while, by subsurface defects, we mean those related to material
inhomogeneities in the deeper structure, e.g., detachments in the painting or in the plaster layer,
voids and fillings. Mapping surface defects thus necessarily requires the speckle pattern to carry
intrinsic information from the surface. The presence of subsurface defects, instead, may be detected in
extrinsic way from the relative displacement field of the surface as response to a stimulus. In this case,
both the direct surface speckle pattern and the indirect projected speckle pattern can be effectively
used. The point is that, strictly speaking, when the projected speckle pattern of the diffuser is used,
there is, always, also a secondary speckle pattern produced by the surface.

The main two aspects which we are interested in are concerned with the morphology of the
pattern, namely the extent of the granularity, and with the contrast of the intensity pattern.
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2.4.1. Sensitivity (Single Speckle Size)

The lower limit to the magnitude of the displacement that can be measured with the proposed
setup is primarily determined by the mean speckle size, which in turn depends on the optical (lens
aperture) and geometrical (distances) parameters of the setup. Following Goodman [34], the mean
speckle size describes the extent of the spatial correlation of the speckle pattern and can be estimated as
width of the autocorrelation function of the intensity at the observation plane. The pattern originated
by the diffuser and projected on the artwork can be treated as “objective” speckles in free space (far
field), in which the theoretical speckle size is given by [34]

sobj ≈ λz
D

(1)

where λ is the laser wavelength, z is the object-to-viewing plane distance and D is the diameter of the
region of the diffracting object (diffuser) illuminated by the laser.

Concerning the secondary speckle pattern originated at the artwork surface plane, we have that
the speckled-speckle field, after propagating in free-space, is imaged by the camera, therefore it turns
into the so-called “subjective” speckle, whose final size is determined by the lens aperture [34]

ssubj ≈ λv
a

(2)

where v is now the lens-to-image plane distance and a is the aperture diameter of the lens of the
imaging system.

If the system is used without the diffuser, in the direct configuration, a single pattern is formed
from the rough surface of the artwork and then imaged by the camera, as subjective speckle, with the
speckle size thus determined again by Equation (2).

Generally speaking, for the aim of artworks’ diagnostics, the speckle size should vary in the
range 100 μm to 700 μm to ensure a good sensitivity. The setup is designed to allow a fine tuning of
the projected speckle size by adjusting the working distance of the microscope objective that focuses
the laser spot on the diffuser, thus controlling the parameter D (see the setup scheme in Figure 3).
The projected pattern is then reflected by the surface and imaged by the camera, so the diffuser speckles’
size changes according to the magnification factor of the camera lens.

Figure 3. Setup scheme with the adjusting parameters: diffuser-to-object distance z; laser spot D
(through the microscope working distance d); camera working distance z′; and lens aperture a.

It should be remarked that the above formulas for the mean speckle size are obtained under the
common assumption that the speckle intensity displays negative exponential statistics [27]. The actual
resolution of the whole apparatus depends on the entire optical chain (mainly, effects from camera
detector integration and pixel sampling, partial depolarization of the scattered light, and non-uniform
reflective surface). For this reason, having complete control on the size of the generated speckles,
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through an optimal parameters-tuning protocol, is fundamental for successive interpretation of the
data. In this regard further studies are needed in order to get the full picture on how to originate
patterns with specific, desired features by acting on the various parameters of the optical chain.

In Figure 4, we show the appearance of the projected and secondary patterns and their
superposition resulting at the camera observation plane. The simulations of the objective diffuser
pattern and the subjective surface pattern were performed following the authors of [35,36].

(a) (b)

(c) (d)

Figure 4. Speckle pattern simulations: (a) diffuser pattern at the surface plane; (b) surface secondary
pattern; (c) superposition of the patterns as resulting after the reflection by the surface; and (d)
zoom view.

2.4.2. Optimization of Projected and Secondary Speckle Sizes

As explained above, the projected speckle pattern works as a kind of (random) structured light
that is simply reflected by the artwork surface, which in turn generates its own speckle pattern.
The resulting pattern observed through the camera of our setup appears as the superposition of
two contributions: the indirect diffuser-generated pattern and the secondary surface-generated one
(Figure 4c,d). Since the former is ultimately imaged after the reflection by the surface, the final ratio r
between indirect speckles’ size (taking into account the magnification of the lens in Equation (1)) and
secondary speckles’ size (Equation (2)) is independent of v:

r ≈ z
z′

a
D

(3)

In this work, we focus on the detection of subsurface defects by exploiting the information
carried by the projected pattern. To this aim, we have to adjust the parameters of the setup so as to

11



J. Imaging 2020, 6, 119

optimize the size of the diffuser speckles (the ones we are interested in) with respect to the surface
ones. This way, we should minimize the information about the surface fine structure encoded in the
acquired pattern while enhancing the signal related to the displacement field.

To aid the setting of the system, the behavior of the ratio r and its dependence on optical and
distance parameters can be conveniently plotted and employed as indicative calibration curves.
The following two practical situations are considered.

1. In the first case, as depicted in Figure 5a, we observe that, once the size of the projected speckles
(D and z in Equation (1)) has been chosen and an adequate pixel size has been set through z′ to
detect them, we only need to move a to regulate the ratio r, which varies linearly. A greater value
of D would cause the family of curves to shift downward, while the opposite effect would arise
from a decrease in the fixed value of D.

2. The second case, as depicted in Figure 5b, shows how we can change the ratio between the
two patterns by adjusting D and without changing the pixel size (since z′ is fixed, the camera
field of view (FOV) does not change). This way, we can increase or decrease (in the limit of
the resolution allowed by the fixed pixel size) the size of the projected speckles with respect
to that of the secondary surface speckles, acting only on the diffuser speckles’ size. This is
motivated by the fact that, once the field of illumination is chosen through the choice of z and
the pixel size is determined through z′, the value of the relative speckle size of the two patterns
can be varied arbitrary through the choice of D and it decreases hyperbolically as D increases.
Increasing (respectively decreasing) the value of a would shift the family of curves upward
(respectively, downward).

(a) (b)

Figure 5. Calibration curves for the diffuser-over-surface speckles’ size ratio r for various values of
z/z′. (a) Fixing the laser spot D and moving the lens aperture a. On the bottom axis is the absolute lens
aperture values and on the top axis is the f-stop values, f /#, which can be directly chosen from the
camera, given for the case of the 50mm lens. (b) Fixing the lens aperture a and moving the laser spot
D. Red lines indicate the setup of the validation experiment (z = z′) described in Section 3: for f =

50 mm, r = 6.25 is achieved with f-number f /8.

2.5. Optimal Measurement Workflow

The above analysis suggests the following practical workflow for an optimal tuning of the setup
parameters in the measurement session.

1. Identify the area to be inspected on the artwork surface. This will determine the field of
illumination.
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2. Set the diffuser-to-object distance z so as the diffuser projects the laser beam to uniformly cover the
chosen area. According to Equation (1), the wider we make the field of illumination, by increasing
z, the larger will result the projected speckles.

3. Set the laser spot D so that the diffuser-generated speckles have the desired size at the surface
plane. This can be done by changing the distance d between objective and diffuser in the setup;
D can be increased and tuned at will (up to diffuser diameter) to adjust the speckle size.

4. Set the camera-to-object distance z′ to adjust the FOV and the pixel size. Decreasing z′ will shrink
the camera FOV increasing the resolution. In particular, the value of z′ should allow to resolve
details up to the order of the projected speckles’ size. More specifically, according to the Nyquist
criterion, a pixel size should be such that there are at least two pixels per speckle, being the
speckles’ size calculated on the basis of the needed diagnostic resolution.

5. The ratio of distances z/z′ can be fixed as required by the out-of-lab condition, e.g., a museum
environment, and the indirect to direct speckles’ size ratio r can be controlled through the
laser spot D, or through the lens aperture a, following the calibration curves, respectively,
in Figure 5a,b.

6. In the case of environment with limited or restricted spaces, for example in presence of scaffolding,
the compact system configuration with camera and laser mounted in the same optical breadboard
can be employed, corresponding to z/z′ ≈ 1.

2.6. Speckle Image Correlation Analysis

As mentioned above, the data processing relies on two standard algorithms for pattern matching
adapted to the SPP technique; the core of them is a local correlation principle. The first one,
the speckle correlation (SC) algorithm [18], takes as input the intensity patterns acquired before
and after the thermal stimulus and returns a correlation map where bright areas represent regions
of high decorrelation, associated to anomalous in-plane displacements, while dark areas indicate
regions where the pattern was almost unperturbed. The second one, MatPIV [33], is a particle image
velocimetry tool, employed for the reconstruction of the surface average displacement field after
the stimulus.

Briefly, the first algorithm works as follows: the speckle pattern acquired after the stimulus,
Imod(x, y), is subtracted from the one acquired before, Iref(x, y), and then the difference is squared
and averaged over an area containing many speckles, giving:

Q(x, y) = 〈[Iref(x, y)− Imod(x, y)]2〉 (4)

Under the assumptions of equal average intensities for the two patterns (due to stationarity),
〈Ire f (x, y)〉 = 〈Imod(x, y)〉 = 〈I(x, y)〉, and of negative exponential distribution for the acquired
intensity patterns (fully developed speckle assumption),

ρc(x, y) =
Q(x, y)
〈I2(x, y)〉 (5)

is the complement-to-one of the (local) correlation coefficient ρ(x, y) of the intensity values measured
at a point (x, y) of the two specklegrams, defined as the normalized (local) correlation function
of the two patterns. The SC algorithm computes ρc(x, y) and plots it as a correlation map for the
two specklegrams.

In practice, the calculation of the complement-to-one of the correlation coefficient was performed
through a discrete convolution of the image matrix with a small matrix (kernel), which performs an
average in the neighborhoods of image points, as suggested in similar works [18].

As regards the MatPIV software, both the acquired patterns are divided into corresponding
sub-regions Ii,j

ref and Ii,j
mod and, for each pair, the components (u, v) of their relative in-plane

displacement are estimated by minimizing the cross-correlation between Ii,j
ref and Ii,j

mod. After an
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average displacement is associated to each pair of corresponding sub-regions, the final result comes
from the juxtaposition of such local displacement fields. Local deformations of the surface are thus
mapped as local irregularities in the direction or in the intensity of the average displacement field,
in the same regions where the correlation between the two images was dropping before.

3. Results

The goal of this work was to propose an effective system for laser speckle pattern imaging
(traditionally known as speckle photography) of artworks. Therefore, the developed prototype and the
proposed optimal measurement protocol were validated in a typical context of artwork diagnostics by
carrying out the experiment on a model of ancient painting with known hidden defects. The sample
has the typical stratigraphy of Renaissance paintings and was prepared from the original receipts on
materials and execution technique of The Book of the Art by Cennino Cennini [37], an Italian ancient
treatise on paintings. A detailed description of the sample is given in Appendix A. The structural
subsurface defects were modeled by inserting materials to break layer adhesion at various levels of the
painting stratigraphy and in different positions, as shown in Figure A1.

The system was used in the compact configuration, with the modules mounted in the same
breadboard, and in indirect mode, i.e., projecting the speckle pattern on the painting surface. The two
photographic cameras with fixed-focus and zoom lens, as described above, were tested. A working
distance of 50 cm with a laser power of 60 mW was set to have a field of illumination of ≈40 cm
diameter with a good quality projected speckle pattern, well matched to the FOV of the Canon
camera at resolution of 40 μm (pixel size at object plane), assuring the optimal sampling of a 80 μm
minimum detail (speckle size), suitable for the detection of a typical defective region in panel paintings.
The results obtained with the Canon camera are comparable to those obtained with the Nikon camera,
where the focal length was fixed at 50 mm and we adopted the same parameters, namely, an aperture
value of f /8 and a working distance 50 cm, so as to have the same FOV with a higher resolution.
A picture of the experiment setup is shown in Figure 6.

(a) (b)

Figure 6. (a) Measurement setup with the system with camera, thermal camera and speckle module
mounted in the same breadboard; and (b) back view with the lab lights on.

The thermal stimulus was applied to the painting using a single 750 W quartz tungsten infrared
emitter. As discussed in Section 4.3, the duration of the thermal stress and the “response time” were
critical parameters to optimize. Indeed, similar to any other active technique, i.e., based on the response
of the system to an external solicitation (for example, infrared thermography), it is not possible to
standardize such parameters in case of complex (and unknown) objects such as artworks. However,
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by quantifying the thermal load in the raise of the surface temperature, measured by the thermal
camera, the duration of the stimulus can be set and initially suggested, for example, by previous
works [10,29,31,38]. Therefore, different experiments were performed varying the duration of the heat
stimulus (5 s, 15 s and 30 s) up to a maximum ΔT∼5 ◦C and acquiring the sequence of speckle patterns
during the relaxation phase, after the lamp switch-off. In the case of the painting model, a short-pulse
stimulus (5 s) was the most effective. This also satisfied the requirement of noninvasiveness.

In the design of DIC measurements, we followed the recommendations for the 2D-DIC given
in “A Good Practices Guide for Digital Image Correlation” [39] by The International Digital Image
Correlation Society. The object was positioned perpendicular to the optical axis; however, the surface
of an ancient painting is not flat. The imaging system was used without any automatic adjusting,
as auto-focus or apertures. As the employed DSLR cameras have an anti-alias filter, the images were
not filtered. The intensity of the recorded speckle pattern was optimized by tuning the laser power,
while keeping the gain of the camera low to minimize camera noise, as recommended.

The analysis was performed on a region of the painting with a chosen defect (#5 in Figure A1).
Figure 7 depicts the Region Of Interest (ROI) with a pair of speckle intensity pattern processed in
the DIC analysis, the reference pattern Iref (before the thermal stimulus) and the modified pattern
Imod (after the thermal stimulus). From the calibration curve (Figure 5), the lens setting provides an
indicative ratio of the indirect to direct speckles of r = 6.25.
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Figure 7. (a) ROI analyzed by the algorithms and defect position. Example of processed specklegrams:
(b) before stimulus, used as reference pattern; and (c) after (5 s) pulse stimulus, modified pattern.
Laser: 60 mW. Camera lens: 50 mm; exposure: 1/8 s; aperture: f /8; ISO: 100. Laser spot (D): 1 mm;
diffuser-to-surface distance (z): 50 cm; camera-to-surface distance (z′): 50 cm.

3.1. Results with the SC Algorithm

Figure 8 reports the correlation map computed by the SC algorithm for some representative
frames. There is also a video (100 s) availaible showing the behavior of the correlation map over time
(Supplementary Material, Video S1: laser speckle decorrelation maps sequence). The sequence was
obtained by processing, at significant step, the pairs of specklegram Imod(t), Iref. Even if a continuous
acquisition of the speckle activity is performed, one-beam speckle-intensity correlation methods require
the off-line processing phase.

As one can see, a discontinuity in the gray level in the SC algorithm output of the normalized
correlation coefficients (Equation (5)) well locates the defective region and its extension, where the
painting surface undergoes an anomalous displacement. As expected, correlation computed on a
pair of specklegrams of the sample in equilibrium before the thermal pulse does not reveal the defect.
The bright decorrelated pixels that also appear in other regions, supposed to be non-defective, may be
attributed to proper material inhomogeneities due to the handmade nature of the sample, as well as
to external noise. As mentioned above, the effectiveness of speckle photography is based on the fact
that the bulk defect, after thermal loading, determines a local irregular deformation of the surface
and thus of the laser speckle activity. We see that in the case of pictorial detachments, which are
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positioned immediately beneath the surface, the defect is early detected at the beginning of the relaxing
phase. The maximum visibility is observed at t = 10 s, persisting across the 100 s sequence with a
contrast that varies as the deformation of the defective region behaves different from the entire regular
surface. In the correlation map computed by the SC algorithm, this can be quantified in the following
visibility parameter

ν =
〈ρc〉def − 〈ρc〉ref

〈ρc〉def + 〈ρc〉ref
(6)

that estimates the contrast in the correlation coefficient averaged in defective and reference (sound)
region (Figure 9).

Figure 8. DIC results by SC algorithm. Laser speckle decorrelation map at different times: t = −10 s,
before thermal pulse stimulus (5 s); lamps switch-off at t = 0; t > 0, cooling phase.
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Figure 9. (a) Defect visibility at different frames, computed as Michelson contrast between the
correlation coefficient averaged on a defective and on a sound ROI (Equation (6)). t = −10 s, before 5 s
stimulus; t > 0, relaxing phase after stimulus. (b) Zoom of the correlation map with the selected ROIs
(100 × 200 points) on defective (red) and sound (green) region.

3.2. Results with the MatPIV Software

Figure 10 reports the displacement maps computed by the software MatPIV for some
representative frames. There is also availaible a video (100 s) showing the behavior of the displacement
field over time (Supplementary Material, Video S2: spatial displacement maps sequence)

MatPIV algorithm is successful too in detecting the defect, through the displacement map
at sub-millimetric scale. The defect is early detected after the pulse stimulus as local anomalous
behavior of the displacement field, and the visibility persists across the 100 s sequence. As expected,
MatPIV computed on pair of specklegrams of the sample in equilibrium before the thermal pulse does
not reveal the defect. Noise-floor analysis in static images (t < 0) gives a mean μ ∼ 8 μm and a variance
error σ ∼ 2 μm, mainly due to external vibration and camera noise. After the stimulus, bias errors are
induced by heat waves, out-of-plane motion and vibration of the painting (large sample positioned in
a vertical position). Anyway, it is interesting to examine the displacement distribution in the MatPIV
maps. Figure 11 reports the boxplot of the absolute displacement over time, showing how the defective
and reference sound regions exhibit the same mean displacement but a different dispersion in the
relaxing phase. The coefficient of variation (relative standard deviation σ/μ) can be taken as indicator
of the visibility of defect (Figure 12). The maximum visibility is observed at t = 10 s, similar to for the
SC results, corresponding to small displacements but with a strong “decoupled” behavior of the local
distribution in the defective region with respect to the regular surface.

Figure 10. Cont.
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Figure 10. Absolute displacement map computed by MatPIV at different times: t =−10 s,
before thermal pulse stimulus (5 s); lamps switch-off at t = 0; t > 0, cooling phase. The LUT is
set to μ ± 3σ for best defect visualization. Noise-floor analysis in static images gives a mean μ ∼ 8 μm
and a variance error σ ∼ 2 μm.

Figure 11. Boxplot to give an indication of the distribution of absolute displacements in defective and
regular sound regions over time: t =−10 s, before 5 s stimulus; t > 0, relaxing phase after stimulus.

(a) (b)

Figure 12. (a) Mean absolute displacement for defective and sound ROIs over time; and (b) coefficient
of variation of the displacement distribution for the defective ROIs and for the regular surface over time.
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3.3. Application of the Thermographic Module

With a thermal stimulus of 5 s and a lamp-to-surface distance of 40 cm, we observed a temperature
increment of ∼1 °C right after the thermal solicitation (Figure 13). After 30 s waiting, the mean
temperature was almost completely back to initial equilibrium. The mean temperature showed a
maximum oscillation of 1 °C during the whole measurement process. When the laser alone was
turned on, we measured an increase in temperature <1 °C. Thermal emissivity was set to ε = 0.90 for
the involved material (gypsum). Being artworks surface characterized by inhomogeneous materials,
roughness and decay degree, an assessment of the emissivity map for the calculation of the temperature
field could be difficult. However, for many background materials, the tabulated values can be used.

(a) (b)

Figure 13. Thermal data: (a) (Sp1 = 24.2 °C; Sp2 = 24.1 °C; Sp3 = 23.9 °C; Sp4 = 24.1 °C; Sp5 = 24.0 °C.
Bx1: max = 24.2 °C; min = 23.8 °C; average = 24.0 °C) before and (b) (Sp1 = 24.9 °C; Sp2 = 24.7 °C;
Sp3 = 24.3 °C; Sp4 = 24.7 °C; Sp5 = 24.6 °C. Bx1: max = 24.9 °C; min = 24.1 °C; average = 24.6 °C) after
the thermal stimulus of 5 s. The box indicates the investigated ROI.

4. Discussion

4.1. Discussion on Contrast Sensitivity

In the performance analysis, we focused on the mean speckle size of the speckle pattern. The other
issue affecting the overall system sensitivity is the contrast sensitivity, which is primarily determined
by the contrast of the speckle pattern, commonly defined as C = σI/μI, the ratio of the standard
deviation to the mean of the intensity distribution. It is well known [27] that a polarized and fully
developed speckle field displays negative exponential intensity distribution with speckle contrast
C = 1.

The assumption of underlying negative exponential statistics for the acquired pattern is not
always verified in practice, due to many factors such as the presence of the two scattering media
(diffuser and object surface), the depolarization of the beam due to diffuse reflection at artwork surface,
the integration of the camera sensor and the non-uniform reflectance typical of an artwork surface.
It has been shown that [27]: the speckled-speckle pattern displays a conditional exponentially-driven
intensity distribution with contrast C =

√
3; depolarization causes a degradation of the contrast due

to the sum of independent (non-coherent) patterns; and the sum in intensity of patterns displays a
Gamma density function, with contrast that decreases as the time of integration increases. Together
with the speckle pattern morphology, the measured speckle contrast is thus affected by the actual
statistics. Moreover, it is degraded by the camera acquisition process; anyway, it has been shown that,
if care is taken, namely by sampling the speckle size above the Nyquist criterium, the contrast of the
acquired speckle image approaches the theoretical limit and is maximized [40].

We addressed some of these issues with the aim of reducing their impact on the ideal negative
exponential intensity distribution and to verify how the unavoidable deviation from the latter affects
the overall performance of the technique. In doing this, the ratio between the diffuser speckles
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(expected to be fully developed) and the surface ones was set well over unity, so as to minimize the
contribution of these latter to the acquired pattern. We placed a linear polarizing filter before the camera,
after having verified that the diffuser does not depolarize the laser beam. The drawback, however,
was the drop in intensity. As regards the integration process of the camera, numerical simulation
tests have shown us that the statistics of the final pattern, and in particular its deviation from the
exponential one, does not affect the performance of the software adopted for the DIC.

A study on the statistics of the intensity distribution and on the contrast of the speckle pattern in
SPP application to artworks is planned as future development of this research.

4.2. Discussion on Non-Uniform Reflectance

When dealing with artworks, a quite complex problem is the non-uniform reflectance of the
polychromatic surface, as it affects the measured contrast locally. Figure 14 displays a speckle pattern
projected on an ancient oil panel painting (anonymous, 16th century), showing the darker regions to
absorb more incident radiation so that the speckle pattern is less or not detectable in their surrounding.
Since the pattern is the unique information carrier, this could lead to a loss in information about surface
modifications in the involved areas. To some extent, this issue can be addressed by controlling the
external illumination and the power of the laser, but it remains a problem in the case of polychromatic
and delicate artwork materials.

The study of the effect of non-uniform reflectance surface in SPP application to artworks is
planned as future research direction.

(a) (b)

Figure 14. Non-uniform reflectance effect in a 16th century oil painting (anonymous, private collection):
(a) visible image; and (b) speckle intensity pattern.

4.3. Discussion on Thermal Stimulus and Response Time

The duration of the thermal pulse, and hence its intensity, is a critical parameter. In order
for a sub-surface defect to manifest as speckle activity, the sample must undergo a physical stress
strong enough to make evident, on the surface, the inhomogeneities due to the presence of bulk
damages. The deeper is the defect, the more intense the solicitation must be. At the same time,
a strict noninvasiveness requirement limits the thermal gradient on the surface to few degrees.
The experiments pointed out that the general deformation to which the entire surface undergoes
can be a detrimental factor, whenever it reaches the same order of magnitude as the defective area
displacement. The ideal solicitation should maximize the deformation of the detachment, leaving at
the same time the surrounding surface relatively unperturbed.

Since what is detected by SPP is a deformation of the surface, the response time is also a critical
parameter. After the lamp switch-off, the energy stored in the surface must propagate to the inner
defect. The resulting deformation intensity and time duration depend on the thermal capacity and
expansion coefficient of the materials encountered in the stratigraphy. A detachment is a resistive
defect that requires extra time to return to its equilibrium, and its deformed status, if recorded in this
phase, emerges from the surrounding regions.
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For the painting-like support, a ΔT ∼ 1 °C (5 s pulse) was able to induce the visibility of
sub-surface macroscopic detaches. Longer stimuli (15 s and 30 s) did not improve the detectability;
the most intense deformation field induced on the whole surface causes the local displacement of the
defective area to be “hidden” by that of the regular surface. Unless the defect is very deep in the bulk,
a short stimulus inducing a 2 °C to 3 °C gradient on the surface is suggested. Regarding the materials’
response, the experiments suggested an interval time in the order of 10 s for the superficial defects
and in the order of 100 s for the deeper ones, in agreement with the literature. In the case of different
support, i.e., from wooden to mural paintings, the conduction coefficients vary, and consequently the
optimal acquisition times.

4.4. Discussion on Quantitative DIC

As mentioned above, the DIC measurements were designed following the good practices
guide [39]. However, in speckle correlation applied to analysis of hidden sub-surface defects in
artworks, some specific considerations must be made. The final objective is not the calculation
of the derived field quantities, e.g., the displacement, but the localization of the defective area,
which is revealed from an anomalous local behavior of the surface speckle activity with respect
to the background. Moreover, the position of the sub-surface defect, as well as its nature, is mostly
unknown; it is not possible to determine the expected surface deformation on a local ROI a priori,
and the analysis should ideally be full-field. As a consequence, we have to face a trade-off between a
large FOV and spatial resolution. The influence of optical system resolution on DIC uncertainties is
discussed in [41]. DIC computation can be affected by many factors, related not only to the acquisition
system and the laser speckle pattern but also to end-user decisions, such as the selection of the subset
size to track the displacements [42]. One critical issue is that, for typical 2D-DIC applications, it is
assumed that the sample remains planar at constant stand-off distance. Here, instead, the painting
surface is subjected also to out-of-plane motion induced by the heat stimulus. In the case of artworks,
it is not possible to estimate the out-of-plane deformation to compensate the in-plane measurements,
as recommended by the good practice. Moreover, such out-of-plane motion, traced as fictitious in-plane
absolute displacements, conveniently contributes to the irregular local behavior of the defective regions.
Regarding the optics, the use of a bi-telecentric lens or of a long focal length is suggested to compensate
the effect, allowing to solve the problem of magnification shifting and distortion.

5. Conclusions

A portable and very compact system for laser speckle imaging of artworks in situ is presented.
The device was designed to be versatile, tailored to the needs of the art diagnostics field, with the
possibility of optimizing the sensitivity performance by easy parameters adjustment. The system can
operate in the indirect mode, in which the speckle pattern is generated through an optical diffuser and
projected onto the artwork, and in the direct mode, in which the speckle pattern is generated by the
artwork surface. The optimization of the optical setup through a tuneable speckle size (direct-surface
and indirect-diffuser) was designed after a theoretical analysis of the performance based on statistical
optics. A protocol for the optimal measurement was suggested, based on calibration curves for
obtaining the desired mean speckle size in the acquired intensity pattern.

The system was validated in the analysis of subsurface defects in a model of ancient painting,
using a short pulse thermal stimulus to induce a surface deformation field and the image correlation
technique for the analysis of the sequence of speckle intensity patterns. To demonstrate that
the developed system was well dimensioned and effective, the DIC was performed using two
standard methods: the Speckle Correlation (SC) and the Particle Image Velocimetry (PIV) algorithms.
The thermal loading induces irregular surface and sub-surface micro-motion, in-plane and out-of-plane,
which is not traced quantitatively, but, if a proper (limited) thermal stress is used, a proper speckle size
is used and a proper interrogation subset is used in DIC, the SPP technique is effective in differentiating
the defective region as irregular local behavior with respect to the background. Even if a quantitative
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2D-DIC was not the final objective (and not possible with complex multi-layered artworks), an analysis
of the visibility of the defect was made in the correlation image sequence by SC and in the PIV
displacements maps.

Following the requirement of noninvasiveness, a compact thermal camera was mounted on the
system for monitoring the temperature of the artwork. The thermal camera allowed to face the critical
issue of the optimization of the thermal stimulus: On the one hand, it allowed a quantification of the
load intensity through a measurement of the surface temperature and an initial setting of the duration of
the pulse (for example, following similar works in literature). On the other hand, it allowed the thermal
solicitation to be maintained within the safe range of conservation standards. A surface temperature
gradient ∼1 ◦C induced by a short thermal pulse of 5 s was optimal for the detection of sub-surface
detachments in the painting-like model, in accordance with the noninvasiveness requirement.

Supplementary Materials: The following are available online at http://www.mdpi.com/2313-433X/6/11/119/
s1, Video S1: laser speckle decorrelation maps sequence; Video S2: spatial displacement maps sequence.
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Abbreviations

The following abbreviations are used in this manuscript:

ESPI Electronic Speckle Pattern Interferometry
SPP Speckle Pattern Photography
DPSS Diode-Pumped Solid-State
CMOS Complementary Metal-Oxide Semiconductor
DIC Digital Image Correlation
FOV Field Of View
SC Speckle Correlation
ROI Region Of Interest

Appendix A. The Painting Sample

The model of the Renaissance painting used in the experimental validation was fabricated
following the traditional receipts on constitutive materials and execution technique contained in the
ancient treatise The Book of the Art by Cennino Cennini [37]. The structural subsurface defects were
obtained, as usual [10], by inserting materials with different thermal response.

We reproduced the process called imprimitura: a multi-layer poplar panel of 40 × 60 cm,
preliminarily treated with four hands of solution of rabbit-skin glue with different dilution degrees,
was covered with a number of rough linen stripes after they were immersed in the glue solution as
well. After a drying time of two days, the table was smoothed with fine grain sandpaper, then some
Bologna chalk powder was mixed to the rabbit-skin glue and the resulting mixture was warmed-up
in a bain-marie and laid on the panel. After a drying time of three days, the surface of the table
was smoothed again and eight layers of chalk and glue mixture were laid on it, each just before the
complete drying of the previous one. After two final days of drying, the surface was smoothed one
last time, obtaining the final sample, whose stratified structure is shown in Figure A1.

During the process, five thin plastic leaves were inserted at various levels of the stratigraphy
and at different positions so as to simulate detachments of known dimensions, depth, and positions
(Figure A1).
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(a) (b)

Figure A1. The fabricated painting model (40 × 60 cm): (a) scheme of the layered structure with the
defects; and (b) picture with the position of the defective regions (numbered in red boxes).
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Abstract: Cultural heritage preservation is a crucial topic for our society. When dealing with fine art,
color is a primary feature that encompasses much information related to the artwork’s conservation
status and to the pigments’ composition. As an alternative to more sophisticated devices, the analysis
and identification of color pigments may be addressed via a digital camera, i.e., a non-invasive,
inexpensive, and portable tool for studying large surfaces. In the present study, we propose a new
supervised approach to camera characterization based on clustered data in order to address the
homoscedasticity of the acquired data. The experimental phase is conducted on a real pictorial
dataset, where pigments are grouped according to their chromatic or chemical properties. The results
show that such a procedure leads to better characterization with respect to state-of-the-art methods.
In addition, the present study introduces a method to deal with organic pigments in a quantitative
visual approach.

Keywords: color correction; chemical composition; camera characterization

1. Introduction

Cultural heritage bears witness to life and history, provides an identity to nations, and
represents an irreplaceable source of inspiration. Its importance from cultural, historical,
and economic points of view is invaluable; thus, its preservation and valorization are
crucial topics for our society. Natural aging and deterioration due to external agents
endanger artworks such as paintings, sculptures, and architecture, and therefore diagnostic
tools are needed for monitoring and preservation.

Monitoring historical artistic heritage consists of the evaluation of possible modifica-
tions of some characteristics of the object under observation. When it comes to a artwork
or, more generally, a mono- or polychromatic surface, color is one of those characteristics,
as it is easily perceivable by the human eye, allows one to distinguish an artwork, and
provides information on the nature and status of an artwork.

Color analysis on artworks is generally performed via specific instruments such
as colorimeters and spectrophotometers, both of which use sophisticated technologies
to accurately and precisely quantify and define color, working in a device-independent
color space as Commission Internationale de l’Éclairage (CIE) L*a*b* [1,2] This allows for
objective assessment of color changes in order to monitor the state of the painting over time
and appropriately plan periodic protection or restoration actions. Color studies of artworks
could also make use of Infrared (IR) and Ultraviolet (UV) data (by means of, e.g., infrared
reflectography, UV–Visible spectrophotometry, UV reflectance, etc.) or X-ray fluorescence
spectroscopy (XRF) [3,4].

However, several drawbacks may limit the efficacy of such devices/methodologies.
First, colorimeters and spectrophotometers give, as with XRF, pointwise measurements;
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thus, color studies on large areas require several time-consuming repetitions. Further-
more, even though spectrophotometers are defined as non-invasive devices [5], they must
perfectly lean onto the artwork surface in order to exclude external light radiation, thus,
risking ruining the painting. Finally, it is still rare nowadays that small laboratories are
equipped with the abovementioned costly devices.

In order to address such issues, recent studies have proposed performing color moni-
toring through photographic documentation. Here, the necessary equipment is conceivably
minimal and considerably cheaper, consisting of a professional digital camera and a pho-
tographic set with adequate lighting; then, the color data of each pixel of the selected
area can be stored from a single photoshoot, limited only by illumination [6]. However,
uncorrected digital data are not directly comparable, in terms of quantitative reliability,
to the standard provided by the more specific spectrophotometric instrumentation. In
addition, a well-defined procedure consisting of camera calibration, arrangement of lights,
and positioning of the artwork, although necessary, is not sufficient per se for a correct
comparison of digital data with colorimetric data. Finally, another major problem when
using a digital camera for measuring color is that consumer-level sensors (either CCD or
CMOS type) are typically uncalibrated.

Therefore, camera characterization is needed, i.e., some specific digital image pro-
cessing to transform raw color digital values into objective L*a*b* values equivalent to
colorimetric measures.

A common approach to minimize the difference between digital and colorimetric
determinations relies on the application of a correction based on a least-squares regression
to the uncalibrated digital data. Linear [7,8], nonlinear, and mixed [9] approaches have
all been described in the literature. Regarding nonlinear regressions, one can mention
polynomial regressions [10,11], neural networks (NNs) [12,13], and look-up tables [14].
In addition, the problem of different color spaces based on the acquisition device must
be addressed. Indeed, camera data usually refer to RGB or sRGB color spaces. Several
approaches have been proposed [15], such as linear or quadratic models, neural networks
for L*a*b* regression starting from RGB values, and models requiring RGB data to be
converted into XYZ values, which are then used to derive L*a*b* values, with and without
a linearization of sRGB data via a gamma model. Gamma correction is also involved in the
method [16].

Further aiming at minimization of the correction error, other features to be preserved
may be considered. For instance, characterization should be robust across different illumi-
nants and reflectance types, and across noise [17–19].

To achieve better results, the use of digital image processing techniques for camera
characterization can also be combined with different disciplines. Indeed, a multidisciplinary
approach allows one to deal with specific features related to the heterogeneity of the data
under analysis. Therefore, in order to overcome the lack of homoscedasticity required to
apply a single-step procedure, an innovative approach combining pattern recognition and
image processing techniques with chemistry information is proposed here.

In the present study, 117 tiles from the database of diagnostic analyses of The Founda-
tion Centre for Conservation and Restoration of Cultural Heritage “La Venaria Reale” (in
collaboration with the National Institute of Metrological Research and Laboratorio Analisi
Scientifiche of Regione Autonoma Valle d’Aosta) represent the basic dataset [3,20].

As proposed by the state-of-the-art literature, the methods of linear regression, poly-
nomial regression, and NN [8,9,19] were initially applied herein to the whole dataset, but
the resulting performances unfortunately proved to be not satisfactory. It is worthwhile
mentioning that a preliminary camera calibration using the X-Rite ColorChecker Passport
Photo failed to provide satisfactory results [9], as expected, due to the limited color content
of such a color chart.

To understand the reason for such poor results, the work was adapted by conducting a
closer investigation of the pigments’ characteristics and their corresponding statistical anal-
ysis in photographic images in order to overcome the significant lack of the homoscedas-
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ticity feature that is required for proper application of approaches in the literature, which
work at a global level.

Consequently, from the perspective of optimizing the analysis, the original idea
proposed herein is to apply state-of-the-art characterization methods to clusters of data
rather than to the whole digital dataset, selected by means of two different criteria, i.e., the
color and chemical properties of pigments. Regarding the latter, based on Kremer code, the
main chemical element can be objectively defined for each pictorial layer analyzed.

To overcome the issue of a small amount of data and to find one-to-one correspondence
between an image and colorimetric data, samples referring to the same tile are sorted by
hue values, which provides coupled data and the use of supervised methods for precise
and punctual color correction.

Thus, the application of several methods for camera characterization to numerous clus-
ters of the base dataset is described hereinafter, in order to minimize the difference between
digital and spectrophotometric quantitative color data, and therefore validate a handy
diagnostic tool such as a digital camera for color determination. The best characterization
approach results were achieved from a polynomial regression, while the predominant factor
that affects the efficacy of the color correction could be found in the chemical composition,
more precisely, in the nature of the central element. The best results were those splitting
the data by chemical composition. In addition, the proposed method also proved to be
effective with organic pigments, which could not be analyzed via standard approaches
such as XRF; in fact, the latter has been employed to identify the presence of inorganic
pigments, characterized by elements with an atomic number higher than 13. Instead, other
non-invasive approaches for the study of organic pigments (usually referred to as “lakes”)
include IR and Raman spectroscopy, but still require rather sophisticated instrumentation.

The considered approaches are briefly presented in Section 2, along with the dataset.
Additionally, details on how data were collected and split into clusters and how camera
images were used are provided.

Although a complete color analysis of artworks is also based on IR and UV data, the
scope of the present study is to investigate how deep an analysis performed with traditional
photographic data can be.

2. Materials and Methods

2.1. Background

Sensors’ responses to light distribution are clearly defined in the literature [21,22].
For the sake of clarity, let I(λ) be the illuminant spectral power distribution falling on the
surface patch (λ is the wavelength), and let γ(λ) be the reflectance function of the material
the object is made from (or that its surface is painted with), so that the spectral power
distribution P(λ) can be expressed as follows:

P(λ) = I(λ)γ(λ) (1)

where P(λ) is the spectrum of the light that reaches the sensor and is associated with the
corresponding pixels of the image.

Then, let σ(λ) be the spectral filter function of the sensor, and define the sensor’s
response to P(λ) as follows:

s =
∫

λ
P(λ)σ(λ)dλ (2)

As mentioned in the Introduction, in the present study, camera and colorimeter
sensors are involved. Hence, hereinafter, whenever s refers to the camera, it will be referred
to as cm, while the colorimeter, s, will be referred to as cl (which will be the reference
measurement). Specifically, based on the available data, cm is a three-dimensional vector
cm = [R, G, B]T , laying in the RGB color space. Similarly, the colorimeter response comes
from the device-independent color space CIE L*a*b*, namely cl = [L, a, b]T .
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In order to perform an efficient correction on error-prone measurements of color
changing, such as those deriving from commercial cameras, an optimal transformation f

such that cm
f→ cl must be found. In fact, the final value of such a correction is only an

approximation of the real corresponding cm value, namely f (cm) = ĉl , due to the different
nature of the considered color spaces, to noise, estimation, and computation errors, etc.
Some constraints can be added to improve the precision of the correction and are discussed
later in the paper. The general requirement for the function f is to be error-minimizing, i.e.:

f = argming

N

∑
i = 1

∣∣∣∣∣
∣∣∣∣∣u(cl)− u(g(cm))

∣∣∣∣∣
∣∣∣∣∣, (3)

where N is the number of color triplets in the dataset, u is a color space transformation to
ensure that g(cm) and cl refer to the same color space, and ||·|| is the norm. In the present
manuscript, the considered norms will be the root mean squared error (Euclidean distance)
and ΔE00 [23]. In addition, a similarity measure will also be involved, i.e., Pearson’s
correlation coefficient.

In the following, since f is properly designed to correct cm to be more similar to cl ,
hence, both cl and f (cm) are in the CIE L*a*b* color space, and u is assumed to be the
identity function.

In general, methods in the literature are applied to the entire dataset. However,
it appeared that no conditions for a single correction were present because of the non-
homoscedasticity of the data. Hence, the methods were applied to clusters of tiles that
could be determined according to some criterion. Here, this multi-cluster approach is based
on either the chemical element or color, which is the major novelty of this study.

In this paper, the dependance of the color on the predominant chemical composition
as well as on its chromaticity is investigated. More specifically, let Ci be the i-th cluster of
color, based on either the chemical properties or the chromaticity. The purpose is to find
many functions fi, one for each cluster, which, of course, depends on the cluster that the
input color belongs to:

cm ∈ Ci =⇒ ĉl = fi(cm) = f (cm|Ci) (4)

2.2. Instrumentation

According to the CIE standard definition [24], reference measurements were made us-
ing a Konica Minolta CM2600d spectrophotometer (Konica Minolta, Ramsey, NJ, USA) [25]
with the following setup: standard observer at 10◦, illuminant D65, and acquisition SCI.
Five measurements were acquired for each pictorial layer.

Photographic image data were acquired with a Lumix DMC-FZ200 camera (Panasonic,
Osaka, Japan). The following image acquisition setup was used: The camera was placed
vertically at 46.5 cm from the samples. The angle between the axis of the lens and the
sources of illumination was approximately 45◦. Illumination was achieved with two
Natural Daylight 23 W fluorescent lights (OSRAM, Munich, Germany), color temperature
6500 K, reproducing the standard D65 illuminant. The photos were shot in a dark room.
The settings of the camera are summarized in Table 1.

Table 1. Camera setup.

Variable Value

Focal distance 4 mm
Flash Off

ISO speed 400
Operation mode Manual
Exposure time 1/60 s

Quality Raw
f-Number f/3.2
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2.3. Dataset

As previously mentioned, the dataset of the present study consisted of 117 tiles from
the database of diagnostic analyses of La Venaria Reale [20]. A picture for each tile was
taken to enable analysis. Figure 1a shows an example of a photographic picture of the
tables from Venaria.

Figure 1. (a) On the left, a picture of a table with a collection of colored tiles from The Foundation
Centre for Conservation and Restoration of Cultural Heritage “La Venaria Reale”; (b) on the right, a
single tile. The reader may notice the presence of two columns and three rows. The red box indicates
the area considered for this study.

In the table, each pigment (Figure 1b) is presented in a mixture with two binders:
polyvinyl acetate (PVAc) (column on the left) and linseed oil (column on the right). Then,
the painted surface is divided into 3 rows. The first two present 2 different finishings:
terpene resin (stripe on the top) and acrylic resin (middle stripe), while the third one is
unprotected. For the present study, only the unprotected and the linseed oil sectors were
taken into consideration (the red box in Figure 1b), because the linseed oil technique is
the one most used by painters since the 15th century. The central portion of the camera
acquisition was considered in order to avoid specularity and saturation problems. Figure 2
shows some of the selected parts of tiles involved in the study.

Figure 2. A subset of tile samples involved in the present study.

To address the local color inhomogeneity of tiles, the characterization was performed
by taking into consideration five measurements via the colorimeter and five RGB triplets
extracted from the pictures in order to create paired couples and to develop a robust
supervised color correction.
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Specifically, pixels from each tile were sorted by hue (in ascending order). Then, five
triplets were extracted, namely the first one (i.e., the one with minimal hue), the last one
(i.e., the one with maximal hue), and the ones corresponding to the 25th, 50th, and 75th
percentiles. This was done to obtain as many samples as possible for the reference dataset.

2.4. Linear Regression

The method consists of estimating the L*, a*, and b* values separately via linear
regression. In particular, let (αL, βL), (αa, βa), and (αb, βb) be the regression coefficients for
L*, a*, and b*, respectively, so that the estimated values are Le = αLLl + βL, ae = αaal + βa,
and be = αbbl + βb, where Ll , al , and bl are the colorimeter values. To find the best
characterization of the camera data with L̂m, âm, and b̂m, the constraints Lm → L̂m ∼= Ll ,
am → âm ∼= al , and bm → b̂m ∼= bl are added, yielding the following:

L̂m =
Le − βL

αL
, âm =

ae − βa

αa
, b̂m =

be − βb
αb

(5)

2.5. Polynomial Regression

The polynomial regression approach consists of mapping a polynomial expansion of
the device RGB values to estimated L*a*b*. In the following, the polynomial P8 was used:

P8 = [R, G, B, RG, RB, GB, RGB, 1], (6)

The corrected L*a*b* triplet ĉl is obtained via the following equation:

ĉl = MP8, (7)

where M is the 3 × 8 tranformation matrix, which is derived via a pseudo-inversion
procedure as in [11].

2.6. Hue-Plane-Preserving Camera Characterization—Weighted Constrained Matrixing Method

The Hue-Plane-Preserving Camera Characterization—Weighted Constrained Matrix-
ing (HPPCC-WCM) method [19] is aimed at ensuring that the characterization preserves
the hue plane and minimizes error. Starting from the camera data, the transformation
matrix is defined in function of the device hue angle ϕm and of the parameter p referring
to the order of the transformation, as follows:

M(ϕm, p) =
1
σ ∑N

i = 1(π − Δϕi)
p Mi, (8)

where N is the number of training coupled colorimeter–camera data (cl , cm), Mi is the
transforming matrix cm,i = Micl,i, Δϕi = min(|ϕm − ϕi|, 2π−|ϕm − ϕi| ), with ϕi being
the i-th training color hue angle, and σ = ∑N

i = 1(π − Δϕi)
p.

To sum up, the color correction here proposed is as follows:

ĉl = M(ϕm, p)cm (9)

2.7. Data Grouping

To avoid the application of each method in a global way, the dataset under analysis
was clustered according to two different criteria, i.e., according to chromatic appearance
and the chemical composition, with reference to the central metal atom. Table A1 in
Appendix A shows the available pigments and relevant features (pigment name and color,
chemical composition, chemical cluster, and chromatic cluster). Regarding the chromatic
appearance, five classes were subjectively identified. Conversely, regarding the chemical
composition, Kremer code [26] was objectively considered. The clusters and relevant
numbers of tiles are summarized in Table 2.
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Table 2. Number of tiles for each selected cluster.

Red 33 Iron 23
Green 16 Lead 10
Blue 31 Copper 16

Yellow 23 Copper (organic) 9
Gray 14 Organic dyes and salts 34

Iron, manganese, and cobalt 31
Other 36

Some considerations regarding this clustering are made in the following.
In general, three phases drove the choice of the different chemical clusters. Firstly,

three major classes were considered referring to the elements most spread in the dataset:
iron, lead, and copper (Phase 1).

Then, by looking at the copper class, it was found that some tiles were organic lakes,
generating the idea that this clustering method could also be effectively applied to organic
dyestuff. Accordingly, the clusters “copper (organic)” and “organic” (collecting all the
lakes in the dataset) were considered (Phase 2).

Finally, a mixed class was also considered, characterized by the presence of either iron,
manganese, or cobalt, i.e., vicinal transition metals with very similar electronic properties
(Phase 3).

Regarding the chromatic clusters, the gray cluster collects pigments with similar R, G,
and B values (thus also including black and white pigments).

In Table A1, one can notice that the color grouping of some pigments differs from
the chromatic class to which they belong, according to the closest color perception. For
example, tile number 57, despite being visually brown/violet, also has shades of red given
by its chemical description provided by Kremer, which identifies it as a red pigment.

2.8. Proposed Method

The proposed approach involves a combination of the aforementioned procedures.
The data grouping procedure splits the dataset into clusters, which are homogeneous
in terms of either color or chemical properties. The color correction methods are inde-
pendently applied to each cluster. Recall that colorimetric and camera data are precisely
coupled by hue, as specified in Section 2.3. Altogether, this leads to an adaptive color
correction method.

3. Results

The color correction process was assessed via a five-fold cross-validation approach.
The effectiveness of the procedure was evaluated on the grounds of statistical pa-
rameters such as Pearson’s correlation coefficient and the three measures of color
distance. The root mean squared error in the L*, a*, and b* parameters (RMS) and
the related color distance measure expressed in color units, according to the formula

Δ =
√

RMS(L)2 + RMS(a)2 + RMS(b)2 [23], represent traditional metrics. The ΔE00 dis-
tance, officially adopted in 2001 as the new CIE color difference equation, improves the
performance on blue and gray colors thanks to an interactive term between chroma and hue
differences and a scaling factor for the CIELAB a* scale, respectively [27]. The latter is imple-
mented, here, according to the CIEDE2000 formula [21] (MATLAB implementation [28]).

The relevant values in Tables 3–13 are the means of the five attempts performed
during the cross-validation. In addition, the error associated with each value is specified in
brackets. It was computed as the semi-difference between the maximum and minimum
values in the five measurements, and it assesses the robustness of the k-fold procedure.
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Table 3. Evaluation of the considered methods for the whole dataset. The bold font highlights the best values throughout.

Pearson’s Coefficient RMS

L a b L a b

Uncalibrated 0.95 (0.03) 0.85 (0.02) 0.95 (0.02) 13.52 (3.94) 13.26 (4.28) 15.22 (5.12)
Linear regression 0.80 (0.03) −0.16 (0.01) −0.34 (0.02) 106.70 (9.44) 126.18 (18.11) 98.22 (11.26)

Polynomial regression 0.95 (0.02) 0.91 (0.01) 0.96 (0.02) 8.17 (1.57) 9.89 (2.08) 10.53 (1.88)
HPPCC-WCM 0.94 (0.03) 0.87 (0.03) 0.44 (0.02) 38.30 (9.44) 46.83 (8.11) 90.74 (11.91)

ΔE00 Δ

Uncalibrated 127.31 (10.5) 24.30 (4.16)
Linear regression 140.13 (14.16) 192.23 (14.10)

Polynomial regression 101.26 (8.93) 16.60 (2.94)
HPPCC-WCM 53.52 (7.18) 109.06 (9.87)

Table 4. Pearson’s correlation coefficients of the considered methods for the major chemical clusters (Phase 1). The bold
font highlights the best values throughout.

Lead Iron

L a b L a b

Uncalibrated 0.92 (0.03) 0.93 (0.03) 0.97 (0.02) 0.76 (0.02) 0.92 (0.02) 0.90 (0.02)
Linear regression 0.59 (0.03) −0.67 (0.03) −0.87 (0.03) 0.87 (0.03) 0.16 (0.03) −0.28 (0.02)

Polynomial regression 0.92 (0.02) 0.98 (0.02) 0.97 (0.02) 0.91 (0.02) 0.93 (0.02) 0.94 (0.01)
HPPCC-WCM 0.66 (0.02) 0.90 (0.03) 0.84 (0.01) 0.85 (0.03) 0.76 (0.03) 0.25 (0.02)

Copper

L a b

Uncalibrated 0.89 (0.03) 0.51 (0.03) 0.78 (0.03)
Linear regression 0.24 (0.01) −0.16 (0.02) 0.02 (0.03)

Polynomial regression 0.91 (0.01) 0.87 (0.03) 0.92 (0.01)
HPPCC-WCM 0.66 (0.03) 0.84 (0.02) 0.81 (0.01)

Table 5. Pearson’s correlation coefficients of the considered methods for the other chemical clusters (Phase 2 and Phase 3).
The bold font highlights the best values throughout.

Copper (Organic) Organic

L a b L a b

Uncalibrated −0.31 (0.02) 0.75 (0.04) 0.66 (0.03) 0.91 (0.03) 0.88 (0.02) 0.90 (0.02)
Linear regression −0.52 (0.02) −0.04 (0.01) −0.52 (0.03) 0.89 (0.03) −0.11 (0.04) −0.32 (0.03)

Polynomial regression 0.77 (0.03) 0.90 (0.02) 0.92 (0.02) 0.97 (0.02) 0.91 (0.04) 0.92 (0.03)
HPPCC-WCM 0.23 (0.02) −0.43 (0.04) 0.22 (0.03) 0.92 (0.01) 0.78 (0.03) −0.53 (0.05)

Iron + Mn + Co

L a b

Uncalibrated 0.77 (0.04) 0.93 (0.03) 0.90 (0.03)
Linear regression 0.44 (0.03) −0.56 (0.03) −0.39 (0.02)

Polynomial regression 0.82 (0.02) 0.93 (0.02) 0.91 (0.02)
HPPCC-WCM 0.65 (0.03) 0.59 (0.03) 0.09 (0.03)
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Table 6. RMS of the considered methods for the major chemical clusters (Phase 1). The bold font highlights the best
values throughout.

Lead Iron

L a b L a b

Uncalibrated 12.46 (2.49) 9.96 (2.33) 13.87 (2.92) 14.02 (1.91) 5.98 (1.4) 13.91 (1.74)
Linear regression 156.97 (9.88) 198.51 (8.91) 143.58 (8.56) 81.13 (6.5) 58.64 (5.19) 51.34 (7.92)

Polynomial regression 5.29 (2.03) 4.25 (2.94) 6.89 (0.8) 5.22 (2.53) 4.04 (1.97) 4.89 (1.69)
HPPCC-WCM 35.59 (7.37) 44.91 (6.39) 123.48 (5.89) 82.81 (6.95) 122.67 (5.48) 152.47 (5.76)

Copper

L a b

Uncalibrated 12.42 (2.98) 19.45 (3.89) 14.97 (3.98)
Linear regression 39.11 (7.13) 136.14 (6.89) 899.47 (44.13)

Polynomial regression 5.21 (1.42) 8.79 (3.03) 5.92 (1.78)
HPPCC-WCM 147.46 (14.71) 91.33 (6.86) 116.78 (12.03)

Table 7. RMS of the considered methods for the other chemical clusters (Phase 2 and Phase 3). The bold font highlights the
best values throughout.

Copper (Organic) Organic

L a b L a b

Uncalibrated 13.07 (3.04) 10.44 (3.29) 12.02 (4.21) 17.77 (4.28) 23.12 (5.82) 21.38 (6.92)
Linear regression 31.48 (6.92) 166.89 (22.12) 66.34 (2.96) 164.24 (12.98) 231.84 (12.95) 89.29 (5.98)

Polynomial egression 3.38 (0.24) 9.92 (2.31) 12.34 (4.32) 6.14 (3.07) 4.96 (0.45) 10.33 (1.89)
HPPCC-WCM 142.29 (14.56) 113.95 (8.22) 125.13 (16.21) 39.34 (5.89) 87.43 (18.19) 194.90 (23.67)

Iron + Mn + Co

L a b

Uncalibrated 15.72 (2.68) 7.44 (2.03) 14.49 (2.23)
Linear regression 73.15 (9.86) 79.74 (9.65) 73.92 (6.73)

Polynomial regression 7.47 (2.33) 6.83 (1.12) 7.39 (2.11)
HPPCC-WCM 89.09 (7) 109.32 (13.13) 132.52 (16.18)

Table 8. ΔE00 of the considered methods for the chemical clusters. The bold font highlights the best values throughout.

Lead Iron Copper Copper (Organic) Organic Iron + Mn + Co

Uncalibrated 47.35 (9.68) 152.59 (13.72) 336.47 (24.68) 129.96 (7.34) 166.31 (29.76) 138.61 (12.91)
Linear regression 136.43 (13.8) 135.49 (14.25) 149.02 (18.32) 176.22 (16.43) 172.15 (32.94) 142.90 (19.94)

Polynomial regression 9.78 (3.18) 126.50 (10.18) 95.24 (8.58) 111.38 (13.23) 113.29 (22.63) 93.38 (8.22)
HPPCC-WCM 46.87 (5.97) 79.42 (6.38) 68.48 (3.69) 82.11 (9.56) 78.62 (9.35) 83.09 (5.63)

Table 9. Pearson’s correlation coefficients of the considered methods for the chromatic clusters. The bold font highlights the
best values throughout.

Red Green

L a b L a b

Uncalibrated 0.86 (0.03) 0.90 (0.03) 0.92 (0.02) 0.89 (0.03) 0.70 (0.02) 0.84 (0.02)
Linear regression 0.86 (0.04) 0.13 (0.03) −0.60 (0.03) 0.32 (0.03) −0.35 (0.04) −0.15 (0.02)

Polynomial regression 0.92 (0.02) 0.91 (0.01) 0.94 (0.03) 0.91 (0.01) 0.84 (0.02) 0.86 (0.01)
HPPCC-WCM 0.91 (0.02) 0.47 (0.02) −0.30 (0.01) 0.54 (0.03) 0.83 (0.02) 0.74 (0.01)
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Table 9. Cont.

Blue Yellow

L a b L a b

Uncalibrated 0.89 (0.03) 0.38 (0.03) 0.84 (0.02) 0.87 (0.02) 0.35 (0.03) 0.81 (0.02)
Linear regression 0.74 (0.02) −0.33 (0.02) 0.04 (0.02) 0.39 (0.02) −0.43 (0.01) −0.71 (0.03)

Polynomial regression 0.92 (0.02) 0.73 (0.02) 0.89 (0.01) 0.90 (0.03) 0.87 (0.03) 0.92 (0.02)
HPPCC-WCM 0.73 (0.02) 0.87 (0.01) 0.75 (0.02) 0.78 (0.01) 0.65 (0.01) −0.13 (0.02)

Gray

L a b

Uncalibrated 0.99 (0.01) 0.74 (0.01) 0.76 (0.01)
Linear regression 0.98 (0.02) 0.18 (0.03) 0.10 (0.02)

Polynomial regression 0.99 (0.01) 0.88 (0.01) 0.75 (0.01)
HPPCC-WCM 0.98 (0.02) 0.99 (0.01) 0.95 (0.02)

Table 10. RMS of the considered methods for the chromatic clusters. The bold font highlights the best values throughout.

Red Green

L a b L a b

Uncalibrated 14.72 (2.58) 9.70 (1.56) 14.68 (2.01) 13.58 (2.09) 14.32 (3.23) 12.77 (2.98)
Linear regression 138.58 (7.55) 62.36 (5.79) 53.43 (6.69) 47.86 (7.36) 142.85 (11.81) 80.63 (6.40)

Polynomial regression 6.64 (1.73) 6.31 (0.82) 9.42 (1.72) 6.72 (1.23) 10.28 (2.34) 8.23 (0.82)
HPPCC-WCM 36.15 (2.68) 129.90 (7.76) 176.77 (11.24) 118.15 (15.73) 69.96 (4.61) 104.65 (18.03)

Blue Yellow

L a b L a b

Uncalibrated 13.61 (2.71) 14.22 (2.94) 14.65 (2.20) 12.90 (1.96) 17.31 (2.51) 19.75 (3.31)
Linear regression 49.17 (4.73) 78.28 (7.31) 310.77 (29.33) 163.72 (6.69) 204.02 (9.87) 83.26 (6.39)

Polynomial regression 7.65 (0.74) 9.99 (2.06) 7.93 (1.05) 3.77 (1.48) 4.10 (1.24) 8.91 (1.61)
HPPCC-WCM 60.56 (7.88) 49.43 (7.61) 51.42 (9.26) 14.48 (16.56) 65.89 (7.41) 252.45 (16.67)

Gray

L a b

Uncalibrated 8.98 (1.95) 9.48 (1.09) 15.71 (3.96)
Linear regression 117.32 (9.34) 257.94 (8.92) 180.36 (8.27)

Polynomial regression 5.67 (1.42) 8.39 (2.04) 8.14 (1.89)
HPPCC-WCM 22.82 (4.22) 23.65 (3.92) 52.87 (4.54)

Table 11. ΔE00 of the considered methods for the chromatic clusters. The bold font highlights the best values throughout.

Red Green Blue Yellow Gray

Uncalibrated 55.45 (6.21) 211.41 (22.39) 201.16 (19.35) 18.74 (4.56) 45.29 (6.86)
Linear regression 110.13 (7.47) 161.11 (5.69) 129.01 (8.07) 153.30 (8.51) 146.29 (6.94)

Polynomial regression 35.12 (3.67) 558.33 (44.10) 186.45 (13.96) 5.83 (0.67) 61.26 (5.90)
HPPCC-WCM 69.11 (7.23) 68.03 (5.50) 79.12 (6.16) 56.71 (5.15) 51.81 (5.28)

Table 12. Δ of the considered methods for the chemical clusters. The bold font highlights the best values throughout.

Lead Iron Copper Copper (Organic) Organic Iron + Mn + Co

Uncalibrated 21.14 (4.82) 20.64 (5.96) 26.89 (5.17) 29.49 (5.25) 44.53 (11.72) 22.64 (5.75)
Linear regression 290.97 (13.67) 112.50 (8.02) 939.86 (22.37) 188.19 (9.89) 304.21 (35.28) 131.05 (10.07)

Polynomial regression 9.67 (1.22) 8.21 (1.94) 11.32 (1.16) 22.77 (1.92) 19.18 (5.92) 12.53 (2.47)
HPPCC-WCM 136.13 (13.64) 212.49 (12.88) 211.75 (16.36) 233.65 (9.37) 226.56 (18.37) 193.52 (9.53)
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Table 13. Δ of the considered methods for the chromatic clusters. The bold font highlights the best values throughout.

Red Green Blue Yellow Gray

Uncalibrated 22.94 (4.35) 23.51 (5.01) 24.54 (4.02) 29.26 (5.19) 20.43 (5.25)
Linear regression 161.08 (13.49) 170.87 (9.13) 324.23 (18.08) 274.52 (13.35) 335.90 (16.27)

Polynomial regression 13.14 (1.58) 14.78 (2.37) 14.87 (2.79) 10.51 (2.03) 12.99 (2.49)
HPPCC-WCM 222.33 (13.35) 172.64 (8.35) 93.57 (8.26) 261.31 (11.31) 62.25 (5.78)

Some examples of color correction applied to the pigments are reported in Figure 3. All
five measurements extracted from the considered tile are shown, coupled according to the
described approach. Each visualization depicts the uncalibrated color values, the colorime-
ter data, and the correction when the polynomial regression characterization was trained
on the whole dataset and on the specific cluster. The reader may notice the improvement
in the visual rendering when dealing with clustered data by chromatic properties.

Figure 3. Images depicting an example of color correction by means of the polynomial regression method.

4. Discussion

First, the obtained results are discussed in terms of the values of the metric considered.
Then, the importance of the preliminary cluster analysis is highlighted, with observations
mainly relevant to the two clustering procedures. To conclude, possible applications of
the proposed pipeline are disclosed, along with the limitations of the present research and
foreseeable future developments.

4.1. Discussing the Considered Indexes’ Values

Table 3, referring to the application of the methods to the whole dataset, shows a
strong agreement among the traditional metrics of correlation, the RMS on the L*, a*, and
b* parameters, and the color distance Δ.

In general, for both the whole dataset and the different selected clusters, the character-
ization method that produced the best color correction was polynomial regression, which
was always able to improve similarity with colorimetric data as compared with uncalibrated
data. Linear regression dramatically worsened the result as compared with the original
data, as did the HPPCC-WCM method on most of the indexes. However, even though
polynomial regression always showed improvements, according to the ΔE00 distance, the
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HPPCC-WCM method outperformed the others since both the method and the metric rely
on the more recent CIE standards, facing some drawbacks of the traditional standards.

Tables 4–7 confirm the best performances of polynomial regression, which improved
uncalibrated data on all clusters, even in the challenging case of copper (organic), where
the acquired colorimetric and photographic L parameters showed a strong misalignment.

Table 8 gives further evidence that the ΔE00 metric can solve some problems of tradi-
tional colorimetry as, except for the lead cluster, it gives better improvements. Additional
results reported in Table 11 show that the blue, green, and, to a lesser extent, the gray
clusters might benefit from hue preservation and the new metric, as declared in the new
standard scope.

The Pearson coefficients were already high for the whole dataset; hence, the improve-
ment obtained by clustering was less relevant for this index. Conversely, by taking into
consideration RMS, ΔE00, and Δ, the improvement when passing from the global correction
to the cluster-based correction was significant, as they both decreased when focusing on
chemical and chromatic clusters. In fact, the expression of the prediction error in terms of
color units is only intended to evaluate the human perception of the correction; indeed,
recall that if the error is approximately less than 2.2 color units, then, the difference is
considered to be imperceptible to the human eye. It is worthwhile noting the improve-
ment in this index, which decreased from a mean value across classes of 27.56 (Table 12,
“uncalibrated”) to 13.95 with respect to the chemical clusters (Table 12, “polynomial regres-
sion”), and from a mean value across classes of 24.14 (Table 13, “uncalibrated”) to 13.26
with respect to the chromatic clusters (Table 13, “polynomial regression”). In such a case,
clustering based on the chemical components is the most effective procedure, i.e., the one
producing the lowest error. It is expected that more sophisticated algorithms, which could
be investigated in future developments of the present study, would lead to an even lower
color unit error.

4.2. The Significance of the Clustering Procedure

Splitting the dataset into clusters led to a better color correction for both splitting
criteria (chromatism or chemical composition). The efficacy of clustering can be appreci-
ated by comparing the value of, for example, the Δ index for the whole dataset (Table 3,
16.60 after polynomial regression characterization, with a 32% decrease with respect to the
value for the uncalibrated data) with the values for the single clusters in Tables 12 and
13, for example, for the “lead” cluster, the value is 9.67, with a 54% decrease after charac-
terization. Therefore, one can infer that the clustering procedure effectively addresses the
homoscedasticity of the data. Indeed, the major contribution of the present study is the
efficiency of the coupling between clustering and application of some state-of-the-art color
correction methods. In addition, it is worth stressing that, although one might expect better
results and a more effective color correction from chromatic clusters, the best correction
was provided by chemical clusters. This is likely due to the objectivity of the chemical
component criterion for defining clusters, while chromatic properties are more dependent
on human perception, thus, leading to less homogeneous classes.

To stress once more the novelty of the present study, to the best of our knowl-
edge, such an approach as well as the results relevant to the different clustering criteria
are unprecedented.

4.3. Chromatic Clusters

As outlined above, clustering by chromatism seems less effective for color correction
purposes. The perceived colors driving the selection of the chromatic clustering depend, to
some extent, on the observer, and therefore are subjective. In addition, several color shades
are present, which may lead to heterogeneous classes. Of course, having more samples for
each tile would allow one to split the data into more classes, each being characterized by a
closer chromatic similarity; as a result, the training phase would benefit, thus, conceivably
leading to better color correction.
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The correction provided by the polynomial regression method on the coordinates of the
Lab color space suggests some additional considerations, recalling that “L” represents the
perceptual lightness, while “a” and “b” refer to the four colors in the opposite component
model of human vision, i.e., red, green, blue, and yellow.

The most improved coordinate was L, meaning that this procedure addresses the
problems in terms of the lightness sensitivity of photographic data. Without correction, the
error is so high that the observer perceives a consistently different color with respect to the
colorimetric data (see Figure 3).

Regarding the coordinates “a” and “b”, it is interesting to consider the chromatic class
of gray. The values in this class are supposed to be similar, and so the difference between
colorimeter and photographic data should also be similar. However, by looking at the RMS
index (Table 10), we found that the difference between colorimeter and photographic data
was much higher for “b” than for “a”. Conversely, once the values were corrected with
polynomial regression, the errors were similar, thus, suggesting that the procedure is useful
to address some imbalance for the gray class.

4.4. Chemical Clusters

The criterion based on chemical composition is more univocal, an aspect that surely
contributes, in general, to the results being more similar as well as rewarding across the
considered classes.

In particular, the RMS index mirrors a gratifying, effective color correction for the main ele-
mental clusters (lead, iron, and copper, see Table 6) after polynomial regression characterization.

Regarding the additional elemental classes reported in Table 2, particular atten-
tion must be paid to the copper-based samples. In fact, the “copper” cluster of Table 2
(16 samples) also included nine organic samples, where copper was the metal cation of
an organic salt, which made up the selected subcluster defined as “copper (organic)”. In
terms of the RMS index, both the “copper” cluster and the subcluster performed extremely
well (Tables 6 and 7, respectively) as far as the “L” component was concerned, while the
components “a” and “b” did not seem to be significantly corrected for the subcluster by
the characterization method of choice. Nonetheless, we paid attention to the consistent
number of tiles containing organic pictorial matter (either organic dyes or metal salts of
organic acids); satisfactorily enough, the rather crowded (34 samples of lakes) “organic
dyes and salts” cluster responded positively to the polynomial regression characterization
(as compared with the values of the RMS index in Table 7 or of the Δ index in Table 12) or
to the HPPCC-WCM treatment (as compared with the value of the ΔE00 index in Table 8).

The performance provided by the cluster of lakes represents, in our opinion, a further
original and very interesting aspect of the camera characterization procedure herein. This
is because the identification and study of organic matter on pictorial artworks cannot be
achieved by means of XRF, a non-invasive technique that is widely applied in the presence
of pigments containing heavy metals, but which fails to detect organic dyestuff because
C, N, and O atoms are too light. Instead, the current approach based on the correction
of digital data grouped in elemental clusters does not depend on the atomic weight, and
thus opens very appealing perspectives as to the analysis of lakes. Developments and
applications to study cases are necessary to sustain this hypothesis.

A first hypothesis about the reason why elemental clustering is a good approach is
suggested by the results of the analysis on the mixed “iron, manganese, and cobalt” cluster.
In fact, these three elements are transition metals adjacent in the periodic table, whose
electronic configuration differs only for the number of electrons at the internal level, with
the external one being identical for all three. The good results obtained for such a mixed
class may mean that the proposed approach is sensitive to the outermost electronic level.
Of course, more experimental trials are needed to validate the hypothesis, particularly by
selecting other mixed clusters responding to the same characteristics.
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4.5. A Possible Usage of the System for the Programming of Restoration Actions

A main concern about cultural heritage is the preservation of artwork for future
generations. Of course, artworks, whatever the typology, inevitably tend to change or
degrade with time due to several different causes, and restoration campaigns must be
conducted whenever necessary. As far as pictorial artworks are concerned, color is surely
the main sentinel to be observed in order to decide what actions to take. A handy and
low-cost tool such as a digital camera would be optimal for frequent periodic control on
artworks, as well as on large surfaces. In this way, time-dependent data describing the state
of the paintings could be easily collected and analyzed preliminarily to further deepen
more sophisticated analyses, if necessary, prior to a restoration action.

To this end, repeated periodical collections of data are necessary to verify the feasibility
of selecting a parameter as a valid index of color deterioration. While elemental clustering
has proven optimal for the identification of color, it could be foreseen that chromatic
clustering would be best to handle the fading/deterioration of color with time. Of course,
at the present time, this is only a conjecture to be verified in the future as a compulsory
development of the present study.

4.6. Limitations and Future Developments

First, the amount of available data needs to be increased, as it is supposed that it
would lead to better correction, at least on statistical grounds.

Of course, the present study cannot be limited to “theory”; in addition to the desirable
significance of the method outlined in the previous paragraph, a main interest would be
the application of the training to real cases in order to perform identification and study
of the pictorial layers of an unknown composition. Thus, once the chemical clusters have
been characterized, one can consider an “unknown” painting and focus on a particular
area. If such an area fits a particular cluster, i.e., proper color correction is obtained by
considering the parameters for that class, then it would mean that the relevant chemical
elements are present in the considered area.

A continuing collaboration with the laboratories of “La Venaria Reale” and contacts
with museums or galleries would surely satisfy both the outlined forms of progress and
enable the development of a novel machine-learning-based approach, which is presently
hampered by the limited size of the available dataset.

5. Conclusions

A dataset of digital camera photographs and of colorimetric measurements on 117 tiles
from the database of diagnostic analyses of The Foundation Centre for Conservation and
Restoration of Cultural Heritage “La Venaria Reale” was collected and analyzed with the
aim of minimizing the difference between digital and spectrophotometric quantitative
color data, from the perspective of validating a handy diagnostic tool such as a digital
camera for quantitative color determination.

To address the homoscedasticity of the data acquired, the current study proposed a
supervised approach to camera characterization and color correction based on clustered
data. To this end, within the dataset, samples were grouped into clusters based on either
the chromatic or the chemical properties of the pigments.

Among the different approaches studied in the present study, a polynomial regression
obtained the best results with both of the proposed clustering criteria. Thus, while the
correlation between characterized photographic data and colorimetric data remains high
when considering both the entire dataset and the single clusters, in the latter case, notable
improvements can be seen in the three parameters considered to test the efficacy of the
characterization (i.e., RMS, ΔE00, and Δ). The central thesis that the piecewise method
improves prediction accuracy was supported by numerical evaluations, even though, in
absolute terms, the results were short of an error low enough to be imperceptible to a
human expert.
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In future studies, the aim could be to extend the dataset, for example, by developing
the collaboration with La Venaria Reale. Of course, increasing the dataset would allow one
to define new or more densely populated clusters, and therefore study the chemical and
chromatic properties of the pigments in more detail, hopefully confirming the hypothe-
ses above. A larger dataset may substantially improve the error, and therefore achieve
imperceptible differences between the acquired data and the corrected data.

Furthermore, different approaches could be investigated, no longer based on the
mean value of the colorimetric data, but rather looking for other significant parameters to
perform the analysis. Additionally, further applications of the proposed approach are being
investigated, such as applying it for characterizing the chemical composition of unknown
artworks by leveraging the photographic data.

Author Contributions: Conceptualization, G.P. and S.D.; methodology, M.T. and F.F.; software, M.T.
and F.F.; validation, M.T., F.F., G.P. and S.D.; formal analysis, M.T. and F.F.; investigation, M.T., F.F.,
G.P. and S.D.; resources, E.M.; data curation, M.T., F.F., E.M., G.P. and S.D.; writing—original draft
preparation, M.T. and F.F.; writing—review and editing, G.P. and S.D.; visualization, M.T. and F.F.;
supervision, G.P. and S.D.; project administration, G.P. and S.D. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Marco Nervo and Tiziana Cavaleri (Foundation
Centre for Conservation and Restoration of Cultural Heritage “La Venaria Reale”), who made the
present study possible by providing access to databases of colorimetric analyses.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, a table presenting the pigments’ descriptions is provided.

Table A1. List of the available pigments with their name, chemical composition, and chemical and chromatic classes.

Tile Pigment Name Pigment Color Chemical Composition
Chemical

Class
Chromatic

Class

Tile 1 Lead White Lead white 2PbCO3.Pb(OH)2 Lead Gray

Tile 4 Calcium Carbonate White CaCO3 Other Gray

Tile 5 Vine Black German Black
Retouching color in aldehyde resin 81.

Carbon with impurities of potassium and
sodium ions

Organic Gray

Tile 9 Azurite MP,
sky-blue light Azure Cu3(CO3)2.(OH)2 Copper Blue

Tile 13 Smalt Blue K2O.nSiO2 with the presence of cobalt Cobalt Blue

Tile 15 Orpiment Yellow As4S6 Other Yellow

Tile 16 Realgar Orange, yellow As4S4 Other Yellow

Tile 19 Yellow Ochre
Iron Oxide Yellow α-FeO(OH) or K,Fe(SO4)2(OH)6 or

γFeO(OH)) Iron Yellow

Tile 20 Raw Sienna Italian Raw sienna,
yellow, brown Fe2O3.nH2O + MnO2 + Al2O3 + SiO2 Iron Yellow

Tile 21 Massicot Litharge Yellow PbO Lead Yellow
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition
Chemical

Class
Chromatic

Class

Tile 22 Burnt Sienna Italian Burnt sienna,
red, brown Fe2O3.nH2O + Al2O3 (60%) + MnO2 (1%) Iron Red

Tile 23 Burnt Umber
Reddish

Burnt umber,
brown Fe2O3 + MnO2 + Si + Al2O3 Iron Red

Tile 25 French Ochre
SOFOROUGE Red SiO2 + Al2O3 + Fe2O3 Iron Red

Tile 28 Pozzuolana Red
Earth Purple, red Mix of lands Iron Red

Tile 30 Madder Lake
Genuine Pink, red Organic nature Organic Red

Tile 31 Red Ochre English Red Fe2O3.nH2O Iron Red

Tile 33 Red Bole Brown, red Al2Si2O5(OH)4 Other Red

Tile 34 Red Lead, minimum Orange, red PbO4 Lead Red

Tile 36 Malachite Natural
Standard Green Cu3(CO3).(OH)2 Copper Green

Tile 41 Verdigris, synthetic Blue, turquoise,
green Cu(CH3COO)2

Copper
(organic) Blue

Tile 42 Barium Sulfate White BaSO4 Other Gray

Tile 43 Sepia Fine Black-brown Sepia, fine (colorant of cuttlefish) Organic Gray

Tile 44 Bone Black Black 15–20% of carbon, 60–70% of Ca3(PO4)2 Other Gray

Tile 45 Asphaltum Black Black High molecular weight hydrocarbons Organic Gray

Tile 46 Blue Bice Blue, turquoise Cu2(CO3)2.Cu(OH)2 Copper Blue

Tile 47 Lapis Lazuli Blue (Na,Ca)8(AlSiO4)6 + % of iron Iron Blue

Tile 48 Ultramarine Ash Blue ultramarine Na2O3Al6SiO2.2Na2S Other Blue

Tile 49 Lead Tin
Yellow Light Lemon yellow Lead stannate, type I (Pb2SnO4) Lead Yellow

Tile 50 Indian Yellow
Imitation Indian yellow Consisting primarily of euxanthic acid

salts Organic Yellow

Tile 51 Naples Yellow, dark Naples yellow Pb2Sb2O7 Lead Yellow

Tile 52 Van Dyck Brown Van Dyke brown Consists mainly of humic acids and iron
oxide Iron Red

Tile 53 Natural Cinnabar Orange, red Mineral cinnabar, HgS Other Red

Tile 54 Lac Dye Pink, red Lac dye (from coccus lacta secretion,
Natural Red 25; gum lac, Indian lake) Organic Red

Tile 55 Vermilion Vermilion red Mine cinnabar, HgS Other Red

Tile 56 Caput Mortuum
Reddish Red, violet Fe2O3 Iron Red

Tile 57 Caput Mortuum
Violet Brown, violet Fe2O3 Iron Red

Tile 58 Green Earth Light Green Iron-based silicate Iron Green

Tile 59 Prussian Blue Prussian blue Fe4[Fe(CN)6]3.6H2O or
KFe[Fe(CN)6].6H2O Iron Blue

Tile 60 Lead Tin Yellow II Lemon yellow Type II, Pb(Sn,Si)O3 Lead Yellow
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition
Chemical

Class
Chromatic

Class

Tile 61 Naples Yellow
from Paris Yellow Pb(Sb,Sn)O3 Lead Yellow

Tile 62 Venetian Red Venetian red Fe2O3 Iron Red

Tile 67 Lead Sulfate White PbSO4 Lead Gray

Tile 68 Lithopone White BaSO4 + ZnS Other Gray

Tile 69 Titanium White
Rutile Titanium white TiO2 Other Gray

Tile 70 Zinc White Zinc white ZnO + % of iron Iron Gray

Tile 71 Zinc Sulfide White ZnS Other Gray

Tile 72 Manganese Black Black (Fe,Mn)3O4 Iron Gray

Tile 73 Ploss Blue Blue, turquoise, (CuCa)CO3(CH3COO)2.2H2O) Copper
(organic) Blue

Tile 74 Blue Verditer Blue CuCO3 Cu(OH)2 Copper Blue

Tile 75 Ultramarine Blue
very dark Ultramarine blue Al6Na8O24S3Si6 Other Blue

Tile 76 Copper Blue Blue, turquoise Copper based Copper Blue

Tile 77 Zirconium
cerulean blue Cerulean blue Derived from zircon Other Blue

Tile 78 Cavansite Blue, turquoise Ca(VO)Si4O10.4(H2O) Other Blue

Tile 79 Ultramarine Blue
Dark Ultramarine blue Na2O3Al6SiO2.2Na2S Other Blue

Tile 80 Cobalt Blue Dark Blue (Co,Zn)2SiO4 Cobalt Blue

Tile 81 Cobalt Blue Pale Blue CoAl2O4 Other Blue

Tile 82 Natural Chromium
Yellow or crocoite Yellow PbCrO4 Lead Yellow

Tile 83 Cadmium Yellow
n◦6 medium Cadmium yellow CdS + ZnO Other Yellow

Tile 84 Permanent Yellow
medium Yellow Organic nature Organic Yellow

Tile 85 Brilliant Yellow Yellow C18H18N4O6 Organic Yellow

Tile 86 Studio Yellow Yellow C16H12Cl2N4O4 Organic Yellow

Tile 87 Cobalt Yellow Yellow [Co(NO2)6]K3 + 3H2O Cobalt Yellow

Tile 88 Bismuth-Vanadate
YelLow Lemon Yellow (Bi,V)O4 Other Yellow

Tile 89 Baryte Yellow Yellow BaCrO4 Other Yellow

Tile 90 Studio Pigment
Yellow Yellow C18H18N4O6 Organic Yellow

Tile 91 Studio Pigment
Yellow Sun Gold Yellow Organic nature Organic Yellow

Tile 92 Cadmium Orange
n◦0 very light Orange Cd2SSe Other Red

Tile 93 Paliotol® Orange Orange C8H9N Organic Red

Tile 94 Paliogen® Orange Orange C23H8Cl8N4O2 Organic Red
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition
Chemical

Class
Chromatic

Class

Tile 95 Irgazin® Yellow,
light orange

Yellow C8H7NO Organic Yellow

Tile 96 Isoindolol Orange Orange C8H7N Organic Red

Tile 97 Titanium Orange Orange, yellow Ti-Sb-Cr-O Rutile Other Yellow

Tile 98 Iron Oxide
Orange 960 Orange Fe(O)OH + Fe2O3 Iron Red

Tile 99 IWA-Enogu® Shinsia Pink Sodium aluminosilicate with oxides of
metals other than iron Other Red

Tile 100 IWA-Enogu®

Iwamomo
Pink Sodium aluminosilicate with oxides of

metals other than iron Other Red

Tile 101 IWA-Enogu®

Usukuchi-Murasaki
Violet Sodium aluminosilicate with oxides of

metals other than iron Other Red

Tile 102 Côte d’Azur Violet Gray, violet Fe2O3 Iron Gray

Tile 103 Thioindigo Red
Lightfast Red Organic nature Organic Red

Tile 104 Cinquasia® Violet
RT 201 D

Reddish violet Organic nature Organic Red

Tile 105 Ultramarine Violet
medium Violet, bluish Sodium, alumino, sulfo, silicate Other Blue

Tile 106 Manganese Violet Manganese violet (NH4)2Mn2(P2O7) Manganese Blue

Tile 107 Cobalt Violet Dark Cobalt violet Co3(PO4)2 Cobalt Blue

Tile 108 Pink color Pink, red Ca(Sn,Cr)SiO5 Other Red

Tile 109 Cadmium Red n◦2
medium Cadmium red CdS Other Red

Tile 110 Irgazine® Scarlet
DPP EK

Scarlet red C6H2N2O2 Organic Red

Tile 111 Alizarine Crimson
dark Pink, red Colorant/organic pigment for coatings Organic Red

Tile 112 XSL Irgazine® Red
DPP

Red Organic nature Organic Red

Tile 113 Rosso Sartorius Brown, red Fe2O3.nH2O Iron Red

Tile 114 Aegirine Fine Green NaFeSi2O6 Iron Green

Tile 115 Andeer Green Fine Green Granite Other Green

Tile 116 Phthalo Green dark Green, bluish Cu(C32N8Cl14).16HCl Copper
(organic) Green

Tile 117 Chromite Green FeCr2O4 Iron Green

Tile 118 Cobalt Green Green Co2SnO4 Cobalt Green

Tile 119 Cobalt Green
Bluish A Green, turquoise Cobalt-based Cobalt Green

Tile 120 Chrome Oxide
Green Green Cr2O3 Other Green

Tile 122 Permanent Green Green, turquoise CoAl2O4 Cobalt Green

Tile 123 Cadmium Green
Light Green Cadmium-based Other Green
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition
Chemical

Class
Chromatic

Class

Tile 124 Cadmium Green Dark Green Cadmium-based Other Green

Tile 125 Fluorescent Pigment
Blue Blue Unspecified Other Blue

Tile 126 Phthalo Blue Blue C32H16CuN8
Copper

(organic) Blue

Tile 127 Phthalo Blue Royal Blue Blue C32H16CuN8
Copper

(organic) Blue

Tile 129 Indanthren® Blue Blue Unspecified Organic Blue

Tile 130 XSL Phthalo Blue Royal
Blue Very Lightfast Blue C32H16CuN8

Copper
(organic) Blue

Tile 131 Indigo Blue Lake Blue Organic nature Organic Blue

Tile 132 Indigo Red-Violet Blue, violet Organic nature Organic Blue

Tile 133 Studio Pigment Sky Blue Blue Unspecified Other Blue

Tile 134 Studio Pigment
Dark Blue Blue Unspecified Other Blue

Tile 135 XSL Translucent Yellow Yellow Unspecified Iron Yellow

Tile 136 IWA-Enogu® Iwabeni Red Unspecified Other Red

Tile 137 Phthalo Green,
yellowish green, yellowish Copper-based Copper

(organic) Green

Tile 138 Heliogen® Green Green, bluish Copper-based Copper
(organic) Green

Tile A Madder Lake glazing
over natural cinnabar Red Organic nature Organic Red

Tile B Azurite glazing over
Madder Lake Blue Cu3(CO3)2.(OH)2 Copper Blue

Tile C Lapis Lazuli glazing
over Azurite Blue (Na,Ca)8(AlSiO4)6 + % of iron Iron Blue

Tile D Copper resinate glazing
over Verdigris Green Cu(CH3CO)2.2Cu(OH)2.nH2O Copper

(organic) Green

Tile E
Bisso (mixture of

Madder Lake and Lapis
Lazuli)

Blue Organic nature Organic Blue

Tile F Mixture of Azurite and
Lead Tin Yellow Light Green Cu3(CO3)2

.(OH)2 and Pb2SnO4
Copper
lead (*) Green

(*): Tile F presents both copper and lead in its chemical composition, so it belongs to both copper and lead clusters.
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Abstract: Restoration of digital visual media acquired from repositories of historical photographic
and cinematographic material is of key importance for the preservation, study and transmission of
the legacy of past cultures to the coming generations. In this paper, a fully automatic approach to
the digital restoration of historical stereo photographs is proposed, referred to as Stacked Median
Restoration plus (SMR+). The approach exploits the content redundancy in stereo pairs for detecting
and fixing scratches, dust, dirt spots and many other defects in the original images, as well as
improving contrast and illumination. This is done by estimating the optical flow between the images,
and using it to register one view onto the other both geometrically and photometrically. Restoration
is then accomplished in three steps: (1) image fusion according to the stacked median operator, (2)
low-resolution detail enhancement by guided supersampling, and (3) iterative visual consistency
checking and refinement. Each step implements an original algorithm specifically designed for this
work. The restored image is fully consistent with the original content, thus improving over the
methods based on image hallucination. Comparative results on three different datasets of historical
stereograms show the effectiveness of the proposed approach, and its superiority over single-image
denoising and super-resolution methods. Results also show that the performance of the state-of-the-
art single-image deep restoration network Bringing Old Photo Back to Life (BOPBtL) can be strongly
improved when the input image is pre-processed by SMR+.

Keywords: image denoising; image restoration; image enhancement; stereo matching; optical flow;
gradient filtering; stacked median; guided supersampling; historical photos

1. Introduction

Photographic material of the XIX and XX centuries is an invaluable source of informa-
tion for historians of art, architecture and sociology, as it allows them to track the changes
occurred over the decades to a community and its living environment. Unfortunately, due
to the effect of time and bad preservation conditions, most of the survived photographic
heritage is partially damaged, and needs restoration, both at the physical (cardboard sup-
port, glass negatives, films, etc.) and digital (the image content acquired through scanners)
levels. Dirt, scratches, discoloration and other signs of aging strongly reduce the visual
quality of photos [1]. A similar situation also holds for the cinematographic material [2].

Digital restoration of both still images and videos has attracted considerable interest
from the research community in the early 2000s. This has led to the development of several
tools that improve the visual quality. Some approaches rely on the instantiation of noise
models, which can either be fixed a priori or derived from the input images [3–5]. Other
approaches detect damaged areas of the image and correct them according to inpainting
techniques [6]. Self-correlation inside the image, or across different frames in videos, is often
exploited in this context, under the assumption that zero-mean additive noise cancels out
as the available number of image data samples increases [7–9]. A similar idea is exploited
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by super-resolution techniques that enhance image quality by pixel interpolation [10,11].
In recent years, the algorithmic methods above have been sided by methods based on
deep learning that can infer the image formation model or the scene content [12] from
a training set in order to inject this information into the final output, a process called
image hallucination [13–15]. Although the final image may often alter the original image
data content, and hence cannot be fully trusted (e.g., in the medical diagnosis domain),
the hallucination methods can give visually pleasing results (see Figure 1).

(a) I1 (b) I2 (c) (I1, I2)

(d) BM3D (e) BOPBtL (f) SMR+

(g) I1 detail (h) BM3D detail (i) BOPBtL detail (j) SMR+ detail

(k) I1

pixel-level detail
(l) BM3D

pixel-level detail
(m) BOPBtL

pixel-level detail
(n) SMR+

pixel-level detail

Figure 1. First row: An example of historical stereo pair of images, I1 and I2, also superimposed as
anaglyph. Second row: Enhancement of I1 according to different methods, including the proposed SMR+
method. Although visually impressive, the deep super-resolution result of BOPBtL does not preserve the
true input image. Third row: A detail of I1 and the restored images according to the different methods.
A closer look at BOPBtL reveals alterations with respect to the original face expression, accentuating
the smile and introducing bush-like textures on the hair. Fourth row: pixel level detail of I1 and of
the restored images according to the different methods. The specific image region considered is the
background around the right shoulder. Notice the chessboard-like texture pattern typical of the deep
network approaches, not visible at coarser scales. Best viewed in color: the reader is invited to zoom in
on the electronic version of the manuscript in order to better appreciate the visual differences.

48



J. Imaging 2021, 7, 103

Stereoscopy has accompanied photography since its very birth in the nineteenth cen-
tury, with ups and downs in popularity through time. Notwithstanding the lesser spread
of stereo photography with respect to standard (monocular) photography, many digital
archives with thousands of stereo images exist, some of which are freely available on the
web. Stereo photos have a richer content than standard ones, as they present two different
views of the same scene, thus explicitly introducing content redundancy and implicitly
embedding information about scene depth. This characteristic can be exploited also in
digital noise removal, enhancement and restoration, since a damaged area in one image can
be reconstructed from the other image, provided that the correspondences between the two
images are known. At a first glance, the above-mentioned approach looks similar to that of
video restoration from multiple video frames, in which the scene is acquired in subsequent
time instants from slightly changed viewpoints. However, stereo images have their own pe-
culiarities, and actually introduce in the restoration process more complications than video
frames, which in movies typically exhibit an almost static and undeformed background,
differently from stereo pairs. As a matter of fact, although several advances have been
recently made in stereo matching and dense optical flow estimation [16], the problem is
hard and far from being fully solved, especially in the case of very noisy and altered images
such as those generated by early photographic stereo material. To the best of the authors’
knowledge, stereo photo characteristics have been employed only for the super-resolution
enhancement or deblurring of modern, clean photos [17–19]. On the other hand, the image
analysis and computer vision approaches developed so far for historical stereo photos
mainly aimed at achieving (usually in a manual way) better visualizations or 3D scene
reconstructions [20–22], with no attempt at restoring the quality of the raw stereo pairs.

This paper proposes a new approach to clean up and restore the true scene content in
degraded historical stereo photographs, named Stacked Median Restoration Plus (SMR+),
extending our previous work [23], and working in a fully automatic way. With respect to
existing single image methods, damaged image areas with scratches or dust can be better
detected and fixed, thanks to the availability of more sampled data points for denoising.
In addition, the correct illumination can be restored or enhanced in a way akin to that
of High Dynamic Range Imaging, where the images of the same scene taken at different
exposure levels are used in order to enhance details and colors [24]. For this scope, the
optical flow, estimated with the recent state-of-the-art Recurrent All-Pairs Field Transforms
(RAFT) deep network [16], is used to synthesize corresponding scene viewpoints in the
stereo pair, while denoising and restoration are carried out using novel yet non-deep image
processing approaches. The entire process is superseded by scene content consistency
validation, used to check critical stereo matching mispredictions that were left unresolved
by the network. Our approach aims to obtain an output which is fully consistent with the
original scenario captured by the stereo pair, in contrast with the recent super-resolution
and denoising approaches based on image hallucination.

This paper extends our previous work [23], hereafter reported as Stacked Median
Restoration (SMR) under several aspects:

• With respect to SMR, the novel SMR+ is redesigned so as to better preserve finer details
while at the same time improving further the restoration quality. This is accomplished
by employing supersampling [25] at the image fusion step in conjunction with a
weighting scheme guided by the original restoration approach.

• The recent state-of-the-art deep network BOPBtL [26], specifically designed for old
photo restoration, is now included in the comparison, both as standalone and to serve
as post-processing of SMR+.

• The collection of historical stereo photos employed as a dataset is roughly doubled to
provide a more comprehensive evaluation.

• The use of renowned image quality assessment metrics is investigated and discussed
for these kinds of applications.
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The rest of the paper is organized as follows: Section 2 introduces the proposed
approach. An experimental evaluation and comparison with similar approaches is reported
in Section 3. Finally, conclusions and future work are discussed in Section 4.

Note: To ease the inspection and the comparison of the different images presented, an interactive PDF
document is provided in the additional material (https://drive.google.com/drive/folders/1Fmsm5
0bMMDSd0z4JXOhCZ3hPDIXdwMUL) to allow readers to view each image at its full dimensions
and quickly switch to the other images to be compared.

2. Proposed Method

Given a pair of stereo images I1 and I2, the aim of the process is to output a defect-free
version of one image of the pair (referred to as the reference) by exploiting the addi-
tional information coming from the other image (denoted as auxiliary). For convenience,
the reference is denoted as I1 (see Figure 2a) and the auxiliary image as I2 (see Figure 2b),
but their roles can be interchanged. Images are assumed to be single channel graylevel,
i.e., I1, I2 : R2 → [0, 255].

(a) I1 (b) I2 (c) (I1,I2)

mx

my
20

-20 00 20
-20

(d) (mx, my) (e) Ĩ2→1 (f) Ĩ2→1 error wrt I1

0

230

m'x

m'y
20

-20 00 20
-20

(g) (m′
x, m′

y) (h) Ĩ′2→1 (i) Ĩ′2→1 error wrt I1

Figure 2. Cont.
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(j) I2→1 (k) I2→1 error wrt I1

0

230

(l) I�2→1 (m) I�2→1 error wrt I1

0

230

Figure 2. Auxiliary image pointwise transfer and color correction steps (see Sections 2.1 and 2.2):
(a) Reference image I1, (b) auxiliary image I2, (c) superimposition of I1 and I2 as anaglyph, (d) visual
representation of the optical flow map (mx, my) extracted by RAFT, (e) image Ĩ2→1 as resynthesis of
I2 through (mx, my) and (f) its error with respect to I1, (g) visual representation of the optical flow
map (m′

x, m′
y) extracted by RAFT after switching the input images, (h) image Ĩ2→1 as resynthesis

from I2 through −(m′
x, m′

y) and (i) its error with respect to I1, (j) final resynthesized image I2→1

considering the locally best optical flow estimation between Ĩ2→1(x, y) and Ĩ′2→1(x, y) and (k) its error
with respect to I1, (l) image I�2→1 obtained after applying GPS/LCP color correction to I2→1 using I1

as reference, and (m) the corresponding error map with respect to I1. Best viewed in color. The reader
is invited to zoom into the electronic version of the manuscript in order to better appreciate the
visual differences.

2.1. Auxiliary Image Pointwise Transfer

As a first step, the recent state-of-the-art RAFT deep network [16] is used to compute the
optical flow map pair fRAFT(I1, I2) = (mx, my), where mx, my : R2 → R (see Figure 2d), so
that a synthesized image based on the content of I2 and registered onto I1 can be obtained as

Ĩ2→1(x, y) = I2(x + mx(x, y), y + my(x, y)) (1)

by transferring pixel intensity values from I2 into the view given by I1 (see Figure 2e). Note
that spots of missing data can be present on Ĩ2→1 when no pixel in I2 maps onto the specific
image area, due, for instance, to image occlusions. In the error free ideal case, it must hold
that I1 = Ĩ2→1 for every correspondence between I1 and I2. However, in real situations,
this may not happen, as shown in Figure 2f reporting the average absolute error between
I1 and Ĩ2→1 on 5 × 5 local window patches.

Notice also that, in the case of perfectly rectified stereo images, it holds everywhere
that my(x, y) = 0. Under this particular setup, in which mx is denoted as disparity map
and is the only map that needs to be estimated, several classical methods have proven
to provide good results while being computationally efficient [27]. However, according
to our experience [21], these methods are not feasible in the case of degraded historical
stereo photos. First, image degradation due to aging and the intrinsic image noise due to
the technological limitations of the period decrease the ability of these methods to find
the right correspondences. Second, the output of these methods is quite sensitive to the
initial configuration of the parameters and, by considering the variability of the historical
acquisition setups, each stereo pair would require the human supervision to get even a
sub-optimal result. Third, the stereo alignment for the photos under consideration is far
from perfect due to the technological limitations of the period, hence both the maps mx
and my are to be considered. Hence, our choice fell under the state-of-the-art RAFT that
provides a sufficiently good initial estimation of the optical flow maps in most cases.

A further flow mapping pair fRAFT(I2, I1) = (m′
x, m′

y) (see Figure 2g) can be obtained
by switching the two input images, which can be employed to synthesize a second image
according to

Ĩ′2→1(x, y) = I2(x − m′
x(x, y), y − m′

y(x, y)) (2)

(see Figure 2h) so that, in the error free ideal case for every correspondence between I1 and
I2, it holds that (mx, my) = −(m′

x, m′
y), which implies that I1 = Ĩ2→1 = Ĩ′2→1. This usually
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does not happen, as shown by the relative error image of Figure 2i. Indeed, comparing the
first and second rows of Figure 2, RAFT optical flow estimation is not completely accurate
and does not preserve map inversion when exchanging the input image order. The final
synthesized image I2→1 (see Figure 2j) is then obtained by choosing the intensity value
at each pixel (x, y) as the one from Ĩ2→1(x, y) and Ĩ′2→1(x, y) that minimizes the sum of
absolute errors with respect to I1 on a small 5 × 5 local window centered on the pixel (see
Figure 3). A smaller error between the final resynthesized image I2→1 and the reference
image I1 is obtained (see Figure 2k) with respect to the errors given by Ĩ2→1(x, y) and
Ĩ′2→1(x, y).

Figure 3. Illustration of the I2→1 image formation process from the two resynthesized images
Ĩ2→1(x, y) and Ĩ′2→1(x, y), respectively driven by the optical flow estimation maps (mx, my) and
−(m′

x, m′
y). A point (x, y) in I1 can be mapped back to I2 according to either Equation (1) or

Equation (2). The best back-mapping minimizing locally the error among the two possible opti-
cal flow estimates is then chosen to form I2→1. Best viewed in color.

2.2. Color Correction

Due to the technical limitations of the old photographic instrumentation, illumination
conditions between the two stereo images can differ noticeably. For instance, flash lamp
and, even more, flash powder did not provide each time uniform and identical illumination
conditions, and it was not infrequent that a single camera was moved in two different posi-
tions in order to simulate a stereo setup instead of having two synchronized cameras [21].
Moreover, discoloration of the support due to aging can be present. In order to improve
the final result, the state-of-the-art color correction method named Gradient Preserving
Spline with Linear Color Propagation (GPS/LCP) presented in [28] is employed to correct
the illumination of I2→1 according to I1. Specifically, the color map gGPS/LCP(I1, I2→1) = C,
with C : R → R is used to obtain the color corrected image I�2→1 according to

I�2→1(x, y) = C(I2→1(x, y)) (3)

where, in the error free ideal case, it must hold that I1 = I�2→1 (see Figure 2l). The GPS/LCP
color correction method is able to preserve the image content and works also in the case
of not perfectly aligned images. Color correction decreases the resynthesis error. This
can be noted by comparing the error map of I�2→1 (Figure 2m) with the error map of I2→1
(Figure 2k), see for instance the error corresponding to the dark background above the left
table. Clearly, if I2→1 presents better illumination conditions than I1, it is also possible to
correct I1 according to I2→1.

2.3. Data Fusion

Given the reference image I1 and the synthesized one obtained from the auxiliary
view I�2→1 after the illumination post-processing, the two images are blended into a new
image I12 according to the stacked median operator (see Figure 4a)

I12 = �(I1 ∪ I�2→1) (4)
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The stacked median �({I}) for a set of images {I} outputs a new image defined so that
image intensity at pixel (x, y) is the median intensity value computed on the union of the
pixels in the 3 × 3 local neighbourhood windows centered at (x, y) on each image of the set
(see Figure 5). Notice that the median stacking operation typically found as a blending tool in
image manipulation software corresponds to the proposed stacked median operator with
degenerate 1 × 1 local windows. Unlike median stacking, the proposed definition does
not require more than two input images and considers pixel neighborhoods, i.e., it works
locally and not pointwise. Additionally, in case of missing data in I�2→1, the stacked median
acts as a standard 3 × 3 median filter. With this operator, dirt, scratches and other signs of
photographic age or damages are effectively removed from I12, but high frequency details
can be lost in the process, due to the 3 × 3 filtering (see Figure 4b). These are partially
re-introduced by considering a blended version of the gradient magnitude

dm12 = �(M(I1) ∪ M(I�2→1)) (5)

(see Figure 4c) obtained as the stacked median of eight possible gradient magnitudes,
four for each of the I1 and I�2→1 images, to further enhance finer details. Each gradient
magnitude image in the set M(I) for a generic image I is computed as

dm =
(

d2
x + d2

y

) 1
2 (6)

pixelwise, where the image gradient direction pairs (dx, dy) are computed by the convolu-
tion of I with the following four pairs of kernel filters:

⎧⎨⎩
⎛⎝⎡⎣0 0 0

0 −1 1
0 0 0

⎤⎦,

⎡⎣0 1 0
0 −1 0
0 0 0
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⎤⎦⎞⎠,

⎛⎝⎡⎣0 0 0
1 −1 0
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⎤⎦,

⎡⎣0 0 0
0 −1 0
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⎛⎝⎡⎣0 0 0
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⎤⎦,

⎡⎣0 0 0
0 −1 0
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⎤⎦⎞⎠⎫⎬⎭ (7)

Notice that dm12 �= �(M(I12)) in the general case (compare Figure 4c with Figure 4f).
Consider for now only a single derivative pair (dx, dy) of I12: Each pixel intensity I12(x, y)
is incremented by a value v(x, y) satisfying

(
dx +

v
2

)2
+

(
dy +

v
2

)2
=

d2
m − d2

m12

2
(8)

This equation has a twofold solution

v� = ±(2dxdy − d2
m12

)
1
2 − (dx + dy) (9)

In the case of two real v� solutions, v is chosen as v(x, y) = arg minv̄∈v� |v̄| in order to
alter I12 as little as possible. In the case of complex solutions, v(x, y) is set to 0. The final
gradient-enhanced image is then obtained as

I12↑ = I12 + v (10)

(see Figure 4d,e for details). Since four different v values are obtained for each of the four
derivative pairs of Equation (7), their average value is actually employed.
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(a) I12 (b) I12 detail (c) dm12

0
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(d) I12↑ (e) I12↑ detail (f) �(M(I12))

0
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Figure 4. Data fusion step (see Section 2.3): (a) stacked median I12 obtained from I1 ∪ I�2→1, (b) details
of I12, (c) the stacked median dm12 of the gradient magnitudes of I1 and I�2→1, (d) the gradient-
enhanced image I12↑ , (e) a detail of I12↑ , (f) the gradient magnitude �(M(I12)) of the stacked median
image I12. Best viewed in color. The reader is invited to zoom in on the electronic version of the
manuscript in order to better appreciate the visual differences.
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Figure 5. Application of the stacked median operator � for computing I12 from I1 ∪ I�2→1. At pixel
(x, y), the stacked median operator takes the union of the corresponding 3 × 3 local neighbourhoods
for each image of the input set (in the example, the union of the red and green neighbourhoods,
and the union of the orange and blue ones, missing data are represented in the figure as gray ticked
boxes) and assigns its median intensity value to the point (x, y) in the new image. Best viewed
in color.

2.4. Refinement

As already noted, the optical flow may be not perfect, causing the presence of wrong
data in the image synthesis and hence in the data fusion process described in the previous
step. To alleviate this issue, an iterative error-driven image correction step is introduced,
where each iteration can be split into two sub-steps:

1. Detection. A binary correction mask is computed by considering the error image E =

(I1 − I12↑)
2 the 11 × 11 local window L(x, y) centered at each (x, y). Given L′(x, y) ⊆

L(x, y) as the subset of pixels with intensity values lower than the 66% percentile on
L(x, y), the pixel (x, y) is marked as requiring adjustment if the square root of the
average intensity value on L′(x, y) is higher than t = 16 (chosen experimentally). This
results in a binary correction mask B that is smoothed with a Gaussian kernel and
then binarized again by a threshold value of 0.5. As clear from Figure 6a, using the
percentile-based subset L′(x, y) is more robust than working with the whole window
L(x, y).
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2. Adjustment. Data fusion is repeated again after updating pixels on I�2→1 that need
to be adjusted with the corresponding ones of I12↑ . Since I12↑ is a sort of average
between I1 and I�2→1, the operation just described pushes marked pixels towards I1.
At the end of this step, the gradient enhanced image I12↑ is also updated accordingly
and, in case of no further iterations, it constitutes the final output.

Iterations stop when no more pixels to be adjusted are detected in the updated I12↑ or when
the maximum number of iterations is reached (see Figure 6). A maximum of four iterations
is carried out, since it was verified experimentally that data fusion typically converges to I1
within this number of steps.
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(a) B (b) I12↑ (c) I12↑ detail

Figure 6. Refinement step (see Section 2.4). First (top row) and last (bottom row) iterations of the
detection and adjustment sub-steps. (a) detection mask B at the beginning of the iteration, (b) updated
I12↑ at the end of the iteration and (c) details of (b). Pixels to be adjusted using L′ (L) are underlined
in the images by saturating the red (blue) channel. By inspecting the details, it can be seen that the
ghosting effect is removed. Best viewed in color. The reader is invited to zoom in on the electronic
version of the manuscript in order to better appreciate the visual differences.

2.5. Guided Supersampling

Previous steps describe the original SMR implementation [23]. In order to preserve
more fine details of the input images, a better image fusion is proposed hereafter, where
the original coarse blended image I12 (Equation (4)) is employed to guide a refinement on
the basis of supersampling (see Figure 7).

Let W1 denote the image obtained by averaging |I1 − I12| on a 3× 3 window, and simi-
larly W2 the one obtained with |I2 − I12|. The weight mask W is computed as W1/(W1 +W2)
pixelwise, followed by the convolution with a Gaussian with a standard deviation of
four pixels (see Figure 7d). A value of W close to 0 (1) for a given pixel implies that the
local neighborhood of that pixel in I1 (I2) is very likely less noisy and more artefact-free
than I2 (I1). The mask W is used to define a weighted stacked median

H12 = �W(I×2
1 , I�×2

2→1) (11)

where the superscript ×2 indicates the bicubic rescaling by a factor two for supersampling
(see Figure 7e). Explicitly, the weighted stacked median at (x, y) is obtained as the median
of the intensities of V1(x, y) ∪ V2(x, y), where V1(x, y) ⊆ I1 is the subset of the pixels in
the 3 × 3 local neighbourhood of (x, y) containing the �w × min(1 −W(x, y), w′)� intensity
values closest to I×2

12 (x, y), with w = 32 × 2 and w′ = (32 + 1)/(2 × 32 + 1), and likewise
for V2(x, y) ⊆ I2 containing the pixels with the �w × min(W(x, y), w′)� closest values.
In other words, the number of considered samples for the median taken from each image
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is proportional to the weight W(x, y). The cardinalities of the subsets V1 and V2 for the
different weight ranges are explicitly shown in Table 1.

The high resolution blended image H12 replaces I12 in the next steps of the method
(see Sections 2.3 and 2.4), I1 and I2 being also replaced accordingly by I×2

1 and I×2
2 . The final

output is scaled down to the original input size. With respect to the original SMR imple-
mentation, the use of guided supersampling in SMR+ preserves better fine details, also
improving further the restoration process (compare Figure 7c,g). Notice that, after each
refinement sub-step (see Section 2.4), the coarse I12 image needed to guide the process is
generated by the stacked median between I1 and I×2

12↑ scaled down to the original size.

(a) I12 (b) SMR (c) SMR detail (d) W

0

1

(e) H12 (f) SMR+ (g) SMR+ detail (h) |SMR−SMR+|
detail

0

50

Figure 7. Guided supersampling step (see Section 2.5): (a) SMR stacked median I12, (b) final restored
image and (c) details of it, (d) weight mask W for the guided supersampling, (e) SMR+ weighted
stacked median H12, (f) final restored image, (g) a detail of it, and (h) its differences with respect to
the SMR output. Best viewed in color. The reader is invited to zoom in on the electronic version of
the manuscript in order to better appreciate the visual differences.

Table 1. The cardinality of the sets V1(x, y) and V2(x, y) according to the weight W(x, y) range (see
Section 2.5).

inf W(x, y) 0.00 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95
sup W(x, y) 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95 1.00

|V1(x, y)| 9 9 9 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 0
|V2(x, y)| 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9

3. Evaluation

3.1. Dataset

In order to evaluate the proposed approach, we built a new dataset including historical
stereo pairs from different sources. The left frames of the selected stereo pairs are shown as
reference in Figure 8.

A first set of seven stereo pairs belongs to the collection of stereograms by Anton
Hautmann, one of the most active photographers in Florence between 1858 and 1862.
Part of Hautmann’s collection is described in [21]. The seven stereo pairs used in this
work depict different viewpoints of Piazza Santissima Annunziata in Florence as it was
in the middle of the 19th century. Inspecting these photos (see Figure 8, red frames), it
can be noticed that the image quality is very poor. In particular, the pairs are quite noisy,
with low definition and contrast, include saturated or blurred areas and also show scratches
and stains.
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Figure 8. Left frames for some historical stereo pairs. Image frames for Hautmann’s, Stereoscopic
Photos and USGS datasets are framed, respectively, in red, blue and green. Best viewed in color and
zoomed in with the electronic version of the manuscript.

A second set includes 35 stereo pairs and increases the original set of ten images
employed in [23]. These stereo pairs have been gathered from the Stereoscopic History
Instagram account (https://www.instagram.com/stereoscopichistory/, accessed on 1
April 2021, see Figure 8, blue frames for some examples) and contain landscape pictures
of urban and natural scenes as well as individual or group portraits. This set is the most
challenging one, since its images are heavily corrupted by noise and other artefacts.

A third set of five images was collected from the U.S. Geological Survey (USGS) Historical
Stereoscopic Photos account on Flickr (https://www.flickr.com/photos/usgeologicalsurvey/,
accessed on 1 April 2021), and represents natural landscapes (see Figure 8, green frames),
except for the last one which also includes two horsemen with their mounts. The quality of
these images is similar to that of the first set, but strong vignetting effects are also present.

3.2. Compared Methods

The proposed SMR and SMR+ are compared against Block Matching 3D (BM3D) [7],
Deep Image Prior (DIP) [13] and the recent BOPBtL [26]. BM3D and DIP are, respectively,
a handcrafted and deep generic denoising methods, while BOPBtL is a deep network
specifically designed for old photo restoration. These methods currently represent the
state-of-the-art in this research area.

For BM3D, the legacy version was employed, since, according to our preliminary
experiments, the new version including correlated noise suppression did not work well
for our kind of images. The BM3D σ parameter, the only one present, was set to 7 and 14,
values that, according to our experiments, gave the best visual results. In particular, σ = 14
seems to work better than σ = 7 in the case of higher resolution images. Besides apply-
ing the standard BM3D on the reference image, a modified version of this method was
implemented in order for BM3D to benefit from the stereo auxiliary data. Since BM3D
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exploits image self-correlation to suppress noise, the modified BM3D generates auxiliary
sub-images by placing side by side two corresponding 96 × 96 patches from I1 and I�2→1,
then runs the original BM3D on each sub-image and finally generates the output by collect-
ing the blocks from each sub-image corresponding to the 32 × 32 central I1 patches. No
difference in the results with respect to the standard BM3D was observed, which plausibly
implies that corresponding patches for I1 and I�2→1 are not judged as similar to each other
by BM3D.

In the case of DIP, the borders of the input images were cropped due to network
architectural constraints: These missing parts were replaced with content from the original
input images.

Concerning BOPBtL, the scratch removal option was disabled since it caused the
network to crash. This is a known issue related to the high memory requirement ex-
ceeding the standard 12 GB GPU amount to run the network on standard image input
(https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/, accessed on 1
April 2021), and does not occur only when the input image size is small. To circumvent
this problem, two solutions were attempted, yet without satisfying results. Specifically,
in the first solution, the input image was rescaled to a fixed size (from 50% to 33% of the
its original size), but the final result lost too many details (see Figure 9a). In the second
solution, the input was processed in separated blocks, causing a lack of global consistency
in the output (see Figure 9b). Moreover, in both solutions, the chessboard artefact effect,
typical of many deep networks that resynthesize images, looked more evident than in the
original BOPBtL implementation. BOPBtL was employed to post-process the output of
SMR+, which was denoted as SMR+BOPBtL in the results (see Figure 9c).

(a) BOPBtL with scratch
removal (rescaled)

(b) BOPBtL with scratch
removal (multiple blocks)

(c) SMR+BOPBtL

(d) BOPBtL with
scratch removal
(rescaled) detail

(e) BOPBtL with
scratch removal
(multiple blocks)

detail

(f) SMR + BOPBtL
detail

Figure 9. Cont.
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(g) BOPBtL with
scratch removal

(rescaled) pixel-level
detail

(h) BOPBtL with
scratch removal
(multiple blocks)
pixel-level detail

(i) SMR+BOPBtL
pixel-level detail

Figure 9. Results of BOPBtL with scratch removal or in combination with SMR+ on the same stereo
pair of Figure 1. Notice that the visual pleasant results of (a) are due to the frequency cutoff caused
by rescaling and disappear at a larger viewing scale such in (d). Best viewed in color. The reader
is invited to zoom in on the electronic version of the manuscript in order to better appreciate the
visual differences.

3.3. Results

Figures 10 and 11 show some examples of the results obtained with the compared
methods. For a thorough visual qualitative evaluation, the reader is invited to inspect
the full-resolution results obtained on the whole dataset, which are included in the addi-
tional material (https://drive.google.com/drive/folders/1Fmsm50bMMDSd0z4JXOhCZ3
hPDIXdwMUL). From a direct visual inspection of the results, BM3D and DIP often seem
to oversmooth relevant details in the image, with BM3D producing somewhat better results
than DIP, which sometimes simply fails to obtain a reasonable output (see Figure 11d,
row DIP). BOPBtL is able to bring out fine details, providing altogether a locally adaptive
smoothing and contrast enhancement of the image, with satisfactory results. Nevertheless,
none of the previous methods is able to detect and compensate for dust, scratches and
other kinds of artefacts that conversely may even be amplified in the restoration process,
as one can check by locating dust spots and sketches in Figure 10e, rows BM3D, DIP and
BOPBtL. This problem is mostly evident for BOPBtL, where image artefacts are heavily
boosted together with finer details.

Conversely, SMR-based methods are able to solve these issues by exploiting the
additional information present in the auxiliary image, with the exception of very severe
conditions such as the stains appearing in the right skyline of Figure 11c, for which,
anyways, SMR-based methods still get the best restoration of all. SMR-based methods also
successfully enhance the image contrast, as it happens for the window in the dark spot
under the right arcade in Figure 10b, rows SMR and SMR+. When image degradations
are even more severe than that, good results can nevertheless be obtained by forcing
the illumination of the auxiliary image into the reference (see Section 2.2), as done for
Figure 10d, rows SMR, SMR+ and SMR+BOPBtL. Concerning the guided supersampling
introduced for SMR+, this is able not only to preserve high frequency details (see again
Figure 7), but also to better clean-up the image, as one can notice by inspecting the removed
scratch from Figure 10c, row SMR+. Guided supersampling also alleviates spurious
artefacts arising from inaccurate optical flow estimation as in the case of the light pole of
Figure 10a (compare rows SMR and SMR+). Only in few cases of very inaccurate optical
flow estimation is SMR+ unable to fix inconsistencies and generates some spurious artefacts
as in the bottom-left white scratch in Figure 11e, rows SMR+ and SMR + BOPBtL. Finally, it
can be noted that SMR + BOPBtL is able to take the best from both the methods, i.e., the
artefact removal from SMR+ and the image enhancement from BOPBtL, and provides very
visually striking results.
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Figure 10. Qualitative visual comparison of the methods under test. Best viewed in color. The reader
is invited to zoom in on the electronic version of the manuscript in order to better appreciate
the differences.
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Figure 11. Qualitative visual comparison of the methods under test. Best viewed in color. The reader
is invited to zoom in on the electronic version of the manuscript in order to better appreciate
the differences.

Table 2 reports the score obtained by the compared methods on the images discussed
so far according to popular no-reference quality assessment metrics. Specifically, scores
are reported for the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [29],
the Naturalness Image Quality Evaluator (NIQE) [30] and Perception based Image Quality
Evaluator (PIQE) [31]. Due to the lack of ground-truth clean data and of a well-defined
image model for the generation of synthetic images with the same characteristics of the
input image under evaluation, image quality measurements requiring a reference image
such as the Structural Similarity Index (SSIM) [32] cannot be applied. By inspection of the
scores obtained, it clearly emerges that these quality metrics do not reflect the human visual
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judgment, hence they are unsuitable for a reliable quantitative evaluation in this specific
application scenario. In particular, there is no agreement among the various metrics and,
in about half of the cases, the input image even gets a better score than the restored one,
in contrast with the human visual assessment. Furthermore, SMR+ and SMR + BOPBtL
obtain worse scores than the original images or BOPBtL in the cases where SMR-methods
successfully cleaned the image by removing strong image artefacts, again in contrast with
human judgment (see Figure 11b,d). A possible explanation of this behavior is that these
metrics only rely on low-level, local image properties and not on high-level, semantic
image characteristics. Hence, they are unable to distinguish between fine image details
and artefacts. Nevertheless, according to Table 2, SMR+, with or without BOPBtL, shows
good results under these blind quality assessment metrics, implying that it is able not only
to remove structural artefacts from the original image, but also to maintain high quality
visual details besides the semantic interpretation of the scene.

Table 2. No-reference assessment metric results (lower values are better). Values in bold indicate the
best score among the compared methods. Scores that are better in the original images than in the
restored ones are underlined.

I1 BM3D DIP SMR SMR+ BOPBtL
SMR+

BOPBtL

Figures 1 and 9
BRISQUE 41.89 54.34 51.47 53.11 43.46 24.15 24.20

NIQE 4.23 5.31 5.31 5.09 3.98 4.09 4.24
PIQE 45.97 78.93 85.33 50.60 46.35 22.55 25.90

Figure 10a
BRISQUE 10.74 46.03 31.11 42.18 33.06 25.41 31.37

NIQE 2.79 3.83 3.94 3.28 3.76 4.05 4.08
PIQE 25.02 79.24 81.50 43.32 28.09 38.50 35.35

Figure 10b
BRISQUE 9.84 48.68 35.95 41.57 29.69 14.17 34.69

NIQE 3.16 4.07 3.92 2.92 3.34 3.65 4.01
PIQE 29.73 78.53 78.16 37.26 23.61 29.98 34.31

Figure 10c
BRISQUE 9.26 44.97 31.28 38.29 33.94 12.13 19.06

NIQE 2.79 4.22 4.11 3.47 4.04 5.43 5.31
PIQE 15.80 60.33 53.28 42.81 23.02 20.30 20.00

Figure 10d
BRISQUE 14.57 31.93 22.82 36.91 25.66 15.89 10.96

NIQE 2.61 3.11 3.72 3.49 3.65 3.97 3.62
PIQE 9.31 43.23 52.66 38.28 24.24 10.48 11.76

Figure 10e
BRISQUE 12.85 30.58 28.31 31.95 22.40 29.13 28.87

NIQE 2.17 2.26 3.30 3.13 2.92 4.05 3.97
PIQE 27.52 42.54 45.40 40.00 24.43 14.67 16.92

Figure 11a
BRISQUE 42.58 48.03 40.26 51.88 41.23 38.48 39.21

NIQE 3.80 4.77 4.97 4.66 3.93 4.57 4.75
PIQE 26.39 74.37 79.44 45.89 36.91 13.28 14.60

Figure 11b
BRISQE 39.15 49.22 53.80 45.41 40.85 14.75 17.74

NIQE 4.33 5.43 5.78 4.93 4.15 4.32 4.56
PIQE 28.96 82.41 84.95 46.49 38.68 15.54 17.70

Figure 11c
BRISQE 30.43 52.90 55.07 52.86 39.59 25.54 20.06

NIQE 3.13 5.22 5.53 4.25 3.20 4.59 4.36
PIQE 17.20 85.95 88.53 43.98 30.33 25.39 27.83

Figure 11d
BRISQUE 28.40 45.63 47.19 41.24 31.51 22.09 23.47

NIQE 2.11 4.17 6.28 3.89 2.85 3.49 3.85
PIQE 31.65 72.88 94.84 48.02 36.64 20.68 22.81

Figure 11e
BRISQUE 40.12 38.54 37.95 20.01 22.15 38.12 22.07

NIQE 6.27 3.49 4.08 2.84 3.06 4.60 4.42
PIQE 58.45 51.79 48.00 19.77 13.28 13.35 11.45
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Concerning running times, BM3D, BOPBtL and DIP require respectively 10 s, 30 s
and 20 min on average for processing the dataset images, while SMR and SMR+ take
respectively 6 min and 9 min. The running environment is a Ubuntu 20.04 system running
on an Intel Core i7-3770K with 8 GB of RAM equipped with a 12 GB NVIDIA Titan XP.
BM3D is a Matlab optimized .mex file, BOPBtL and DIP implementations run on Pytorch
exploiting GPU acceleration, while, with the exception of RAFT optical flow estimation,
SMR and SMR+ are based on non-optimized Matlab code running on CPU. For both SMR
and SMR+ the times include the image resynthesis and color correction steps that take
4.5 min altogether on average. Under these considerations, both SMR and SMR+ running
times are reasonable for offline applications. None of the compared methods can be used
for real-time applications, as in the best case corresponding to BM3D, 10 s are required for
processing the input image.

4. Conclusions and Future Work

This paper proposed a novel method for the fully automatic restoration of historical
stereo photographs. By exploiting optical flow, the auxiliary view of the stereo frame is
geometrically and photometrically registered onto the reference view. Restoration is then
carried out by fusing the data from both images according to our stacked median approach
followed by gradient adjustments aimed at preserving details. Guided supersampling is
also introduced and successfully applied for enhancing finer details and simultaneously
providing a more effective artefact removal. Finally, an iterative refinement step driven by
a visual consistency check is performed in order to remove the artefacts due to optical flow
estimation errors in the initial phase.

Results on several historical stereo pairs show the effectiveness of the proposed
approach that is able to remove most of the image defects including dust and scratches,
without excessive smoothing of the image content. The approach works better than its
single-image denoising competitors, thanks to the ability of exploiting stereo information.
As a matter of fact, single-image methods have severe limitations in handling damaged
areas, and usually produce more blurry results. Nevertheless, experimental results show
that single image BOPBtL, when cascaded with our approach into SMR + BOPBtL, can
achieve remarkably good performances.

Future work will investigate novel solutions to refine the optical flow in order to
reduce pixel mismatches. A further research direction will be towards consolidating the
stacked median approach as an image blending technique. Finally, the proposed method
will be extended and adapted to the digital restoration of historical films.

Author Contributions: Conceptualization, F.B.; methodology, F.B. and M.F.; software, F.B and M.F.;
validation, F.B., M.F. and C.C.; formal analysis, F.B., M.F. and C.C.; investigation, F.B. and M.F.;
resources, F.B., M.F. and C.C.; data curation, F.B., M.F. and C.C.; writing—original draft preparation,
F.B.; writing—review and editing, M.F., C.C. and F.B.; visualization, F.B., M.F. and C.C.; supervision,
F.B. and C.C.; project administration, F.B. and C.C.; funding acquisition, F.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Italian Ministry of University and Research (MUR) under
the program PON Ricerca e Innovazione 2014–2020, cofunded by the European Social Fund (ESF),
CUP B74I18000220006, id. proposta AIM 1875400, linea di attività 2, Area Cultural Heritage.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Additional material including code, dataset and evaluation results are
freely available online at https://drive.google.com/drive/folders/1Fmsm50bMMDSd0z4JXOhCZ3
hPDIXdwMUL.

Acknowledgments: The Titan Xp used for this research was generously donated by the NVIDIA Cor-
poration. We would like to thank Costanza Caraffa and Ute Dercks at Photothek des Kunsthis-

63



J. Imaging 2021, 7, 103

torischen Instituts in Florenz–Max-Planck-Institut for allowing the reproduction of the photos in this
paper. Hautmann’s collection digital scans: ©Stefano Fancelli/KHI.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References

1. Ardizzone, E.; De Polo, A.; Dindo, H.; Mazzola, G.; Nanni, C. A Dual Taxonomy for Defects in Digitized Historical Photos.
In Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona, Spain, 26–29 July 2009;
pp. 1166–1170.

2. Kokaram, A.C. Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video;
Springer: Berlin/Heidelberg, Germany, 1998.

3. Tegolo, D.; Isgrò, F. A genetic algorithm for scratch removal in static images. In Proceedings of the International Conference on
Image Analysis and Processing (ICIAP2001), Palermo, Italy, 26–28 September 2001; pp. 507–511.

4. Stanco, F.; Tenze, L.; Ramponi, G. Virtual restoration of vintage photographic prints affected by foxing and water blotches. J.
Electron. Imaging 2005, 14, 043008. [CrossRef]

5. Besserer, B.; Thiré, C. Detection and Tracking Scheme for Line Scratch Removal in an Image Sequence. In Proceedings of the
European Conference on Computer Vision (ECCV2004), Prague, Czech Republic, 11–14 May 2004; pp. 264–275.

6. Criminisi, A.; Perez, P.; Toyama, K. Object removal by exemplar-based inpainting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR2003), Madison, WI, USA, 16–22 June 2003; Volume 2.

7. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering. IEEE
Trans. Image Process. 2007, 16, 2080–2095. [CrossRef] [PubMed]

8. Chen, F.; Zhang, L.; Yu, H. External Patch Prior Guided Internal Clustering for Image Denoising. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV2015), Santiago, Chile, 7–13 December 2015; pp. 603–611.
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Abstract: Digital images represent the primary tool for diagnostics and documentation of the state of
preservation of artifacts. Today the interpretive filters that allow one to characterize information and
communicate it are extremely subjective. Our research goal is to study a quantitative analysis method-
ology to facilitate and semi-automate the recognition and polygonization of areas corresponding to
the characteristics searched. To this end, several algorithms have been tested that allow for separating
the characteristics and creating binary masks to be statistically analyzed and polygonized. Since our
methodology aims to offer a conservator-restorer model to obtain useful graphic documentation in a
short time that is usable for design and statistical purposes, this process has been implemented in a
single Geographic Information Systems (GIS) application.

Keywords: cultural heritage; diagnostic images; image analysis; feature extraction; documentation;
geographic information systems (GIS)

1. Introduction

The artworks undergo profound changes in time due to several factors: the natural
aging of materials, pathologies of degradation, wrong restoration or remaking that intro-
duce new materials and chemical interactions. For this reason, any technique for detecting
and reporting what is not directly visible or perceptible is an essential means of diagnostic
investigation. This need is currently widely met by techniques inspired by remote sensing,
such as multispectral and hyperspectral imaging, as they can provide information on the
composition of materials without taking samples. The technical information related to the
nature and conditions of the artwork is transcribed in the graphic documentation.

The documentation refers to the systematic collection of information derived from the
diagnostic investigation, restoration, monitoring, and maintenance performed on cultural
heritage. Specifically, the graphic documentation, also called the thematic map, is the
primary tool for communication and synthesis of the information collected on the nature
and conditions of the artwork, which are transcribed into geometrically correct drawings
and translated into conventional graphic symbols [1,2]. Thematic maps are generally used
by different types of professionals operating at different times and in different ways, repre-
senting the formal and unequivocal means of communication, comparison, and guidance
for subsequent conservation and preservation operations. The graphic documentation
should always be well archived, accessible, and usable; therefore, it should be possible to
obtain or arrive at the information when and where it is needed.

In the documentation process, these graphic drawings are intended for critical analy-
sis of data. They differ from the artifact’s photographic reproduction, which detects and
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reproduces all its complexities in an undifferentiated way, without a critical/interpretative
filter. The vector drawing allows us to realize a process of synthesis, discrepancy, and
characterization of data, making the results immediately readable and statistically ana-
lyzable. Although software for the documentation of three-dimensional models is being
developed very slowly and pioneeringly, graphic documentation in the form of thematic
maps is always required during a conservation or preservation intervention.

Both for artifacts with greater three-dimensionality and for artifacts with reduced
three-dimensionality, the vector graphic drawing is always based on a two-dimensional
photographic reproduction of the artifact, which is often not geometrically correct. The
artifact is then photographed in all its sides at 360◦ and a thematic map is created for each
side or prospect and the graphic documentation operation is performed during the entire
intervention. In the current practice, this process is carried out through manual drawing
by restorers, so it is strongly influenced by their skills.

In these subjective analysis processes, the operations of area graphicization and
interpretation of the characteristics constitute a joint phase. Indeed, those who perform the
mapping outline the areas of interest directly following the boundaries dictated by their
experience and visual perception.

To date, the automatic extraction of drawings from raster images has only been made
in archaeology by a specific technique called Stippling. It has been developed to produce
illustrations in raster format, extracted from photographs of archaeological objects [3].
Unfortunately, these techniques do not meet the requirements of graphic documentation
in restoration.

Our research aims to study a quantitative analysis methodology to facilitate and semi-
automate the recognition and vectorization of areas corresponding to the characteristics
under consideration. To this aim, some segmentation algorithms have been tested to
separate the characteristics and facilitate identifying the areas and their vectorization. The
choice to go beyond the analysis carried out directly on the pixel areas by performing
a vectorization was dictated by the fact that the documentation in the restoration of
any artifact requires a series of vector drawings, non-illustrative and non-raster, without
nuances and with closed polygons topographically consistent with each other. So, the
research topic we are developing is not only about one algorithm, but is about a formal
methodology involving the cascaded application of a series of algorithms, which has been
consolidated over the years. Our work’s novelty is the methodology itself rather than the
algorithms used to apply it in practice. This contribution includes the description of the
supporting algorithms and the software tools implementing them. The study of it would
allow for the full reproducibility of the methodology in practice.

This methodology has been developed in three years, during which it has been tested
on several paintings on canvas, mosaics, frescoes/wall paintings, and paper/parchment
artifacts, involving the profiles of diagnosticians, art historians, conservator/restorers and
Geographic Information Systems (GIS) professionals. The model presented in this docu-
ment is the one that has allowed us to obtain the best results in all the tested case studies.

The rest of the paper is organized as follows. In Section 2, the main problems present
today in the documentation process are analyzed, and research projects focused on their
solution are mentioned. We also mention the graphical documentation software, highlight-
ing those tools that can support our methodology’s semi-automatic implementation, such
as, e.g., Geographic Information Systems (GIS).

In Section 3, we present the various stages of our methodology, which, in Section 4,
is applied to a canvas painting. Finally, in Section 5, we conclude the paper and discuss
potential future work.

2. State of the Art

Although the importance of documentation has been widely recognized and consider-
able experience has been gained in applying innovative documentation systems [4], there
are still many unsolved problems in analyzing and digitizing artifacts.
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2.1. Creation of Thematic Maps

Standardized techniques of architectural and archaeological survey (especially those
related to the detection of the constituent materials of the external surfaces of buildings)
have been the guide for the development of current thematic maps for the planning
of conservation, as well as buildings and monuments of all other categories of cultural
heritage. For this reason, only in the context of historical architectural monuments and
archaeological sites can restorers rely on professionals, e.g., architects, and ad hoc standards
for the generation of thematic maps. For interior decorations of buildings and small
movable objects such as painted canvases and wood panels, sculptures, and utensils, the
conservator-restorer tries to conform to the same architectural survey criteria, often without
following a standard methodology.

The lack of standardization concerns four fundamental aspects: the modalities of
photographic acquisition, the modalities of post-production and study of diagnostic in-
vestigations, the textual/graphic vocabulary of thematic maps and the use of software
to create it. In this section, we focus on using software to create thematic maps and on
the study and post-production of diagnostic investigations, because the other two aspects
involve complex issues, often dependent on the type of artifact and the regulations in force
in each country.

However, we think it is useful to provide some clarification about these issues: the
modalities of photographic acquisition change according to the typology of the artifacts
and the techniques used to respect the geometric correctness of the artifact represent a
very broad field of research. In Italy, the only official document has been drawn up by
the Central Institute for Catalogue and Documentation (ICCD) in Rome [5]. Concerning
the textual and graphic vocabulary, very few standards are currently in use for digital
architectural design [6] and the UNI Beni Culturali NorMal (Norme Materiale Lapideo)
standards [1] mainly refer to undecorated stone material, mortars, and ceramics.

2.2. Software in Use

Currently, the most used software and platforms supporting graphic documentation
are Computer-aided design (CAD) [7,8] and Geographic Information System (GIS) [9]. An
interesting approach is offered in the geographical setting since the problems related to
statistical analysis of satellite images and cartography creation are similar to cultural her-
itage documentation. GIS technologies offer flexible image analysis and data management
toolboxes by integrating various functionalities, data types, and formats. In the field of
restoration, implementations of GIS were developed in Italy in the 1990s through a project
called “Carta del rischio” [10]. GIS and CAD functionalities are also merged into hybrid
platforms, like SICAR® [11] a web-based geographic information system officially adopted
in 2012 by the Italian Ministry of Cultural Heritage and Activities and Tourism.

All these tools suffer from some significant practical limitations. CAD is optimal for
the mathematical processing of geometric data. However, its use is particularly challenging
when the graphic survey to be produced is characterized by irregular and highly jagged
edges and shapes. Using CAD drawing tools, operators tend to approximate the area’s
perimeters making the edges inaccurate. Furthermore, CAD does not allow for organizing
one’s files in a structured database.

Both CAD and SICAR do not allow raster editing; the operator cannot query pixels or
optimize the image. Color data are crucial to characterize some types of artifacts, especially
those with a decorated or painted surface, of which, for example, the specific conservation
problems of each color should be analyzed.

CAD and SICAR do not allow for any interaction between raster and vector graphics,
and each graphic survey is executed by manual drawing. The result is highly subjective,
and each thematic mapping is different from any other, even if carried out by the same
operator on the same photographic basis. Finally, restorers rarely use a unique system to
compile their thematic maps. When dealing with canvases, painted tables, ceramics, fresco
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paintings, and mosaics, restorers use, often empirically, diverse commercial software for
vector graphics and image processing without adopting a standard methodology.

2.3. Geographic Information System

In more recent years, the development of low-cost and easy-to-use Geographic Infor-
mation System software including spatial attributes and mapping elements, has made it
possible to use this technology for non-geographic projects. From relatively large areas, GIS
has been used on mobile artifacts; especially in Italy, Spain and Portugal, experimentation
on the statistical analysis of the degradation of painted canvas and tables has started [12–15].
Two GIS systems were used for these experiments: QGIS®—free and open-source, and
ArcGIS®, proprietary software of Esri®. In particular, QGIS® has proven to be widely used
for scientific research in territorial, archaeological, and artistic history. For this software,
significant plugins have been developed, among them the Semi-automatic Classification
Plugin (Version 7.8.0)that combines multispectral images and raster analysis, allowing the
operator-controlled semi-automatic classification of environmental remote sensing images
and providing tools to accelerate the process of classification of soil areas [16].

In the archaeological field, a plugin called pyArchInit (Version 2.4.6,) has been devel-
oped for QGIS® that allows access to a global database server that can be consulted and
modified-like PostreSQL-favoring the homogeneity promoting the homogeneity of the so-
lutions adopted and exporting projects through interactive systems that can be used on the
web: the so-called web-GIS [17]. This plugin satisfies the archaeological community’s grow-
ing need to computerize excavation documentation, but can also manage documentation
in the architectural and historical-artistic fields.

2.4. Diagnostic Investigations

As far as diagnostic investigations are concerned, white balance and color correction,
post-production, and interpretation modes are the main issues.

Digital diagnostic images require a colorimetric correction process, during both acqui-
sition and post-production. In general, all the adjustment and balance operations greatly
influence the interpretation of multispectral images as they modify the color tones ex-
pressed in the visible spectrum, corresponding to the wavelengths reflected by the material
surface. In the case of induced luminescence images that give a response in the field of
visible, such as ultraviolet-induced luminescence (UVL) and visible-induced visible lumi-
nescence (VIVL) images, artistic materials show different grades and tones of fluorescence
according to their composition and aging. Therefore, white balance in shooting and color
correction can substantially affect the fidelity and reproducibility of images, making inter-
pretation inaccurate and comparisons between images taken at different times and with
different settings inconsistent. As far as IR and UV reflected images and visible-induced
infrared luminescence (VIL) images are concerned, white balance mostly impacts on the
post-production of false-color reflected images, such as ultraviolet-reflected false color
(UVRFC) and infrared-reflected false color (IRRFC).

To obtain consistent and comparable data, it is necessary to follow standards currently
represented by the results of the Charisma project of the British Museum [18]. However,
these standards are not easy to implement, and in practice, more readily available commer-
cial colorimetric references are used, but they do not offer optimal results. Furthermore,
commercially available cameras are designed to provide aesthetically pleasing images
and not for scientific analysis of artifacts and, as a result, may make undesired changes
to captured multispectral images. The automatic adjustments incorporated into the cam-
eras include white balance adjustments, contrast, brightness, sharpness, Automatic Gain
Control (AGC) and control of the dynamic range in low light situations. To solve these prob-
lems, in addition to the Charisma Project, several manuals and scientific articles have been
published for the correct use of colorimetric references for multispectral imaging [19,20].

The interpretation of multispectral images changes depending on the technique used,
the artifact under investigation, and its history dating. Concerning grayscale monochrome
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images such as infrared-reflected (IRR) and ultraviolet-reflected (UVR), reading and inter-
pretation difficulties depend exclusively on the state of preservation of the artifact under
examination and the information searched, so contrast and opacity of the objects in the
scene are the only elements on which the restorer and the diagnostician use to recognize
the characteristics.

Concerning the phenomenon of reflectance of the materials presented in color di-
agnostic images, such as induced luminescence images and false-color reflected images,
identifying the characteristics searched is more complicated. The characteristics are shown
in areas of color that are more or less homogeneous and with variations in tonality and
opacity that are always different. These variations depend on the artifact’s execution
techniques, the surface materials used and their aging. In addition, the materials, such
as pigments and binders, are mixed and layered with each other, and the application
techniques vary greatly depending on the historical period. As a result, materials react in
multiple spectrum bands simultaneously with different levels of intensity. Therefore, the
recognition of characteristics through reading the fluorescence phenomenon is subject to an
interpretative process depending on the examiner’s experience and the reference literature
for any specific case.

Over the years, many scientific types of research have been conducted in support
of the recognition of fluorescent materials. Among the main ones we can mention (a) a
mathematical model based on the Kubelka-Munk theory that studies the pigment-binder
interaction [21,22], (b) a false color imaging technique called ChromaDI that enhances in
the visible image the differences between the optical behavior of the various pigments
taking into account the changes that occur during the transition from short to longer
wavelengths [23], and (c) a methodology to classify different pigments through Hyper
Spectral Imaging (HSI) that acts in the Short Wavelength Infrared (SWIR) region [24].

Regarding the statistical analysis of the multispectral image, the same techniques we
use here have proved to be very efficient for improving the readability of ancient, degraded
manuscripts and palimpsests [25]. Furthermore, in archaeology, these techniques have been
used to reveal details otherwise invisible or difficult to discern on the surface of painted
walls [26]. However, multispectral techniques are rarely combined with statistical image
processing and have never been used to facilitate the restorer in creating thematic maps
for documentation. Finally, it is central to specify that regardless of the type of technique
and artifact investigated, archaeologists and conservators/restorers are the only ones who
know the artifact’s material characteristics and must always be involved in the reading
interpretation of diagnostic investigations.

3. A New Methodological Approach

In the common documentation practice, the available diagnostic images are analyzed
separately and their analysis is based on visual observation of the reflectance phenomena
of materials, although in some cases they can be distorted and difficult to interpret. Our
strategy instead considers the set of images available as a whole. The aim is to subdivide
the painted area into regions through strategies of Blind Source Separation (BSS) [27], which
have long been used in other areas, such as document image processing [28]. Then, we
propose a rigorous and semi-automated analysis procedure for an easy, fast, and repeatable
automatic polygonization of the extracted regions using standard software tools [29].
Therefore, the restorer’s fundamental choice is the only remaining subjectivity, but it is
based on a precise and repeatable set of objective and scientifically valid measurements. It is
essential to point out that the restorer’s role in directing the investigations and interpreting
the images is central and cannot be delegated.

As illustrated in Figure 1, our methodology includes a first phase during which
the diagnostic images are acquired and manipulated for analysis purposes. It includes
four stages: image acquisition, image segmentation, threshold-based extraction of the
regions of interest (ROI), and mapping from raster to vector representation. In the second
phase, the methodology applies classification and analysis methods to determine the state
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of conservation of the artwork. The resulting output is then archived according to the
specified requirements.

 

Figure 1. Methodology lifecycle.

3.1. Stage 1: Acquisition

The methodology’s efficacy is strongly affected by the quantity and quality of the
digital images provided, representing the input for the following stages’ processing and
analysis algorithms. As a general rule, the main requirements of photographic reproduction
for documentation are precision and consistency with respect to the original dimensions
of the artwork, readability of all its parts, high accuracy in color reproduction, uniform
illumination on the whole image, and absence of reflections that could impair the analysis.
Regarding the respect of the accuracy of the digital reproduction of an artifact, the most
used software tools in cultural heritage are Agisoft Fotoscan© and Archis-Siscan©; in
particular, Archis is highly useful to the rectification of complex objects or architectures
and allows for a two-dimensional graphic restitution of the artifact. Below is a list of the
requirements necessary for the methodology we propose.

One of the problems presented by a quantitative approach to the study of artifacts
through digital images lies in the strong dependence of obtainable results by changing scale
of analysis: indeed, reducing spatial resolution, the information related to the morphology
of material features present on the surface is lost. So, for a complete characterization
of the survey, it becomes necessary to work on images with a correct spatial resolution,
in proportion to the artifact’s size and to the enlargement level on which the analysis
will be carried out. Spatial resolution indicates the amount of detail visible in it. As for
our methodology, the main advantage consists exactly in the great number of available
details, as each detail represents further information. The methodology has been tested on
images with different degrees of spatial resolution, we recommend using images with a
spatial resolution of 300 pixels per inch—or a minimum of 150 pixels per inch—and 16 bits
per channel.

Since the image processing techniques work on multiple images simultaneously, image
data coherence is one of the fundamental requirements of the methodology. In order to
proceed to the second phase concerning the application of segmentation algorithms, it
is necessary that all the images acquired on the same artifact, in the same phase of the
conservation/restoration intervention, are correctly registered with each other. Image
registration is used to align images of the same subject taken with different acquisition
techniques. Alignment involves eliminating slight rotations and tilts and re-sampling the
images to the same scale.

It is not always possible to obtain full alignment of all acquired data because artifacts
may change their morphology during the restoration intervention. In these cases, it is
essential to provide consistency between sets of data acquired during the same phase of the
intervention. Reference [30], dating 2003, aims to present a review of recent and classical

72



J. Imaging 2021, 7, 53

image registration methods. More recently, a new image registration framework has been
proposed in [31], based on multivariate mixture model (MvMM) and neural network
estimation. Reproducibility of the shooting session must be guaranteed by filling out an
activity report and a technical diagnostic report, to be kept both to verify the methodology
correctness and for further comparisons in time. Reproducibility should also be ensured
by saving, cataloguing and archiving all the original files and the connected meta-data,
relating to all work phases.

The choice of the spectral range for image acquisition affects the analysis process,
since each range is associated with different quantitative and qualitative information.
Concerning the choice of the diagnostic acquisition technique to be applied, this must
be assessed by conservators/restorers or by researchers, and will have to be aimed at
providing answers to specific (previously expressed) problems, and to questions concerning
artifacts conservation and restoration, in their cultural and technological framework. In
the absence of multispectral images, the methodology can be applied to images only taken
in the visible spectrum. Reference [32] describes an experimental approach to use “color”
uniformity alone as a criterion for dividing the image into disjoint regions of interest
corresponding to distinguishable features on the surface of the artifact. In detail, this
approach was used to highlight overwritten text in a palimpsest, showing that satisfactory
results can be obtained with a method of color decorrelation even starting from visible-light
images. The results can often be as highly discriminative as those provided by diagnostic
and multispectral images. In this case, the color space’s choice is central, as different
spaces represent color information in different ways; see, e.g., RGB, HSV, and L*A*B*
channels [33,34]. In our tests, the HSV color model has proven to be very useful for color
segmentation in complex contexts such as artistic artifacts’ images. The main reason for this
usefulness is in V’s components, i.e., in the values corresponding to brightness gradations,
which allow to detect even the slightest variations in light intensity, and therefore the
smallest discontinuities between areas of interest. Color properties thus described have
an immediate perceptive interpretation by conservators/restorers, who are accustomed to
distinguish colors according to their visual perception, on which this model is based.

3.2. Stage 2: Segmentation

Segmentation is the process of grouping spatial data into multiple homogeneous areas
with similar properties. In our case, the properties (or features) we consider are the spectral
responses of the different materials, that is, the local reflectance values measured in all the
available channels. The regions of interest (ROI) we want to distinguish, segment, and
extract are the pixel sets with homogeneous features (such as locations, sizes, and color),
which correspond to parts of the artifact made of similar materials. Unfortunately, regions
showing different features typically overlap with one another in all the channels, because
typically, the materials are mixed and stratified with each other. This often makes seg-
mentation and ROI extraction difficult. The visual inspection performed by diagnosticians
or conservators-restorers can be very complicated, time-consuming, or even impossible,
particularly when just slightly different spectral characteristics must be distinguished from
many channels. Thus, this task can be performed more efficiently and objectively through
automated image analysis techniques. In particular, manipulating the input channels to
produce a number of maps, each showing a single or a few ROIs, can significantly facilitate
the segmentation. Mathematically, this would be accomplished easily if the different mate-
rials’ spectral emissions were known, but this is seldom the case. To extract the different
regions from multispectral data with no knowledge of their spectra, some assumptions
must be made on the regions themselves and the mixing mechanism that produces their
spectral appearance. For the mechanism, we assume an instantaneous linear model with
M hyperspectral channels and N distinct features

xi(t) =
N

∑
j=1

aijsj(t), i = 1, . . . M (1)
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where xi(t) is the value of the data at channel i and at pixel t, aij is the spectral emission
of the j-th feature in the i-th channel, and sj(t) is the value of the j-th feature at pixel t.
Notice that an additional assumption in this model is that the spectra aij are assumed
to be uniform all over the image. This model is also called instantaneous because the
data values at each pixel only depend on the feature values in that pixel and not on any
neighborhood of it. If we are able to extract the map sj(t) from the data xi(t), then it will
be easy to extract the ROIs related to the j-th feature by just locating the regions where sj(t)
assumes significant values. Extracting sj(t) from xi(t) with no knowledge of aij, is a blind
source separation problem (BSS), which can only be solved by further assumptions on sj. In
particular, statistical BSS techniques such as principal component analysis (PCA) [27], and
independent component analysis (ICA) [35] reasonably assume that the different features sj
have some degree of statistical independence. Indeed, as the patterns formed by different
materials in the painted surface are likely to be independent of one another, it is also likely
that their central mutual statistics nearly vanish all over the images, that is, assuming
zero-mean feature maps:

〈sα
k ·sβ

l 〉 � 0 ∀ k �= l (2)

where α and β are arbitrary integers, and the angle brackets denote statistical expectation.
Particular cases of (2) are zero-correlation (α = β = 1), leading to PCA and other second-

order approaches, and statistical independence, i.e., (2) is true for all α and β, leading to
ICA. By these assumptions, the result is obtained by minimizing the following summation
with respect to all the sj:

∑
k �=l

|〈sα
k ·sβ

l 〉| subject to xi(t) =
N

∑
j=1

aijsj(t) (3)

If the preliminary assumptions are satisfied, this produces a new set of images, each
depicting one and only one of the desired feature maps, that is, something approximately
proportional to sj. By estimating matrix {aij}, both PCA and ICA estimate the features sj by
combining linearly the normally correlated xi to produce a different set of images that are
uncorrelated or statistically independent.

Since each output map assumes significant values only where a single feature is
present, the ROIs characterized by such a feature can be extracted by just distinguishing
between foreground and background. In fact, at best, two primary gray levels dominate
each output channel, and only a specific ROI is highlighted. All pixels in the ROI will have
similar gray values, and the rest of the image will get confused in the background.

3.3. Stage 3: Binarization

Since the purpose of the methodology is to obtain a precise vector polygon for each
classified ROI, the third stage consists of eliminating the overabundance of information
caused by the average gray levels, which cause the typical ramp edges between the area of
interest and the background. Gradients, in this case, can be classified as noise that slows
down and complicates the process of identifying ROIs. To further segment the ROIs from
the background, we use a simple recursive thresholding algorithm [36].

Given the output channels of the second stage, which correspond to images f (x, y)
in grayscale, a gray gradation is fixed, called intensity threshold T. In the binary output
image, the pixels labeled with 1 are called object points, while those set to 0 are the
background points. The segmentation outcome is strongly influenced by the choice of the
threshold T, which can either be constant throughout the image (global thresholding) or
vary dynamically from pixel to pixel (local thresholding).

g(x, y) =
{

1, if f (x, y) ≥ T
0, if f (x, y) < T

(4)
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Global thresholding fails in the cases where the image content is not evenly illuminated.
Hence, it is essential to respect the lighting consistency during the shooting stage to
avoid further optimization pre-processing. The T value can be chosen canonically, using
the average value in the grayscale, but in many cases the restorer’s choice is made by
trial and error, that is, testing different values to determine one that makes the output
satisfactory [37]. This can be done on a single channel and adapted to the others, or by
choosing a T value for each channel. In any case, each selected value must be included in
the report accompanying the thematic map to guarantee the results’ reproducibility.

It is worth observing that the choice of the output image to work with is up to the
restorer. This choice is needed to filter only the ROIs for the specific thematic map to be
generated; in fact, a fully automatic execution would lead to the identification and selection
of undesired regions. The final result is a set of binary masks that identify the ROIs by
step edges that will facilitate the subsequent stages. In rare cases, the extracted masks
may still have noise pixels inside or outside the ROIs. These pixels need to be removed
in order not to interfere with the subsequent polygonization processes. For this purpose,
basic morphological operations such as region filling, thinning, and thickening can be used
to clean noise and modify regions [38].

Alternative approaches to the generation of the binary masks use neural networks,
such as, e.g., the Kohonen self-organizing map (SOM) [39,40], which is based on compet-
itive training algorithms [41]. The advantage of SOM is preserving the input samples’
topology [42]. We tested this type of neural network on different types of artifacts, but
they proved to be very useful only in some cases, when the ROIs are already visible in
all diagnostic images, that is, in cases of easy segmentation. Moreover, the extraction of
binary masks with this method proved to be too time-consuming and not easy to use for
non-experts. For this reason, we decided not to include them in the final methodology
proposed here.

3.4. Stage 4: Polygonization

Raster to vector data conversion is a central function in GIS image processing and
remote sensing (RS) for data integration between RS and GIS [43]. In general, there are two
types of algorithms, namely, vectorization of lines and vectorization of polygons; only the
latter is used in our methodology. This function creates vector polygons for all connected
regions sharing a communal pixel value [29]. The precision of the mapping depends
on several factors, including the spatial complexity of the images. As the resolution of
an image becomes sharper, the data volume increases; for this reason, it is important to
perform the pre-processing operation of stage 3 to classify information, clean the shapes
and the edges of the ROIs, and ensure their topological coherence.

3.5. Methodology in QGIS

In the first phase of the methodology, the raster images are inserted into QGIS using a
metric reference system, such as WGS84 EPSG:4326, and associating a worldfile to each
image. A worldfile is a collateral file of six plain text lines used by geographic information
systems to georeference raster map images. The file specification was introduced by Esri®

and consists of six coefficients of a similar transformation that describes the position,
scale, and rotation of a raster on a map. This procedure allows us to have the starting
data consistent with each other, geometrically correct and divided into different layers
according to the acquisition mode.

The second stage involves the analysis of all diagnostic images simultaneously. The
PCA algorithm implemented in QGIS is adequate for our purposes—see the Processing
Tools for Raster Analysis, in GRASS tools (i.pca), while ICA would require new modules to
be implemented in Python. Alternatively, both algorithms can be implemented entirely in
Matlab (Version 9.7 R2019b, MathWorks, Natick, MA, USA) [44].

The third stage of binarization is performed individually on each output image. The
conservator-restorer chooses among the outputs the ones that best fulfil their cognitive
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needs. The thresholding algorithm and the morphological functions are present in QGIS, in
the list of processing tools of raster analysis, classified for layers or tables. Then, QGIS can
perform raster to vector conversion of each binary mask extracted in the third stage. The
tool is found in the main menu, in section Raster, Conversion, Polygonization (from Raster
to Vector). This conversion occurs very quickly even with complex files and allows for the
creation of a vector polygon that faithfully reflects the edges of areas of interest recognized
and highlighted by diagnostic investigations.

All the stages of the second phase, related to the operation of classification, analysis,
and storage, are performed using computing tools of QGIS to create a database supporting
measurements and statistical analysis. Hence, the output is a detailed and personalized
description of each polygonal space created, possibly in different file formats, according to
the documentation’s needs. Each extracted polygon is classified into categories and subcat-
egories through an attribute table, which favors different analysis types, such as damage
assessments and risk evaluation, which can be conducted quantitatively and objectively.

4. Case Study

The methodology’s effectiveness is demonstrated in the specific case of a canvas
painting by showing that the thematic map that is typically extracted manually can be
derived through the stages described above. The chosen artwork is Ecce Homo by Bernardo
Strozzi, an oil painting on canvas, 1620–1622, in size 105 × 75 cm2, which is in good
conservation status. It underwent a restoration in recent times, including a cleaning of the
superficial paint layer and the removal of the old restoration interventions; subsequently,
a pictorial retouch with paint was carried out. For all phases of our methodology, apart
from stage 2 that requires MatLab’s use for the segmentation algorithms, we used the
open-source software QGIS (version 3.10.2-A Coruña, whit Grass 7.8.2.).

By following stage 1 of the proposed method, the painting was captured in three dif-
ferent modalities, under visible light illumination (Figure 2a), UV-fluorescence (Figure 2b)
and Near-Infrared Reflectography 780–980 nm (Figure 2c). The fluorescence image was
subtracted of the visible stray light to highlight the regions that really produce fluorescence
under ultraviolet illumination (see [19,45] for details). In the second stage, the three images
were processed by PCA and ICA; the output images are shown in Figure 3a,b. A further at-
tempt with ICA has been made on a subset of six channels, obtained excluding the infrared
and resulting in the outputs of Figure 3c. It is essential to make explicit that every image
produced by the statistical processing no longer corresponds to a specific wavelength range
of, but is a recombination of their intensities, highlighting one or more of the ROIs required,
which appear in different gray levels. The 20 output images in Figure 3a–c are the new
data set that the restorer can inspect for study and feature recognition.

After inspecting the output images, the restorer chose those where the significant
regions are most noticeable. These images, reported in Figure 4a,e,i, show some features
related to the materials used: Figure 4a highlights the pictorial retouches performed on
the background and Figure 4e highlights the pictorial retouches performed on the body of
Christ. These two features in the original data were visually superimposed in the same
spectral channel, while in this phase they are separated in different outputs, despite having
been operated at the same time. Therefore, we can say that segmentation is due to the
different pigments used for retouching. In fact, the figure of Christ has likely been restored
using titanium white pigment, and the background has been restored using varnish colors.
Even without (destructive) chemical analysis or any other more specialized technique,
image processing has allowed us to distinguish between regions that look similar in the
acquired channels. Analogously, in Figure 4i–l, the red lacquer used for the blood of Christ
is highlighted.
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Figure 2. Phase I, stage 1—Ecce Homo by Bernardo Strozzi, oil on canvas, 1620–1622, 105 × 75 cm2: (a) Standard RGB;
(b) UV-induced fluorescence; (c) NIR reflectography; (d–f) Respective spectral Channels of the acquired images. Images
captured by Paolo Triolo, under permission of the Ministry of Cultural Heritage and Activities and Tourism, National
Gallery of Palazzo Spinola, Genova, Italy.

The third stage of the methodology, the creation of binary masks through the threshold
algorithm, was only carried out on the three outputs chosen by the restorer. In our case,
in the range 0–255, we chose a threshold T = 180. Our result is shown in Figure 4b,f,j. For
stage 3, we have used the QGIS Plugin Value tool to choose the threshold value, and the
raster analysis processing tool Classified for layers or tables for creating the binary masks.

The fourth stage consists of the graphic design’s automatic extraction to create the
thematic map. The binary masks shown in Figure 4c,g,k have been transformed from
raster to vector drawings, thus obtaining automatically closed vector polygons that comply
with topographical rules of adjacency and overlap. For stage 4, we have used the QGIS
polygonizer tool from raster to vector.
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Figure 3. Phase I, stage 2: (a) Output channels obtained by principal component analysis (PCA) from the entire data set in
Figure 2; (b) Output channels obtained by independent component analysis (ICA) from the entire data set in Figure 2; (c)
Output channels obtained by ICA from the multispectral cube with no IR data in Figure 2a,b,d,e.

In the second-phase stages, each extracted polygon is then classified in a corresponding
ROI layer and characterized by a different color and texture, see, to create the legend in
the thematic map, see Figure 4d,h,l and Figure 5. In particular, for stage 5, we used the
characterization in the QGIS Layer Style tool. The extracted polygons corresponding to
the ROI have been estimated as a percentage of the total area of interest, dividing them
by Layers and associating them into a Table of Attributes. The topological relationship
between the database and the graphics is that it is possible to query the data directly by
querying the graphic design and automatically exporting the legend and the statistical
analysis results in the printing layout phase. QGIS has a useful and versatile Layout
Window supporting creating complex sheets and can save templates to be reused in the
future. The metadata have been included in the layout, which contains the institution’s
logo, the author’s name, the dimensional characteristics of the object, the table number, the
date, the documentation operator, and a legend (or glossary) linked to the drawing. This
type of metric result is useful for monitoring, conservation, and restoration, see Figure 5.
For this case study, we chose to show only the front of the artifact as the back and side
profile of the canvas did not have any interesting feature.
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Figure 4. Phase I stages 3–4: (a,e,i) Images processed from the previous stage (in Figure 3) and chosen to identify regions of
interest (ROIs); (b,f,j) Corresponding binarized versions; (c,g,k) Image polygonization, raster to vector conversion. Phase II
stage 5: (d,h,l) Characterization of the extracted polygons.
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Figure 5. Thematic map-specific colors are assigned to the ROIs (statistical data are omitted).

5. Conclusions

We examined some of the problems concerning the graphic documentation in cultural
heritage, i.e., the difficulty in analyzing the diagnostic images, the excessive subjectivity and
approximation of the transcription of the relevant information, the complexity, and the long
time needed to transcribe information through manual procedures. These problems lead
the restorers to choose only the essential information to document, thus making the graphic
documentation incomplete and far from guaranteeing reproducibility. There is currently
no official or de facto methodological standard that considers all the possibilities offered by
image processing and scientific visualization, and commercially available software tools.
Consequently, we propose a semi-automated methodology to facilitate and improve the
diagnostic investigation while reducing drastically manual interventions. The result of its
application is an objective, formal, and accurate graphic documentation to plan restoration,
monitoring, and conservation interventions.
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Moreover, as a novelty in this field, image segmentation algorithms have demonstrated
their potential to reduce subjectivity and accelerate the entire process. The time needed
for the entire methodology to be applied can be evaluated according to two factors. The
first is the characteristic and speed of the device in use. Basically, all the algorithms used
require a short calculation time ranging from a minimum 4–5 s and a maximum of 1–5 min.
These times were evaluated considering a spatial resolution of 300 dpi and a low/medium
power device. The power of the device’s graphics card and the massive number of images
to be examined are the only two factors that can increase the computation time of the BSS
algorithms. The second factor includes both the operator’s ability to use the software and
the number of thematic maps to be performed. The application of the entire methodology
requires a medium/advanced knowledge of the software mentioned. Furthermore, the
timing of the creation of the thematic maps depends on the reasoning time of the user
themselves and on the features to extract and document.

Based on image analysis processes, the methodology can be applied to any surface,
regardless of the spatial complexity of the object or its extent. However, in order to obtain
real data, it is necessary that the photographic reproduction of the artefact respects the real
dimensions, with the minimum margin of error.

To date, QGIS has been assessed as the most appropriate tool to support each step of
the methodology, as in this framework the operator has all the necessary image analysis
tools, combining high potential and ease of use. In a previous, empirical and preliminary
study preceding the formal methodology [46] we tested the BBS algorithms coupled to
neural networks. As future work, we plan to investigate additional algorithms, and in order
to ensure a more general applicability of the results we expect to replicate the experiment
on a larger number of case studies and the implementation of well-known blind methods to
assess the reliability and stability of the results achieved. Another future development could
be to integrate our method with some recent experiences and advanced strands of research
that are trying to overcome some of the limitations of documentation, offering web-based
solutions/platforms able to perform the operations of survey (mapping) of conservation,
restoration and preservation in a single environment/system; also by exploiting three-
dimensional models [47–50].
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Abstract: This study aims to enrich the knowledge of the monument Arco della Pace in Milan,
surveying and modelling the sculpture that crowns the upper part of the building. The statues and
the decorative apparatus are recorded with the photogrammetric technique using both a terrestrial
camera and an Unmanned Aerial Vehicle (UAV). Research results and performance are oriented to
improve computer vision and image processing integration with Unmanned Aerial System (UAS)
photogrammetric data to enhance interactivity and information sharing between user and digital
heritage models. The vast number of images captured from terrestrial and aerial photogrammetry
will also permit to use of the Historic Building Information Modelling (HBIM) model in an eXtended
Reality (XR) project developed ad-hoc, allowing different types of users (professionals, non-expert
users, virtual tourists, and students) and devices (mobile phones, tablets, PCs, VR headsets) to access
details and information that are not visible from the ground.

Keywords: Unmanned Aerial System (UAS); heritage documentation; photogrammetry; 3D mod-
elling; eXtended Reality (XR); virtual museums; computer vision

1. Introduction

In recent years, drone photogrammetry has become part of the daily life of many
professionals in many different sectors. The main application fields are cultural heritage [1],
archaeology [2], geology [3], technical and thematic cartography [4], crime and accident
scene [5], human bodies survey [6], and rapid survey photogrammetry from video [7]. The
starting data is always a set of photographs and therefore a set of two-dimensional digital
images that are processed by the software to extract three-dimensional data. The accuracy
of the work is the main advantage of photogrammetry with a drone [8–10]. Manually
measuring sites can lead to several (human) errors on the part of professionals. On the other
hand, drones avoid these errors and allow us to obtain accurate data, allowing surveys to
be carried out with greater accuracy, significantly increasing safety at work and allowing
us to reach places that are difficult for humans to access.

Thus, the Architecture, Engineering and Construction (AEC) sector is increasingly
concerned with advanced simulation to create objects that behave and look as authentic
as possible.

Furthermore, in the digital cultural heritage (DCH) domain, interest is growing in
describing the geometry and behaviour of 3D objects through a scan-to-BIM process [11,12].
Accordingly, the integration of image processing, computer vision and 3D modelling
have become significantly more useful in architecture, engineering, advanced prototyping,
healthcare, and design [13–16]. In this context, the most important new movement in
graphics is increasing concern for modelling objects, allowing professionals to increase the
graphic value and information of heritage buildings, monuments, and archaeological sites.
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For these reasons, the authors propose a scientific method based on digital photogram-
metry, laser scanning and Building Information Modelling for Heritage artefact (HBIM),
where it has been possible to go beyond the main 3D representation techniques, obtaining
digital representations capable of communicating high Levels of Detail (LOD) and Levels
of Information (LOI). On the other hand, the digitisation process of a historic building
and its morphological and typological complexities requires high skill and knowledge of
professional software capable of transforming simple images and 3D scans into informative
models. The study here follows the workflow from the 3D photogrammetric survey phase
to the digital delivery and presentation of the results through an eXtended Reality (XR)
project that allows many users to employ different devices to access data and information
directly accessible in other ways. Regarding this aspect, many techniques can be used to
acquire the shape of ornaments and statues, but doubtless the most efficient way is using
an Unmanned Aerial System (UAS). A piloted aircraft lets the surveyor get very close to
the objects without wasting money hiring cranes or platforms to reach the top of the arch.

2. Motivation and Main Contributions

The authors’ research in recent years has focused on improving the scan-to-BIM
process of historic buildings, proposing and developing methods capable of automating
the generative process of the model and maintaining high LODs and LOIs. On the other
hand, in recent years, the construction sector has witnessed an epochal change that has
led to re-engineering of the daily practices of architects, engineers, and archaeologists.
Thanks to the benefits found in 3D surveying, digital photogrammetry (terrestrial and
aerial) and the advent of XR development platforms, it has been possible to improve the use
of scan-to-BIM models for interactive environments, increasing information sharing and
reaching time for a wider audience such as students and virtual tourists. For this reason,
this article proposes a method capable of enhancing the use of HBIM models to develop
immersive XR environments, where the user can interact with new levels of interactivity.

The research method is based on four main research phases:
Data collection: the data collection and analysis phase envisaged primary and sec-

ondary data sources. Authors digitised the Arco della Pace monument through 3D survey
techniques such as terrestrial, aerial photogrammetry and laser scanning. The main out-
puts of this phase are point clouds, orthophotos and mesh textured models both for the
architectural elements and for the decorative apparatus composed of low reliefs and sculp-
tures. These outputs are considered primary data sources. Secondary data sources, on the
other hand, include different types of analyses and studies. The latter were conducted on
various historical texts to better understand the construction technique of the monument,
its historical and cultural background and the artistic values of the decorative apparatus.

Scan-to-BIM process: the digitisation process of the monument is described to show
how many primary data sources have been processed sustainably, transformed into digital
models capable of interacting like the latest generation applications in the construction sec-
tor. Consequently, the process of transformation and orientation of the digital models had
to be based on a scientific study capable of considering different levels of interoperability
of models from images, point clouds and textured mesh models.

Information mapping: once the various 3D objects have been created, a phase of
mapping information is undertaken both of a visual and graphic nature (physical and
mechanical characteristics of the materials, masonry stratigraphy, historical phases) and of
a historical and cultural character through texts and descriptions. This phase allowed the
authors to move from simple static models to objects capable of communicating different
types of information.

Information sharing: finally, tests and studies were conducted to improve the models’
interactivity level. Thanks to the definition of sustainable digital workflow, it has been
possible to transform static models into interactive virtual objects capable of maintaining
the quality of the virtual experience. Finally, the most advanced forms of virtual and
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augmented reality have been tested in order to reach different types of users and the latest
generation devices.

The article is structured as follows:

• a first part is dedicated to state of the art, divided in turn into a synthetic framework
oriented towards HBIM and the forms of XR for the built heritage and a framework
on aerial photogrammetry and its regulatory context;

• a description of the case study both from a historical-cultural point of view and from
a geographical and regulatory point of view;

• the description of the method that has enabled the transformation of simple points
and mesh models from 3D survey and digital photogrammetry into complex digital
models (NURBS and HBIM) and XR projects with different levels of interactivity,
information and immersion;

• A concluding part dedicated to a discussion of the results through a holistic approach
and related conclusions.

3. State of the Art

3.1. State of the Art about Heritage Building Information Modelling Oriented to eXtended
Reality (XR)

The monument of the Arco della Pace presents numerous complexities, both from a
constructive point of view and from an architectural and decorative point of view. The
digitalisation process consequently required high knowledge of 3D modelling and BIM to
transmit geometric, metric, and informative values at the same time. As anticipated in the
previous paragraphs, the urgency of communicating information to different types of users
required the study and integration of varying representation techniques, from descriptive
geometry to the scan-to-BIM process [17–22]. The latter, in recent years, has shown how,
through the application of specific scan-to-BIM requirements and grades of generation
(GOGs) [23], it is possible to go beyond the modelling of parametric objects included in
the default libraries of the main BIM applications such as Autodesk Revit and Graphisoft
Archicad [24–26]. As known, such applications allow users to add information to three-
dimensional objects, which in turn represent the architectural and structural components
of buildings [27–29]. In the early 90s, BIM was developed for the management of new
buildings, where the use of object libraries corresponding to early walls of geometric
irregularities, including a wide range of choice between standard objects such as doors,
windows, floors, false ceilings, and furnishings, allowed the user to faithfully represent his
project and associate it with information of a physical, mechanical nature, etc. Consequently,
the entire construction sector has been transformed in its daily practices, where architects
and engineers have had to face a significant change, passing from the first to the second
digital era. The transition almost entirely saw the abandonment of representation and
manual drawing favouring CAD vector design and then subsequently BIM [30–32].

On the other hand, the benefits brought about by this new method and tools laid the
foundations for the definition of new fields of applications based on digital models, such
as restoration, energy analysis, finite element analysis, estimation, construction site and
many others [33–36]. Consequently, the urgency of orienting the digitisation project of
the existing building involved integrating 3D survey techniques with BIM. In particular,
thanks to laser scanning and digital photogrammetry, it was possible to lay the appropriate
foundations to represent existing buildings correctly [37–39]. The last decades have been
characterised by the definition of new innovative methods, guidelines and standards
that have defined this new field of application. Furthermore, interesting research in
representation, geomatics, and restoration has proposed methods capable of speeding
up the digitisation process of complex elements of historic buildings [21,40–43]. In this
particular context, as is well known, complex vaults systems, irregular walls and decorative
devices require advanced modelling techniques, where BIM modelling tools do not allow
for fast and faithful representation of the building surveyed [44–46].
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For this reason, the authors’ research in recent years has focused on the definition
of workflows capable of representing historic buildings characterised by high levels of
detail and information. The definition of these methods also required an in-depth study of
computer programming, through which it was possible to develop not only sustainable
application methods but digital tools capable of improving the level of automation of the
scan-to-BIM process [47–49]. Thanks to previous studies, the case study of the Arco della
Pace monument, its architectural, cultural, historical, and artistic complexities, have laid
the foundations for proposing a method capable of going beyond what is defined today in
the international panorama of digital cultural heritage [50–52].

3.2. State of the Art about Regulation for Flying Drones in Italy and Europe

In the last decades, the use of Unmanned Aerial Vehicles in the construction and
architecture field underwent significant development thanks to the increasing ease of
use in piloting the vehicles and thanks to the better quality of the photographic sensors.
UAVs are employed in different scenarios in the AEC (Architecture, Engineering and
Construction) sector; high-resolution photographic sensors, IR sensors and thermal ones
are widely used for monitoring and inspection purposes [53]. UAVs let the operators get
close to the structures and buildings, preventing cranes and safeguarding the workers.
Nevertheless, the time required for monitoring and inspection activities is shorter than
using other terrestrial vehicles.

In the same way, the high number of images that can be acquired during a flight let
the operators use the images for photogrammetric projects. In these cases, the flight had
to be planned carefully to ensure the minimum overlap among the images and to avoid
lack of data at the end of the elaboration. This technology permits us to reach and acquire
parts of the buildings and structures that are unreachable with other instruments or require
significant efforts to be mapped.

In the Cultural Heritage field, buildings are often decorated with complex friezes and
ornaments that produce shaded areas when they are surveyed from ground level, both
with laser scanning techniques and photogrammetry. For these reasons, in the last years,
different operators decided to adopt UAVs in their daily working activities. Therefore,
the regulatory bodies were forced to emanate rules to prevent accidents and interferences
with regular commercial and touristic air traffic. In Italy, the first regulation concerning
UAVs was enacted by the National Authority for Civil Aviation (ENAC, Ente Nazionale
per l’Aviazione Civile) on the 16th of December 2013, then many editions and amendments
were issued up to the present today. On the 31st of December 2020, the European regulation
became effective, significantly changing many articles of the previous Italian regulation [54].

At the time of the UAV survey of Arco della Pace in Milan, November 2020, and
now at the time this article is being written, the Italian and European regulations are still
effective until the 1st of January 2023. The delays of the emanation of a unique and clear
law are due to the COVID-19 pandemic; in fact, the transition process and alignment to
the new regulation by the producers of Unmanned Aerial System (UAS) should have been
completed by the 1st of January 2021. On this date, in Italy, the first edition of the UAS-IT
regulation that transposes the implementing UE regulation 2019/947 concerning rules and
procedures to fly Unmanned Aerial Vehicles was enacted (Table 1).
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Table 1. List of regulations issued over the years in Italy and Europe.

Document Edition Date No. of Pages

Italian Regulation
(UAV)

First Edition 16/12/2013 21
Second Edition 16/07/2015 37

First Amendment 21/12/2015 37
Second Amendment 22/12/2016 37
Third Amendment 24/03/2017 37

Fourth Amendment 21/05/2018 37
European Regulation
(not effective in Italy) First Edition 24/05/2019 27

Italian Regulation
(UAV)

Third Edition 11/11/2019 37
First Amendment 14/07/2020 37

European Regulation
(effective in Italy) First Edition 31/12/2020 27

Italian Regulation
(UAS-IT) First Edition 04/01/2021 20

This situation generated some difficulties in understanding which rules were effective
at the time of the survey and how best to acquire permission to perform the 3D survey of
the monument. The “No of Pages” column of the table above shows that the regulation
and amendments changed over the years by adding, removing or slightly modifying the
contents of single articles.

3.2.1. Italian Regulation UAV

Looking at the Italian regulation, it is interesting to analyse the changes between
the first, second and third edition of the Italian Regulation (UAV) and the first edition
of the Italian Regulation (UAS-IT). As it is clear from the title, the last Italian regulation
is now aligned with the European one, focusing attention on the system: vehicle and
radio control station. Now the acronym used is UAS and no more UAV. Moreover, it
is interesting to notice a difference of more than 16 pages between the first and second
editions of the Italian regulation. The last edition of 04 January 2021 has 17 pages less than
the second edition of the 16 July 2015. The first edition (16 December 2013) of the Italian
regulation is divided in 6 sections that include 26 articles. This version of the regulation
is composed mainly of definitions and references to other rules and laws concerning
airworthiness. Sections 2 and 3 differentiate between UAVs according to their weight, and
there are different procedures for flying UAVs if they weigh more or less than 25 kg. There
is general information about UAVs weighing less than 2 kg that may follow simplified
procedures to get permission to fly. The procedures to acquire permission are not clear at
all. In this case, general advice is provided to contact the ENAC body via e-mail and ask
permission to fly by describing the pilot’s activities during the flight operations. The article
regarding the pilot is unclear; in fact, it is asked that he/she holds a civil or sport flight
licence and he/she must know the air rules and must have completed a training period at
unclearly defined companies. Two different entities are identified in the regulation: the
operator is the owner of the UAV and is responsible for the maintenance of documentation
and the UAV itself, and the pilot is responsible for flight operations. A section is devoted to
using UAVs for recreational purposes. Presently, there is just one article stating that UAVs
can be used for recreational purposes in specified flight fields without acquiring a flight
licence and without asking permission from the ENAC.

The second edition (16 July 2015) adds two sections to the previous one, namely
the rules for using the air space and general rules for flying UAVs. This version of the
regulation introduces some other significant changes: (i) the difference between critical
and non-critical operations is addressed; (ii) the difference between specialised and non-
specialised operations is defined; (iii) the procedures for flying UAVs weighing less than
2 kg are well described; and (iv) the definitions of Visual Line Of Sight (VLOS), eXtended
Visual Line Of Sight (EVLOS) and Beyond Visual Line Of Sight (BVLOS) are introduced.
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According to this regulation, specialised operations provide a paid service, such as video or
photo recording, surveillance, environmental or industrial monitoring, agriculture services,
and photogrammetry. All other activities that do not consider a payload are classified as
not specialised and are considered recreational. The specialised non-critical operations are
always performed in VLOS, i.e., in constant eye contact with the UAVs, far from crowds,
traffic, urban areas, infrastructures, and industrial plans. In these cases, the procedures to
acquire permission are much more simplified than in critical operations.

Moreover, the activities performed with UAVs weighing less than 2 kg are always
considered not critical. Following the evolution of the market of consumer UAVs, and
namely with the presentation of the DJI Spark, the Italian Regulation added an article
regarding vehicles weighing less than 300 g. The UAVs falling in this range of weight
and equipped with guard propellers did not require a flight licence or permission issued
by ENAC.

In the third edition (11 November 2019), some specifications are added. In the third
edition of the regulation, exams are differentiated according to the kind of operations to be
conducted. In the case of non-critical operations, the certificate was issued after passing
an online test, but on the other hand, to acquire the certificate for critical operations, a
practical exam was needed. The article regarding UAVs weighing less than 300 g was
revised: the limit is now fixed to 250 g, and at least a theoretical exam is needed to fly these
lightweight UAVs. This constraint was introduced because of the large consumer market
of small UAVs equipped with high-resolution camera sensors. In fact, problems started to
arise linked with public security and privacy since everyone older than 18 years could have
bought a UAV in a supermarket and started to fly almost everywhere without knowing
the basic rules of flight. In the third edition, the minimum age to drive a UAV is lowered
from 18 to 16 years. Regardless of the weight or the operation, specialised or recreational,
every kind of UAV must be registered in a national online database, and a QR-code must
be applied to the UAV itself. The UAV operator performs the registration that must also
indicate the personal data of the pilot and its certificate. The online database that manages
all the activities in the Italian airspace is www.d-flight.it/new_portal (accesed on 14 July
2021) [55].

3.2.2. Italian Regulation UAS-IT and European Regulation

The first edition of the new UAS-IT regulation issued on the 4 January 2021 changes
the previous regulations’ vision and structure completely. This last regulation receives all
the indications of the European one and disciplines the aspects that rely on the competence
of the state member.

The UAS-IT regulation currently only has 5 sections, 20 pages, and 31 articles. It is
shorter than the first regulation of 2013. Unfortunately, this contraction in length implies
more difficulties in understanding the global view of the regulation. In fact, there are legal
references to 14 different documents, (Regolamento UAS-IT, Codice della Navigazione,
Regolamento (UE) n. 2018/1139 “Regolamento Basico”, Regolamento (UE) n. 2019/947,
Regolamento (UE) n. 2019/945) that a UAV operator should know to understand the
regulations completely. In place of the weight subdivision, the concepts of: (i) Open,
Specialised and Certified Categories, (ii) class identification label, (iii) Specific Assurance
and Integrity Level (SAIL) are introduced.

The Open category is a category of UAS operation that, considering the risks involved,
does not require prior authorisation by the competent authority nor a declaration by the
UAS operator before the operation takes place. The Specific category is a category of UAS
operation that, considering the risks involved, requires authorisation by the competent
authority before the operation takes place, considering the mitigation measures identified
in an operational risk assessment, except for specific standard scenarios where a declaration
by the operator is sufficient. The Certified category is a category of UAS operation that,
considering the risks involved, requires the certification of the UAS, a licensed remote
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pilot and an operator approved by the competent authority to ensure an appropriate level
of safety.

The Open category is itself subdivided in 3 sub-categories A1, A2, and A3, which may
be summarised as follows (Figure 1):

• A1: fly over people but not over assemblies of people;
• A2: fly close to people;
• A3: fly far from people.

Figure 1. Categories Scheme, https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-
unmanned-aircraft-systems-regulation-eu (accessed on 14 July 2021).

Each sub-category comes with its own sets of requirements. Therefore, it is important
to identify which rules apply and the type of training needed in the Open category. Then, a
UAV with the proper class identification label (C0, C1, C2, C3, C4) must be chosen (Table 2).
Today, not even one UAV on the market has a classification label, so until the 1st of January
2023, the identification label is substituted by weight classes.

Table 2. Open category scheme after the 1st of January 2023, https://www.easa.europa.eu/domains/civil-drones-rpas/
open-category-civil-drones (accessed on 14 July 2021).

UAS OPERATION DRONE OPERATOR/PILOT

Class
Maximum

Take Off Mass
(MTOM)

Subcategory Operational Restrictions
Drone Operator

Registration
Remote Pilot
Competence

Remote Pilot
Minimum Age

Privately built

<250 g

A1
(can also fly in

subcategory
A3)

May fly over uninvolved
people (should be avoided

when possible)
No flying over assemblies

of people

No, unless
camera/sensor on
board and drone

is not a toy

No training
needed

No minimum
age

C0 Read user manual
16, no

minimum age if
drone is a toy

C1 <900 g

No flying expected over
uninvolved people (if it

happens, should be
minimised)

No flying over assemblies
of people

Yes

Read user manual
Complete online

training
Pass online

theoretical exam

16
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Table 2. Cont.

UAS OPERATION DRONE OPERATOR/PILOT

Class
Maximum

Take Off Mass
(MTOM)

Subcategory Operational Restrictions
Drone Operator

Registration
Remote Pilot
Competence

Remote Pilot
Minimum Age

C2 <4 kg

A2
(can also fly in

subcategory
A3)

No flying over
uninvolved people

Keep horizontal distance
of 30 m from uninvolved

people (this can be
reduced to 5 m if low

speed function is
activated)

Yes

Read user manual
Complete online

training
Pass online

theoretical exam
Conduct and

declare a
self-practical

training
Pass a written

exam at a
recognised entity

16

C3

<25 kg A3
Do not fly near people

Fly outside of urban areas
(150 m distance)

Yes

Read user manual
Complete online

training
Pass online

theoretical exam

16
C4

Privately built

If the activities do not fall under the Open category, the operator needs an operational
authorisation from the National Aviation Authority. In this category, a risk assessment is
needed, and there are six different levels of risk identified by roman numbers, with each
level described inside the Joint Authorities for Rulemaking of Unmanned Systems (JARUS)
guidelines on Specific Operations Risk Assessment (SORA). Working with UAVs is quite
complex because the rules are constantly evolving, and in the last two years, the concept of
regulation changed completely, passing from weight and type of operation classification to
a classification based on the risk of activities. In this scenario, it was not easy to approach
the survey of the Arco della Pace because it meant flying in the city centre of Milan, very
close to people, traffic and inside a no-fly zone. Lastly, it must be considered that if these
operations are conducted without respecting the law, the penalties are the same as the Civil
Aviation Code, starting from tens of thousands of euros.

4. The Research Case Study: Historical and Cultural Background, Monument Location
and Flight Restrictions

4.1. The Arco della Pace in Milan: Origins and History of the Arco

The Arco della Pace can be considered as the only example of a triumphal and
monumental entrance to Milan, with its symbolic and commemorative presence. The
arch is in the place of arrival of Corso Sempione in connection with Paris, or at the Porta
Sempione, which for decades was the entrance to the city of Milan (Figure 2). The arch
assumed enormous urban importance after the demolition, in 1801, of the star of the
sixteenth- and seventeenth-century fortifications, when a new access road was traced and a
new door was built on the axis of the Castello Sforzesco. The urban importance of the Porta
del Sempione becomes substantial when one thinks that before this, the roads connecting
Milan with the territory to the north-west avoided the Castle and penetrated the city,
passing through openings at the points of union between the Castle and the Spanish walls
called “portelli”. As a result, the place mutates in meaning: from a barrier, it becomes a
passage and therefore a point of attraction towards the city centre, becoming, during the
Napoleonic Empire, the main entrance to Milan.
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Figure 2. The research case study: images from terrestrial (left) and UAV survey (right).

On the 15th of May 1796, with the entry into Milan of the Napoleonic troops, and with
the founding of the Cisalpine Republic first and then of the Kingdom of Italy, a positive
period of effective possibilities began for the building and urban reorganisation of the city.
In 1806, a “Commission of Architecture and Fine Arts” was set up, delegated to indicate the
general directions for the arrangement of the city public spaces. The commission, composed
of Bossi, Canonica, Appiani, Podestà, Brivio, Cagnola and Zanoja, set up an extensive urban
restructuring program, with references to the French tradition of embellishment. However,
innovative aspects were also introduced, both in the overall vision of the settlement and in
the variation of the structure in the urban fabric. The “Plan des artistes” of 1793 and the
“Plan of the embellishment” for 1798 in Paris were the reference planes.

Among the interventions suggested by the commission were an arch to be erected at
the Sempione barrier and the completion of the Eastern Gate, the arrangement of the Porta
Vercellina, the decoration of the Forum barracks, the decoration of the Amphitheater, the
construction of a bridge between the district of S. Andrea coni Boschetti and the Collegio
Elvetico, and the decoration of the Palazzo dei Giardini Pubblici.

One of the most recent enhancement plans for the Sempione Park and all its monu-
ments is the work of Vittoriano Viganò in 1954. It was conceived as a recovery plan for a
part of Milan historically homogeneous in its monumental identity. Due to the increase in
road traffic and disinterest in the post-war period, it entered a state of neglect and decay.
The plan conceived by Viganò is based on an idea of an urban relaunch primarily involving
this large area and its identification, in the sense of open, public, and recognisable space,
which can be enjoyed in various areas (Figure 3). The plan covers an area of approximately
one million square meters. The Sempione system is an urban and architectural complex,
rediscovering its own identity, connections, and entirety, that will come to be born as a new
major attraction in Milan.
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Figure 3. Vittoriano Vigano’s plan: model of Piazza Sempione for the enhancement plan of Parco Sempione and its
monuments (1996). (Location: Milan (MI), La Triennale di Milano Foundation, Photo Archive of the Milan Triennale,
TRN_XIX_03_0145).

Its eventual unification and modernisation could contribute to the functional revival of
the monuments and transform the park heritage from an interval of the urban continuum
into a homogeneous part of characteristic significance, capable of extending the historic
core towards the north-west in a unique way. The start-up of the plan was set up in
parts, and Piazza Sempione corresponds with what is defined as the first intervention unit
(1980–1986). This intervention is followed by others that concern the whole system of the
park up to Piazza Castello. Since the plan is very ambitious, it sparked various “appetites”
that tried to oppose the “Franciscan force of non-speculable space, his life is difficult, and
the management was slow and laborious”.

Suffice it to say that the plan, introduced in 1955, only became operational in the 1990s.
The municipal administration decided to undertake a general restoration of the park and
Piazza Sempione with the Arco della Pace. The intervention involved a new fence for
the park, the renewal of the roads, and park botanical and floristic renewal. One of the
intentions of the project was to bury all the driveways to incorporate Piazza Castello and
the first stretch of Corso Sempione.

4.2. Ornamental and Decorative Elements

The Arco della Pace is rich in decorative and ornamental elements, which underwent
some retouching to represent the new Austrian course (Figure 4). However, the eight
allegorical bas-reliefs on the pedestals were already present at the time of the new plan.
The will of the central Congregation was to remind its citizens of the achievements that
contributed to the Kingdom’s birth. However, since the historical events that they wanted
to represent were too abundant to affect a triumphal arch, only those relating to the most
important events were chosen. Allegorical and allusive figures were then chosen to evoke
“the beautiful arts, the fertility of the Lombard soil, the historical events” that were most
significant. To these are added other events, including the Congress of Prague, the Meeting
of the Three Great Allies and other war enterprises, thanks to which the much-desired
peace was obtained. Passage of the Rhine, Capitulation of Dresden, Battle of Ar-cis-sur-
Aube, Occupation of Lyon, the Battle of Paris and, finally, the triumphal entry of the three
monarchs into the city of the French Empire. These findings were the works of many
sculptors including Camillo Pacetti, Luigi Acquisti, and Pompeo Marchesi. In addition
to the military enterprises, the political operations that made the Peace of Paris and the
Congress of Vienna official were also mentioned.
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Figure 4. Historical reports: the ornaments of the Arco della Pace. Overall table of the elements relating to the front of the
monument towards the Castello Sforzesco (left) and Corso Sempione (right), taken from the publication edited by G. Reina
and published in 1856. Di Baio historic archive. (Giani, G., L’Arco della Pace di Milano, Di Baio Editore, Milano, 1988).

4.3. Monument Location and Flight Restrictions

As anticipated, the monument is in the city centre of Milan in the centre of Piazza
Sempione, an important city hub (Figure 5).

Figure 5. Google Map image centred on the monument.

Here ends Parco Sempione, one of the biggest parks of Milan. Local people and tourists
always crowd this place; moreover, Piazza Sempione is half surrounded by jammed streets
and punctuated by dehors of the adjacent bars and restaurants.

Considering the regulations, both Italian and European, flight in such places is forbid-
den because it will interfere with public activities around the monument. Moreover, Italian
regulations on airspaces subdivide the national ground into different zones with special
rules concerning flying with manned or unmanned vehicles. Consulting the aeronautical
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maps provided by the Italian online database for UAVs, it appears that the area of the
survey falls into four different restriction areas where flight is forbidden to anyone, mainly
for security reasons (Figure 6):

• LI-R9 Milano-Città;
• Milano/Bresso 18/36;
• Milano/Linate 18/36;
• Linate Aerodrome Traffic Zone (ATZ);
• Linate Control Traffic Region (CTR).

Figure 6. D-Flight Map image centred on the monument, with restriction areas highlighted. Each colour refers to a height
limit for flight above the city of Milan. In the red areas, flight is prohibited. Source: www.d-flight.it/newportal, accessed on
14 July 2021).

The city authorities can obtain temporary permission by submitting all the necessary
documents and a high detailed relation that describes the activity, the timetable of the
flights, the risk assessment and the precautions taken to decrease the level of the risk. The
authors, both holding a piloting license, provided the material mentioned above to the
prefecture of Milan that has the faculty to issue the permission, then permission also had
to be approved by the ENAC. Even if the prefecture issues permission, the Authority can
revoke it. A month after submitting the request, the survey activities described in relation
received a positive judgment from the two authorities. The pilots considered a sufficient
buffer area around the monument, and they chose a date that fell in the lockdown period
linked with the COVID-19 pandemic. Therefore, all the shops’ restoration activities were
closed, and there were no crowds around the monument due to the prohibition on staying
in public spaces without a proven reason.

5. Material and Methods: From Geometrical Surveys to HBIM, Virtual Museums and
eXtended Reality

The method proposed in this paragraph has been structured in an attempt to outline
an operational workflow that is as sustainable as possible (Figure 7). The key factors for
improving the scan-to-BIM-to-XR process of the monument were:

• Integration of aerial photogrammetry in the building digitisation process to complete
the textured digital model;

• 3D mapping able to be automatically recognised through the real-time synchronisation
of multiple environments, from NURBS modelling software and BIM platforms to XR
development platforms;
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• Interoperability and synchronisation of digital models in various environments; auto-
matic recognition and real-time synchronisation of digital models through the main
3D exchange formats (open source and not) such as the 3DM, DWG, RVT, FBX, OBJ;

• The interactivity of XR projects; through IT development based on VPLs and Blueprints,
it has been possible to create interactive virtual objects capable of interacting with all
user inputs on different kinds of devices (tablets, laptops, PCs, and mobile phones).

Figure 7. The digital workflow applied to the research case study.

5.1. UAV Photogrammetric Survey

Since the Italian regulation about airspaces and the upcoming European law consider
special rules for UAVs weighing less than 250 g, it was decided to use a UAV with this
peculiar characteristic. Moreover, the Italian law obliges the drone pilot to install guard
propellers to use the drone in a public space, such as Piazza Sempione, where the monument
is. For these reasons, the survey team employed a DJI Mavic Mini for the photogrammetric
survey (Table 3). The photogrammetric survey was sided by topographic measurements
performed with the Leica TS12 (Leica Geosystems AG, Heerbrugg, Switzerland). A simple
network of four points was created around the monument, two vertices are linked through
the open passing arch in the centre. From the station points, some natural points were
measured on three sides of the monument (one side is covered from the base to the top
with scaffolding for restoration activities) to check the correctness of the photogrammetric
elaborations. The aim of the survey was to collect enough data to represent the arch by
means of a 3D model at a 1:50 drawing scale.

Table 3. Specification of DJI Mavic Mini.

DJI Mavic Mini—Specs

Sensor size (pixel) 4000 × 3000
Sensor size (mm) 6.48 × 4.86
Pixel size (mm) 0.00162

Focal length (mm) 4.49
Flight time (min) 28

Considering the DJI Mavic Mini specification listed above, it is possible to calculate
the mean distance of acquisition to get the desired resolution. It was decided to assume
the “plotting error” (p.e.) as the parameter to calculate the distance of acquisition. This
value derives from the cartography field and is related to the precision of a map, and it is
conventionally assumed to be equal to 0.2 mm. The p.e. obviously changes in relation to
the scale of the map; 0.2 mm must be multiplied by the scale factor. Consequently, the p.e.
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at a 1:50 scale is equal to 1 cm. Conventionally in cartography, the sampling measurements
tolerance is assumed equal to 2 times the p.e. Moving from the 2D cartography field to
the photogrammetric 3D domain, it was decided to impose a Ground Sampling Distance
(GSD) equal to the p.e. at 1:50.

p.e.1:50 = 0.2 mm × 50 = 1 cm = GSD1:50 (1)

The distance of acquisition to reach at least this value at the end of the survey is
computed with the equation:

c:D = px:GSD

4.49 mm:D = 0.00162 mm:10 mm (2)

D = 27 m

where: c = focal length, D = distance of acquisition, px = pixel size, GSD = Ground
Sampling Distance.

Consequently, 27 m represents the theoretical value considering an ideal condition
with the camera placed on a tripod without external interferences. The practical activity
suggests, even in good conditions, halving the distance from the surveyed object to avoid
poor data at the end of the survey, and in this case, the authors decided to fly at a mean dis-
tance of 10 m from the monument. Therefore, the number of images increased significantly.
From this, 945 images at 12 MPixels, the maximum resolution of the camera, were collected
in JPG format during three flights to cover all the facades of the monument, the decorative
apparatus and the statues that crown the top of the arch. The flights were performed in
manual mode, frequently changing the orientation of the camera gimbal to capture the
complexity of the shapes from different views and to cover all the possible shadow areas
on the monument. As much as possible, the flights followed regular paths, performing
vertical strips all around the building. The vertical (longitudinal) overlap of the images was
controlled by setting the auto interval acquisition of the images equal to 2 s, and the side
(transversal) overlap was valued directly on the screen by the video operator of the drone.

5.2. Terrestrial Photogrammetric Survey

Due to the scaffolding from the base to the top on the east side of the monument, it
was decided to merge the data of the photogrammetric flight with the photogrammetric
terrestrial data acquired in 2019 when the scaffolding was not in place.

That survey was performed to produce a parametric model with Rhinoceros, starting
from the dense point clouds computed at the end of the photogrammetric process. The
same procedure was adopted on that occasion, and the photogrammetric survey was
followed by a topographic campaign. The camera used was a Canon EOS 1100D (Canon
Inc. Ōta, Tokyo, Japan) coupled with an 18 mm lens (Table 4).

Table 4. Specification of Canon EOS 1100D.

Canon EOS 1100D—Specs

Sensor size (pixel) 4272 × 2848
Sensor size (mm) 22.2 × 14.7
Pixel size (mm) 0.00534

Focal length (mm) 18

The distance of acquisition was calculated as before to produce a dense point cloud
with an accuracy of 1 cm.

5.3. UAV Data Elaboration

The UAV data were elaborated following a pyramidal schema, from general to partic-
ular, using Agisoft Metashape Pro (version 1.7.2 build 12070). Firstly, all the 945 images
were imported into the software; the GPS information, namely the position of the drone
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during the acquisition of each single image, and the orientation of the camera were re-
moved before the alignment phase. The elaboration considered two phases: the first was
useful to elaborate all the images simultaneously and find the 3D dense point cloud of
the top architectonical elements of the arch, which were not visible form the terrestrial
photogrammetric survey. The second phase considered only the decorations, the statues,
and the bass reliefs. Starting from the results of the first alignment, the bounding box was
then limited around each decorative element, and 3D mesh reconstruction was performed
to access their high-resolution models separately from the architecture.

5.3.1. The Building

Immediately, some problems arose. In fact, even if the software said that all the images
were “correctly” aligned, it appeared clear that there were some errors in the geometrical
reconstruction of the building. The east side, the one with the scaffolding, was misplaced,
turning by 90 degrees in the plan and giving to the arch an “L” shape. The result was
always the same, even when the accuracy of the alignment was set to the highest value.
Additionally, the overlap on that side seemed to be correct. Looking carefully at the images
of the east and north sides, the maxi-screens on the scaffoldings were broadcasting the
same images with the same timing both on the north and east edges of the arch (Figure 8).

Figure 8. On the left, the misalignment of the images; on the right, the maxi-screen that prevented the correct alignment of
the images.

The areas of the photos with the screens were masked directly in the software, and the
alignment then gave proper results. Then, the natural points were checked and placed on
the images, and the topographic measurements were imported into the project (Figure 9).
After the optimisation process, the mean error on the points measured by the operator
is equal to 2 cm, so the model can be used to sample measurements compatible with the
tolerance of 1:50 drawing scale (Figure 10). As described in paragraph 5.6, the 3D model
of the arch was developed starting from point clouds data in the 3D modelling software
McNeel Rhinoceros version 7.
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Figure 9. On the left, the regular manual path followed during the flights; on the right, the natural measured points.

Figure 10. UAV photogrammetric dense cloud of the upper part of the arch.

5.3.2. The Statues, Ornaments, and Bass Reliefs

Elaboration of the statues, ornaments and bass reliefs followed the same pipeline
of the arch, but the models were computed separately for each decorative element. This
elaboration phase aims to obtain the NURBS models to be included in the general model of
the arch. Unlike the classical architectonical elements, such as walls, pillars, columns, and
friezes that simple geometries can describe, the statues and decorations require a different
approach to generate the NURBS models. The classical elements are modelled, extracting
sections and elevations directly from the point clouds, and the study of the geometries is
supported by historical and design drawings.

On the other hand, it is impossible to adopt the same approach for completely free
forms elements such as statues. Obviously, these elements could not be neglected in the
restitution phase of the model, but it was not possible to shape them by extracting generat-
ing features and patching lines. The solution adopted was to perform the transformation
with reverse engineering software, such as Geomagic Design X v 5.1. This step requires
correcting typical mesh errors: auto intersecting, non-manifold, crossing, redundant, tan-
gled, reversed faces, small tunnels, and duplicated vertices. They would cause bad results
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after the auto surfacing command that fits NURBS on the targeted meshes. For this reason,
the elaboration of these last elements considered the following steps (Figure 11):

Figure 11. The workflow to generate the NURBS geometries of the statues and the decorations.

Agisoft Metashape

• Duplicating the original UAV chunk;
• Resizing of the bounding box around each statue and bass relief;
• Elaboration of the depth maps at the highest resolution;
• Generation of the meshes using as source the depth maps;
• Export of the meshes in .obj format.

Geomagic Design X

• Import the .obj files;
• Fixing the topological errors of the meshes;
• Creating a watertight mesh;
• Auto fitting the NURBS geometries on the meshes;
• Export the meshes in .igs format.

McNeel Rhinoceros

• Import the .igs file without scaling or moving the single object.

5.4. Terrestrial Data Elaboration

The terrestrial dataset comprises 229 images, and the elaboration phase followed the
same pipeline of the UAV photogrammetric project, giving results in terms of accuracy
comparable to those described above. This elaboration aimed to produce a dense point
cloud of the lower part of the architecture to be merged with the dense point cloud and
meshes coming from the UAV dataset elaboration (Figure 12).
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Figure 12. North elevation of the arch, terrestrial photogrammetric point cloud.

5.5. Data Merging

The two datasets did not share the coordinates because each one has its own local
reference system measured with the total station. To place the two models in the same
position, some manual points of the same architectonical elements were collected on both
projects. The points are well distributed on three of the four elevations. Then, a new Agisoft
Metashape project was created to append the terrestrial and UAV chunks. The former
one was aligned to the latter using the architectonic points and fixing the scale of both
models. After cleaning the overlapping parts, the two models were merged, saving the
best geometries of each one, i.e., the bottom part of the terrestrial survey and the upper
part of the UAV survey (Figure 13).

Figure 13. On the left, final merged 3D point cloud. In the centre, decorative apparatus recorded from the terrestrial
photogrammetric survey; on the right, 3D model of one of the statues on the top of the arch acquired with the UAV survey.

5.6. HBIM Generation: From Mesh-Textured Models to NURBS Models and Heritage Building
Information Modelling

Thanks to the integration of primary and secondary data sources, the digitisation
process of the monument was able to benefit from point clouds coming from aerial pho-
togrammetry and many documentations and historical drawings capable of communicating
the constructive logic of the building. As anticipated in paragraph 5.3, thanks to the inte-

102



J. Imaging 2021, 7, 118

grated use of point clouds and textured mesh models, it was possible to lay the appropriate
foundations for defining a method capable of representing any type of shape in BIM logic.
In particular, the use of GOG 9 and 10 made it possible to extract geometric primitives,
slices, and wireframe models directly from point clouds and mesh models from aerial and
terrestrial photogrammetry.

Figure 14 shows the multi-step approach, moving from simple points in space or mesh
polygons to a NURBS model capable of corresponding to the surveyed reality. Thanks to
NURBS modelling, it has been possible to create mathematical models capable of going
beyond the limits imposed by BIM applications, which are still characterised by a very
limited number of 2D representation and 3D modelling tools.

Figure 14. The scan-to-NURBS process applied to the Arco della Pace in Milan.

The second step allowed the transformation of NURBS models into HBIM objects
capable of communicating high levels of information (Figure 15). Unlike newly constructed
buildings, historic buildings require a 3D mapping phase capable of communicating
their unique architectural, structural, material, and decorative features. Each historic
building is a world unto itself, where generic materials and textures enucleated in the BIM
libraries do not allow an appropriate representation of the structure, and consequently
the mapping and sharing of information is not always truthful. For this reason, aerial
photogrammetry has enabled a 3D mapping phase capable of communicating the integrity
of the materials for each individual digitised element, from the coffered vaults, to the
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pillars, up to the sculptures and low reliefs. The latter also required the transmissibility
of material information and the development of new BIM parameters able to tell the
story represented through textual descriptions. On the other hand, BIM applications are
not easily usable by non-expert users in 3D digitalisation. For this reason, the method
envisaged the development of advanced XR environments capable of reaching a wider
audience and consequently enhancing the communication levels of digital models for
students, virtual tourists, and other forms of users.

Figure 15. The HBIM objects of the research case study and the main 2D drawings extracted from the HBIM project browser.

Once the various NURBS objects were transformed into BIM parametric objects, thanks
to the verification of the grade of accuracy (GOA), it was possible to communicate the
reliability of each element created thanks to point set deviation analysis. In particular,
thanks to an automatic verification system (AVS), the standard deviation between point
clouds and BIM objects was calculated [23,56,57]. The value reached for every single
element allowed us to define a GOA of about 1–2 mm. Consequently, the development
of HBIM parameters capable of communicating this value within the propriety window
of each object has allowed the user to identify the GOA, the LOD obtained, the scale of
representation and the creation of schedules and databases able to accurately compute
numerical quantities such as area and volume and subsequently define the materials and
restoration phases useful for the conservation of the monument over time.
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5.7. Synchronising HBIM Models with XR Development Platforms: The Virtual Visual
Storytelling of the Arco della Pace in Milan

The level of interactivity achieved was, however, limited to a small circle of experts.
Consequently, the passage from the information mapping phase to the information sharing
phase led the authors to develop new interactivity levels, exploring the latest generation
techniques and tools and defining a development process capable of immersing any type
of user in XR environments (Figure 16).

Figure 16. XR development approach applied to the research case study.

In this specific context, the study and understanding of the development techniques
of XR environments made it possible to test and define a process based on the use of open-
source platforms such as Unreal Engine, unity and Twinmotion. Unlike the scan-to-BIM-
to-XR methods already consolidated in recent years, the main added value of the method
was found thanks to the possibility of the synchronisation of multiple modelling software
and XR development platforms, avoiding interruptions and development discontinuity
between opening and closing one software to another. Thanks to the development of new
add-ins, functionalities integrated into software architecture, in addition to exponentially
reducing XR development times, it has been possible to define a workflow that can also
be applied to experts in the construction and virtual museum sector [58], who do not
always possess computer skills capable of increasing the level of interactivity of their
digital models.

A second benefit of the proposed method derives from a synchronised mapping tech-
nique between Autodesk Revit, McNeel Rhinoceros and XR software such as Twinmotion
and Unreal engine. In particular, the method required the use of many images from aerial
photogrammetry. It has been found that the main 3D mapping techniques in modelling
software and BIM platforms involve the use of decals. Decals are non-repeating textures
that are applied to the surface of an object with a given projection. Decals are textures
placed directly on the specified area of one or more objects. Decals are used to change a
limited part of an object colour. Decals should be thought of as a single specific texture,
rather than side-by-side textures, as they are when used in a material. This is an easy way
to apply single images or similar textures to objects without going through complex texture
mapping operations.
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On the other hand, it was found that the mode of synchronisation of digital models
with XR platforms could not include this technique capable of correctly representing the
uniqueness of the monument. Furthermore, thanks to the exhibition developments in
computer graphics and the development of the Twinmotion software, it was possible to
reduce the phase of graphic post-production and 3D mapping, directly using textures pre-
processed in NURBS modelling software and BIM platforms such as McNeel Rhinoceros,
Autodesk Revit and Graphisoft Archicad. It has been found that Twinmotion is a Real-
Time Rendering software for Architecture, which has recently reached its best performing
version; in fact, with just a few clicks, the last version (2021) allows you to connect with
the major CAD software existing on the market, such as Archicad, Revit, Sketchup Pro
and Rhinoceros; thanks to Twinmotion 2021, it was possible to animate a large number
of interactive virtual objects (IVOs), improving and optimising the textures; accelerating
the rendering process, which is reduced to a few seconds; and using objects present in the
software library or imported from the web (Figure 17).

Figure 17. VR project developed in Twinmotion: the development was based on the real-time synchronisation between
NURBS modelling software and multiple BIM platforms (McNeel Rhinoceros and Autodesk Revit). It allows the user to
obtain different interactive tools, such as the automatic extraction of the urban context, descriptive fields of the decorative
apparatus, 3D animation, VR mode, construction phase animation and other types of output and interaction.

For these reasons, the 3D mapping phase had to rely on the definitions of specific
textures and the reworking of graphic parameters associated with every single element
created. Assuming that a texture can be applied to the surface of a 3D model to add
colour, a coating or other details such as gloss, reflectivity or transparency, the problem
of representing a texture in 3D rendering can be solved by UV mapping. U and V are the
texture coordinates corresponding to X and Y. Think of U as the direction that goes from
one side to the other of a quadrangular sheet. Think of V as the other direction, the one
that goes from top to bottom. UV texture mapping is used whenever you apply an image
to a material and then apply that material to a model. Texture mapping properties manage
texture map projections for selected surfaces, polysurfaces, and meshes, representing a
2D image on a 3D model. The mapping transforms a 2D source image into an image
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buffer called texture. Finally, the last phase of the process involved enhancing the levels of
interactivity achieved in the implementation phase. Figure 18 shows the main blueprints
developed for the Arco della Pace XR project.

Figure 18. The main Blueprints developed for the XR project: (a) change of XR mode between first and third person, (b)
animation 3D, (c) interactive elements for vertical translation, (d) interactive book consultation.

The IT implementation phase envisaged specific blueprints such as Level Blueprints
and Blueprint Classes, Blueprint Macros and Blueprint Interfaces. These blueprints contain
the scripts necessary for the game level to react to the player’s input with objects that
animate, emit sounds, and change their composition based on the player’s actions. The
structure is also designed so that the creator of levels can reuse the same Blueprints for
the same or slightly different functions, without having to redo the same work for each
game element.

One type of Blueprint class is Construction Script, which kicks into action when an
actor is set in the game level or updated. It serves to manage the changes that the actor
needs when certain events occur. The Blueprint Visual Scripting system in Unreal Engine
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is a complete gameplay scripting system based on the concept of using a node-based
interface to create gameplay elements from within Unreal Editor. Blueprints is the visual
scripting system inside Unreal Engine 4 and is a fast way to start prototyping your game.
Instead of writing code line by line, you do everything visually: drag and drop nodes, set
their properties in a UI, and drag wires to connect Object-Oriented (OO) classes or objects
in the engine as with many common scripting languages. This system is highly flexible
and powerful as it allows designers to use virtually the full range of concepts and tools
generally only available to programmers.

In addition, Blueprint-specific markup, available in Unreal Engine C++ implementa-
tion, enables programmers to create baseline systems that designers can extend.

The latter, once developed, made it possible to create static objects without any level
of interaction coming from the scan-to-BIM process described here, passing from simple
static meshes to IVOs capable of responding to user input. Moreover, thanks to a process
of defining the virtual-visual story telling of the monument (VVS) it was possible to tell,
as well as with high levels of interactivity, even with virtual rooms where every single
decorative apparatus, sculpture and low relief has been digitised and inserted in a museum
itinerary. Thus, with any type of device (mobile, tablet, VR headset or PC), the user can
remotely explore the intangible values reported in the XR project and become aware of the
historical, cultural background of the monument and Milan.

The VVS was developed based on the following XR environments: two interactive
menus, in which, thanks to the implementation of specific trigger boxes and blueprints,
it was possible to migrate the user in first or third person to new levels. The bass relief,
for example, are initially placed at a distance from their true position; when you approach
the model, they move until they reach their respective position on the Arc. The Trigger
Box is one of the actors that can be activated and cause events in the level; they are used
to trigger events in response to interaction with them within the level. The Trigger Box is
a trigger that can be placed in the project by dragging it into the layer. In the project, the
event that activates the Trigger Box is the overlap of the avatar with the trigger. The various
levels identified made it possible to define a progressive narration of the monument: from
general information and multimedia files that describe the city of Milan, the square, and
the cultural, historical, and geographical context of the monument up to a second menu
where rooms were created dedicated to a museum display of the decorative apparatus.
After placing the Trigger Boxes, the nodes are developed within the Blueprint level. The
second interactive element, the video file, is played on a static mesh with the media source
asset file.

The steps carried out were the following:

• creation of the Movies folder within the Content in which to place the video in .mp4;
• through File Media Source and Media Player, the video is associated with the project

within the Content. The video resource is generated accordingly;
• creation of the Mesh, that is, the surface on which the video will be visible;
• Simply by dragging the video asset onto the mesh, you relate the video to the surface;
• development of nodes within the Blueprint level so that the video is played on the

mesh starting from the start of the virtual experience. This happens automatically,
but only through a keyboard command, “P”, which allows you to start and pause the
multimedia content.

Inside some ideal rooms, books have been inserted, referring to the bibliography
essential to the project. These were made as Widgets, again based on Blueprint. The books
are then displayed only after pressing a key, so you can choose independently whether
to display them and when. Once opened, the manual is displayed in the foreground.
Within the Designer Mode, the actual book was created, inserting one page at a time and
the respective drawings. Subsequently, by switching to Graph editing Mode, the nodes
necessary for the animation of the book were created. One part concerns the activation of
the Widget, through a button, the respective link to the avatar, and finally the sounds of the
pages when they are browsed. The other part instead concerns how and when the pages
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are visible. Everything is based on links between the pages so that the one you are on is
the only one visible while the others remain invisible. Therefore, everything is based on
a system of switches that allow these settings to be changed once the buttons next to the
book have been pressed to move to the next or previous page.

Consequently, the user can immerse himself and understand the story represented
through IVOs, digital archives, interactive books and multimedia files that have different
kinds of content. For most of the sections, the method of creating the project based on
the “Blueprint third-person template” makes it possible to change it in person thanks to
creating a Blueprint that allows a quick exchange to take place by pressing a button. In this
way, it is possible to better view the various sections by passing from a more immersive
view, such as the first-person view, to one that allows you to better compare and understand
the dimensions in relation to the height of the avatar. This was carried out within the
avatar’s Blueprint, in which the second camera was set at face height to view the scene in
first person.

The project is divided into levels: in the main one, there is the model of the arch,
with the interactive menu to the left and right of the latter. The other levels house the
in-depth rooms, which can be reached from the main room (Figure 19). The following
Place Actors have been placed inside each one: AtmosphericFog, BP_Sky_Sphere, and
ExponentialHeighFog, which complete the preliminary light setting of the levels. To import
the files that make up the model, the settings that regulate the collision for each solid object
can be changed so that the solids and voids are correctly processed.

Figure 19. The main section of the Virtual-Visual Story telling of the monument: from virtual museum to interactive virtual
objects (IVOs).

Finally, the complete version of the XR project was geared towards the integrated use
of VR, the Oculus Ref., a virtual reality device that allows high-quality immersive vision.
It consists of a viewer, audio headphones, sensors and two controllers. The sensors are
used to track the user’s movements, while the controllers allow you to interface with the
experience in a more interactive way and manipulate the objects within the VR project
using your hands in a rather realistic way. Through sensors, tracking allows the user to look
around in the virtual environment exactly as if it were in the real world. This system allows
for the most natural interaction possible, improving the sensation of immersion. Within
the Unreal Engine program, it is possible to convert the project and make it compatible
with vision through Oculus Rift. To do this, it is necessary to change the display settings by
selecting VR Preview, expanding the menu next to the Play icon, and thus starting playback
with the viewer and controller. At the end of the elaborations, the models of the 8 statues
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(3 lying men, 4 knights and a chariot with 6 horses) were placed in their correct position.
It was not necessary to move or scale them because we were careful not to change the
reference system during each import and export phase.

5.8. From HBIM Models and IVOs to Augmented Reality

The proposed method has made it possible to create an immersive environment
in all respects. The final user can interact with many IVOs and discover information,
from historical-cultural content to precise information such as the descriptions of each
low relief, sculpture, etc. Thanks to the in-depth historical research that allowed for the
implementation of the VR project and the virtual museum of the monument itself, a further
implementation phase was conducted with the ultimate goal of achieving an alternative
form of human-computer interaction.

In recent years, several studies have developed applications capable of creating, setting
up and sharing AR objects. It has been found that unlike VR, which reproduces the real
world to create digital spaces, AR understands and includes the real world, superimposing
virtual images on real environments, spaces and images.

In particular, AR was considered by the authors to be a suitable solution for several reasons:

• use of IVOs and HBIM objects for different purposes concerning VR,
• addition of new levels of information, in real-time and with a high rate of interaction

using mobile devices of any kind, including wearable technologies,
• superimposition of multimedia information on what you are watching on any display

(text, images, live or animated films),
• access to an AR system via the web through devices equipped with GPS, a web camera

and an internet connection,
• use and accessibility is within reach of any type of user (expert, professional, students,

virtual tourists and on-site tourists) through web apps that can be easily downloaded
via the app store,

• creation of a personal account that can be implemented over time,
• ability to view objects and their information in a targeted manner, avoiding having to

access the general model of the arch and discriminate between other objects,
• avoid the installation of particular software applications and use expensive digital

devices,
• sharing of the model through simple links.

Figure 20 shows the web-based AR library developed for the Arco della Pace. Each
object is easily navigable and viewable in AR mode. The associated information has been
selected to reach the user in a targeted manner (on-site or remotely) with precise and
concise descriptive texts, thus providing a cognitive approach to the decorative schema of
the monument without great effort.

Figure 20. AR implementation: the web-based AR platform of the Arco della Pace, Milan, Italy.
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5.9. Critical Analysis of the Proposed Workflow: Pros and Cons Found during the
Implementation Process

The method proposes a continuum that, starting from the real world, leads to a
completely virtual interactive world, representing “possible worlds” to create a “sense of
presence and interaction” in the user. The relationship between IVOs, information and the
user thus becomes the first factor of scientific investigation. The established relationships
must be deeply tested in this specific context, guaranteeing the best possible experience
from different perspectives. Theoretical assumptions on the use of virtual realities have
been dealt with in-depth by the technologist Giti Javidi [59], who has identified positive the-
oretical correlations between constructivism and virtual learning environments. Through
these developments, it has been suggested that, using the XR project, hundreds of specific
objectives can be pursued by different means (texts, discussions, videos, software, podcasts,
etc.), and the use of VR is just one of them. Pedagogist Veronica Pantelidis expressed
her opinion on the conditions that recommend VR, especially for learning and teaching.
Based on the points reported in her analysis [60,61], some considerations founded by the
authors during the final development phase are here reported. The development of an XR
environment can be useful and used effectively:

• if the simulation as an alternative to the real environment allows for greater, more
intuitive and faster learning,

• if the interaction with a model is more motivating than the interaction with reality,
• if you travel, costs or logistical difficulties in reaching the site make virtual reality

more convenient,
• if the experience of creating a simulated environment or model is important to achieve

learning objectives,
• if the visualisation of information and its manipulation using graphic symbols and

the latest generation tools can be more easily understood, making the imperceptible
perceptible,

• if it is necessary to develop a participatory environment that can only exist if generated
with a computer,

• if it is necessary to give disabled people the opportunity to experiment, which they
could not do otherwise,

The conditions that advise against the use of virtual reality in teaching are the following:

• whether the “real” learning environment is available and accessible,
• if interaction with real humans, professionals, tutors, teachers, students is necessary,
• if the use of a virtual environment can be physically or emotionally damaging,
• if the use of a virtual environment can provoke a simulation so convincing as to lead

some participants to confuse the model with reality,
• if virtual reality is too expensive to justify in light of the expected results.

In addition to these pros and cons of a general nature and applicable to possible future
developments in this field, the Arco della Pace case study has highlighted how the XR
has become an innovative tool thanks to its multisensory and engaging nature, satisfying
the principles of active learning. In fact, immersive virtual experiences have favoured the
sense of presence and embodiment, both key factors capable of promoting learning and
knowledge of intangible values such as the historical and cultural background represented
in the decorative apparatus of the monument.

Learning these values became an active process in which the person builds his knowl-
edge by extracting meanings from interactions with the surrounding virtual world. Thanks
to interacting and extracting meanings from the objects surrounding him, the user creates
mental models to understand reality. Consequently, the proposed virtual path became
a dynamic process in which the person is the protagonist and active participant in the
learning process. In turn, it has fostered an emotionally positive experience of involvement,
promoting the onset and maintenance of high levels of attention and concentration.
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On the other hand, it is also essential to consider the consequences of using virtual
reality in health. In fact, some studies have found numerous problems related to what
is called “cybersickness”, or symptoms of motion sickness due to diving. Participants
sometimes reported experiencing headaches, nausea, disorientation and vision problems.
Accordingly, the levels of interactivity developed had to deal with requirements that made
them capable of not incurring the issues recently reported by the first manufacturers of
gaming platforms. Consequently, the XR projects proposed in this study had to avoid
VR sickness (dizziness, nausea, disorientation, sweating, and others). One of the main
factors that can affect this is the framerate dropping too low. In Table 5, the recommended
framerates for several of the VR headsets that Unreal Engine supports are reported:

Table 5. Specification to avoid VR sickness.

Device Frame Per Second (FPS)

Vive 90
Gear VR 60

PSVR Variable up to 120
Rift Retail 90

DK1 0
DK 2 75

Finally, VR environments require the utmost attention from the user (who is immersed
in a reconstructed environment within which he can move and interact only “digitally”),
making the technology inadequate for interaction. In this context, AR makes it possible
to integrate the experience perfectly into the daily interactions that users have in the real
world, facilitating collaboration between teams located in different places or accelerating
digital learning, design and innovation processes. For these reasons, the development of
a web-based AR library has made it possible to increase the usefulness of digital models,
defining a new way of sharing information and objects simultaneously. On the other hand,
the development of the library itself inevitably had to face specific requirements that led to
a reduction in terms of LOD and LOI, such as

• the formats to be used (FBX, OBJ),
• the limited size of the shared models in terms of bytes (50,100,200 MB),
• the reduction of the result of the textures associated with the models (value to be

considered in the general size of the AR object),
• compatibility with web browsers (desktop and mobile), and
• navigation and controls (Interface, Orbit Mode and First-Person Mode)

6. Discussion and Conclusions

An XR project has been developed to share the model and the related tangible and
intangible values. Computer vision and imaging processing allow authors to improve
the information mapping and sharing of the scan-to-HBIM process, creating novel XR
environments containing the history of the monuments, high-resolution models of the
statuary and the decorative apparatus and interactive virtual objects (IVO). New exchange
formats, new game engine platforms, and visual scripting were used to complete the
architectural study of such an important monument in the context of Milan. Right from
the start, the work carried out aimed to certify how XR relates to the memory and custody
of the built heritage, in particular the Arch of Peace in Milan, which in recent years has
had less and less maintenance and restorations. Thanks to technological evolution, the
virtual experience has become indispensable for the enjoyment of the architectural, artistic
and cultural heritage to an increasingly large audience. In fact, this method shows how
integration between the scan-to-BIM process, HBIM and XR allows users, in addition to
painstakingly and faithfully recomposing any type of object, in this architectural case,
to implement the knowledge of our built heritage. XR sees an infinite application in
many fields, and its use in the context of cultural heritage and built heritage has an
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enormous development prospect. Moreover, Italy contains an extensive cultural heritage
within its territory, and the possible digitisation of this capital is one of the primary
purposes of researchers, scholars, and experts in the sector. As previously mentioned, a
fundamental role is recognised in continuous technological development, which contributes
to improving virtual reality experiences, making the generative process and the subsequent
governmental act even more immediate.
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Abstract: Iconography studies the visual content of artworks by considering the themes portrayed
in them and their representation. Computer Vision has been used to identify iconographic subjects
in paintings and Convolutional Neural Networks enabled the effective classification of characters
in Christian art paintings. However, it still has to be demonstrated if the classification results
obtained by CNNs rely on the same iconographic properties that human experts exploit when
studying iconography and if the architecture of a classifier trained on whole artwork images can
be exploited to support the much harder task of object detection. A suitable approach for exposing
the process of classification by neural models relies on Class Activation Maps, which emphasize the
areas of an image contributing the most to the classification. This work compares state-of-the-art
algorithms (CAM, Grad-CAM, Grad-CAM++, and Smooth Grad-CAM++) in terms of their capacity
of identifying the iconographic attributes that determine the classification of characters in Christian
art paintings. Quantitative and qualitative analyses show that Grad-CAM, Grad-CAM++, and
Smooth Grad-CAM++ have similar performances while CAM has lower efficacy. Smooth Grad-
CAM++ isolates multiple disconnected image regions that identify small iconographic symbols well.
Grad-CAM produces wider and more contiguous areas that cover large iconographic symbols better.
The salient image areas computed by the CAM algorithms have been used to estimate object-level
bounding boxes and a quantitative analysis shows that the boxes estimated with Grad-CAM reach
55% average IoU, 61% GT-known localization and 31% mAP. The obtained results are a step towards
the computer-aided study of the variations of iconographic elements positioning and mutual relations
in artworks and open the way to the automatic creation of bounding boxes for training detectors of
iconographic symbols in Christian art images.

Keywords: convolutional neural network; class activation maps; explainability; iconography; art-
work analysis

1. Introduction

Iconography is the discipline that concerns itself with the subject matter of artworks,
as opposed to their form [1]. It is studied to understand the meaning of artworks and to
analyze the influence of culture and beliefs on art representations across the word, from
the Nasca [2] to the Byzantine [3] civilization. Iconography is a prominent topic of the
art history studied through centuries [4–6]. The attribution of iconographic elements
(henceforth classes) is an important task in art history, related to the interpretation of
meaning and to the definition of the geographical and temporal context of an artwork.

With the advent of digital art collections, iconographic class attribution has acquired
further importance, as a way to provide a significant index on top of digital repositories
of art images, supporting both students and experts in finding and comparing works by
their iconographic attributes. However, the analysis of iconography requires specialized
skills, based on the deep knowledge of the symbolic meaning of a very high number of
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elements and of their evolution in space and time. The WikiPedia page on Christian Saint
symbolism (https://en.wikipedia.org/wiki/Saint_symbolism—accessed on 15 May 2021)
lists 257 characters with 791 attributes. This makes the manual attribution of iconographic
classes to image collections challenging, due to the tension between the available amount
of expert work and the high number of items to be annotated.

A viable alternative relies on the use of semi-automatic computer-aided solutions
supporting the expert annotator in the task of associating iconographic classes to art
images. Computer Vision (CV) has already been used for artwork analysis tasks, such
as genre identification [7], author identification [8], and even subject identification and
localization [9]. The field of computer-aided iconographic analysis is more recent and
addressed by few works [10,11]. Borrowing the standard CV terminology, the problem
of computer-aided iconographic analysis can be further specialized into iconography
classification, which tackles the association of iconographic classes to an artwork image as
a whole, and iconography detection, which addresses the identification of the regions of an
image in which the attributes representing an iconographic class appear.

Applying CV to the analysis of art iconographic poses challenges, in part, general and,
in part, specific to the art iconography field. As in general-purpose image classification and
object detection, the availability of large high quality training data is essential. The natural
image dataset in use today are very large and provided with huge numbers of annotations.
Conversely, in the narrower art domain, image datasets are less abundant, smaller, and
with less high-quality annotations. Furthermore, unlike natural images, painting images
are characterized by less discriminative features than natural ones. The color palette is
more restricted and subject to artificial effects, such as colored shadows and chiaroscuro.
Images of paintings may also portray partially deteriorated subjects (e.g., in frescoes) and
belong to historical archives of black and white photos.

Despite the encouraging results of applying Convolutional Neural Networks (CNNs)
for iconography classification [11], it remains unclear how such a task is performed by
artificial models. Depending on the class, the human expert may consider the whole scene
portrayed in the painting or instead focus on specific hints. Considering Christian art
iconography, an example of the first scenario occurs in paintings of complex scenes such as
the crucifixion or the visitation of the magi. The latter case is typical of the identification of
characters, especially Christian saints, which depends on the presence of very distinctive
attributes. When CNNs are used for the classification task, the problem of explainability
arises, i.e., of exposing how the CNN has produced a given result. A widely used strategy to
clarify CNN image classification results relies on the use of Class Activation Maps [12–14],
which visualize the regions of the input images that have the most impact on the prediction
of the CNN. Computing the most salient regions of an image with respect to its iconography
can help automate the creation of bounding boxes around the significant elements of an
artwork from image-wide annotations only. This result could reduce the effort of building
training sets for the much harder task of iconography detection.

This paper addresses the following research questions:

• Are CAMs an effective tool for understanding how a CNN classifier recognizes the
iconographic classes of a painting?

• Are there significant differences in the state-of-the-art CAM algorithms with respect
to their ability to support the explanation of iconography classification by CNNs?

• Are the image areas highlighted by CAMs a good starting point for creating semi-
automatically the bounding boxes necessary for training iconography detectors?

The contributions of the paper can be summarized as follows:

• We apply four state-of-the-art class activation map algorithms (namely, CAM [15],
Grad-CAM [16], Grad-CAM++ [17], and Smooth Grad-CAM++ [18]) to the CNN
iconography classification model presented in [11], which exploits a backbone based
on ResNet50 [19] trained on the ImageNet dataset [20] and refined on the ArtDL
dataset (http://www.artdl.org—accessed on 15 May 2021) consisting of 42,479 images
of artworks portraying Christian Saints divided into 10 classes. Note that, in order
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to avoid ambiguity, we refer to the specific algorithm as “CAM” and to the generic
output as “class activation maps”.

• For the quantitative evaluation of the different algorithms, a test dataset has been
built which comprises 823 images annotated with 2957 bounding boxes surrounding
specific iconographic symbols. One such annotated image is shown in Figure 1. We
use the Intersection over Union (IoU) metrics to measure the agreement between
the areas of the image highlighted by the algorithm and those annotated manually
as ground truth. Furthermore, we analyze the class activation map area based on
percentage of covered bounding boxes and percentage of covered area that does not
contain any iconographic symbol.

• The comparison shows that Grad-CAM, Grad-CAM++, and Smooth Grad-CAM++
deliver better results than the original CAM algorithm in terms of area coverage and
explainability. This finding confirms the result discussed in [18] for natural images.
Smooth Grad-CAM++ produces multiple disconnected image regions that identify
small iconographic symbols quite precisely. Grad-CAM produces wider and more
contiguous areas that cover well both large and small iconographic symbols. To the
best of our knowledge, such a comparison has not been performed before in the
context of artwork analysis.

• We perform a qualitative evaluation by examining the overlap between the ground-
truth bounding boxes and the class activation maps. This investigation illustrates
the strengths and weaknesses of the analyzed algorithms, highlights their capacity
of detecting symbols that were missed by the human annotator and discusses cases
of confusion between the symbols of different classes. A simple procedure is tested
for selecting “good enough” class activation maps and for creating symbol bounding
boxes automatically from them. The results of such a procedure are illustrated visually.

• We deepen the evaluation by measuring quantitatively the agreement between the
ground-truth bounding boxes and the bounding boxes estimated from the class acti-
vation maps. The assessment shows that the whole Saint bounding boxes computed
from the Grad-CAM class activation maps obtain 55% average IoU, 61% GT-known
localization and 31% mAP. Such results obtained by a simple post-processing of the
output of a general purpose CNN interpretability technique pave the way to the use
of automatically computed bounding boxes for training weakly supervised object
detectors in artwork images.

Figure 1 shows an example of the assessment performed in this paper. On the left, an
image of Saint John the Baptist has been manually annotated with the regions (from A to
D) associated with key symbols relevant for iconography classification. On the right, the
same image is overlaid with the CAM heat map showing the regions contributing the most
to the classification.

The rest of the paper is organized as follows: Section 2 surveys related work; Section 3
describes the different CAM variants considered in our study; Section 4 describes the
adopted evaluation protocol and the results of the quantitative and the qualitative analysis;
finally, Section 5 draws the conclusions and outlines possible future work.
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B

C
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Figure 1. On the left: Saint John the Baptist image and iconographic symbols identified manually
(e.g., cross (A), face (B), and lamb (C), and hand pointing at lamb (D)). On the right: the CAM heat
map associated with classification results of a CNN-based solution.

2. Related Work

This section surveys the essential previous research in the fields of automated artwork
analysis and CNN interpretability that are the foundations of our work.

2.1. Automated Artwork Image Analysis

The large availability of artworks in digital format has allowed researchers to perform
automated analysis in the fields of digital humanities and cultural heritage by means of
Computer Vision and Deep Learning methods. Several datasets containing various types
of artworks have been proposed to support such studies [10,11,21–26].

The performed analyses span several classification tasks and techniques: from style
classification to artist identification, comprising also medium, school, and year classifica-
tion [27–29]. These researches are useful to support cultural heritage studies and asset man-
agement, e.g., automatic cataloguing of unlabeled works in online and museum collections,
but their results can be exploited for more complex applications, such as authentication,
stylometry [30], and forgery detection [31].

A task that is more related to our proposal is artwork content analysis, which focuses
on the automatic identification and, if possible, localization of objects inside artworks.
The literature contains several state-of-the-art approaches [9–11,32–35]. Since there is
abundance of deep learning models trained with natural images but a deficiency of art-
specific models, many studies focus on the transferability of previous knowledge to the art
domain [11,35–38]. This approach is known as Transfer Learning and consists in fine-tuning
a network, previously trained with natural images, using art images. The consensus is that
Transfer Learning is beneficial for tasks related to artworks analysis.

2.2. Interpretability and Activation Maps

In recent years, Deep Learning models have been treated as black-boxes, i.e., archi-
tectures that do not expose their internal operations to the user. These systems are used
for various approaches and their interpretability is fundamental in many fields, especially
when the outputs of the models are used for sensitive applications. In the literature, there
are many techniques that aim at explaining the behavior of neural models [39,40]. Saliency
Masks are used to address the outcome explanation problem by providing a visualization
of which part of the input data is mainly responsible for the network prediction. The most

120



J. Imaging 2021, 7, 106

popular Saliency Masks are obtained with the Class Activation Map (CAM) approach.
CAMs [15] have shown their effectiveness in highlighting the most discriminative areas
of an image in several fields, ranging from medicine [41] to fault diagnostics [12]. The
original formulation of CAMs has been subsequently improved. Selvaraju et al. [16] intro-
duced Grad-CAM, which exploits the gradients that pass through the final convolutional
layer to compute the most salient areas of the input. Chattopadhay et al. [17] introduced
Grad-CAM++ which considers gradients too but is based on a different mathematical
formulation that improves the localization of single and multiple instances. Smooth Grad-
CAM++ [18] applies Grad-CAM++ iteratively on the combination of the original image
and a Gaussian noise.

The use of CAMs is not limited to the explainability of Deep Learning classification
models but is the starting point for studies related to the weakly supervised localization of
content inside the images [42].

This paper focuses on the comparison of different CAM algorithms on the task of
iconography classification to determine which variant may be more suitable for weakly
supervised studies. Since CAM algorithms are most often studied only for natural images,
the aim of the work is also to address the research gap about the utility of CAMs for the
art domain.

3. Class Activation Maps for Iconography Classification

This paper compares different CAM algorithms: Grad-CAM, Grad-CAM++, and
Smooth Grad-CAM++. Their implementation is based on the mathematical definitions
provided, respectively, by [15–18].

Figure 2 shows the ResNet50 classifier architecture used to compute the class activa-
tion maps. The input of the network is an image and the output is the set of probabilities
associated with the different classes. In the evaluation, the input images portray art works
and the output classes denote 10 Christian Saints. ResNet50 contains an initial convo-
lutional layer (conv1) followed by a sequence of convolutional residual blocks (conv2_x
. . .conv5_x). A Global Average Pooling (GAP) module computes the average value for each
feature map obtained as an output of the last layer (conv5_x). The probability estimates
are computed by the last component, which is typically a fully connected (FC) layer [43].

Figure 2. The ResNet50 architecture.

3.1. CAM

CAMs [15] are based on the use of GAP, which has been demonstrated to have
remarkable localization abilities [44]. The GAP operation averages the feature maps of the
last convolutional layer and feeds the obtained values to the final fully connected layer that
performs the actual classification. Class activation maps are generated by performing a
weighted sum of the feature maps of the last convolutional layer for each class. The actual
class activation map value Mc(x, y) for a class c and a position x, y in the input image is
expressed as follows:

Mc(x, y) = ∑
k

wc
k Ak(x, y) (1)

where Ak(x, y) is the activation value of feature map k in the last convolutional layer
at position (x, y), and wk

c is the weight associated with feature map k and with class c.
Intuitively, a high CAM value at position x, y is the result of an average high activation
value of all the feature maps of the last convolutional layer.
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Differently from the original approach, we compute the CAM output not only for
the predominant class, but for all the classes. The ArtDL dataset contains multi-class
multi-label images and this formulation allows us to analyze which regions of the artwork
are associated with which classes, also in the case of wrong classification.

3.2. Grad-CAM

Grad-CAM [16] is a variant of CAM which considers not only the weights but also
the gradients flowing into the last convolution layer. In this way, also the layers preceding
the last one contribute to the activation map. An advantage of using gradients is that
Grad-CAM can be applied to any layer of the network. Still, the last one is especially
relevant for the localization of the parts of the image that contribute most to the final
prediction. Furthermore, the layer used as input for the prediction can be followed by any
module and not only by a fully connected layer. Grad-CAM exploits the parameters αc

k,
which represents the neuron importance weights and are calculated as:

αk
c =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(2)

where 1
Z ∑i ∑j denotes the global average pooling operation (Z = i · j) and ∂yc

∂Ak
ij

denotes the

back-propagation gradients. In the gradient expression, yc is the score of the class c and
Ak represents the k-th feature map. The Grad-CAM for a class c at position (x, y) is then
given by:

Mc
Grad−CAM(x, y) = ReLU

(
∑
k

αk
c Ak(x, y)

)
(3)

where the ReLU operator maps the negative values to zero. As in the case of CAM, we
compute the output of Grad-CAM for all the classes under analysis.

3.3. Grad-CAM++

Grad-CAM++ [17] is a generalization of Grad-CAM aimed at better localizing multiple
class instances and at capturing objects more completely. Differently from Grad-CAM,
Grad-CAM++ applies a weighted average of the partial derivatives, with the purpose of
covering a wider portion of the object. Given a class c with a score Yc and the activation
map Ak

ij calculated in the last convolutional layer, a parameter αkc
ij can be defined as follows:

αkc
ij =

∂2Yc

(∂Ak
ij)

2

2 ∂2Yc

(∂Ak
ij)

2 + ∑a ∑b Ak
ab{ ∂3Yc

(∂Ak
ij)

3 }
(4)

The parameter wc
k, which has the same role of αc

k in Grad-CAM, is defined as:

wc
k = ∑

i
∑

j
αkc

ij ReLU

(
∂Yc

∂Ak
ij

)
(5)

which leads to

wc
k = ∑

i,j
[

∂2Yc

(∂Ak
ij)

2

2 ∂2Yc

(∂Ak
ij)

2 + ∑
a,b

Ak
ab{ ∂3Yc

(∂Ak
ij)

3 }
]ReLU

(
∂Yc

∂Ak
ij

)
(6)

As in the other CAMs, it holds that

Mc
Grad−CAM++(x, y) = ReLU

(
∑
k

wc
k Ak(x, y)

)
(7)
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3.4. Smooth Grad-CAM++

Smooth Grad-CAM++ [18] is a variant of Grad-CAM++ that can focus on subsets of
feature maps or of neurons for identifying anomalous activations. Smooth Grad-CAM++
applies random Gaussian perturbations on the image z and exploits the visual sharpening
of the class activation maps by averaging random samples taken from a feature map close
to the input. The value of the activation map Mc in a position (x, y) is defined as:

Mc(x,y)(z) =
1
n

n

∑
1

MGCpp
c(x,y)(z +N (0, σ2)) (8)

where n is the number of samples, N (0, σ2) is the 0-mean Gaussian noise with standard
deviation σ, and MSGCpp

c is the activation map for the input z +N (0, σ2). The final result
is obtained by iterating the computation of Grad-CAM++ on inputs resulting from the
overlap of the original image and a random Gaussian noise.

4. Evaluation

The evaluation exploits the ArtDL dataset [11], an existing artwork collection anno-
tated with image-level labels. The purpose of the evaluation is: (1) to understand whether
the class activation maps are effective in localizing both the whole representation of an
iconographic class and the distinct symbols that characterize it (the attributes associated
with the classes present in the ArtDL dataset are illustrated in [45] and listed in [46]); (2) to
compare CAMs algorithms in their ability to do so. To evaluate the localization ability of
class activation maps, a subset of the images have been annotated with bounding boxes
framing iconographic symbols associated with each Saint. Figure 3 illustrates the symbols
in a painting of Saint Jerome. The bounding boxes are used for the quantitative assessment
of class activation maps algorithms with the metrics described in Section 4.5. A qualitative
analysis is reported in Section 4.6.

A

B

C

E

F

G

D

Figure 3. Saint Jerome—The cardinal’s galero (A), the crucifix (B), the lion (C), the cardinal’s vest
(D), the book (E), the stone in the hand (H), and the face (G).
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4.1. Dataset

The ArtDL dataset [11] comprises images of paintings that represent the Iconclass [47]
categories of 10 Christian Saints: Saint Dominic, Saint Francis of Assisi, Saint Jerome, Saint
John the Baptist, Saint Anthony of Padua, Saint Mary Magdalene, Saint Paul, Saint Peter,
Saint Sebastian, and the Virgin Mary. The representation of such classes in Christian art
paintings exploit specific symbols, i.e., markers that hint at the identity of the portrayed
character. Table 1 summarizes the symbols associated with the 10 Iconclass categories
represented in the ArtDL dataset.

Table 1. Iconclass categories and symbols associated with them.

Iconclass Category Symbols

Anthony of Padua Baby Jesus, bread, book, lily, face, cloth

Dominic Rosary, star, dog with a torch, face, cloth

Francis of Assisi Franciscan cloth, wolf, birds, fish, skull, stigmata, face, cloth

Jerome Hermitage, lion, cardinal’s galero, cardinal vest, cross, skull, book, writing material, stone in hand, face, cloth

John the Baptist Lamb, head on platter, animal skin, pointing at Christ, pointing at lamb, cross, face, cloth

Mary Magdalene Ointment jar, long hair, washing Christ’s feet, skull, crucifix, red egg, face, cloth

Paul Sword, book, scroll, horse, beard, balding head, face, cloth

Peter Keys, boat, fish, rooster, pallium, papal vest, inverted cross, book, scroll, bushy beard, bushy hair, face, cloth

Sebastian Arrows, crown, face, cloth

Virgin Mary Baby Jesus, rose, lily, heart, seven swords, crown of stars, serpent, rosary, blue robe, sun and moon, face, cloth, crown

The ArtDL images are associated with high-level annotations specifying which Icon-
class categories appear in them (from a minimum of 1 to a maximum of 7). Whole-image
labels are not sufficient to assess the different ways in which the class activation maps
methods focus on the image content. For this purpose, it is necessary to annotate the
dataset with bounding boxes that localize the symbols listed in Table 1. Out of the whole
dataset, 823 sample images were selected and manually annotated with bounding boxes
that frame each symbol separately. A symbol can either be included completely within a
single bounding box (e.g., Saint Jerome’s lion) or be split into multiple bounding boxes
(e.g., Saint Peter’s bushy hair, which are usually divided in two parts separated by the
forehead). We consider a symbol representation as the union of all the bounding boxes
annotated with the same symbol label. For instance, Saint Sebastian’s arrows correspond to
a unique symbol but are annotated with multiple bounding boxes. When the same symbol
relates to multiple saints (e.g., Baby Jesus may appear with both the Virgin Mary and St.
Anthony of Padua), its presence is denoted with a label composed of the the symbol name
and the Saint’s name. While some symbols appear in the majority of the images of the
corresponding Saint, others are absent or rarely present. For each Saint, only the symbols
that appear in at least 5% of the paintings depicting the respective Saint are kept. This filter
eliminates 23 of the 84 possible symbols associated with the 10 Iconclass categories and
reduces the number of symbol bounding boxes from 2957 to 2887. Table 2 summarizes the
characteristics of the dataset used to compare the class activation maps algorithms.

Figure 4 shows the distribution of the bounding boxes within the images. Most images
contain from 2 to 5 bounding boxes and a few images do not contain any annotation. The
latter case occurs when the automatic classification of the ArtDL dataset is incorrect (e.g., for
images in which a character named Mary was incorrectly associated with the Virgin Mary).
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Table 2. Symbol and bounding box distribution.

Iconclass Category Symbol Classes Symbol Bounding Boxes

Anthony of Padua 6 83
Dominic 4 59

Francis of Assisi 5 295
Jerome 11 434

John the Baptist 5 231
Mary Magdalene 5 283

Paul 6 132
Peter 9 408

Sebastian 3 267
Virgin Mary 7 695

Figure 4. Bounding box distribution: most images contain from 2 to 5 bounding boxes (average = 3).

4.2. Class Activation Maps Generation

The class activation maps are generated by feeding the image to the ResNet50 model
and applying the computation explained in Section 3. They have a size equal to h × w × c
where h and w are the height and width of the conv5_x layer and c is the number of classes.
Since the output size (h, w) is smaller than the input size, due to the convolution operations
performed by the ResNet architecture, each class activation map is upsampled with bilinear
interpolation to match the input image size. Min-max scaling is applied to the upsampled
class activation maps to normalize them in the [0, 1] range.

4.3. Choice of the Threshold Value

A class activation map contains values in the range from 0 to 1. Given a threshold t, it
is possible to separate the class activation map into background (pixels with a value lower
than t) and foreground (pixels with a value greater than t). The choice of the threshold
value aims at making foreground areas concentrate on the Saints’ figure and symbols.
Figure 5 shows the impact of applying different threshold values to a class activation map.
As the threshold value increases, the foreground areas (in white) become smaller and more
distinct and the background pixels increase substantially at the cost of fragmenting the
foreground areas and missing relevant symbols. To investigate the choice of the proper
threshold, the quantitative evaluation of Section 4.5 reports results obtained with multiple
values uniformly distributed from 0 to 1 with a step of 0.05.
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Figure 5. Analysis with different thresholds—black areas correspond to class activation map values
below the specified threshold (background) while white pixels correspond to class activation map
values greater or equal than the threshold (foreground). An increment in the threshold value results
in smaller and more distinct areas. Original image (a), cam with threshold at 0.1 (b), cam with
threshold at 0.2 (c), cam with threshold at 0.4 (d), cam with threshold at 0.6 (e).

4.4. Intersection Over Union Metrics

Intersection Over Union (IoU) is a standard metric used to compute the overlap
between two different areas. It is defined as:

IoU =
A∩
A∪

,

where A∩ is the intersection between the two areas and A∪ is their union. IoU ranges
between 0 and 1, with 0 meaning that the two areas are disjoint and 1 meaning that the two
areas overlap and have equal dimensions. We use IoU to compare the foreground regions
of the class activation maps with the ground-truth bounding boxes. The computation of
the class activation maps and of the metrics does not depend on the number of Saints
in the painting, because every Iconclass category is associated with a different activation
map independent of the others. All the reported results are valid regardless of the number
of Saints.

4.5. Quantitative Analysis

This section presents the results of comparing quantitatively the effectiveness of the class
activation maps algorithms in the localization of iconography classes and their symbols.

Smooth Grad-CAM++ is the only method that requires hyper-parameters: the stan-
dard deviation σ and the number of samples s. To set the hyper-parameter values, a
grid-search was executed in the following space: σ ∈ {0.25, 0.5, 1} and s ∈ {5, 10, 25}. Only
the best and worst Smooth Grad-CAM++ configurations are reported, to emphasize the
boundary values reached by this algorithm. The number of samples is found to barely affect
the results, whereas the standard deviation has more impact. To reduce the computational
cost a lower number of samples is preferable.

Component IoU

This metric evaluates how well the class activation map focuses on the individual
Saints’ symbols. First, the class activation map foreground area is divided into connected
components, i.e., groups of pixels connected to each other. The IoU value is calculated
between each ground-truth bounding box and the connected components that intersect it.
Then, the average IoU across all symbol classes is taken. This procedure is repeated for all
threshold values.

Figure 6 shows that the best results are obtained by Smooth Grad-CAM++ with a
standard deviation σ = 1 and a number of samples s = 5. The reason for this is that
Smooth Grad-CAM++ tends to produce smaller and more focused areas, which yield more
connected components and better coverage of the distinct symbols. Grad-CAM tends to
create larger and more connected areas. This increases the size of the union and such an
increase is not compensated by an equivalent increase of the intersection, which motivates
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the lower IoU values. In all the considered class activation maps variants, the component
IoU peak is found for a threshold value t ∈ {0.05, 0.1}. Grad-CAM creates larger and more
connected regions, and thus, a higher threshold is needed to obtain the same number of
components as the other methods. This explains why the component IoU peak is found at
a higher threshold. Figure 7 (San Sebastian’s Martyrdom, Giovanni Maria Butteri, 1550–
1559) compares the component IoU values produced on a sample image by different class
activation maps algorithms. For the same threshold value, Smooth Grad-CAM++ creates
more and better focused components.

Figure 6. Component IoU at varying threshold levels.

Figure 7. Different values of component IoU produced by different class activation map algorithms
(Smooth Grad-CAM++ with σ = 1 and s = 5) at threshold t = 0.1. Ground-truth bounding boxes are
shown in red.

Global IoU

An alternative metric is the IoU between the union of all the bounding boxes in the
image and the entire foreground area of the class activation map taken at a given threshold.
This metric is calculated for all threshold values and assesses how the class activation
map focuses on the whole representation of the Saint, favoring those class activation maps
methods that generate wider and more connected areas rather than separated components.
Figure 8 shows that Grad-CAM is significantly better than the other analyzed methods.
As already observed, Grad-CAM tends to spread over the entire figure and covers better
the Saint and the associated symbols. Due to the complementary role of the component
and global IoU metrics, the method with the best component IoU (Smooth Grad-CAM++
with σ = 1 and s = 5) has the worst global IoU. Differently from the component IoU,
the global IoU peak position on the x axis does not change across methods, because the
influence of the number of components is less relevant when the global metric is computed.
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Figure 9 (Saint Jerome in the study, nd, 1604) compares the global IoU values produced on
a sample image by different class activation map algorithms. For the same threshold value,
Grad-CAM generates wider areas that cover more foreground pixels.

Figure 8. Global IoU at varying threshold levels.

Figure 9. Different values of global IoU produced by different class activation map algorithms
(Smooth Grad-CAM++ with σ = 1 and s = 5) at threshold t = 0.05. Manually annotated symbol
bounding boxes are shown.

Bounding box coverage

When analyzing the class activation map algorithms, a factor to consider is also how
many bounding boxes are covered by each class activation map. This metric alone is not
enough to characterize the performance because a trivial class activation map that covers
the entire image would have 100% coverage. However, coupled with the two previous
metrics, it can give information about which method is able to generate class activation
maps that can highlight a large fraction of the iconographic symbols that an expert would
recognize. The bounding box coverage metric considers that a bounding box is covered
by the class activation map only if their intersection is greater than or equal to 20% of the
bounding box area. Figure 10 presents the results: Grad-CAM and Smooth Grad-CAM++
intersect, on average, more bounding boxes than the other methods. This result confirms
that Grad-CAM covers wider areas, while focusing on the correct details at the same time.
The worst method, CAM, performs poorly also in the two previous metrics. This indicates
that it generates class activation maps that are smaller and less focused on the iconographic
symbols with respect to the other approaches.
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Figure 10. Bounding box coverage at varying threshold values.

Irrelevant attention

When evaluating the global IoU, a low value can occur for two reasons: (1) the two
areas have a very small intersection or (2) the two areas overlap well but one is much larger
than the other. Thus, an analysis on how much the class activation maps focus on irrelevant
parts of the image helps characterizing low global IoU values. Irrelevant attention corre-
sponds to the percentage of class activation map area outside any bounding box. Figure 11
shows that CAM has the less irrelevant attention, coherently with the previous results.
Figure 12 (Madonna with Child and Infant St. John surrounded by Angels, Tiziano Vecellio,
1550) compares the irrelevant attention values produced on a sample image by different
class activation map algorithms. For the same threshold value, CAM generates smaller
irrelevant areas whereas Grad-CAM and Smooth-Grad-CAM++ include more irrelevant
regions corresponding to the painting frame. The tendency of Smooth Grad-CAM++ to
focus on irrelevant areas can be seen also in Figures 7 and 9.

Figure 11. Irrelevant attention at varying threshold values.
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Figure 12. Different values of irrelevant attention produced by different class activation map algo-
rithms (Smooth Grad-CAM++ with σ = 1 and s = 5) at threshold t = 0.1. Manually annotated
symbol bounding boxes are reported.

4.6. Qualitative Analysis

This section presents a qualitative analysis of the results obtained by the different class
activation map algorithms highlighting their capabilities and limitations. Each example
shows the original image, the class activation maps generated by each algorithm (with
background in black and foreground in white) and the ground-truth bounding boxes.

Positive examples

Figure 13 (Saint Jerome in his Study, Jan van Remmerswale, 1533) shows an example in
which all the algorithms focus well on the iconographic symbols. The image contains seven
symbols with different size, shape and position, which are all identified and separated by
the class activation map algorithms. The irrelevant area on the top right corresponds to a
piece of the cardinal’s vest that has the same color and approximate shape of the cardinal’s
galero appearing in many paintings of Saint Jerome.

Figure 14 (St. Peter, Antonio Veneziano, 1369–1375) shows an example in which all
the algorithms perform well on a painting in which the visibility of the symbols is very
low. All class activation map algorithms identify four out of the five symbols. The central
ground-truth bounding box is not identified because it corresponds to a rather generic
attribute (the bishop’s vest), which is not evident in the drawing. Only CAM misses the
book, which the other algorithms identify by focusing on the characteristic marks on the
spine of the book or on the lock. The example of Figure 14 and many similar ones of black
and white and poor quality images highlight the ability of class activation map algorithms
to extract useful maps also when the image has low discriminative features.

A counterexample of the difficulty of detecting such generic attributes as the vest is
illustrated in Figure 15 (Saint Dominic, Carlo Crivelli, 1472). The vest is identified thanks
to a specific detail: the change of color typical of the black and white Dominican habit.

Negative examples

Class activation maps algorithms tend to fail consistently in two cases: when multiple
symbols are too close or have a substantial overlap and when the representation of a symbol
is rather generic and covers a wide area of the image. Figure 16 (Penitent St. Peter, Jusepe
de Ribera, 1600–1649) illustrates a typical example: Saint Peter’s bushy hair and beard
are merged into a single region and the vest, which is a rather generic attribute, is missed
completely or highlighted only through small irrelevant details.

Figure 13. Class activation maps with seven recognized symbols associated with Saint Jerome.
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Figure 14. Class activation maps extracted from a drawing of Saint Peter. Four out of five symbols
are identified despite their low visibility.

Figure 15. Class activation maps extracted from a paining of Saint Dominic. The rather generic vest
attribute is identified by focusing on its double color.

Figure 16. Class activation maps with merged symbols and missed generic attributes.

Relevant irrelevant regions

An interesting case occurs when the class activation map algorithms focus on an
apparently irrelevant area, which instead contains a relevant iconographic attribute not
present in the ground truth. Figure 17 illustrates three examples. The painting of Saint John
the Baptist (a) (portrait of François I as St John the Baptist, Jean Clouet, 1518) contains an
apparently irrelevant area in the top left, which focuses on a bird. This is a less frequent
attribute of the Saint that is not listed in the iconographic symbols used to annotate the
images but appears in some of the paintings. The same happens with Saint Jerome (b)
(Saint Jerome, Albrecht Durer, 1521), where the class activation map algorithms highlight
an hourglass, an infrequent symbol present only in a subset of the ArtDL images and not
used in the annotation. Finally, another case occurs with the iconography of Saint Jerome
(c) (Landscape with St. Jerome, Simon Bening, 1515–1520), where the class activation map
algorithms focus on the outdoor environment. This is a well-known symbol associated with
the Saint, who retired in the wilderness, but one that is hard to annotate with bounding
boxes and thus purposely excluded from the ground truth.
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Figure 17. Class activation maps highlighting regions containing relevant iconographic attributes not
present in the ground truth: a bird associated with Saint John the Baptist (a) an hourglass associated
with Saint Jerome (b) and the wilderness where Saint Jerome retired (c).

Confusion with unknown co-occurring class

Figure 18 (Baptism of Christ, Pietro Perugino, 1510) presents an example in which all
analyzed variants make confusion between Saint John the Baptist and Jesus Christ. The
latter is an Iconclass category too, but not one represented in the ArtDL dataset. Given
the prevalence of paintings depicting Saint John the Baptist in the act of baptizing Christ
over those where the Saint occurs alone, the CAM output highlights both the figures. This
ambiguity would reduce if the dataset were annotated with the Iconclass category for Jesus.

Figure 18. Class activation maps with confusion between Saint John the Baptist and Jesus Christ.

Bounding Box Generation

The goal of the presented work is to compare the effectiveness of alternative class
activation map algorithms in isolating the salient regions of artwork images that have the
greatest impact for the attribution of a specific iconography class. The capacity of a class
activation map algorithm to identify precisely the areas of an image that correspond to
the whole Saint or to one of the iconographic symbols that characterize him/her can help
build a training set for the object detection task. The class activation map can be used
as a replacement of the manual annotations necessary for creating a detection training
set by computing the smallest bounding boxes that comprise the foreground area and
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using such automatically generated annotations for training an object detector. This
approach is known as weakly supervised object detection and is an active research area [48].
To investigate the potential of the class activation maps to support weakly supervised
object detection, the region proposals obtained by drawing bounding boxes around the
connected components of the class activation maps have been compared visually with the
ground-truth bounding boxes of the iconographic symbols. For completeness, we have also
computed the bounding boxes surrounding all the foreground pixels and compared them
with manually created bounding boxes surrounding the whole Saints. The candidate region
proposals to use as automatic bounding boxes have been identified with the following
heuristic procedure.

1. Collect the images on which all the four methods satisfy a minimum quality criterion:
for symbol bounding boxes component IoU greater than 0.165 at threshold 0.1 (see
Figure 6) and for whole Saint bounding boxes global IoU greater than 0.24 at threshold
0.05 (see Figure 8);

2. Compute the Grad-CAM class activation map of the selected images and apply the
corresponding threshold: 0.1 for symbol bounding boxes and 0.05 for whole Saint
bounding boxes;

3. Only for symbol boxes: split the class activation maps into connected components.
Remove the components whose average activation value is less than half of the
average activation value of all components. This step filters out all the foreground
pixels with low activation that usually correspond to irrelevant areas (Figure 12);

4. For each Iconclass category, draw one bounding box surrounding each component
(symbol bounding boxes) and one bounding box surrounding the entire class activa-
tion map (whole Saint bounding boxes).

In the procedure above, Grad-CAM is chosen to compute the candidate symbol and
whole Saint bounding boxes, because it has the highest value of the bounding box coverage
metrics (together with Smooth Grad-CAM++ ) and covers wider areas, at the same time,
focusing on the correct details.

Symbol bounding boxes

Figure 19 presents some examples of the computed symbol bounding boxes (green)
compared with the ground-truth bounding boxes (red). The proposed procedure is able to
generate boxes that in many cases correctly highlight and distinguish the most important
iconographic symbols present in the images. When the symbols are grouped in a small
area (e.g., the bushy hair and beard of Saint Peter), the procedure tends to generate one
component that covers all of them, thus creating only one bounding box. Sometimes,
elements in the image that have not been manually annotated in the ground truth are
correctly detected (e.g., the scroll in the hand of Saint John the Baptist in the first painting
of Figure 19).

Whole Saint bounding boxes

Figure 20 illustrates some examples of computed whole Saint bounding boxes (green)
compared with the ground-truth boxes (red). The automatically generated bounding boxes
localize almost entirely the Saint’s figure and include only very small irrelevant areas.

Figures 19 and 20 show that the simple procedure for processing class activation map
outputs is sufficient to generate good quality bounding boxes that can act as a proxy to the
ground truth for training a fully supervised object detector.
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Figure 19. Examples of symbols bounding boxes generated from Grad-CAM (green) and manually
annotated (red).

Figure 20. Examples of Saints bounding boxes generated from Grad-CAM (green) and manually
annotated (red).

Quantitative evaluation of whole Saint bounding boxes

For the whole Saint case, each estimated bounding box can be labeled with the
iconography class of the corresponding Saint portrayed in the image. In this way, it is
possible to quantify the coincidence between the bounding box of the ground truth and
the bounding box computed from the class activation map. For this purpose, three object
detection metrics have been computed: the average IoU value between the GT and the
estimated bounding boxes, mean Average Precision and GT-known Loc. The latter is used
in several works ([49–51]) to evaluate the localization accuracy of object detectors and is
defined as the percentage of correct bounding boxes. A bounding box is considered correct
only when the IoU between the GT box (for a specific class) and the estimated box (for
the same class) is greater than 0.5. Results are reported in Table 3: Grad-CAM confirms as
the method with the best performances, Smooth-Grad-CAM++ yields similar results, and
CAM is the worst performing method in all the computed metrics. Grad-CAM produces
bounding boxes that on average have 0.55 IoU with the GT boxes and the GT-known Loc
metric shows that ∼61% of those boxes have an IoU value greater than 0.5. Figure 21
presents the normalized distribution of IoU values for Grad-CAM. We can observe that
∼83% of the generated boxes have an IoU value greater than 0.3 and that most values are
in the range between 0.4 and 0.9, with ∼12% having an IoU greater than 0.9. Table 4 shows
the mAP values obtained with GradCAM on the ten ArtDL classes.

The whole Saint estimated bounding boxes appear to be suitable for creating the
pseudo ground truth for training an object detector with the weakly supervised approach.
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Two observations motivate the viability of Grad-CAM for this purpose. As in the GT-
known Loc metrics, the goodness of an object detection is usually evaluated with a minimal
IoU threshold of 0.5 and the boxes generated automatically with Grad-CAM obtain 0.55
IoU on average, which suggests that the automatically estimated bounding boxes have
a quality similar to the bounding boxes produced by a fully supervised object detector,
albeit inferior to the quality of the bounding boxes created by humans. Grad-CAM, which
is designed to be an interpretability technique, can be used also to estimate bounding
boxes that reach 31.6% mAP on cultural heritage data without any optimization. This
finding compares well with the fact that methods designed and optimized specifically
for weakly supervised object detection reach values around 14% on artworks datasets
similar to ArtDL [10,52]. For this reason, simple and generic techniques such as Grad-CAM,
which can localize multiple Saint instances and even multiple characteristic features, are a
promising starting point for advancing weakly supervised object detection studies in the
cultural heritage domain.

Table 3. Average IoU, GT-Known accuracy and mAP values for the whole Saint bounding boxes
estimated with the four analyzed class activation map techniques. The values are calculated with an
activation threshold equal to 0.05.

Method Average IoU GT-Known Loc (%) mAP (at IoU ≥ 0.5)

CAM 0.489 49.70 0.206

GradCAM 0.551 61.20 0.316

GradCAM++ 0.529 59.88 0.292

Smooth-GradCAM++ 0.544 61.18 0.307

Figure 21. Normalized distribution of IoU values between whole-Saint Grad-CAM estimated bound-
ing boxes and ground-truth bounding boxes.

Table 4. Mean Average Precision (mAP) values for each class of the ArtDL dataset. Bounding boxes
are estimated with GradCAM.

Anthony John Paul Francis Magdalene Jerome Dominic Virgin Peter Sebastian

0.076 0.289 0.173 0.33 0.616 0.228 0.142 0.442 0.399 0.468
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5. Conclusions and Future Work

This work has presented a comparative study about the effectiveness of class activation
maps as a tool for explaining of how a CNN-based classifier recognizes the Iconclass
categories present in images portraying Christian Saints. The symbols relevant to the
identification of the Saints were annotated with bounding boxes and the output of the
class activation maps algorithms were compared to the ground truth using four metrics.
The analysis shows that Grad-CAM achieves better results in terms of global IoU and
covered bounding boxes and Smooth Grad- CAM++ scores best in the component IoU
thanks to its precision in delineating individual small size symbols. The irrelevant attention
metric promotes the original CAM algorithm as the best approach, but the low component
IoU and box coverage complement such an evaluation showing that CAM covers too
small areas. While for natural images Smooth Grad-CAM++ outperforms the other three
algorithms [18], in our use case Grad-CAM is the method of choice for deriving the
bounding boxes from class activation maps necessary to train a weakly supervised detector.

Future work will concentrate on the comparison of other activation mapping tech-
niques [50,51,53,54]. In particular, [50,51] are based on the re-training of the network, an
approach quite different from the currently analyzed alternatives. The results of the CAMs
algorithms selection will be used to pursue the ultimate goal of our research, which is to
use the output of class activation maps to create training datasets for weakly supervised
iconographic symbol detection and segmentation. The implementation of an automated
system for iconographic analysis of artworks could promote the development of educa-
tional applications for art history experts and students. Finally, another future research
path consists in addressing more complex Iconclass categories involving complex scenes
(e.g., the crucifixion, the nativity, the visitation of the magi, etc.) and in exploring the
iconography of other cultures.
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Abstract: The paper addresses an image processing problem in the field of fine arts. In particular, a
deep learning-based technique to classify geometric forms of artworks, such as paintings and mosaics,
is presented. We proposed and tested a convolutional neural network (CNN)-based framework
that autonomously quantifies the feature map and classifies it. Convolution, pooling and dense
layers are three distinct categories of levels that generate attributes from the dataset images by
introducing certain specified filters. As a case study, a Roman mosaic is considered, which is
digitally reconstructed by close-range photogrammetry based on standard photos. During the
digital transformation from a 2D perspective view of the mosaic into an orthophoto, each photo
is rectified (i.e., it is an orthogonal projection of the real photo on the plane of the mosaic). Image
samples of the geometric forms, e.g., triangles, squares, circles, octagons and leaves, even if they are
partially deformed, were extracted from both the original and the rectified photos and originated
the dataset for testing the CNN-based approach. The proposed method has proved to be robust
enough to analyze the mosaic geometric forms, with an accuracy higher than 97%. Furthermore, the
performance of the proposed method was compared with standard deep learning frameworks. Due
to the promising results, this method can be applied to many other pattern identification problems
related to artworks.

Keywords: deep learning algorithm; convolutional neural networks; pattern classification; image-
based reconstruction; cultural heritage

1. Introduction

The application of science and engineering to the analysis of artifacts and artworks
such as paintings, mosaics and statues dates back several centuries [1–3]. However, only
over the past few decades have the analytical methods developed in the mathematical, IT
and physical sciences been able to gather information from the past and contribute to the
analysis, interpretation and dissemination in the fine arts. In the past, there was a historical
division between science and the humanities, so the interaction between these two fields
has never been natural. For example, the application of signal and image processing
techniques for the analysis and restoration of artworks was a very uncommon practice.
Lately, there has been a greater and growing attention and interest in processing image
data of artworks for storage, transmission, representation and analysis, and an increasing
number of scientists with a background in analytical and mathematical techniques has
approached this field, in an interdisciplinary way. There are several ways in which image
processing can find significant applications in the fields of fine arts and cultural heritage.
Among them, three main areas of application can be identified: obtaining a digital version of
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traditional photographic reproductions, pursuing imaging diagnostics and implementing
virtual restoration [1,2,4]. Obtaining the exact reproduction and explanation of an artwork
was one of the first developments in the first area, which includes the process of archiving,
retrieving and disseminating data and derives all the benefits from the digital format [1–6].
In the second area of imaging diagnostics, digital images are used to detect and document
the state of preservation of artifacts [7], as in the case of the noninvasive techniques based
on imaging in different spectral regions used for the investigation of paintings [8]. In the
third area, the image processing techniques can be used as a guide to the actual restoration
of fine arts (computer-guided restoration), or they can produce a digitally restored version
of the artwork. In some activities, the computer is more suitable than traditional artistic
tools. Examples of such activities are filtering, geometric transformation of an image,
segmentation and pattern recognition. Using digital technologies, every change to the
image can be seen on the screen almost in real time. Moreover, images and data can
be edited, filtered and processed with minimal material costs even when complicated
operations are performed, e.g., changes in colors, brightness or contrast [5,9–12]. A further
development consists of applying computer vision, an area of artificial intelligence, to
recognize patterns of the historical art heritage [6,13].

In this scenario, this paper presents a method to perform the recognition of geometrical
patterns in fine arts, thanks to image processing techniques. In particular, we developed
and tested a deep learning-based framework to classify the geometric forms and patterns
of floor mosaics, which consist of an arrangement of tiles usually characterized by jagged
and undefined boundaries or surface irregularities. The workflow of the proposed method
is shown in Figure 1.

Figure 1. The workflow of the proposed method.

The paper is organized as follows: In Section 2, we introduce methods of image
processing applied to fine arts, involving machine learning and deep learning-based
techniques. Section 3 describes the proposed method based on deep neural networks.
Section 4 introduces the case study. Section 5 presents the experiments resulting from the
application of the deep neural network framework to the dataset and the results achieved.
In Section 6, some final remarks and open questions close the paper.

2. Related Work

This section proposes a literature survey dealing with various methods of image
processing applied to fine arts, involving machine learning and deep learning-based
techniques. In [14–18], image processing techniques for art investigation are applied to
the detection of defects and cracks, as well as to the removal of defects and canvas from
high-resolution acquisition of paintings. Examples of these kinds of methods include
the use of sparse representations and the removal of cradling artifacts in X-ray images of
panel paintings [15] and the automated crack detection using the Ghent Altarpiece [16],
employed as guidance during its ongoing restoration.

Various methods of automatic image segmentation are used in the literature aiming at
identifying regions in an image and labeling them as different classes. The main applica-
tions are pattern recognition for classifying paintings [19–23] or the authentication of fine
arts (e.g., of paintings) [24]. These image segmentation methods include the following: The
thresholding methods transform a grey-scale image into a binary image, where the algo-
rithm evaluates the differences among neighboring pixels to find object boundaries [25–27].
The region growing methods are based on an expansion of an object detected inside of
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an object [28,29] by selecting object seed pixels (inside an area to be detected) and then
searching for neighboring pixels with similar intensities to the object seed pixels. In the
level sets, the algorithm will converge at the boundary of the object where the differences
are the highest. In the graph-cut method [30–32], firstly proposed by Wu and Leahy [30],
each image is represented as a graph of nodes: each node corresponds to an image pixel,
and links connecting the nodes are called edges; a pathway is constructed connecting all
the edges to travel across the graph.

Aggregation methods are important as well for image resampling [33] or denois-
ing [34]: When an appropriate scale or resolution is determined, the next step is to obtain
the corresponding images. In the case of low scale or resolution, resampling techniques are
often used to interpolate an image into a desired resolution, and aggregation is a particular
resampling technique widely practiced for “up-scaling” image data from high resolution
to low resolution [33].

This paper particularly focuses on deep learning [35,36], which is a kind of machine
learning that uses several levels of neurons with complicated architectures or nonlinear
changes to represent greater interpretations of information. With the growing volume of
information and computing power, neural systems having increasingly sophisticated archi-
tecture have been of great interest and are used in a variety of disciplines. Some examples of
applications in image processing and in fine arts are as follows: Image segmentation using
a neural network has recently been used as a very strong tool for image processing [22,37];
recently, even convolutional neural networks have been applied to paintings [38]. In [39],
a novel deep learning framework is developed to retrieve similar architectural floor plan
layouts from a repository, analyzing the effect of individual deep convolutional neural
network layers for the floor plan retrieval task. In [40] the results of a novel method for
building structure extraction in urbanized aerial images are presented. Most of the methods
are based on CNN. Similarly, in [41], the use of deep neural networks for object detection
in floor plan images is investigated, evaluating the use of object detection architectures to
recognize furniture objects, doors and windows in floor plans.

Gomez-Rios et al. [42] classified the textures of underwater coral patterns based on a
CNN-based transfer learning-based approach. To work on diverse data and evaluate the
performance of the proposed approach, they used data augmentation. The adoption of
a deep neural network can significantly improve phase demodulation efficiency from a
singular fringe sequence [43]. Their system was developed to anticipate several subsequent
outcomes that may be used to calculate an incoming fringe pattern cycle. They collected
fringe pictures of diverse situations to produce training input while the systems are being
trained. The neural network blindly took only one input fringe sequence and produced
the associated estimations of such transitional outcomes at great accuracy. Sandelin [44]
proposed a Mask R-CNN-based technique for floor plan pictures and segmented the walls,
windows, chambers and doors. This method showed good performance even in noisy
images. Vilnrotter et al. [45] proposed a technique to generate appropriate naturalistic
texture characteristics. The fundamental method of edge characteristics to determine an
initial, incomplete identification of the components was discussed. The graphic components
were extracted using such characterization. The components were classified into types
and topological connections with them. The formulations were proven to be beneficial for
texture identification and recurrent pattern restoration.

With a particular focus on mosaics, most of the related computer applications deal
with their digital reconstruction using image-based techniques (i.e., photogrammetry) for
documentation and analysis [46–49]. Besides, literature presents a few examples of image
processing applications: In [50], a registration method in the framework of a restoration
process of a medieval mosaic to compare a historical black and white photograph with
a current digital one is presented. In [51], an algorithm that exploits deep learning and
image segmentation techniques is presented to obtain a digital (vector) representation
of a mosaic. In [52], the restoration of historical photographs of an ancient mosaic (by
removing noise, deburring the image and increasing the contrast) and then the removal
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of geometrical difference between images by means of the multimodal registration using
mutual information is presented; the final identification of differences between the photos
indicates the changes in the mosaic during the centuries. In [53], Falomir et al. presented a
mathematical method for calculating a likeness score among qualitative assessments of item
structure, color and dimension in digitized pictures. The closeness scores calculated are
dependent on compositional cluster maps or intermediate distances, as per the specification
of the subjective characteristics. The outcome using prior techniques was enhanced by using
an estimated identification process among item characteristics of a tile mosaic assembly.

3. Proposed Method

In this paper, we propose a deep learning-based framework to classify the forms of
fine arts, such as paintings and mosaics. The algorithm is able to classify the geometrical
forms constituting the patterns, even if they are partially deformed. This deep learning [54]
is a type of machine learning that eliminates the need for manual processing of features.
Images are immediately fed into this system, and the final categorization is returned. Due
to its high capacity to cope with geographically dispersed input, the convolutional neural
network (CNN) [55] is the most efficient and frequently utilized.

In this study, we used a CNN-based framework that autonomously quantifies the
feature map and classifies it. To the best of our knowledge, there is no literature on the
use of CNN for the identification of floor mosaic patterns to date. Convolution, pooling
and dense layers are three distinct categories of levels found in CNN. The convolution
levels generate attributes from the incoming images by introducing certain specified filters.
The generated feature vector is passed through a pooling layer to reduce the spatial size
of the feature map. As a result, the network parameter count and computational cost are
reduced. The dense level receives all the outputs from the preceding level and delivers one
output to the following level from every neuron. The proposed CNN framework can be
described as CPCCCPDD architecture, where C, P and D represent convolution, pooling
and dense, respectively. The input image is fed to the first convolutional layer, which
consists of 32 filters having size 5 × 5. This convolutional layer is followed by a max-pool
layer with filter size 3 × 3. Then three convolutional layers having 16 filters of size 3 × 3
each are fed in series. This is followed by another max-pool layer with filter size 2 × 2.
There are two dense layers used in the proposed CNN framework: one is 45-dimensional
dense and the second is 5-dimensional (output layer). The proposed CNN framework is
depicted in Figure 2.

Figure 2. The proposed CNN architecture.

The number of pixels shifted across the incoming tensor is referred to as the stride.
If the stride is set to 1, the filters/masks are moved one element at a time. If it is set to 2,
then the mask will be shifted by two elements, and so on. Here, for both the convolution
and pooling layers, the stride value of 1 is considered throughout the experiment. The
dropout value of 0.5 was taken. The dropout helps to reduce the overfitting problem in the
network. Before feeding to the dense layer, a batch normalization strategy is used to speed
up the training process. The learning rate is taken as 0.001. The ‘Adam’ optimizer and
‘cross-entropy loss function’ are deployed in the proposed framework. In the convolutional
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layers and the first dense layer, the rectified linear unit (ReLU) activation function is used,
which can be formularized as:

f (n) = max(0, n) (1)

where n is the input to a neuron.
In the output layer, the activation function named ‘Softmax’ is used, which is provided

in Equation (2).

σ(y)i =
eyi

∑L
l=1 eyl

(2)

where y is the ith input vector of length l.
The number of parameters used in the CNN architecture is presented in Table 1. The

total number of trainable parameters used is 617,491.

Table 1. Number of parameters used in the various levels of the CNN architecture for the presented
design.

Layer Dimension #Parameters

Convolution 1 196 × 196 × 32 2432

Max-pool 3 × 3 -

Convolution 2 63 × 63 × 16 4624

Convolution 3 61 × 61 × 16 2320

Convolution 4 59 × 59 × 16 2320

Max-pool 2 × 2 -

Dense 1 45 605,565

Dense 2 5 230

Total 617,491

4. Case Study

The deep learning (CNN) framework was applied and tested on a Roman mosaic
discovered in Savignano sul Panaro, near the city of Modena (Italy), in 1897 during an
archaeological excavation. This floor mosaic belongs to the ruins of a large late Roman
building dated to the 5th century A.D. [56]. It originally measured about 6.90 m × 4.50 m,
but less than half of its original surface is preserved. The Roman mosaic was removed for
restoration and is now conserved in the birthplace house of the painter Giuseppe Graziosi
(Savignano sul Panaro), who first documented its existence in 1897 (Figure 3, left).

The mosaic pattern is described in [57]. Its decorations present polychrome stone
and terracotta tiles combined with emerald green and ruby red glass tiles. The mosaic
shows a geometrical pattern of (originally) eight octagonal elements arranged around a
larger central one, which consists of an eight-pointed star, formed by two superimposed
squares to form a central octagon with irregular sides (in purple, in Figure 3, right). The
central octagon has a circular motif with a white background containing a laurel wreath
and, presumably, a figured center. The vertices of the star originate eight octagons, smaller
in size, arranged in pairs of two on each side (in red, blue and yellow, in Figure 3, right),
containing geometric and stylized plants that alternate with Solomon’s knots. The external
octagons are only partially preserved, but all of them have internal circular motifs, with a
border of pointed triangles in black on white. The space between the octagons and the side
walls is filled with different polygonal and triangular forms. At the top, six circles (five full
circles and one half-circle) alternate intertwined motifs with a red and black background,
surrounding a central square.
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Figure 3. Left: The final location at the “Casa Natale Giuseppe Graziosi” in Savignano sul Panaro (Modena, Italy) (photo
credits: Marianna Grandi, Italy). Right: Auxiliary geometric elements built on the orthophoto of the Roman mosaic, to
highlight the geometric forms and their arrangement.

A close-range photogrammetric model of the Roman mosaic is developed by means
of 115 photos (standard compact camera Nikon P310 (Nikon, Tokyo, Japan), 16.1MP CMOS
sensor, sensor size: 1/2.3” (~6.16 mm × 4.62 mm), max. image resolution 4608 × 3456)
thanks to Agisoft Metashape Professional (Version 1.6.3). In this software, the 3D model is
also scaled to its natural size using as references the sides of the inclined support of the
mosaic (see Figure 3, left), whose dimensions are known. The final model consists of a
detailed textured 3D model of the mosaic, which shows the arrangements of the tiles, their
edges and some planar issues due to its state of conservation, as well as the geometric
forms and their arrangements.

The 3D model supported the generation of images showing the mosaic geometric
forms in two ways: Firstly, from the 3D model, the Agisoft Metashape Pro software
developed an orthophoto, which is a computer-generated image of the whole artifact that
has been corrected for any geometric distortions. In particular, it is obtained as a parallel
projection of the view of a photogrammetric textured model taken along a predetermined
plane [58]. During the transformation from a 2D perspective view into an orthophoto,
each photo is rectified (i.e., it is an orthogonal projection of the real photo on the mosaic
plane); therefore, it is no longer deformed by perspective. Conversely, the “real” photo
is influenced by perspective, as seen by the human eye. Therefore, we obtained a set of
115 photographic images corrected and rectified, from which we could extract the images
of geometrical forms to be classified by the deep learning algorithm.

Secondly, from the 3D model, we extracted and isolated additional image samples
depicting each of the geometric forms to be analyzed. By simply rotating, translating and
zooming the 3D models, we obtained images of the same geometric form with multiple
spatial orientations and, therefore, with multiple distortions. Some of these images are
shown in Figure 4.

144



J. Imaging 2021, 7, 149

     
a b c d e 

     
f g h i j 

Figure 4. Some image samples of the mosaic forms: (a) circle, (b) leaf, (c) octagon, (d) square,
(e) triangle; incomplete geometric forms from (f–j).

5. Experiments

5.1. Dataset

In this work, a dataset of images of the geometric forms of the floor mosaic was
developed. Five different mosaic forms (i.e., tile patterns) were considered in this set:
circles, triangles, leaves, octagons and squares.

The dataset contains 407 mosaic images, including 103 images of circles, 79 of octagons,
71 of squares, 137 of triangles and 17 of leaves. Figure 4 shows the mosaic image samples
from the developed dataset, in which the mosaic tiles are arranged in patterns originating
geometric forms. A circle-shaped motif of the mosaic texture is presented in Figure 4a.
Similarly, (b) shows a leaf-shaped mosaic, (c) shows an octagon-shaped mosaic, (d) shows
a square-shaped mosaic and (e) shows a triangle-shaped mosaic. The dataset contains
images of different size such as 540 × 244, 352 × 566, 737 × 535, 869 × 760 and 1535 ×
735. Since the image sizes were different, we normalized the height and width and set the
size of 200 × 200 before feeding to the deep learning-based framework. The images were
captured in low lighting conditions. In addition, some of the images show forms that are
not completely observable. In the second row (f–j) of Figure 4, the incomplete forms of the
mosaic are shown. Some incomplete circular forms are shown as semicircles in (f) and (g),
and inside the circle, there is a pattern of squares (g). The remaining parts of octagonal
mosaic motifs are shown in (h) and (i). In (j), there are many triangle-shaped motifs within
a large square, whose actual patterns are difficult to identify. The correct identification of
the mosaic forms in the dataset is complicated as the data suffer from incomplete structure,
poor light condition, blurriness and low volume of data.

5.2. Evaluation Protocol

We used an n-fold cross-validation technique to test the efficiency of our system. In
this cross-validation approach, the entire dataset was divided into n parts: training set
and test set. The test set is considered as one of the n parts, whereas the rest (n − 1) are
considered as the training set. In the next iteration, out of (n − 1) sets, one of the sets
is considered as a test set (different from before), and the remaining (n − 1) parts are
considered as the training set, and so on. This process is repeated n times. Various metrics
such as accuracy, precision, recall and F-score, used to assess the effectiveness of the system,
are computed as:

Accuracy = ((tp + tn)/(tp + f p + f n + tn)) (3)

Precision = tp/(tp + fp) (4)

Recall = tp/(tp + fn) (5)

F-score = (2 * Precision * Recall)/(Precision + Recall) (6)
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where the true positive, false positive, false negative and true negative parameters are
represented by tp, fp, fn and tn, respectively.

5.3. Results and Analysis

Table 2 presents the performance metrics obtained with a batch size equal to 100 and
for 100 epochs. It shows that the highest accuracy of 93.61% was obtained for the 10-fold
cross-validation. If the number of folds increases, the accuracy decreases.

Table 2. The performance of the CNN architecture in different folds of cross-validation with a batch
size equal to 100 and for 100 epochs.

#Fold Accuracy Precision Recall F-Score

5 91.40 0.9348 0.8912 0.9100

7 89.68 0.9108 0.8475 0.8714

10 93.61 0.9529 0.9236 0.9367

12 89.19 0.9159 0.8879 0.8960

With the 10-fold cross-validation and the batch size equal to 100, the performance of
the system was analyzed by changing the number of epochs. Table 3 shows the results of
the performance considering from 200 to 700 epochs with intervals of 100 epochs. It shows
that, at 500 epochs, the highest values of accuracy (97.05%), recall (0.9658) and F-score
(0.9651) were obtained.

Table 3. The performance evaluation by changing the number of epochs with the 10-fold cross-
validation and a batch size equal to 100.

Epoch Accuracy Precision Recall F-Score

200 0.941 0.9563 0.9252 0.9395

300 96.81 0.9742 0.9599 0.9667

400 95.82 0.9658 0.9505 0.9578

500 97.05 0.9645 0.9658 0.9651

600 93.37 0.9459 0.9189 0.9313

700 91.89 0.947 0.9067 0.9246

Further experimentation was carried out by increasing the batch size from 50 to
250 with 50 batch intervals, keeping the 10-fold cross-validation and 500 epochs. The
performance metrics are presented in Table 4, which shows that increasing the batch size
did not improve the performance. The same accuracy was obtained for the batch sizes
equal to 50 and 100, but higher precision and F-score were found for the batch size equal
to 50.

Table 4. For 500 epochs and 10-fold cross-validation, the metrics were calculated by increasing the
batch size from 50 to 250.

Batch Accuracy Precision Recall F-Score

50 97.05 0.9760 0.9632 0.9693

100 97.05 0.9645 0.9658 0.9651

150 93.61 0.9472 0.9253 0.9354

200 90.37 0.9021 0.8913 0.8966

250 92.87 0.9438 0.9002 0.9184
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The confusion matrix (in Table 5) was explored for the 10-fold cross-validation, a batch
size equal to 50 and 500 epochs.

Table 5. The confusion matrix of the accuracy corresponding to the five floor mosaic patterns.

Circles Leaves Octagons Squares Triangles

Circles 97.08 0 0 0.019 0.009

Leaves 0 94.11 0 0 0.058

Octagons 0.012 0 97.46 0 0.012

Squares 0.056 0 0 94.33 0

Triangles 0.007 0 0.007 0 98.54

The confusion matrix shows that the triangle patterns present the highest accuracy
(98.54%), followed by the octagons (97.46%), the circles (97.08%), the squares (94.36%)
and the leaves (94.11%). The errors in identification were generated because of poor
illumination, noise, blurriness and improper/incomplete geometry of the floor mosaic
patterns.

5.4. Comparison

The performance of the system was compared to standard CNN architectures. Here,
four different architectures were considered, namely VGG19 [59], MobileNetV2 [60],
ResNet50 [61] and InceptionV3 [62]. VGG19, MobileNetV2, ResNet50 and InceptionV3
networks are 19, 53, 50 and 48 layers deep, while the proposed network consists of only
nine layers. Instead of applying deep networks, the proposed framework gives us better
performance. The comparison results are shown in Table 6.

Table 6. Comparison of the proposed framework with standard CNN-based networks.

Network Accuracy (%) Precision Recall F-Score

VGG19 93.90 0.9409 0.9278 0.9343

MobileNetV2 89.78 0.9056 0.8860 0.8956

ResNet50 84.67 0.8478 0.8408 0.8442

InceptionV3 78.55 0.7720 0.7803 0.7761

Proposed 97.05 0.9645 0.9658 0.9651

6. Discussion and Conclusions

This paper presents a framework for geometric form analysis based on images ex-
tracted from a close-range photogrammetric model of an artifact (floor mosaic) and deep
learning (CNN) algorithm. From the digital model of the mosaic, an orthophoto was
obtained, which the photogrammetric software generated by rectifying the photos used in
photogrammetry. Therefore, two sets of photos were collected in a dataset: the original
photos, affected by perspective, useful for obtaining images of the deformed geometric
forms of the mosaic and, on the other hand, the rectified version of the same photos with
the geometric forms projected on the floor plane and so not deformed. Moreover, additional
images can be obtained by simply rotating, translating and zooming the 3D model of the
mosaic, generating other images with geometric forms differently deformed.

The deep learning algorithm analyzed the entire dataset consisting of 407 (normalized)
images, in particular, 103 images of circles, 79 images of octagons, 71 images of squares,
137 images of triangles and 17 images of leaves. The geometric forms in the mosaic are
made by arrangements of tiles, which caused jagged contours and irregularities in the
geometric forms to be analyzed; moreover, there were cracks and improper/incomplete
geometry of the mosaic elements, which were sometimes due to unevenness in the ground
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or the elements having been destroyed in the past. Moreover, some of the photos showing
the mosaic forms present noise and blurs, sometimes due to poor illumination.

Despite all these defects, the algorithm is able to identify and classify more than 94%
of the forms in each category, and the method has proved to be robust enough to analyze
the mosaic geometric forms chosen as a case study. Furthermore, the performance of
the proposed method was compared with standard deep architectures that deployed a
larger number of convolutions and pooling layers than the proposed method. Instead, we
achieved good accuracy using the proposed lightweight architecture.

Concerning the selected case study, the proposed method has proved to be capable of
extracting and classifying data from this kind of artwork. The dataset consists of various
images related to five geometric forms that are repeated in the mosaic using different
arrangements of tiles, colors and orientation, usually incomplete or separated by diameters,
diagonals or simply by including smaller geometric forms in larger ones. Despite all these
differences among the same kinds of geometric forms, the CNN architecture has proven
to be capable of classifying the five geometric forms with high accuracy; therefore, we
confidentially believe that it can be easily generalized to other mosaics with similar forms
and patterns. As it was not possible to test it as part of this research activity, testing the
CNN algorithm with other mosaics will be planned as future work.

Additional future works will consist in the analysis of mosaics and other artworks that
are not flat but 3D-shaped in space, such as curved walls, domes and vaults. In addition,
the method can originate a software tool for processing and analyzing fine arts data in a
more automated way.
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Abstract: In this study, we present a multimodal emotion recognition architecture that uses both
feature-level attention (sequential co-attention) and modality attention (weighted modality fusion) to
classify emotion in art. The proposed architecture helps the model to focus on learning informative
and refined representations for both feature extraction and modality fusion. The resulting system
can be used to categorize artworks according to the emotions they evoke; recommend paintings
that accentuate or balance a particular mood; search for paintings of a particular style or genre that
represents custom content in a custom state of impact. Experimental results on the WikiArt emotion
dataset showed the efficiency of the approach proposed and the usefulness of three modalities in
emotion recognition.

Keywords: multimodal; emotions; attention; art; modality fusion; emotion analysis

1. Introduction

Art is an imaginative human creation that should be appreciated, make people think,
and evoke an emotional response [1–3]. Emotion is a psycho-physiological process that can
be triggered by conscious and/or unconscious perceptions of objects and situations and is
related to a variety of factors such as mood, temperament, personality, disposition, and mo-
tivation [2,3]. Emotions are very important in human decision making, interaction and
cognitive processes [4]. As technology advances and our understanding of emotions grows,
so does the need for automatic emotion recognition systems [2]. Automatic emotion recog-
nition has been used for various applications including human–computer interactions [5],
surveillance [6], robotics, gaming, entertainment, and more.

Initial work on emotion recognition was mostly carried out using unimodal [7,8]
approaches. Unimodal modality can correspond to facial expressions, voice, text, posture,
gaits, or physiological signals. This was followed by multimodal emotion recognition [9,10],
where different modalities were used and combined in various ways to derive emotions.

However, most of the work on automatic analysis of artworks has focused on inferring
painting styles [11], investigating influences between artists and art movements [12],
distinguishing authentic drawings from imitations, automatically generating artworks [13],
and evaluating evoked emotions [14,15]. There are also attempts to develop approaches
to analyze people’s emotional experiences in response to artworks [14,15]. Most of these
studies use computer vision and machine learning approaches to emotionally categorize
artworks [14,15] and identify the parts of paintings that are responsible for evoking certain
emotions [16].

Automatic detection of emotions evoked by art paintings is of significant importance
as the results can be used to group art paintings according to the emotions they evoke,
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to provide painting recommendations that accentuate or balance a particular mood, and to
find art paintings of a particular style or genre that represent user-defined content in a
user-defined state of effect [1–3].

We proposed a co-attention-based multimodal emotion recognition model that jointly
identifies reasons from all modalities used and a weighted modality fusion that pro-
vides feature-level system fusion and applies weighted modality scores over the extracted
features to indicate the importance of the different modalities. We compared our ap-
proach to several baseline methods by testing the performance on the WikiArt emotion
dataset [1], a benchmark dataset for emotion recognition in art. Our models can be used
if the two modalities, namely the image (painting) and title (textual description), are pro-
vided. The third modality which is the emotion category is not possible to collect every
time the model is used as its values come from the expert judgments. As the model was
trained using the three modalities and to avoid any bugs during the deployment due to the
missing category modality, we included a function that initializes the category modality
into some value drawn randomly from a uniform distribution when the category modality
is not present. The contribution of this paper can be summarized as follows:

1. We proposed a co-attention-based multimodal emotion recognition approach that
aims to use information from the painting, title, and emotion category channels via
weighted fusion to achieve more robust and accurate recognition;

2. An experiment was carried on the dataset collected and provided for emotion recog-
nition, which is publicly available;

3. The proposed approach result was compared with the latest state-of-the-art ap-
proaches and also with other baseline approaches based on deep learning methods.

The rest of the paper is organized into five sections. Section 2 describes related works
that are relevant to our research. Section 3 presents the proposed sequential multimodal
fusion model architecture and Section 4 presents the overall experimental settings, imple-
mentation, and evaluation of the proposed system and results. Finally, Section 5 presents
the conclusion.

2. Related Work

Emotion detection and sentiment analysis has been an area of interest for many
decades and has always attracted attention in multiple fields using computer vision and
natural language processing techniques. Depending on the number (uni- and multimodal)
and types of modalities (speech, text, video, image), there have been some major improve-
ments in the topic of emotion detection and sentiment analysis. In this section, we will
focus on the most recent findings for unimodal and multimodal emotion recognition by
discussing recent developments in techniques and approaches for each modality type.

2.1. Unimodal Approaches

The first attempts to identify human emotions were mostly unimodal. The most
commonly studied modalities are facial expressions [7], speech or vocal expressions [17],
body gestures [18], and physiological signals such as respiratory and cardiac signals [8].
Recent work in the field of unimodal emotion recognition agrees that building a model that
can better capture the context and sequential nature of the input can significantly improve
performance in the difficult task of emotion recognition. It has been shown that using a
recurrent neural network-based classifier that can learn to create a more informative latent
representation of the target as a whole significantly improves final performance. Based
on this assumption, a deep recurrent neural network architecture was proposed to detect
discrete emotions in a tweet dataset [19]. An interaction-aware attention network (IAAN)
that incorporates contextual information into the learned voice representation through
an attentional mechanism was proposed by Sung-Lin et al. [20]. The performance shows
significant improvement over previously shown state-of-the-art and baseline methods and
provides one of the best emotion recognition results [20].
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2.2. Multimodal Approaches

As human beings, we usually rely on multiple factors such as intonation (speech),
facial expression (visual modality), and contextual meaning of words (text) to detect
emotions. For this reason, it is undeniably naive to expect unimodal models to outperform
humans in emotion recognition and sentiment analysis. To be truly successful in emotion
recognition, it is important to consider all possible mixtures of modalities. Multimodal
emotion recognition is a field with many ideas and approaches and, in this part, we
will focus on blending the modalities of speech, text and video. Multimodal emotion
recognition has been studied using classifiers such as Support Vector Machines (SVMs)
and linear and logistic regressions [21,22]. With the development of larger datasets, deep
learning architectures have been developed and explored [23–26].

Shenoy and Sardana proposed context-aware emotion recognition that captures con-
text across all modalities, bridging the gap in using the context of different inputs by using
a recurrent neural network [9]. Although fusion mechanism is a popular approach in
multimodal analysis, there are still some exceptions in using fusion. Features from different
modalities were trained individually based on multiple classifiers. Emotion features are
fused using beam search fusion learning from the beam search method [27]. In one of the
recent works, instead of independently fusing the knowledge from different modalities,
the attention mechanism was introduced to combine the information to perform emotion
classification [10].

Pan, Zexu et al. [28] proposed a multimodal attention network (MMAN) that makes
use of visual and textual signals in speech emotion recognition. Their experiment showed
that identifying speech emotions profits immensely from visual and textual signals.

Siriwardhana et al. [29] used the pre-trained “BERT-like” architecture for self-supervised
learning (SSL) to represent language and text modalities to learn language emotions. Their
method showed that a shallow-fusion simplifies the overall structure and strengthens com-
plex fusion mechanisms. Liu, Gaojun et al. [30] introduced a multimodal music emotion
grouping approach based on music audio and lyrics. They used the LSTM network for
audio modality and Bert for lyrics to describe the emotions of lyrics, which essentially
addresses long-term dependency. The neural network is implemented based on linear
weighted decision-making stage fusion, which increases efficiency.

2.3. Emotion Recognition from Art

Yanulevskaya et al. [16] proposed an approach to categorize emotions from art paint-
ings based on an aggregation of local image statistics and SVM. Machajdik et al. [31]
presented a unified framework for classifying artworks by combining low-level visual
features with high-level concepts from psychology and art theory. The paper by Yan-
ulevskaya et al. [32] introduced a “bag-of-visual-words” model combined with SVM to
classify abstract paintings into positive or negative emotions. Sartori et al. [33] introduced
a general learning method for emotion recognition in abstract paintings that integrates
both visual and textual information.

For various reasons, most work on emotion recognition in art paintings is unimodal.
Using information from different modalities could increase the model accuracy in emotion
recognition. In this work, we propose a co-attention-based multimodal emotion recognition
approach that aims to use information from the painting, title, and emotion category
channels via weighted fusion to achieve more robust and accurate recognition.

3. The Proposed Sequential Multimodal Fusion Model

Figure 1 shows the architecture of our sequential attention-based multimodal model
with weighted fusion approach. Here, the title of the paint, the paint (image) and the
emotion category attributes are treated as the three modalities. The weighted modality
fusion technique is used to fully utilize the three modalities, and it has been shown that
the model performance can be enhanced by adding the high-level concept [3,34]. In the
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following, the text vector, the image vector and the emotion category vector are defined
and the weighted fusion technique is briefly introduced.

For the imaging modality, the pre-trained and fine-tuned ResNet [35] model is used to
obtain 14 × 14 regional vectors of the art image, defined as the raw image vectors averaged
to obtain the image vector. A Convolutional Neural Network (CNN) and a Bi-directional
Gated Recurrent Unit (Bi-GRU) is used to obtain the text vectors. The word-level and
n-gram level text vectors are processed using Bi-GRU to obtain the title level text feature
vector. We used a three-layer feedforward neural network to obtain the emotion category
feature vectors from the emotion category attributes.

To use multimodal information from all modalities and to refine the representation of
all modalities, we proposed to use a sequential-based attention layer [36,37] that learns a
new refined weighted representation for each of the input modalities. The refined vectors
of the three modalities are combined in the modality fusion process to form a vector with
weighted modality fusion [2,34] instead of simple concatenation. Finally, the fused vector is
transferred to a three-layer fully connected neural network to obtain a classification result.
The whole framework is shown in Figures 1 and 3. More details about our model can be
found below.

Figure 1. The proposed attention-based model.

3.1. Image Feature Representation

The ResNet-50 [35] model is used to obtain representations of Art images. The last
fully connected (FC) layer of the pre-trained model is chopped and replaced with a new
one for the sake of model fine-tuning. Following the work of [34,36], an input image I is
re-sized to 448 × 448 and divided into 14 × 14 regions. Each region Ii (i = 1, 2, . . . , 196)
is then sent through the ResNet model to obtain a regional feature representation, a.k.a.,
a raw image vector. The final image feature vector (P) is obtained by the average of all
regional image vectors.

P =

Nr
∑

i=1
ResNet(Ii)

Nr
(1)

where ResNet(Ii) is the row image vector extracted via ResNet, Nr (set to 196 in this work)
is the number of regions as in [36]. P is the average of all regional image vectors.
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3.2. Text Feature Representation

The sequence of word embeddings learned from the embedding layer was passed to
a 1D convolution neural network for feature extraction at different levels. The resulting
feature vector was further used to be fed to a Bi-GRU network layer to learn title level
feature representation. GRU was recently introduced as an alternative to the long-short
term memory (LSTM) model to make each recurrent unit to adaptively capture dependen-
cies of different time scales [38,39]. Similarly to the LSTM unit, GRU has gating units that
modulate the flow of information inside the unit, but without having a separate memory
cell. The updates performed at each time step t ∈ {1, . . . , T} in a GRU are as follows:

Forward updates: −→
Zt = sigmoid

(−→
WzXt +

−→
Uzht−1

)
(2)

−→rt = sigmoid
(−→
WrXt +

−→
Urht−1

)
(3)

−→̂
ht = tanh

(−→
WhXt +

−→
Uh(rt � ht−1)

)
(4)

−→
ht = (1 −−→

Zt )�−−→
ht−1 +

−→
Zt �

−→̂
ht (5)

Backward updates: ←−
Zt = sigmoid

(←−
WzXt +

←−
Uzht−1

)
(6)

←−rt = sigmoid
(←−
WrXt +

←−
Urht−1

)
(7)

←−̂
ht = tanh

(←−
WhXt +

←−
Uh(rt � ht−1)

)
(8)

←−
ht = (1 −←−

Zt )�←−−
ht−1 +

←−
Zt �

←−̂
ht (9)

where Wz, Wr, Wh, Ur, Uz, Uh, Uo are the weight matrices, � is an element-wise multiplica-
tion. The activation ht at time t is a linear interpolation between the previous activation
ht−1 and the candidate activation ĥt. An update gate Zt decides how much the unit updates
its activation or content. The reset gate (rt) is used to control access to the previous state
ht−1 and compute a proposed update ĥt. When off (rt close to 0), the reset gate effectively
makes the unit act as if it is reading the first symbol of an input sequence, allowing it to
forget the previously computed state.

First, the one-hot vectors of title words T = [t1 . . . tn] are embedded individually
to word level feature vectors Tw = [tw

1 . . . tw
n ]. To compute the n-gram level features,

as in [37], we applied 1D convolution on the word embedding vectors. For the nth word,
the convolution output with window size s is given by

t̂p
s,n = tanh(Ws

c tw
n:n+s−1), s ∈ 1, 2 (10)

where Ws
c is the weight parameter. Max pooling was applied to obtain the final phrase

level features. Then, the final phrase level features were encoded by Bi-GRU to obtain the
title level feature representation Tt = [t̂p

1 . . . t̂p
n].

3.3. Emotion Category Feature Representation

When the data was collected, the final class was determined using the percentage of
items that were predominantly labeled with a given emotion. The list of emotion categories
is shown in Figure 2. As the data was provided with the percentage of each 20-emotion
category, we considered them as an input in the training process. We used a three layer
feed forward neural network to learn the feature vector from the emotion category C.
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Figure 2. The list of emotions provided to annotators to label the title and art [1].

3.4. Co-Attention Layer

In the co-attention layer, attention mechanism we sequentially alternate between the
generation of image, title, and category attentions consisting, briefly, of five steps. Starting
from the encoded title/image/emotion category features, the proposed co-attention ap-
proach sequentially generates attention weights for each feature type, using the other two
modalities as guides.

Specifically, we define an attention operation [36,37] x̃ = A(X; g1; g2) that takes the
image or title or category feature X and attention guidance g1 and g1 derived from title and
image; title and category; or category and title as inputs and outputs the attended image,
title or category vector. The operation can be expressed in the following steps:

Hi = tanh(Wxxi + Wg1g1 + Wg2g2

ai = so f tmax(wT Hi), i = 1 . . . N

x̃ =
N

∑
i=n

aixi

(11)

where X = [xi; . . . ; xN ] ∈ Rd×N is the input sequence, and the fixed-length vectors
g1, g2 ∈ Rd are attention guidance. Wx, Wg1, Wg2 ∈ Rh×d and w ∈ Rh are the embed-
ding parameters to be learned. a is the attention weights of the input feature X and the
weighted sum ~x is the weighted feature [36].

In the proposed sequential co-attention approach, the encoded title/category/image
features are sequentially fed as input sequences to the attention module and the weighted
features from the previous two steps are used as guidance [34,36,37]. First, the title features
are summarized without guidance (t̃0 = Atten(T; 0; 0)) and secondly, the category features
are weighted based on the summarized title features (c̃0 = Atten(C; t̃0; 0)).

After that, the weighted image features will be computed using the weighted emotion
category features (c̃0) and the title features t̃0 as guidance ( p̃ = Atten(P; t̃0; c̃0)). In step 4
(t̃ = Atten(T; p̃; c̃0)) and step 5 (c̃ = Atten(C; p̃; t̃)), the title and category features will
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also be re-weighted based on the results of the previous steps [36]. Finally, the weighted
title/category/image features (t̃, c̃, p̃) are further used for emotion prediction.

3.5. Weighted Modality Fusion

Decision-level fusion is a commonly used strategy for fusing heterogeneous inputs by
combining the independent modality outputs using several specific rules [34]. However,
the lack of mutual association learning across modalities is a major limitation in the
application of decision-level fusion [40]. We used modality attention fusion, which enables
feature-level system fusion and applies weighted modality scores across the extracted
features to indicate the importance of different modalities. This preserves the advantages
of both feature-level fusion and decision-level fusion [40]. The feature vector for each
modality is first transformed into a fixed-length form. A three-layer feed-forward neural
network (FFNN) was used to compute the attention weights for each modality, which were
then used in the weighted average of the transformed feature vectors, as shown in Figure 3.
The result is a single vector of fixed length.

Figure 3. Weighted modality fusion.

First, we implemented a three-layer feed-forward neural network to fuse the modality-
specific features, and then we used softmax to generate the weighted score (s) for the given
modality as follows:

f = tanh(Wf [Vt, Vp, Vc] + b f ))

s = so f tmax( f )
(12)

where Wf and b + f are the trainable fusion parameters, s is an n-dimensional vector,
and n = 3 in this experiment (representing the modalities title, paint and category, respec-
tively). We computed soft attention over the original modality features and concatenated
them as in [34,40]. A dense layer was used to learn the associations over weighted modality-
specific features by:

r = tanh(Wr[stt̃, sp p̃, scc̃]) (13)

where r is the final fused representation, and Wr and br are the additional parameters for
the final dense layer. We made the final decision by a softmax classifier using r as input.
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3.6. Classification Layer

A three-layer fully connected neural network is used as the classification layer. The ac-
tivation function of the hidden layer and the output layer are Relu and softmax functions,
respectively. The loss function used is the categorical cross-entropy.

4. Experiment and Results

4.1. Dataset

Mohammad and Kiritchenko [1] created the WikiArt Emotions Dataset which includes
emotion annotations for more than 4000 pieces of art from four Western styles (modern
art, post-Renaissance art, Renaissance Art and Contemporary Art) and 22 style categories.
The art is annotated via crowd sourcing for one or more of the twenty emotion categories.
The final result of closely related emotion sets were arranged in three sets, such that
“positive”, “negative” and “mixed or other”, as shown in Table 1.

Table 1. Main characteristics of the dataset used in the experiment.

Polarity Emotion Category Instances

Positive gratitude, happiness, humility,
love, optimism, trust 2578

Negative
anger, arrogance, disgust, fear,

pessimism, regret, sadness,
shame

838

Other or Mixed
agreeableness, anticipation,
disagreeableness, surprise,

shyness, neutral
689

4.2. Training Details

We implemented our proposed approach in Keras using the Tensorflow backend.
The pre-trained ResNet model available in Keras is used for images, and the Glove word
embedding program [41] for text was used to extract row feature vectors. The parameters
of the pre-trained ResNet model and the parameters of the word embeddings were set
during training. The Adam optimizer was used to optimize the loss function. The best
hyper-parameters are listed in Table 2. In total, 70% of the data were used as the training
set, 10% as the validation set and 20% as the test set.

Table 2. The best performing hyper-parameters used for the neural networks were determined by
using a grid search [3].

Hyper-Parameters Values

ResNet FC size 512
Batch size 32

Number of BGRU hidden units 128
Dropout rate for GRU 0.4

Number of epochs 40
Learning rate 0.001

Word embedding dimensions 100

4.3. Baselines

• Bi-LSTM (Text Only): Bi-LSTM is one of the most popular methods for addressing
many text classification problems. It leverages a bidirectional LSTM network for
learning text representations and then uses a classification layer to make a prediction.

• CNN (Image Only): CNN with six hidden layers was implemented. The first two
convolutional layers contain 32 kernels of size 3 × 3 and the second two convolutional
layers have 64 kernels of size 3 × 3. The second and fourth convolutional layers are

158



J. Imaging 2021, 7, 157

interleaved with max-pooling layers of dimension 2 × 2 with a dropout of 0.3. Then, a
fully connected layer with 256 neurons and a dropout of 0.4 is followed.

• Multimodal approaches (text and image): two multimodal approaches, namely
Resnet_GRU without attention and Resnet_GRU attention from the previous work [3],
in the same task were also implemented.

4.4. Results and Discussion

The proposed approach was compared with the three unimodal baseline approaches
and three multimodal approaches. As shown in Table 3, the proposed model improves
the unimodal-based methods, which use only a single feature type, and the multimodal
models, which use only information from the image and title modalities.

The proposed approach gained 8.4%, 9% and 11.5% in terms of accuracy when com-
pared to the unimodal text-based, emotion category and image-based networks, respec-
tively. These significant improvements confirm the importance of extracting and using
information from different modalities in human emotion recognition and analysis.

Table 3. Performance on test set in terms of the accuracy on the three polarities.

Model Channel Accuracy Loss

CNN Image 0.683 0.663
Bi-LSTM Title 0.658 0.810

FFNN Category 0.689 0.441
ResNet_GRU without attention Paint, title 0.713 0.710

ResNet_GRU with attention Paint, title 0.741 0.130
Our new model with

concatenation Paint, title and category 0.724 0.684

Our new model Paint, title and category 0.773 0.143

Furthermore, we compared the proposed approach that uses information from the
three modalities with two multimodal approaches that use information from image and
title modalities, namely Resnet_GRU without attention and Resnet_GRU without attention.
Our proposed approach has outperformed Resnet_GRU without attention by 6% and
Resnet_GRU with attention by 3.2%.

Our proposed approach uses information from the three modalities which are image,
title, and emotion category, but emotion category values are used during the training phase
only. The main reason for using the emotion category during the training as one of the
modality inputs is to help the model learn from expert knowledge and to see the impact
of expert knowledge on model training. The experimental results have shown that using
expert knowledge helped the model learn better, as shown in Table 3.

To show the advantage of weighted modality fusion over other fusion methods, we
compared the weighted modality fusion model with other fusion methods. The experi-
mental results showed that the proposed sequential-based co-attention feature learning
and weighted modality fusion approaches can learn better for different categories, which
implies that using pre-trained models with sequential attention and weighted modality
fusion is a reasonable choice for emotion recognition from art. Figure 4 shows how our
model learns from the training dataset and the generalizability of our model on the val-
idation set, which confirms that the chosen model perfectly fits to address the emotion
recognition tasks.
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(a) Traing and validation loss (b) Training and validation accuracy

Figure 4. Cross-entropy loss and accuracy during the training and validation steps are shown in (a,b), respectively.

5. Conclusions

In this work, we proposed sequential-based attention to extract features from three
modalities (title, art, and emotion category) and a weighted fusion approach to fuse the
three modalities in the decision process. Our system used feature attention (sequential co-
attention) and modality attention (weighted fusion) to select the representative information
at both feature and modality levels. The experimental results on the WikiArt dataset
demonstrated the effectiveness of the proposed model and the usefulness of the three
modalities. Although our model was evaluated for emotion recognition in art, it can
potentially be applied to other similar tasks involving different modalities.
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Abstract: To automatically generate accurate and meaningful textual descriptions of images is an
ongoing research challenge. Recently, a lot of progress has been made by adopting multimodal deep
learning approaches for integrating vision and language. However, the task of developing image
captioning models is most commonly addressed using datasets of natural images, while not many
contributions have been made in the domain of artwork images. One of the main reasons for that
is the lack of large-scale art datasets of adequate image-text pairs. Another reason is the fact that
generating accurate descriptions of artwork images is particularly challenging because descriptions
of artworks are more complex and can include multiple levels of interpretation. It is therefore also
especially difficult to effectively evaluate generated captions of artwork images. The aim of this work
is to address some of those challenges by utilizing a large-scale dataset of artwork images annotated
with concepts from the Iconclass classification system. Using this dataset, a captioning model is
developed by fine-tuning a transformer-based vision-language pretrained model. Due to the complex
relations between image and text pairs in the domain of artwork images, the generated captions are
evaluated using several quantitative and qualitative approaches. The performance is assessed using
standard image captioning metrics and a recently introduced reference-free metric. The quality of
the generated captions and the model’s capacity to generalize to new data is explored by employing
the model to another art dataset to compare the relation between commonly generated captions and
the genre of artworks. The overall results suggest that the model can generate meaningful captions
that indicate a stronger relevance to the art historical context, particularly in comparison to captions
obtained from models trained only on natural image datasets.

Keywords: image captioning; vision-language models; fine-tuning; visual art

1. Introduction

Image captioning refers to the task of generating a short text that describes the content
of an image based only on the image input. This usually implies recognizing objects and
their relationships in an image. Those descriptions should be meaningful and accurate
in relation to the image content. In resolving this task, significant progress has recently
been made using multimodal deep learning models. However, most of the research in this
field is performed on datasets of natural images, while the specific aspects of generating
captions for artwork images have not yet been systematically explored.

A common prerequisite for training deep neural captioning models are large datasets
of semantically related image and sentence pairs. In the domain of natural images, several
well-known large-scale datasets are commonly used for this task, such as the MS COCO [1],
Flickr30 [2] and Visual Genome [3] dataset. The availability of such large datasets enabled
the development of image captioning models that achieve impressive results in generating
high quality captions for photographs of various objects and scenes. However, the task
of generating image captions still remains difficult for domain-specific image collections.
In particular, in the context of visual art and cultural heritage, generating image captions is
an open problem with various challenges. The lack of a truly large-scale dataset of artwork
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images paired with adequate descriptions represents one of the major difficulties. Further-
more, it is important to address what kind of description would be regarded as “adequate”
in the context of art historical data collections. Taking into account Erwin Panofsky’s three
levels of analysis [4], we can distinguish the “pre-iconographic” description, “iconographic”
description and the “iconologic” interpretation as possibilities of aligning meaningful, yet
very different textual descriptions with the same image. Image captioning in the context of
natural images is usually performed at the level of “pre-iconographic” descriptions, which
implies simply describing the content and listing the objects that are depicted in an image.
For artwork images this type of description represents only the most basic level of visual
understanding and is not considered to be particularly useful for performing multimodal
analysis and retrieval within art collections.

A more interesting, as well as more challenging, task would be to generate “icono-
graphic” captions that describe the contextual aspect of the subject matter. Creating a
dataset for such a complex task is difficult because it requires expert knowledge in the
process of collecting sentence-based descriptions of images. Several such art datasets of
image-text pairs exist, but those mostly consist of only a few thousand examples and
are therefore not suitable for training deep neural network models in the current state-
of-the-art setting for image captioning. However, there are several existing large-scale
artwork collections that associate images with textual descriptions in the form of keywords
and specific concepts. In particular, a large-scale artwork dataset, published under the
name “Iconclass AI Test Set” [5], represents a collection of various artwork images assigned
with alphanumeric classification codes that correspond to notations from the Iconclass
system [6]. Iconclass is a classification system designed for art and iconography and is
widely accepted by museums and art institutions as a tool for the description and retrieval
of subjects represented in images. The idea of this work is to use a concatenation of the
various code descriptions associated with an image as textual inputs for training an image
captioning model. Although the “Iconclass AI Test Set” is not structured primarily as an
image captioning dataset, each code is paired with its “textual correlate”—a description
of the iconographic subject of the particular Iconclass notation. The first methodologi-
cal step of the approach presented in this work includes extracting and preprocessing
the given annotations into clean textual description and creating the “Iconclass Caption”
dataset. This dataset is then used to fine-tune a pretrained unified vision-language model
on the down-stream task of image captioning [7]. Transformer-based vision-language
pretrained models currently represent the leading approach in solving a variety of tasks in
the intersection of computer vision and natural language processing.

The work presented in this paper is an extension of a previous work that represents
one of the first attempts in generating captions for artworks [8]. The methodological
approach is similar and the additional contribution of this paper is primarily focused on
the problem of evaluating the generated image captions. The previous work showed that
standard reference-based image metrics are not very suitable for assessing the quality of
image captions because they take into account only the relation between the generated and
ground-truth caption, and not the relation between the caption and the image itself, which is
particularly important in the context of artworks. Recently, significant advances have been
achieved in transforming image and text embeddings into a joint feature space. Based on
those findings, this work additionally explores how CLIP (Contrastive Language-Image Pre-
training), a newly introduced cross-modal model pretrained on very large dataset of 400 M
image+text pairs extracted from the web [9], and reference-free captioning metrics defined
based on CLIP features [10], can be used to evaluate the generated iconographic captions.

2. Related Work

The availability of large collections of digitized artwork images fostered research
initiatives in the intersection of artificial intelligence and art history. Most commonly,
research in this area focuses on addressing problems related to computer vision in the
context of art data, such as image classification [11–13], visual link retrieval [14–16], object
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and face detection [17,18], pose and character matching [19,20], analysis of visual patterns
and conceptual features [21–24], and computational aesthetics [25–27]. A comprehensive
overview of research activities in this area can be found in several survey papers [28–30].

Recently, there has been a surge of interest in topics related to jointly exploring both
visual and textual modalities of artwork collections. Pioneering works in this research
area addressed the task of multimodal retrieval. In particular, Ref. [31] introduced the
SemArt dataset, a collection of fine-art images associated with textual comments, with the
aim to map the images and their descriptions in a joint semantic space. They compare
different combinations of visual and textual encodings, as well as different methods of
multimodal transformation. In projecting the visual and textual encodings in a common
multimodal space, they achieve the best results by applying a neural network trained with
cosine margine loss on ResNet50 features as visual encodings and bag of word as textual
encodings. The task of creating a shared embedding space was also addressed in [32],
where the authors introduce a new visual semantic dataset named BibleVSA, a collection
of miniature illustrations and commentary text pairs, and explore supervised and semi-
supervised approaches to learning cross-references between textual and visual information
in documents. In [33], the authors present the Artpedia dataset, consisting of 2930 images
annotated with visual and contextual sentences. They introduce a cross-modal retrieval
model that projects images and sentences in a common embedding space and discriminates
between contextual and visual sentences of the same image. A similar extension of this
approach to other artistic datasets was presented in [34]. Recently, Banar et al. introduced
a study that explores how Iconclass codes can be automatically assigned to visual artworks
using a cross-modal retrieval set-up [35].

Apart from multimodal retrieval, another recently emerging topic of interest is visual
question answering (VAQ). In [36], the authors annotated a subset of the ArtPedia dataset
with visual and contextual question–answer pairs and introduced a question classifier
that discriminates between visual and contextual questions and a model that is able to
answer both types of questions. In [37], the authors introduce a novel dataset AQUA (Art
QUestion Answering), which consists of automatically generated visual and knowledge-
based question-answer pairs, and also present a two-branch model where the visual and
knowledge questions are handled independently.

The task of image captioning has not been significantly studied in the context of art
images. A limited number of studies contributed to the task of generating descriptions of
artwork images using deep neural networks. For example, Ref. [38] proposes an encoder–
decoder framework for generating captions of artwork images where the encoder (ResNet18
model) extracts the input image feature representation and the artwork type representation,
while the decoder is a long short-term memory (LSTM) network. They introduce two image
captioning datasets referring to ancient Egyptian art and ancient Chinese art, which contain
17,940 and 7607 images, respectively. Another work [39] presented a novel captioning
dataset for art historical images consisting of 4000 images across nine iconographies, along
with a description for each image consisting of one or more paragraphs. They used this
dataset to fine-tune different variations of image captioning models based on the well-
known encoder–decoder approach introduced in [40]. As already mentioned, this paper
represent an extension of the image captioning approach presented in [8].

Motivated by the success of utilizing large-scale pretrained language models such
as the BERT (Bidirectional Encoder Representations from Transformers) model [41] for
different tasks related to natural language processing, recently significant research progress
has been made by adopting transformer-based models for a variety of multimodal tasks.
Transformer-based vision-language models are designed to learn joint representations
that combine and align information from both modalities. It has been shown that models
pretrained on intermediate tasks with unsupervised learning objectives using large datasets
of image-text pairs achieve remarkable results when applied to different down-stream tasks
such as image captioning, cross-modal retrieval or visual question answering [7,42–44].
Furthermore, recently an efficient method of learning from natural language supervision
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was introduced as the CLIP (Contrastive Language-Image Pre-training) model [9]. The
model is a result of training an image and text encoder to predict the correct pairs of
image-text training examples using large amounts of publicly available internet data. The
CLIP model showed very promising results on a variety of image-text similarity estimation
tasks and was recently introduced as a novel way of establishing a reference-free image
captioning metric [10]. This paper explores how those newly introduced image captioning
metrics, as well as CLIP image and text representations, can be used to evaluate captions in
the context of artworks.

3. Methodology

3.1. Datasets
3.1.1. Iconclass Caption Dataset for Training and Evaluation

The main dataset used in this work is the “Iconclass AI Test Set” [5] dataset. The dataset
contains, in total, 87,749 images, and in this work 86,530 valid image-text pairs are used
for training and evaluating the image captioning model (1219 images do not have valid
codes/textual notations assigned to them). The dataset includes a very diverse collection of
images sampled from the Arkyves database www.arkyves.org (accessed on 21 June 2021).
It includes images of various types of artworks such as paintings, posters, drawings, prints,
manuscripts pages, etc. Each image is associated with one or more codes linked to labels
from the Iconclass classification system. The authors of the “Iconclass AI Test Set” provide
a json file with the list of images and corresponding codes, as well as an Iconclass Python
package to perform analysis and extract information from the assigned classification codes.
To extract textual descriptions of images for the purpose of this work, the English textual
descriptions of each code associated with an image are concatenated. Further preprocessing
of the descriptions includes removing text in brackets and some recurrent uppercased
dataset-specific codes. In this dataset, the text in brackets most commonly includes very
specific named entities, which are considered a noisy input in the image captioning task.
Therefore, when preprocessing the textual items, all the text in brackets is removed, even
at the cost of sometimes removing useful information.

Figure 1 shows several example images from the Iconclass Caption dataset and their
corresponding descriptions before and after preprocessing. Depending on the number of
codes associated with each image, the final textual descriptions can significantly vary in
length. Additionally, due to the specific properties of this dataset, the image descriptions
are not structured as sentences but as a list of comma-separated words and phrases.

The textual descriptions are represented as a concatenation of text phrases related
to the Iconclass codes. One image in the dataset can be associated with one or more
textual phrases. To better understand the configuration of the dataset, Figure 2 shows a
distribution of the most commonly included textual phrases (Iconclass codes).

Due to this type of structure and having only one reference caption for each image, the
Iconclass Caption dataset is not a standard image captioning dataset. However, having in
mind the difficulties of obtaining adequate textual descriptions for images of artworks, this
dataset can be considered as a valuable source of image-text pairs in the current context,
particularly due to the large number of annotated images that enables training deep neural
models. In the experimental setting, a subset of approximately 76,000 items is used for
training the model, while around 5000 items are used for validation and 5000 for testing.
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Original description: head turned to the right, wig, bookshelves, neck-gear: jabot, clothing for the upper part of
the body (VEST) , party clothes, festive attire (+ men’s clothes), quill, book, historical persons (portraits and
scenes from the life) (+ (full) bust portrait),
Clean description: head turned to the right, wig, bookshelves, neck-gear: jabot, clothing for the upper part of the
body , party clothes, festive attire , quill, book, historical persons .

Original description: (human) skull, bones in general (human body), death’s head, skull (symbol of Death)
Clean description: skull, bones in general , death’s head, skull.

Original description: plants and herbs (ARMORACIA RUSTICANA), plants and herbs (HORSERADISH),
proverbs, sayings, etc. (IM GAUMEN), proverbs, sayings, etc. (DER BEISSENDE),
Clean description: plants and herbs , proverbs, sayings.

Original description: Mary standing (or half-length), the Christ-child sitting on her arm (Christ-child to Mary’s
left),
Clean description: Mary standing , the Christ-child sitting on her arm.

Original description: adult woman, manuscript of musical score, writer, poet, author (+ portrait, self-portrait of
artist), pen, ink-well, paper (writing material), codex, inscription, historical events and situations (1567), historical
person (MONTENAY, Georgette de) - BB - woman - historical person (MONTENAY, Georgette de) portrayed
alone, proverbs, sayings, etc. (O PLUME EN LA MAIN NON VAINE)
Clean description: adult woman, manuscript of musical score, writer, poet, author , pen, ink-well, paper , codex,
inscription, historical events and situations , historical person, woman - historical person portrayed alone,
proverbs, sayings.

Figure 1. Example images from the Iconclass Caption dataset and their corresponding descriptions before and after preprocessing.

Figure 2. Distribution of textual descriptions in the Iconclass Caption dataset showing the 50 most
commonly occurring words/phrases (Iconclass codes) in the whole dataset.

167



J. Imaging 2021, 7, 123

3.1.2. Wikiart Dataset for Evaluation

In order to explore how the proposed approach works on another artwork dataset,
a subset of 52,562 images of paintings from the WikiArt, www.wikiart.org (accessed on
1 February 2020), collection was used. Images in the WikiArt dataset are annotated with
a broad set of labels (e.g., style, genre, artist, technique, date of creation, etc.); therefore,
one aspect of the evaluation process includes analysing how the generated captions relate
to genre labels because genre labels indicate the category of the subject matter that is
depicted (e.g., portrait, landscape, religious paintings, etc.). Furthermore, this dataset is
used to explore the difference between captions generated using a model trained on artwork
images and models trained on natural image datasets.

3.2. Image Captioning Model

For the purpose of training an image captioning model, in this work the unified
vision-language pretraining model (VLP) introduced in [7] was employed. This model is
denoted as “unified” because the same pretrained model can be fine-tuned for different
types of tasks. These tasks include both vision-language generation (e.g., image captioning)
and vision-language understanding (e.g., visual question answering). The model is based
on an encoder–decoder architecture comprised of 12 transformer blocks. The model input
consist of image embedding, text embedding and three special tokens that indicate the
start of the image input, the boundary between the visual and textual input and the end
of the textual input. The image input consists of 100 object classification aware region
features extracted using the Faster R-CNN (region-based convolutional neural networks)
model [45] pretrained on the Visual Genome dataset [3]. For a more detailed description of
the overall VLP framework and pretraining objectives, the reader is referred to [7]. The
experiments introduced in this work employ, as the base model, the VLP model pretrained
on the Conceptual Captions dataset [46] using the sequence-to-sequence objective. This
base model is fine-tuned on the Iconclass Caption dataset using recommended fine-tuning
configurations, namely training with a constant learning rate of 3e-5 for 30 epochs. The
weights of the Iconclass fine-tuned model, together with the data used for training the
model (image IDs and descriptions), are available here: https://github.com/EvaCet/
Iconclass-image-captioning (accessed on 22 July 2021).

3.3. Evaluation of the Generated Captions

The evaluation of the model’s performance includes both quantitative and qualitative
analyses of the generated captions. To quantitatively evaluate the generated captions,
standard language evaluation metrics for image captioning and novel reference-free image
captioning methods are used. The standard metrics include the four BLEU metrics [47],
METEOR [48] ROUGE [49] and CIDEr [50]. BLUE, ROUGE and METEOR are metrics
that originate from machine translation tasks, while CIDEr was specifically developed for
image caption evaluation. The BLUE metrics represent n-gram precision scores multiplied
by a brevity penalty factor to assess the length correspondence of candidate and reference
sentences. ROUGE is a metric that measures the recall of n-grams and therefore rewards
long sentences. Specifically, ROUGE-L measures the longest matching sequence of words
between a pair of sentences. METEOR represents the harmonic mean of precision and
recall of unigram matches between sentences and additionally includes synonyms and
paraphrase matching. CIDEr measures the cosine similarity between TF-IDF weighted
n-grams of the candidate and the reference sentences. The TF-IDF weighting of n-grams
reduces the score of frequent n-grams and appoints higher scores to distinctive words.

As the standard image captioning metrics measure the relation between generated
and original captions, they do not address the relation between the image itself and the
generated caption. Although translating images and text in a joint semantic space has been
an ongoing research topic, the recently introduced CLIP model [9] achieves significant
performance improvements in assessing the similarity between image and text. Based on
the advanced performance of this model, Hassel et al. [10] introduce a novel reference-free
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metric called CLIPScore, which, according to their study, achieves the highest correlation
with human judgements and outperforms existing reference-based metrics. The CLIPscore
represents a rescaled value (multiplied by factor of 2.5) of the cosine similarity between
image and generated caption text embeddings obtained using the CLIP ViT-B/32 model
for feature extraction. They also introduce a reference-augmented version of this score, the
RefCLIPScore, which is computed as a harmonic mean of the CLIPScore and the maximal
reference cosine similarity. Image captioning datasets usually include more than one
reference sentence per image; however, the Iconclass Caption dataset includes only one
reference description. Therefore, in this work, the RefCLIPScore is described as a harmonic
mean between the rescaled cosine similiarity between the CLIP embeddings of the image
and generated caption (the CLIPScore) and the value of the cosine similarity between the
CLIP embeddings of the reference caption and generated caption.

4. Results and Discussion

4.1. Quantitative Results

The relation between the generated captions and the reference captions on the Iconclass
Caption test set was evaluated using standard image captioning metrics. To evaluate the
relation between the generated caption and the input image, the new CLIPScore metric
was used, both in its original and reference-augmented versions. The results on the
Iconclass Caption test set are presented in Table 1. The Iconclass Caption test set contains
5192 images, but the reported CLIP-S and RefCLIP-S values are calculated only on a subset
of 4928 images where the generated captions are shorter than 76 tokens, together with
tokens that indicate the end and beginning of the text sequence. This was carried out
because the CLIP model, which serves as a basis for the CLIPScore metric, was trained
with the maximal textual sequence length set at 76 tokens. As the Iconclass Caption
dataset contains descriptions of various lengths, including very long ones, some of the
generated captions are also long. In order to test the model on all the examples in the
Iconclass Caption test set, an alternative version of the whole dataset was created where
all image descriptions have been shortened in order to fit into the range of the maximal
sequence length. As most of the descriptions consist of comma-separated concatenations of
words and phrases, the shortening has been performed to keep only so many concatenated
phrases to meet the 76 tokens limit. However, this shortening of the descriptions led to
an overall deterioration of the captioning results in comparison with the results on the
original, non-shortened dataset presented in Table 1 (the values of the metric scores on
the alternative version of the dataset are: Bleu 1: 0.11; Bleu 2: 0.10; Bleu 3: 0.092; Bleu
4: 0.08; METEOR: 0.115; ROUGE-L: 0.302; CIDEr: 1.57; CLIP-S: 0.596; RefCLIP: 0.677). It
was therefore decided to present and use the model trained on the original version of the
dataset for further analysis and to report the CLIP-S and RefCLIP-S scores on a slightly
smaller subset of the test set.

Table 1. Values of the evaluation metrics used for assessing the performance of the iconographic
image captioning model on the Iconclass Caption test set. *CLIP-S and RefCLIP-S values are reported
on a subset of the test set.

Evaluation Metric Value (×100)

BLEU 1 14.8
BLEU 2 12.8
BLEU 3 11.3
BLEU 4 10.0
METEOR 11.7
ROUGE-L 31.9
CIDEr 172.1
CLIP-S * 59.67
RefCLIP-S * 68.35
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The current results cannot be compared with any other work because the experiments
were performed on a new and syntactically and semantically different dataset. However,
the quantitative evaluation results are included to serve as a benchmark for future work.
In comparison with current state-of-the-art caption evaluation results on natural image
datasets (e.g., BLEU4 ≈ 37 for MS COCO and ≈30 for Flickr30 datasets) [7,51], the BLEU
scores are lower for the Iconclass dataset. A similar behaviour was also reported in another
study addressing iconographic image captioning [39]. On the other hand, the CIDEr
score is quite high in comparison to the one reported for natural image datasets (e.g.,
CIDEr ≈ 116 for MS COCO and ≈68 for Flickr30 dataset) [7,51]. To better understand how
standard metrics relate to the novel metrics, Table 2 shows the Spearman’s rank correlation
coefficient between the values of standard and novel captioning metrics on the Iconclass
Caption test set.

Table 2. Spearman’s correlation coefficients between the values of standard and new metric scores
on the Iconclass Caption test set (p-value < 0.001).

Standard Metric Correlation with CLIP-S Correlation with Ref CLIP-S

BLEU-1 0.355 0.686
BLEU-2 0.314 0.647
BLEU-3 0.281 0.629
BLEU-4 0.236 0.602
METEOR 0.315 0.669
ROUGE-L 0.298 0.647
CIDEr 0.315 0.656

It is questionable how adequate standard reference-based metrics are in assessing the
overall quality of the captions in this particular context because they mostly measure the
word overlap between generated and reference captions. They are not designed to capture
the semantic meaning of a sentence and therefore it is particularly difficult to evaluate
iconographic descriptions. Furthermore, they are not appropriate for measuring very short
descriptions which are quite common in the IconClass Caption dataset. Moreover, because
they do not address the relation between the generated caption and the image content, the
standard image captioning score could be low even if the generated caption is semantically
aligned with the image content. In Figure 3, several such examples from the Iconclass
Caption test set are presented, together with the values of the standard and new metrics.

In some examples within the Iconclass dataset, the generated caption is even more
related to the image content than the ground-truth description (example image in row 3 in
Figure 3) and interestingly the CLIP-Score is, in this case, higher than the usually higher
RefCLIP-Score. Furthermore, those examples indicate that the standard evaluation metrics
are not very suitable in assessing the relevance of generated captions for this particular
dataset. Therefore, a qualitative analysis of the results is also required in order to better
understand potential contributions and drawbacks of the proposed approach.

GT: ’Oriente’ , wig, interior of the house, table, chair, table-cloth, pipe
tobacco, head-gear: hat, head-gear , neck-gear: jabot, sewing, marriage,
married couple, ’matrimonium’, pen, ink-well, book.
Caption: sitting figure , head turned to the left , head turned to the right,
adult man , adult woman , historical persons .

BLEU 1: 0.03765

BLEU 2: 1.22 × 10−9

BLEU 3: 3.99 × 10−12

BLEU 4: 2.31 × 10−13

METEOR: 0.035

ROUGE: 0.0451

CIDEr: 0.0041

CLIP-S: 0.702

RefCLIP-S: 0.689

Figure 3. Cont.
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GT: church , water course, city-view, and landscape with man-made
constructions, street, clouds, rowing-boat, canoe, sailing-ship, sailing-boat,
windmill, cow.
Caption: ships .

BLEU 1: 1.12 × 10−22

BLEU 2: 3.55 × 10−18

BLEU 3: 1.12 × 10−16

BLEU 4: 4.51 × 10−16

METEOR: 0.0

ROUGE: 0.0

CIDEr: 0.0

CLIP-S: 0.6218

RefCLIP-S: 0.5998

GT: plants and herbs: marjoram, hill, potted plants, container of ceramics:
jar, jug, pot, vase, pig, scholastic education, tuition, Contrariety;
’Contrarietà’, Vulgarity, proverbs, sayings
Caption: ’hoofed animals : boar, container of metal : bucket, can, canister,
drum, tin, proverbs, sayings.

BLEU 1: 0.1425

BLEU 2: 0.1049

BLEU 3: 7.7407 × 10−7

BLEU 4: 2.153 × 10−9

METEOR: 0.079

METEOR: 0.079

ROUGE: 0.211

CIDEr: 0.057

CLIP-S: 0.884

RefCLIP-S: 0.817

GT: apostle, unspecified, key.
Caption: head turned to the right, historical persons.

BLEU 1: 1.43 × 10−16

BLEU 2: 1.54 × 10−16

BLEU 3: 1.68 × 10−16

BLEU 4: 1.85 × 10−16

METEOR: 0.0

ROUGE: 0.0

CIDEr: 0.0

CLIP-S: 0.5221

RefCLIP-S: 0.6427

Figure 3. Examples of images from the Iconclass Caption test set, their corresponding ground-truth and generated captions
and the values of evaluation metrics for those examples.

4.2. Qualitative Analysis

Qualitative analysis was performed by exploring examples of images and generated
captions on two datasets. One is the test set of the Iconclass Caption dataset that serves
for direct comparison between the generated captions and ground-truth descriptions.
The other dataset is a subset of the WikiArt painting collection, which does not include
textual descriptions of images but has a broad set of labels associated with each image.
Therefore, this dataset is useful to explore how the generated captions relate to the genre
categorization of the paintings.

4.2.1. Iconclass Caption Test Set

To gain a better insight into the generated image captions, in Figure 4 several examples
are shown. The presented image-text pairs were chosen to demonstrate both good examples
(the left column) and bad examples (the right column) of generated captions.

Analysis of the unsuccessful examples indicates that similarities between visual repre-
sentations can result in generating analogous, but very misleading, iconographic captions.
It also demonstrates underlying biases within the dataset. For instance, in the Iconclass
Caption training test, there are more than a thousand examples that include the phrase
“New Testament” in the description. Therefore, images that include structurally similar
scenes, particularly from classical history and mythology, are sometimes wrongly attributed
as depicting a scene from the New Testament. This signifies the importance of balanced
examples in the training dataset and indicates directions for possible future improvements.
Furthermore, by analysing various examples of generated captions, it becomes clear that
recognizing fine-grained categories, e.g., exact names of saints or specific historical scenes,
is still a very challenging task.
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GT: the crowning with thorns: soldiers with sticks

place a thorny crown on Christ’s head and give

him a reed, carrying of the cross: Christ bearing

the cross, alone or with the help of others.

Caption: flagellation by soldiers, Christ usually

tied to a column.

GT: the meeting of Abraham and Melchizedek, the

high priest and king of Salem, who brings bread

and wine.

Caption: flagellation by soldiers, Christ usually

tied to a column.

GT: ’New Testament, Christ in the house of Martha

and Mary, Martha complains to Christ about Mary.

Caption: New Testament.

GT: hoofed animals: deer, Classical Mythology

and Ancient History, the sacrifice of Iphigenia.

Caption: New Testament, the assumption of Mary:

she is borne into heaven by angels.

GT: ’crustaceans: lobster, molluscs: oyster, glass,

rummer, table-cloth.

Caption: crustaceans : lobster, molluscs : oyster,

fruits : lemon, fruits : orange, fruits : peach, fruits :

walnut, table - cloth, fruit, fruit, grape.

GT: glass, rummer, meat; still life of meat, tools,

aids, implements crafts and industries: knife.

Caption: crustaceans : lobster, molluscs: oyster,

fish; still life of fishes.

GT: ’founder of the Order of Friars Minor, Francis

of Assisi; possible attributes: book, crucifix, lily,

skull, stigmata.

Caption: male saints.

GT: empress Helena, mother of Constantine the

Great; possible attributes: model of church, crown,

crown of thorns, cross, three nails, agricultural

implements: hoe.

Caption: the virgin martyr Catherine of

Alexandria ; possible attributes : book, crown,

emperor Maxentius, palm - branch, ring, sword,

wheel.

Figure 4. Examples of images from the Iconclass Caption test set, with their corresponding ground-truth and generated
captions. Examples shown on the left side represent cases where the generated captions are successfully aligned with the
iconographic content of the image, while examples shown on the right demonstrate unsuccessful examples.

The Iconclass dataset is a collection of very diverse images and apart from the Icon-
class classification codes, there are currently no other metadata available for the images.
Therefore, it is difficult to perform an in-depth exploratory analysis of the dataset and the
generated results in regard to attributes relevant in the context of art history such as the
date of creation, style, genre, etc. For this reason, the fine-tuned image captioning model
was employed on another artwork dataset.

4.2.2. WikiArt Dataset

The quality of the generated captions and the model’s capacity to generalize to new
data are further explored by employing the model on another artwork dataset, a subset
of the WikiArt dataset that includes labels related to the genre of the paintings. Figure 5
shows the distribution of the most commonly generated descriptions in relation to four
different genre categories. From this basic analysis, it is obvious that the generated captions
are meaningful in relation to the content and the genre categorization of images.
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Figure 5. Distribution of most commonly generated captions in relation to four different genres in
the WikiArt dataset.

To understand the contribution of the proposed model in the context of iconographic
image captioning, it is interesting to compare the Iconclass captions with captions obtained
from models trained on natural images. For this purpose, two models of the same archi-
tecture but fine-tuned on the Flickr 30 i MS COCO datasets were used. Figure 6 shows
several examples from the WikiArt dataset with corresponding Iconclass, Flickr and COCO
captions. It is evident that the other two models generate results that are meaningful in
relation to the image content but do not necessarily contribute to producing more fine-
grained and context-aware descriptions. However, the values of the CLIP-Score evaluation
metric are, in general, higher for captions generated using the model pretrained on natural
images than the Iconclass model.

The mean value of CLIP-S on the Iconclass captions of the WikiArt subset is 0.595,
while the mean score of the Flickr caption is 0.684 and that of the Coco captions is 0.691.
This result corresponds to the conclusion presented in [10], which suggests that, when
assessing a direct description and a more non-literal caption, the CLIPScore will generally
prefer the literal one. However, because the CLIP model is trained on an very large set of
examples extracted from the internet, it has probably encountered some well-known cases
of iconographic image-text relations in the training set. This explains the high values of the
CLIPScore for the third and fourth examples in Figure 6.

To gain a better understanding of the CLIPScore in relation to the various types of
image captions and the images themselves, Figure 7 shows a projection of the image and
different caption features obtained using the CLIP ViT-B/32 model.
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Anthony van Dyck, Venus asking Vulcan for the Armour of Aeneas,
c.1632
Iconclass caption: Classical Mythology and Ancient History.
Flickr caption: A painting of a group of people.
Coco caption: A painting of a group of people in a field.

Iconclass CLIP-S: 0.672
Flickr CLIP-S: 0.640
Coco CLIP-S: 0.539

Hans Memling, Man of Sorrows, c.1490
Iconclass caption: Christ.
Flickr caption: A marble statue of a seated man.
Coco caption: A painting of a man holding a hammer.

Iconclass CLIP-S: 0.602
Flickr CLIP-S: 0.565
Coco CLIP-S: 0.659

Lucas Cranach the Elder, Fall of Man, 1537
Iconclass caption: Eve offers the fruit to Adam.
Flickr caption: Two young boys are climbing a tree.
Coco caption: A statue of a boy and a girl near a tree.

Iconclass CLIP-S: 0.758
Flickr CLIP-S: 0.698
Coco CLIP-S: 0.622

Antoine Watteau, Cupid Disarmed, c.1715
Iconclass caption: Venus and Cupid .
Flickr caption: 3 children in a circle .
Coco caption: A portrait of a woman holding a child.

Iconclass CLIP-S: 0.799
Flickr CLIP-S: 0.595
Coco CLIP-S: 0.681

Figure 6. Examples from the WikiArt dataset with captions generated by models fine-tuned on the Iconclass, Flickr and
COCO datasets.

Figure 7. UMAP (Uniform Manifold Approximation and Projection) plot depicting the CLIP (Contrastive
Language-Image Pre-Training) model embeddings of the images and various generated captions on a
subset of the WikiArt dataset.

The distribution of data points in Figure 7 indicates that the captions generated using
the COCO and Flickr fine-tuned models are more aligned with each other, while the
Iconclass captions are more dispersed. This is understandable considering the difference in
the vocabulary and structure of the Iconclass descriptions. Overall, although the CLIPScore
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shows very good results in assessing the similarity of the image content and textual
description, as well as particularly promising results in recognizing iconographic relations,
it is still necessary to achieve a higher level of explainability of the CLIP model in order to
determine its applicability for evaluating iconographic captions.

5. Conclusions

This paper introduces a novel model for generating iconographic image captions. This
is achieved by utilizing a large-scale dataset of artwork images annotated with concepts
from the Iconclass classification system designed for art and iconography. Within the scope
of this work, the available annotations were processed into clean textual descriptions and
the existing dataset was transformed into a collection of suitable image-text pairs. The
dataset was used to fine-tune a transformer-based vision-language model. For this purpose,
object classification aware region features were extracted from the images using the Faster
R-CNN model. The base model in our fine-tuning experiment is an existing model, called
the VLP model, that was pretrained on a natural image dataset on intermediate tasks
with unsupervised learning objectives. Fine-tuning pretrained vision-language models
represents the current state-of-the-art approach for many different multimodal tasks.

The captions generated by the fine-tuned models were evaluated using standard
image captioning metrics and recently introduced reference-free metrics. Due to the
specific properties of the Iconclass dataset, standard image captioning evaluation metrics
are not very informative regarding the relevance and appropriateness of the generated
captions in relation to the image content. The reference-free metric, CLIPScore, represents
an interesting new approach for evaluating image captions based on the cosine distance
between image and text embeddings from a joint feature space. This image captioning
metric shows very promising results in evaluating the semantic relation of images and
texts, particularly in the case of well-known iconographic image-text examples. However,
it is still uncertain if it the best choice for assessing all iconographic image captions because
it generally favours literal over non-literal image-text relations. In this context, one of
the major directions for future research is related to exploring multimodal deep learning
approaches in the context of non-literal relations between images and texts.

The overall quantitative and qualitative evaluations of the results suggest that it
is possible to generate iconographically meaningful captions that capture not only the
depicted objects but also the art historical context and relation between subjects. However,
there is still room for significant improvement. In particular, the unbalanced distribution of
themes and topics within the training set results in often wrongly identified subjects in the
generated image descriptions. Furthermore, the generated textual descriptions are often
very short and could serve more as labels rather than captions. Nevertheless, the current
results show significant improvement in comparison to captions generated from artwork
images using models trained on natural image caption datasets. Further improvement can
potentially be achieved with fine-tuning the current model on a smaller dataset with more
elaborate ground-truth iconographic captions.
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Abstract: Cultural heritage images are among the primary media for communicating and preserving
the cultural values of a society. The images represent concrete and abstract content and symbolise the
social, economic, political, and cultural values of the society. However, an enormous amount of such
values embedded in the images is left unexploited partly due to the absence of methodological and
technical solutions to capture, represent, and exploit the latent information. With the emergence of
new technologies and availability of cultural heritage images in digital formats, the methodology
followed to semantically enrich and utilise such resources become a vital factor in supporting
users need. This paper presents a methodology proposed to unearth the cultural information
communicated via cultural digital images by applying Artificial Intelligence (AI) technologies (such as
Computer Vision (CV) and semantic web technologies). To this end, the paper presents a methodology
that enables efficient analysis and enrichment of a large collection of cultural images covering all the
major phases and tasks. The proposed method is applied and tested using a case study on cultural
image collections from the Europeana platform. The paper further presents the analysis of the case
study, the challenges, the lessons learned, and promising future research areas on the topic.

Keywords: cultural images; cultural heritage; artificial intelligence; computer vision; semantic
enrichment; image analysis; digital humanities; ontologies; deep learning

1. Introduction

The digitisation of cultural heritage resources has opened a new way of sharing and
utilising information that was previously offline. Many Galleries, Libraries, Archives,
and Museums (GLAMS) transform tangible and intangible heritage by converting the
physical resources into digital images, audios, videos, simulation models, and virtual
realities [1]. As part of the effort, cultural images that represent the culture and history of
societies become available in digital formats on the semantic web [2–4]. UNESCO defines
cultural heritage to encompass tangible heritage including movable (paintings, sculptures,
coins, and manuscripts), immovable (monuments, archaeological sites), and underwater
cultural heritage; and intangible heritage covering oral traditions, performing arts, and
rituals (http://www.unesco.org/new/en/culture/themes/illicit-trafficking-of-cultural-
property/unesco-database-of-national-cultural-heritage-laws/frequently-asked-questions/
definition-of-the-cultural-heritage/ (accessed on 15 April 2021)). Cultural heritage images
include paintings, photographs, drawings, and sketches that represent the culture and/or
history of a particular society or country [4]. Although cultural images are available em-
bedded on a physical medium, the massive digitisation process makes them accessible in a
digital intangible format. In this paper, digital cultural heritage images (we refer to them
as cultural images now onwards) represent a selection of digital images that reflect the
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culture of a society in the past and present. Since culture encompasses a wider range of
human aspects, it is difficult to fully understand and cover all these aspects. This paper
focuses on cultural images that are related to edible food.

Despite the growing number of cultural images, the availability and the maturity of
methods and tools to systematically exploit the content of the images in a structured and
meaningful way is still at its early stage [5,6]. Solutions that work well in other domains
(such as medical imaging) were not exploited until recently. Elsewhere, digital images
are widely represented by metadata related to the creators, creation time, title, and short
descriptions of the images. However, these representations lack contextual information
about the cultural content of the images. For this reason, the most valuable information
embedded in the images is not explicitly annotated and utilised.

In the light of recent advancements in AI, there are now greater opportunities for digi-
tal humanities to apply sophisticated AI solutions to enrich and exploit cultural images [7].
Natural language processing [8], image classification [9,10], Computer Vision (CV) [11],
and Virtual Reality (VR) are some of the areas that are gaining strong momentum and fast
adoption in digital humanities research. CV in particular has been used to analyse cultural
heritage collections including architectures, buildings, and other cultural artefacts. The
analysis includes object detection, classification, reconstruction, and semantic annotation.
Ontologies [12] have been proven to be crucial for semantic enrichment of cultural images.
Ontologies are used to consistently represent resources to be understood and interpreted
uniformly by humans and machines [13] in the Linked Open Data (LOD) space [14].

Despite the availability of technological solutions, the digital humanities domain
has not yet exploited the full benefits due to the lack of an end-to-end methodology that
supports the transformation of cultural images from mere digital entities to useful resources
for supporting scientific research. Unless addressed methodologically, the use of existing
technologies for searching, analysing, and annotating cultural images with such usable
content can be breathtakingly time-consuming. Moreover, the absence of ground truth
which would normally serve as a basis for the development and evaluation of AI solutions
is lacking. An interpretation template for both concrete and abstract concepts of cultural
images is missing [15]. Thus, a combination of manual and automatic annotation is widely
proposed to semantically enrich cultural images.

To date, CV and image analysis technologies focus on detecting concrete objects in
the images [15]. Although the technologies serve well for object detection, they are in their
early stage generating usable annotations for abstract and highly subjective aspects [16]
of cultural images. Moreover, most of the CV technologies are trained using images that
emerged from domains that have sufficient and quality data for the training and evaluation
of such systems [17].

This paper presents a three-phase methodology for semantic enrichment of cultural
images using AI technologies. Our methodology begins with the preparation phase which
enables us to understand the domain, acquire the target resources including the images,
ontologies, and vocabularies. The second phase presents tools and techniques for analysing
and annotating the content, training and evaluating the CV models, whereas phase three
focuses on deployment, exploration, and integration of active learning components in
the system. Our methodology follows a continuous and iterative development within
and across the phases. The proposed methodology is developed in the framework of the
ChIA project (ChIA—accessing and analysing cultural images with new technologies) [18]
where AI solutions are applied to solve problems in the digital humanities domain. The
contribution of the paper includes:

• An end-to-end methodology and case study for semantic enrichment of cultural images.
• A technique for building and exploiting CV tools for digital humanities by employing

iterative annotation of sample images by experts.
• A vocabulary for enriching cultural images in general and images related to food and

drink in particular.
• A benchmarking data set which could serve as a ground truth for future research.
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• A discussion of the lessons, challenges, and future directions.

The remaining sections of the paper are organised as follows. Section 2 introduces
the complex aspects of cultural images and how they are represented and analysed using
CV and semantic web technologies. Section 3 outlines our proposed methodology which
is organised into three phases: preparation, analysis, and integration and exploitation.
In Section 4, we present a case study where our proposed methodology is applied to
cultural images collected from Europeana and Europeana-local Austria. Following the
findings of the case study, the discussion of the results is presented in Section 5. Finally,
recommendations and future work are presented in Section 6.

2. State of the Art

Until recently, the focus of digital humanities research was on the conversion of
resources into a digital representation and publishing mainly in platforms supported
by the respective institutions [7,19]. However, the emergence of new image processing
technologies, deep learning, natural language processing, and semantic web technologies
provides new opportunities to enhance the organisation, interlinking and exploitation of
cultural heritage images. In this section, we summarise the advancements in these areas.

2.1. Computer Vision in Digital Humanities

Computer Vision applications such as image recognition, object detection, and classifi-
cation using large-scale digital images have gained significant traction in digital humanities
research. In this section, we review the advancements in Convolutional Neural Network
(CNN) in light of their application in the digital humanities domain.

Convolutional Neural Networks

CNN comprises different layers like convolution, pooling, and activation that help in
analyzing the patterns in an image. The convolution layers form a core building block of a
CNN where each layer consists of a set of K learnable filters, each filter having a width and
height. The output of each convolution operation produces an activation map which is a
2-dimensional output. The images are represented by pixels and mathematical operations
are used by CNN for analyzing the patterns embedded within the images. CNNs are built
using a sequence of convolution, pooling and non-linearity layers where convolution is
used to extract spatial features and pooling layers are used to reduce the spatial dimensions
of the image.

ImageNet is a benchmark data set having around 15 million labelled images that
represent 22,000 categories. ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
uses around 1.2 million images for training, 50,000 images for validation and 100,000 images
for testing. CNN architectures are designed to classify the images for ILSVRC and the
architectures have evolved. LeNet5 [20] was one of the simplest CNN architectures having
two convolution and three fully connected layers. The architecture in which the convolution
and pooling layers were stacked in LeNet5 turned a baseline for other CNN models.
AlexNet [21] was the next benchmark CNN architecture that was a much deeper and wider
version of LeNet5 and could learn much more complex objects and used Rectified Linear
Units (ReLU) as non-linearities. The architecture also saw the use of dropout regularisation
which is a technique in deep learning to reduce the effect of overfitting (models’ ability
to generalize on unseen images is suppressed) and also data augmentation techniques
which allows the CNN model to visualize the images by applying different properties
like translation, reflections, and patch extractions. The data augmentation technique is
particularly useful when there is minimum availability of images for training a CNN
model as it introduces new variations into the data set. AlexNet has eight layers with five
convolutional and three fully connected layers.

What changed between LeNet5 and AlexNet is the number of layers stacked to
design a CNN architecture. With the increase in depth of the layers in a CNN, there
was an improved chance of learning complex patterns and representations, and these
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patterns resulted in more complex architectures going much deeper and with more trainable
parameters. VGG (Visual Geometry Group) network [22] was designed and developed
by the researchers at Oxford University which has thirteen convolutional and three fully-
connected layers with ReLU as non-linearity. There are two variants of the VGG network,
VGG16, and VGG19 and use smaller 3 × 3 filters in each convolutional filter. These multiple
smaller filters can emulate the effect of larger receptive fields to represent complex features.
However, a network with such large depth also makes the model bigger, and VGG network
has 138 million trainable parameters.

ResNet50 [23] was trained on ImageNet data set with a 152 layer deep convolutional
neural network, which is eight times deeper than the VGG network. An ensemble of
the residual networks achieved a 3.57% error on the ImageNet test set. The experiments
were conducted to understand the use of residual learning and shortcut connections for
improving the generalizability of the model. Convolution and identity blocks form the
basic building block of ResNet50 and this CNN model has 26 M parameters.

Inception_V3 [24] is a variant in the inception family of pre-trained convolutional
neural networks, the architecture of which is reviewed by rethinking the inception ar-
chitecture to realize computational efficiency and fewer parameters. The Inception_V3
architecture is composed of factorized convolutions where the aim is to reduce the number
of connections/parameters without decreasing the performance/efficiency of the neural
network. The idea behind factorized convolutions is to replace a convolution of a larger
receptive field with smaller size convolutions. For example, one 5 × 5 convolution layer
can be decomposed into two 3 × 3 convolution layers, which further reduces the number
of parameters. Furthermore, a kind of dropout regularization technique, label smoothing
is used to prevent the logits from taking large values. Label smoothing also helps in
preventing the CNN model from overfitting.

With the evolution of CNN architectures, there has been a lot of research to reduce the
complexity of the model by making the models much deeper. In total, 1 × 1 (pointwise)
convolutions were adapted in the models using which the features across the feature maps
could be spatially combined with the effective use of very few parameters. Depthwise con-
volutions is one such idea that comprises two convolution operations, spatial convolution
followed by pointwise convolutions. This made the CNN networks lighter and faster due
to fewer trainable parameters and fewer FLOPs (floating-point operations). Xception [25]
is an improvement and an extension of the inception family of CNN architectures with few
architectural changes and effective as ResNet50 and Inception_V3. In Xception, depthwise
separable convolutions have replaced the inception modules. There is a performance
improvement in Xception due to the more efficient use of model parameters. The pointwise
convolutions are followed by depthwise convolutions, unlike the inception network. The
Xception architecture is divided into three flows, entry flow, middle flow, and exit flow.
The data is passed through the entry flow, and the middle flow is repeated eight times and
then the data is passed through the exit flow.

Machine Learning has been used in the space of digital humanities to classify images
belonging to cultural heritage in [10], where there is a comparison of different approaches
like multilayer perceptron, k-nearest neighbour, and CNNs. The classification was based
on concrete concepts that are well defined and the patterns within the image attribute to a
particular class/category. We aim to investigate and analyze how CNNs can be used for
abstract concepts (Sections 3 and 4). We have used three pre-trained models, Inception_V3,
ResNet50, and Xception to classify the images based on abstract concepts.

There are a few shortcomings of computer vision and deep learning algorithms used
for the classification of images. First, they are mostly trained to support general-purpose
applications which might not be effective for very specific domains. Second, the models
are trained to recognise well-known concrete objects, shapes, colours, etc. However, in the
cultural images, the interest encompasses the identification of abstract concepts represented
in the cultural images such as formality, appealingness, etc. Another shortcoming is that
the techniques used in designing these models work mathematically well, but are is often
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claimed as being black boxes where there are no set of rules for maximizing the results. This
is deeply concerning because it minimizes the opportunity to verify the decision-making
process while working towards the objectives.

2.2. Semantic Web Technologies

The semantic web refers to an extension of the World Wide Web with a goal of encoding
semantics to the data on the web to facilitate the interlinking of web resources and to
support machine-readable format. The semantic web uses technologies such as Resource
Description Framework (RDF (https://www.w3.org/TR/owl-features/ (accessed on 13
July 2021))) and Web Ontology Language (OWL (https://www.w3.org/TR/rdf-syntax-
grammar/ (accessed on 13 July 2021))) to facilitate encoding and processing meaning
for the consumption of human and computer agents [26]. Semantic web technologies
benefited from the development of large repositories (DBpedia [27], Europeana, and
swissbib (https://data.swissbib.ch/ (accessed on 10 May 2021))), multilingual and inter-
disciplinary vocabularies (BabelNet [28], WordNet [29]), specialised ontologies (CIDOC-
CRM [30], EDM [31]), and the LOD initiatives. Such repositories not only provide the
required vocabularies to enrich cultural images but also enable semantic interlinking
of the resources and creating links that can be exploited by both human and artificial
intelligent agents.

Previous research exploits the semantic web technologies in different forms. An
ontology model for narrative image annotation has been developed to annotate images in
the field of cultural heritage [14]. The authors developed an ontology model and a tool to
semantically annotate narrative images. However, the image annotation is done manually
being supported by the tool. Marcia [13] presented a review of semantic enrichment
efforts in Libraries, Archives and Museums (LAM). The application of semantic enrichment
in LAM includes the development of ontologies and semantic annotation of structured
and unstructured digital resources. Although this is a review paper, it identified several
semantic enrichment projects using ontologies, linked data and SPARQL queries to organise,
search and retrieve digital resources. Another effort towards accessing historical and
musical linked data is proposed in [32]. A web-based thin middleware that facilitates the
use of SPARQL queries to access digital humanities linked data sets on the web is proposed.
This paper presents a prototypical tool that allows the use of API-based access to enable
users to interact with the linked data without using SPARQL queries. Although this paper
focuses on the exploitation of semantic data sets, it also demonstrates the gap in the digital
humanities domain.

Currently, the major challenge in this area includes the coverage of specialised ontolo-
gies that represent domain-specific concepts to interpret and understand consistently [33].
Most of the ontologies do not always cater to the needs of new applications. In this regard,
although there is a continuous development of domain-specific ontologies and vocabularies
representing major cultural aspects, it requires a substantial effort to integrate the ontolo-
gies/vocabularies to make a significant impact. Another observed gap in the literature is
the slow adoption of the application of CV models to automatically detect and annotate
abstract cultural aspects. CV models are capable of detecting objects and generating labels
that can be fed with standard ontologies to generate labels represented by unique URIs to
ensure consistent representation of the images.

3. Methodology for Enhancing the Visibility of Cultural Images

The proposed methodology (Refer to Figure 1) is organised into preparation, analysis,
and integration and exploitation phases. The first phase focuses on acquiring, understand-
ing, and representing the target domain and its related data. The second phase deals with
the extraction of the content of the images using CV models and the last phase focuses
on the integration and exploitation of the results of previous phases to provide rich infor-
mation. The methodology follows an iterative and continuous improvement in each of
the phases.
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Figure 1. A three-phase-methodology for semantic enrichment of cultural images.

3.1. Phase-1: Preparation Phase

Some of the challenges faced in the semantic enrichment of cultural images include
the complexity and diversity of the collection [34]. Most often, there is no one-fits-all
solution that serves well all kinds of collections. Thus, a preparation phase that defines the
domain of interest, acquiring representative data, and selecting the appropriate vocabulary
is crucial to any digitisation and semantic enrichment project.

3.1.1. Domain Understanding

Cultural images represent tangible artefacts such as buildings, food, cloth, machinery,
and intangible artefacts such as festivities, language, music, and others [4]. Understanding
the domain and defining the boundaries of the collection at the very early stage enables the
selection and filtering of the target images and potential domain-specific ontologies. Given
a large collection of digital images, applying semantic enrichment on the full collection in
one step will result in a broader but shallow semantic annotation, whereas, focusing on a
particular topic enables a deeper and rich semantic representation.

Thus, the first step in this process is understanding the collection and defining the
topics that will be included in the semantic enrichment process. Focusing on the topic,
where the target images deal with a particular subject such as food, drink, farming, and
wedding. The additional dimension of the domain could include temporal information
such as ancient, medieval, or modern eras or artefacts from specific seasons. The type of
images including paintings, drawings, sketches, photographs could be used as additional
criteria to defining the domain and set the boundaries.

Although several GLAMs focus on specific subjects, and times, aggregation platforms
such as Europeana [34] expose very wide and diverse cultural images which pose additional
challenges. In such situations, this particular step becomes very crucial for narrowing
down the domain.

3.1.2. Image Acquisition

This step involves the process of acquiring cultural images that are relevant to the
selected domain in a digitised format. The image acquisition process could be specific
to collections that are already available on existing platforms or new ones. This step
becomes time-consuming particularly when narrow subject areas are selected. Even, with
the support of efficient search and retrieval tools, current platforms often do not provide
accurate and reliable results due to the quality of the associated metadata and the lack of
rich semantics. This step further requires the allocation of significant manpower to spare on
manual inspection and filtering. Image acquisition is done by domain experts in the topic
area or using specialised tools that facilitate the selection of images relevant to the domain.

3.1.3. Ontology Selection

Another crucial step in the preparation phase is the selection of suitable and rich
semantics. Ontologies provide the semantic meaning and representation of concepts of a
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domain [12]. Although generic ontologies representing widely applicable concepts can
be used, the main focus of this step is the identification and selection/composition of
ontologies that represent the concepts of interest of the selected domain both in its breadth
and depth.

The selection of ontologies that are suitable for the semantic annotation of cultural
images is often guided by the task at hand. There are several widely used criteria for se-
lecting the right ontologies for specific tasks [35]. Once candidate ontologies are identified,
often the decision would be selecting one or more of the identified ontologies or deciding
to create a new ontology from scratch based on functional and non-functional require-
ments. Some of the functional requirements to determine the availability and suitability
of ontologies include the coverage of the target concepts, the number of relationships
captured and represented, and the expressiveness of the ontology. The non-functional
requirements include a continuous maintenance and sustainability, availability for free
re-use, compatibility with the standard (e.g., ISO 25964 norm) and its support for linked
open data usage (similar to SKOS-Format).

3.2. Phase-2: Analysis Phase

This phase focuses on the automatic extraction of the content of the images. This
analysis is not a trivial task, particularly identifying abstract and subtle concepts from
cultural images is often difficult and subjective. However, we believe that a systematic
approach that integrates expert input and active learning methods can ensure the extraction
of concepts at least to the level of agreement observed between experts.

3.2.1. Analysis of the Content of Images

A semantic analysis of the target images preferably by several domain experts not
only provides a useful, and often an accurate representation of the content of the images,
but also exhibits the level of agreement, detail, and difficulty that involve in the semantic
enrichment process. Each image is analysed by experts and annotated using the selected
concepts. The annotation process of concrete concepts (e.g., fruit, animal, vehicle, etc.)
usually shows a higher inter-annotator agreement whereas annotation of abstract images
exhibits lower (sometimes random) agreement. To avoid the subjectivity of the annotation,
the analysis also includes the percentage of agreement exhibited between the annotators
by including the statistics as a probability along with the annotated concepts for each of
the images.

Processing the inter-annotator agreement between the annotators and understanding
the nature and level of agreement in the annotation process of the selected domain provides
crucial information in setting a benchmark for the envisioned automated annotation tool.
Where humans display a higher level of agreement, automated systems are also expected
to perform to the same level as human performance. Whereas, when the level of agreement
between human annotators becomes low, the implication is that there is a huge subjectivity
in the task which also requires to be captured in the automated systems. Due to the subjec-
tivity involved in labelling cultural images with abstract concepts, instead of generating
deterministic annotations, the area would benefit from fuzzy annotation [36] of images
representing some level of uncertainty [37].

3.2.2. Preparation of Training Data

For most of the tasks involving the preparation of training data for CV experiments, a
large collection of training data is required. However, with the emergence of pre-trained
models, this can be leveraged by reusing those pre-trained models in combination with a
small set of new annotations focusing on particular features of the images. This leverages a
significant portion of the task of collecting training data. However, for tasks that require
domain-specific and in-depth analysis of the contents of the images, finding sufficient
training data is still a major problem. What works for a general semantic annotation task
does not often work for domain-specific annotations due to the requirement of domain
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experts. Thus, the training data is often restricted to a few thousands of images. Methods
to tackle the problem include exploiting available domain experts to train annotators
to achieve a better understanding of the domain, engaging experts in a more creative
approach, or relying on existing metadata and NLP tools to see if any pattern from the
annotations of domain experts could be learned and generalised.

Existing CV models allow the use of previously trained models with a different set of
images to be used to train new and unseen images and categories. Although this improves
the learning rate of the algorithms, any successful CV tool still requires a large data set for
training, validation, and testing.

3.2.3. Training and Selection of Best Performing Model

Recently, several computer-based image annotation methods became available. Among
these CNN methods are gaining significant popularity [38,39]. The major considerations
in selecting these CNN methods depend on their accuracy in generating results that are
similar or superior to the accuracy achieved by human experts. In this phase, researchers
train several models to select either the best performing one or ensemble two or more
models to achieve higher performance. The selection is guided by the accuracy of the
models during the training, validation, and testing phases.

The next step after the selection of the best-performing model is to use the selected
model to label unseen images to obtain new annotations. These annotations will further
include the predicted probability. The model uses a confidence level (0–100%) and this
confidence level will be used to represent the confidence of the predicted annotation. The
resulting data from the annotation will generate a list of annotation triples for each of the
target images in a form of a CSV file (Example: Annotation.csv). A generic annotation
format as a file is presented in Table 1.

Table 1. Expected annotation of cultural heritage images with confidence.

Image_Name Label Confidence

https://image1 Concept 1 85%
https://image1 Concept 2 100%
https://image1 Concept 3 40%

. . . . . . . . .

3.3. Phase-3: Integration and Exploitation Phase

One of the important factors in semantic enrichment is the integration of new semantic
annotations into the existing semantic repositories. The integration process introduces new
metadata to further describe the target resource. In systems that already have semantic
repositories, the integration considers the legacy system and tries to integrate the new
metadata in the legacy system without breaking the consistency and the validity of the data.

For resources that do not have a legacy semantic repository, the task involves creat-
ing the metadata repository, which further includes the selection, implementation, and
deployment of a semantic repository. However, the selection and deployment of the reposi-
tories are out of the scope of this research paper. Further reading on the topic is available
in [40–43].

3.3.1. Integration of Results

The integration of large-scale semantic annotations generated by the annotation mod-
els involves the transformation of the generated annotation into a semantic representation.
This process involves the use of subject-predicate-object triples where the subject repre-
sents the unique identifier (URL) of the image. The predicate represents the relationship
between the subject and the object. The object is the predicted label that is generated by
the model. Where there are several annotations available for a target image, an s-p-o triple
will be generated for each of the annotations. A mapping of the annotation file into RDF
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format is carried out by using R2RML mapping [44]. A typical R2RML mapping converts
the input annotation into its equivalent RDF file using the following R2RML mapping
(https://github.com/yalemisewAbgaz/ChIA_Semantic_Annotation.git (accessed on 15
July 2021)).

@prefix <list all your prefixes here>.

<#TripleMap1> a rr:TriplesMap ;

rr:logicalTable [rr:tableName "PREDICTIONS"];

rr:subjectMap[rr:template "https://www.europeana.eu/en/item/{IMAGE_NAME}";

rr:class edm:webResource; ];

rr:predicateObjectMap[rr:predicate dc:description;

rr:predicate rdfs:comment;

rr:objectMap[rr:column "LABEL"; ];];

rr:predicateObjectMap[rr:predicate dc:description;

rr:predicate rdfs:comment;

rr:objectMap[rr:column "LABEL_CONF"; ];].

<#TripleMap2> a rr:TriplesMap ;

[rr:sqlQuery """ Select * from PREDICTIONS where LABEL =’Appealing’ """];

rr:subjectMap[rr:template "https://www.europeana.eu/en/item/{IMAGE_NAME}";

rr:predicateObjectMap[rr:predicate dc:subject;

rr:objectMap[rr:template "http://purl.obolibrary.org/obo/MFOEM_000039";];].

An important aspect of the integration process involves the inclusion of certainty in
the resulting semantic annotation. The area we are investigating involves a certain level
of subjectivity. To represent the level of subjectivity in our semantic annotation, we add
additional triples representing the annotation confidence as part of the description of the
image, however, the representation of confidence/fuzzy knowledge needs to be addressed
in the future.

Finally, the RDF data need to be integrated into the existing system. Although this
is usually the task of the aggregators to decide on how to consume the annotation, our
method is capable of generating the final data in a format specified by the user which
includes RDF, TURTLE, NQUAD, or JSON-LD.

3.3.2. Supporting Efficient Exploitation

This step focuses on the exploitation of semantic annotation by supporting efficient
aggregation and exploration of the data. There are different ways of achieving this. First, by
providing users new exploration paths (SPARQL Query Templates) to query the collections
using the newly added ontology concepts and relationships as used in [45,46]. Second,
by supporting visualisation of the collection using the new annotation as a criterion for
aggregating images as in [47]. Third, the use of interactive chatbots that are trained based on
the annotated data to support queries that are based on precompiled templates. Although
the first two options can be implemented directly on existing semantic repositories, the last
option requires further development of a chatbot that is trained on the data set [48,49].

4. Case Study

This case study is conducted in the framework of ChIA project (https://chia.acdh.
oeaw.ac.at/ (accessed on 15 July 2021)) with a clear aim of engaging and testing new AI
technologies against the background of a selected data set of food images for the benefit of
accessing and analysing cultural data. The case study is applied following our proposed
method (Section 3) which ensures the efficient representation of the data employing state-
of-the-art semantic web technologies (ontologies and thesauri) and efficient analysis of
the content using contemporary AI tools (CV). It presents a comprehensive methodology
for answering how cultural knowledge of abstract food topics can be gained in a more
structured and efficient method, and how this method is generalised to other areas in the
digital humanities domain.
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4.1. Phase-1: Preparation Phase

In the preparation phase, we identified potential platforms that contain huge collec-
tions of cultural images. The general Europeana platform partnering with Europeana-local
Austria, for accessing the images and the infrastructure, is selected. Europeana Local
is a network portal for local and regional cultural and scientific data. The focus of the
Europeana Local project is the coordination and integration of the heterogeneous data sets
at both national and local level. Furthermore, for supporting our endeavour, we focused on
technologies that are related to AI, particularly related to CV and semantic web technology.
We also considered semantic technologies that we would require to use along the several
stages of the semantic enrichment process.

4.1.1. Understanding and Defining the Domain

The subject of the images is restricted to the topic of food and drink. Some of the
rationales for selecting the topic of food includes, first, the availability of large collections of
images related to edible food from the Europeana database from which our project draws a
considerable quantity of cultural heritage images representing a great variety of cultural
content holders (such as museums, archives, libraries, botanic gardens) across Europe.
Second, the topic of food is a common topic, that all people can relate to. This includes
the kind of food we consume, how it is produced, the fashionable food—these facets are
all closely related to our political and economic history. Third, there is a huge diversity of
cultural information represented by food images. Even if defining a clear boundary of the
food topic is difficult, we restricted the topic to the production, preparation, presentation,
and consumption of edible food.

Three concepts and their complements were selected ranging from very objective and
concrete objects (fruit/non-fruit) to abstract (formal/informal) to very abstract and subjec-
tive (appealing/non-appealing) concepts. The definitions for the respective image labels
were composed of definitions available in monolingual dictionaries and encyclopedias, ac-
cording to the best fit for the overall theme of the project. In this step, we used a web-based
image annotation tool (MakeSense.AI (https://www.makesense.ai/ (accessed on 1 April
2021))) which provided the environment suitable for the tasks at hand. MakeSense.AI is a
simple, freely available and customisable tool that made it suitable for annotating images
by multiple annotators.

4.1.2. Image Acquisition

With the ChIA search platform established by Europeana-local Austria, we extracted
food-related images (Refer Figure 2 for sample images) including paintings, photographs,
and drawings. These images are extracted from the Europeana international platform that
allows users to search images that contain food-related terminologies [50]. We collected
more than 42,000 images in the first instance, grouped into several sub-folders representing
the time, country, format, theme, etc. of the images. The search platform further allows
the extraction of the digital images along with the associated metadata using RDF, XML or
JSON-LD format generated for each image.

We further filtered images that are not related to food and drink. Since the initial
selection of the sub-folders is based on food-related terminologies, the precision of the
search was low and resulted in images that are not related to food. For example, the search
apple resulted in several images of the Apple company and images related to Adam and
Eve (due to their association with the apple tree). Generic food image detection tools
were employed to further filter out images that are not related to food and drink [51]. For
the final selection, a manual inspection of candidate files was conducted by Europeana
local-At experts.
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Figure 2. Sample food images selected from Europeana.

4.1.3. Ontology Selection

To represent the concepts of food and drink efficiently, first we evaluated existing
ontologies that are relevant to the topic of the research which focuses on ontologies related
to food and drink as well as ontologies focusing on the cultural images. Finding ontologies
that satisfy both requirements is difficult. Ontologies such as FoodOn (https://github.
com/FoodOntology/foodon (accessed on 10 May 2021)), AGROVOC (http://www.fao.
org/agrovoc/ (accessed on 12 May 2021)) [52] food ontology and others represent the
topic of food and drink but lack the cultural representations, whereas ontologies such
as Iconclass (http://www.iconclass.org/help/outline (accessed on 10 May 2021)) and
Getty Art and Architecture Thesaurus (AAT) (https://www.getty.edu/research/tools/
vocabularies/aat/index.html (accessed on 10 May 2021)) represent the cultural aspect
along with some concepts related to food. Since any one of these ontologies does not fully
satisfy our requirements (see Section 3.1.3, we created a vocabulary that maps existing and
well-established food and art vocabularies to create an integrated food vocabulary focusing
on food in cultural and historical imagery.

The two cultural ontologies selected, Iconclass and the Getty AAT, are both widely
used vocabularies for describing image content in the arts. Iconclass was developed in
the early 1950s by Henri van de Waal, professor of art history at Leiden University. Today,
the thesaurus is maintained by the RKD Rijksbureau voor Kunsthistorische Documentatie
(Dutch Institute for Art History). Iconography is the art and science of recording themes
that frequently appear in works of art [53] and Iconclass is an iconographic classification
system that offers a hierarchically organised set of concepts to describe the content of
visual resources in representational Western art (ancient mythology and Christian religious
iconography) [54].

The Getty AAT was created in 1980 and is supported by the Getty Art History Infor-
mation Program since 1983 [55]. It is a large thesaurus that is continuously updated and
currently comprises about 71,000 records and about 400,400 terms, including synonyms
and related terms, relevant to the field of art (December 2020). The terms, descriptions, and
other information for generic concepts concern art, architecture, conservation, archaeology,
and other cultural heritage [56].

Some ontologies for food exist, but most of them have been developed for specific
applications related to food and lack cultural aspects. Targeted ontologies have been
developed for agriculture, certain popular products such as pizza (https://github.com/
owlcs/pizza-ontology (accessed on 10 May 2021)) and wine (https://www.w3.org/TR/
owl-guide/wine.rdf (accessed on 10 May 2021)), or in the context of culinary recipes,
cooking, kitchen utensils, or nutrition. The FoodOn ontology was among the first attempts
to build an ontology for broader applications. It includes nearly 30,000 terms about food
and food-related human activities, such as agriculture, medicine, food safety control,
shopping behaviour, and sustainable development [57].

In 2019, researchers created the FoodOntoMap [58] resource with the support of the
Slovenian Research Agency programme and the H2020 project SAAM. FoodOntoMap
consists of food concepts extracted from recipes, and thus foods that are edible for humans,
and for each food concept, semantic tags from four food ontologies were assigned. The four
ontologies used for matching were the Hansard corpus (https://www.english-corpora.
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org/hansard/ (accessed on 14 May 2021)), the FoodOn, OntoFood (https://bioportal.
bioontology.org/ontologies/OF/?p=summary (accessed on 12 May 2021)) and SNOMED
CT food (https://confluence.ihtsdotools.org/display/DOCEG (accessed on 14 May 2021))
ontologies. FoodOn is very comprehensive, and also provides semantics for food safety,
food security, agricultural and animal husbandry practices associated with food production,
culinary, nutritional and chemical ingredients and processes. As we only needed a selection
of FoodOn concepts (human edible foods) for ChIA, FoodOntoMap offered us a perfect
baseline for the ChIA vocabulary.

FoodOnToMap also provided us with an excellent base of matching concepts and we
used this resource to update and expand with exact and related matches to the Iconclass
and AAT ontology. Our goal was to add equivalence relationships between concepts
that occur in the selected different ontologies and refer to the same entity in the world.
The matching results from FoodOntoMap to AAT and Iconclass provided us with the
first version of an integrated vocabulary of culture-related food terms with 1003 concepts,
1508 exact, and 1543 related matches from all processed food and art ontologies.

The resulting vocabulary is available at (http://chia.ait.co.at/vocab/ChIA/index.php,
(accessed on 12 May 2021)) which provides details of food-related concepts and cultural
concepts merged to represent cultural and historical food and drink-related concepts.
Finally, the integrated ChIA food vocabulary was very well suited to search the Europeana
corpus for food-related images and thus facilitated the repeated creation of training sets for
data annotation.

4.2. Phase-2
4.2.1. Analysis of the Contents of the Images

Due to the diversity and richness of the format and contents of the images, we
conducted this phase in several iterations which we represented as rounds (Round-1,
Round-2, Round-3, and Round-4). Each round served as a pilot study to determine the
complexity of analysing the content of the images and generating high-quality annotation
data. In each round, we executed different tasks (Task-1, Task-2, Task-3). These tasks
represent only a fraction of potential concepts one can identify in the collection.

Task-1: involves the use of concrete food-related concepts. For the experiment, we
selected a concrete concept “Fruit” and analysed the images by considering the pres-
ence/absence of fruit in the image. Fruit is selected due to its wider presence in the image
collection and the concrete nature that makes it easier to be identified both by humans and
existing CV tools with higher accuracy.

Task-2: focuses on images that contain abstract and subtle concepts that represent rich
cultural aspects. In this task, we selected “Formal” and “Informal” concept categories and
analysed the images by considering the setting where the food is presented.

Task-3: also focuses on the abstract and subjective concept that deals with appealing
and non-appealing image categories. Definitions for images categorized as “Appealing”
or “Non-appealing” depend on the overall aim of the project, after careful consultation of
possible word definitions from online monolingual English dictionaries, such as Collins
English Dictionary online, the American Heritage Dictionary and a book called “The Art
Instinct,”. In this respect, in our project we define an image that is “Appealing” as “an
image that is a pleasure to look at”; an image that is “Non-appealing” is “an image that
is not a pleasure to look at”. We are aware that these are highly subjective and will vary
depending on other parameters such as cultural background, food preferences, etc.

The abstract categories, unlike the concrete concepts, embed some level of abstraction
that can not be formally detected by both humans and computers due to a high level
of subjectivity based on culture, dietary style, geographic location, and other states of
the annotators.

This case study particularly focused on Appealing and Non-appealing images. We
believe that the use of the Appealing/Non-appealing concept represents the majority of
the desired semantic enrichment of cultural images due to the following reasons. First, ap-
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pealingness can be defined based on the features of the images including colour, brightness,
orientation, etc. [59]. Second, appealingness is subjective and it varies from one society
to another society, in the time horizon and based on the dietary preference of individuals.
This makes the concept very representative of the topics of cultural images. Since modern
AI technologies are applied for cultural images, we wanted to explore how a CV model
would understand an image that represents abstract concepts.

4.2.2. Manual Annotation for Generating Training Data

During the preparation of the training data, selecting the initial sets of images for the
semantic annotation process and generating high-quality data for training a CV system
was crucial. The initial candidate images and the subsequent images used in the manual
annotation are selected by the Europeana-local Austria experts by evaluating the appropri-
ateness of the images for the task. During each round of tasks, new images that were not
used in the previous rounds were added.

Five annotators were involved throughout the process and some additional annotators
are introduced for further validation of the annotation results. The five annotators came
from different educational backgrounds (digital humanist, semantic web expert, computer
scientist, CV expert, student, and socio-linguist), geographic locations (Europe, South
America, Africa, and Asia), gender (two female and three male) and dietary preference
(vegans and vegetarians included). Although the diversity of the annotators is a certain
factor, we did not make any scientific selection of these annotators to base any further
analysis on the effect of their background on the annotation results. Table 2 presents
the Kappa agreement between five annotators in Round-1and Round-2 annotations. The
results in the left column represent Kappa agreements from Round-1 where the annotators
completed the tasks without consulting a formal definition of the annotation labels. The
results in the right column present the Kappa agreements after the annotators are provided
with a formal definition of all the categories. The effect of the presence of the formal
definition can be compared in detail between Round-1 and Round-2 Kappa agreements for
all three tasks.

Table 2. Inter-annotator agreement for Round-1 and Round-2 annotation.

Round-1 Round-2

A001 A002 A003 A004 A005 A001 A002 A004 A005 A006

Task-1: Fruit/Non-fruit.

A001 1.000 0.928 0.892 0.907 0.886 A001 1.000 0.943 0.928 0.913 0.912
A002 0.928 1.000 0.892 0.938 0.897 A002 0.943 1.000 0.912 0.866 0.865
A003 0.892 0.892 1.000 0.923 0.923 A004 0.928 0.912 1.000 0.913 0.881
A004 0.907 0.938 0.923 1.000 0.918 A005 0.913 0.866 0.913 1.000 0.897
A005 0.886 0.897 0.923 0.918 1.000 A006 0.912 0.865 0.881 0.897 1.000

Task-2: Formal/Informal.

A001 1.000 0.330 0.252 0.316 −0.091 A001 1.000 0.168 0.255 0.167 0.125
A002 0.330 1.000 0.210 0.306 0.153 A002 0.168 1.000 0.095 0.419 0.489
A003 0.252 0.210 1.000 0.051 −0.031 A004 0.255 0.095 1.000 0.089 0.208
A004 0.316 0.306 0.051 1.000 −0.028 A005 0.167 0.419 0.089 1.000 0.520
A005 −0.091 0.153 −0.031 −0.028 1.000 A006 0.125 0.489 0.208 0.520 1.000

Task-3: Appealing/Non-appealing.

A001 1.000 0.659 0.296 0.534 0.317 A001 1.000 0.472 0.526 0.336 0.569
A002 0.659 1.000 0.325 0.453 0.268 A002 0.472 1.000 0.565 0.454 0.366
A003 0.296 0.325 1.000 0.424 0.370 A004 0.526 0.565 1.000 0.439 0.386
A004 0.534 0.453 0.424 1.000 0.454 A005 0.336 0.454 0.439 1.000 0.205
A005 0.317 0.268 0.370 0.454 1.000 A006 0.569 0.366 0.386 0.205 1.000
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4.2.3. Round-1

The first round image selection resulted in identifying 392 cultural images. The
images were annotated by five annotators using Fruit/Non-fruit, Formal/Informal, and
Appealing/Non-appealing categories. Annotators were asked to annotate the images
without consulting any formal definitions of the categories. The resulting annotations
were analysed and an inter-annotator agreement was generated. A higher level of kappa
agreement (0.928) was achieved for Fruit/Non-fruit category and a fair agreement (0.317)
was achieved in the Formal/Informal category, whereas moderate (0.528) agreement was
achieved in the appealing/non-appealing category (Refer Table 2).

4.2.4. Round-2

In the second round, we formally defined all the concepts to investigate the effect of
having common semantics on the inter-annotator agreement. The definitions (refer Table 3)
were provided to the annotators before they started Round-2 annotation.

Table 3. The definitions used for Round-2 ChIA image classification.

Concept Definition

Fruit/Non-fruit

Fruit: a fruit is something that grows on a tree or bush and which contains seeds or a
stone covered by a substance that you can eat. (e.g., strawberry, nut, tomato, peach,

banana, green beans, melon, apple). Non-fruit: images that do not feature any type of
fruit (for fruit definition see above)

Formal/Informal
Formal: arranged in a very controlled way or according to certain rules; an official

situation or context. Informal: a relaxed environment, an unofficial situation or
context, disorderly arrangement.

Appealing/Non-appealing
Appealing: an image that is a pleasure to look at. A food image that is pleasing to the

eye, desirable to eat and good for food. Non-appealing: an image that is not a
pleasure to look at.

The effect of the formal definition for concrete concepts (Fruit/Non-fruit) demon-
strated little impact (0.928 → 0.922) as the concepts were clear and straightforward. How-
ever, the use of formal description of the abstract concepts showed a slight improvement in
the inter-annotator agreement by providing more clarity about the features the annotators
should consider during the annotation and enabled them to be more self-consistent For-
mal/Informal (0.31 → 0.37) and Appealing/Non-appealing (0.52 → 0.50) (note the decrease
for Appealing/Non-appealing category). The results of the inter-annotator agreements
are presented in Table 2. The definition for the Appealing/Non-appealing category was
adopted in Round-3 and Round-4.

4.2.5. Round-3

Based on the lesson learned in Round-2, we focused only on the Appealing/Non-
appealing category. We dropped Fruit/Non-fruit category because existing CV tools have
already achieved a higher level of accuracy in identifying fruits in digital images [51,60,61].
We further dropped the Formal/Informal category as it resulted in a lower agreement.
We took the Appealing/Non-appealing category as it represents an interesting aspect of
cultural images. In this round, all the annotations from all three rounds were used to train
a CV model.

From our image collection, we selected 1010 additional images and included them
in the annotation process. Of all the six annotators who participated in this round, five
annotators were familiar with the process and the sixth annotator was included upon
getting familiar with the process. The inter-annotator agreement between the annotators is
presented in Table 4. Apart from the kappa agreement, we generated the number of images
classified as appealing and non-appealing using majority voting methods. In this round,
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we further build a CNN classifier using the collected annotation data as a data set. We
used 830 images with greater than or equal to 66.7% vote. The annotation data was split
into training, validation, and test sets. We trained three CNN models and identified the
best performing model in Table 5. The Kappa agreement presented in the table shows that
there is a fair agreement between the annotators on Round-3 images. The resulting models
showed some promising results, however, the use of 830 images for training a model is
not sufficient to make a reasonable conclusion. Another concern of using this data set as a
basis for training a model was the difference between the number of Appealing and Non-
appealing images, such imbalance created a bias in the CNN model, and hence to address
this problem we selected additional 1079 images to run through Round-4 annotation.

Table 4. Inter-annotator agreement for Round-3 annotation of 1010 images (Appealing/Non-Appealing).

A001 A002 A004 A005 A006 A007

A001 1.000 0.293 0.335 0.330 0.164 0.274
A002 0.293 1.000 0.475 0.483 0.190 0.042
A004 0.335 0.475 1.000 0.648 0.156 0.082
A005 0.330 0.483 0.648 1.000 0.123 0.061
A006 0.164 0.190 0.156 0.123 1.000 −0.025
A007 0.274 0.042 0.082 0.061 −0.025 1.000

Table 5. Results of training deep learning models for image classification: Round-3

Model Training Accuracy Validation Accuracy Test Accuracy

Fine tuned ResNet50 83.51% 83.81% 80%
Fine tuned Inception_V3 92.61% 87.62% 90%

Fine tuned Xception 93.2% 88.1% 85.56%

4.2.6. Round-4

Round-4 annotation aimed to increase the number of images for training and to balance
the training data for the two categories (Appealing and Non-appealing). To achieve a high
quality of the data set compared to the previous annotation round, the threshold was set to
80%. To achieve this, another 1079 images were added and the inter-annotator agreement
is provided in Table 6. To build a balanced data set we reduced the number of images
belonging to the Appealing category.

Table 6. Inter-annotator agreement for Round-4 annotation of 1079 images (Appealing/Non-Appealing).

A001 A002 A004 A005 A006

A001 1.000 0.223 0.287 0.057 0.293
A002 0.223 1.000 0.245 0.090 0.163
A004 0.287 0.245 1.000 0.133 0.200
A005 0.057 0.090 0.133 1.000 0.085
A006 0.293 0.163 0.200 0.085 1.000

Once again, deep learning models were trained using 1010 images of which 545 images
belonged to the Appealing category and 465 images belonged to the Non-appealing cat-
egory. This image data was further divided into training, validation, and test set. There
was an improvement in the distribution of images belonging to both categories in the
final data. In combination with previously trained models on a huge data set, our image
collection provides a very good set of training data with a reasonable annotation accuracy.
The obtained data shows that compared to the human annotation, the accuracy of the CV
models is superior in that, first, it always generates a consistent label (we observed that
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human annotators were not always consistent between the rounds), and second, it can be
trained using active learning where the models learn by incorporating feedback from users.

In this round, we decided to include a confidence score of the CV models regarding the
predicted category of a target image. This is a significant step that enables us to incorporate
subjectivity as views related to a given culture are subjective. Detailed results of the CV
models implemented are provided in Table 7. The best performing model in our case is the
Fine-tuned Xception model which outperformed the other two models.

Table 7. Results of training deep learning models for image classification: Round-4

Model Training Accuracy Validation Accuracy Test Accuracy

Fine tuned ResNet50 87.47% 84.5% 83.85%
Fine tuned Inception_V3 81.68% 85.5% 88.46%

Fine tuned Xception 95.98% 88.5% 90.77%

Although the four rounds enabled us to raise the quality and quantity of the training
data sets, CV models benefit from large training data sets. As we demonstrated in our
experiment, generating a large and high-quality data set in the cultural domain requires a
huge resource, particularly the availability of expert annotators. However, our approach
provides a methodology that ensures the incremental generation of high-quality training
data set for domains with low resources.

4.3. Phase-4: Integration and Exploitation Phase

An important aspect of semantic annotation is the integration of the resulting annota-
tion into an existing repository in a form that is suitable for both humans and machines
to understand and interpret. The integration process first converts the resulting semantic
annotation into s-p-o triples as discussed in Section 3.3.1. Second, integrating the newly
generated triples into the existing semantic repository, and third, supporting efficient explo-
ration of the data and exploitation of the images by the end-users. Each step is discussed
as follows.

4.3.1. Moving towards Large Scale Annotation

The next step is the application of the trained models to predict the labels for the
new and unseen images. At this stage, we have identified and trained three models with
81.68% to 95.98% training accuracy, and 84.5% to 88.5% validation accuracy. An image
is classified and annotated with a particular class label by considering the average of the
confidence level of the majority voted class, a similar approach has been followed in [62].
The prediction of some selected images using the three models along with the confidence
scores is presented in Figure 3.

Figure 3. Cont.
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Figure 3. Sample images and their predicted categories using the three models. The images are cultural food images that are
taken from the Europeana platform. The predictions of the three models indicate the categories (Appealing/Non-appealing)
of the images along with the confidence score of each model.

4.3.2. Integration of Results

The annotations and their respective confidence scores are used to create s-p-o triples.
These triples are generated for every image and the resulting data can be integrated into
existing platforms following the preference of the aggregators. These data sets can be
pushed to any triple store (including Europeana-local Austria) once verified by the aggre-
gators. In this semantic interlinking stage, we link the images with concepts drawn from
an ontology related to emotion (http://www.ontobee.org/ontology/MFOEM (accessed
on 15 May 2021)) using a rdfs:type property. The images are also labelled as rdfs:type
edm:WebResource. We further add the labels as part of the metadata using dc:description
and rdfs:comment to represent it as a free-text account of the image resources. It is also
observed that without a specialised ontology, the accurate interlinking of the annotation
data with existing ontologies will not fully meet the objectives. Aggregators can link
the target images using relationships and concepts by including additional triples using
the R2RML mapping discussed in Section 3.3.1. For brevity, we present a snippet of the
generated triples below.

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> a

<http://www.europeana.eu/schemas/edm/webResource> ;

<http://www.w3.org/2000/01/rdf-schema#comment> "Appealing" , "Appealing:95.69" ;

<http://purl.org/dc/elements/1.1/description> "Appealing" , "Appealing:95.69" ;

<http://purl.org/dc/elements/1.1/subject> <http://purl.obolibrary.org/obo/MFOEM_000039> .

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> a

<http://www.europeana.eu/schemas/edm/webResource> ;

<http://www.w3.org/2000/01/rdf-schema#comment> "Appealing" , "Appealing:96.33" ;

<http://purl.org/dc/elements/1.1/description> "Appealing" , "Appealing:96.33" ;

<http://purl.org/dc/elements/1.1/subject> <http://purl.obolibrary.org/obo/MFOEM_000039> .

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24245> a

<http://www.europeana.eu/schemas/edm/webResource> ;

<http://www.w3.org/2000/01/rdf-schema#comment> "Non-appealing" , "Non-appealing:81.24" ;

<http://purl.org/dc/elements/1.1/description> "Non-appealing" , "Non-appealing:81.24" .

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24263> a

<http://www.europeana.eu/schemas/edm/webResource> ;

<http://www.w3.org/2000/01/rdf-schema#comment> "Appealing" , "Appealing:91.9" ;

<http://purl.org/dc/elements/1.1/description> "Appealing" , "Appealing:91.9" ;

<http://purl.org/dc/elements/1.1/subject> <http://purl.obolibrary.org/obo/MFOEM_000039> .

4.3.3. Supporting Efficient Exploration

The methodology further provided mechanisms for efficient exploration of the re-
sources by enabling exploration paths and templates. The following SPARQL templates are
introduced to support the explorations [47]. The exploration of the triples is not restricted to
the exploration paths, however becomes open and can be used for interlinking images with
selected abstract cultural queries. Sample SPARQL query for extracting Appealing (Aes-
thetically Pleasing) images by filtering the subject using rdf:type and dc:subject predicates
is shown below.
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prefix obo: <http://purl.obolibrary.org/obo/>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix dc: <http://purl.org/dc/elements/1.1/>

prefix edm: <http://www.europeana.eu/schemas/edm/>

select ?subject ?predicate ?object

where{

?subject ?predicate ?object.

?subject rdf:type edm:webResource.

?subject dc:subject obo:MFOEM_000039.

}

limit 15

A snippet of the output of the above query is given below. The result shows the
potential of the newly generated metadata to enrich, interlink and group images by tagging
them using one or more abstract cultural heritage concepts.

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> dc:subject obo:MFOEM_000039

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> dc:description Appealing

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> dc:description Appealing:95.69

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> rdfs:comment Appealing

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> rdfs:comment Appealing:95.69

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24255> rdf:type edm:webResource

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> dc:subject obo:MFOEM_000039

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> dc:description Appealing

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> dc:description Appealing:96.33

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> rdfs:comment Appealing

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> rdfs:comment Appealing:96.33

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24264> rdf:type edm:webResource

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24263> dc:subject obo:MFOEM_000039

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24263> dc:description Appealing

<https://www.europeana.eu/en/item/2059511/data_foodanddrink_24263> dc:description Appealing:91.9

The application of our method to represent and annotate cultural images using abstract
concepts is scalable when additional cultural concepts are used to annotate the target
images. Depending on the requirements, it supports the extraction of images linked to
external repositories.

5. Discussion

Even if the individual phases and steps proposed in our methodology are not new,
this paper presents a novel and efficient combination of the steps that fit the purpose.
The application of the methodology in the case study on Europeana cultural heritage
images exposed the problems and the challenges not only from the methodological but
also technical and practical perspectives. This paper implements the methodology, first
by applying ontologies to consistently represent concepts, second, using CV tools to
enrich cultural images by training models that can be applied to large data sets, third, by
enabling existing systems to efficiently support user requirements, and finally integrating
subjectivity and fuzziness into the metadata. Lessons learned from each of the contributions
are summarised below.

Firstly, although several ontologies and vocabularies are available, the selection and
composition of ontologies that represent the knowledge base of cultural and historical
aspects are not fully explored. The composition of cultural heritage concepts from existing
generic or specific ontologies is difficult and deserves a proper investigation. It is evident
from our case study that several cultural aspects (including family status, economic status,
style, nutrition, etc.) are embedded in the images which need to be formally defined
using vocabularies. As an example, we searched Linked Open Vocabulary (LOV (https:
//lov.linkeddata.es/dataset/lov/ (accessed on 15 July 2021))) repository for concepts
representing appealingness and attractiveness defined concerning food images. Our search
resulted in a few concepts that are only related to computer software quality features.
All these aspects can not be covered in a single ontology, therefore the integration of
several existing ontologies and the development of new ones is crucial. In addition to the
vocabularies, domain-specific relationships between the images and the concepts need to
be defined. We came across cases where the annotated features of the images can not be
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embedded using existing generic relations. In this regard, ontologies play a major role in
defining rich relationships (owl:ObjectProperty) between cultural concepts.

Secondly, CV tools have provided significant breakthroughs in detecting objects.
Although they lag in identifying exceptional cases. Our case study demonstrates that they
can be effectively exploited. The case study expanded the state of the art by including the
detection of abstract concepts that are very subjective and difficult to quantify. We are aware
that there are significant omissions of exceptional cases by the AI and ML algorithms [63]
and tried to reduce the bias by incorporating confidence scores. We are also aware that the
kappa inter-annotator agreement may cause an issue in the interpretation of the agreements
as poor, slight, fair, moderate, substantial, and strong [64,65]. One limitation of our method
is that the use of Kappa agreement and its interpretation which may not be suitable for
mission-critical tasks such as in medical applications [66,67]. To reduce the effect of outlier
cases, we embedded the confidence levels of the predicted annotations. After all, for such
abstract concepts, the experiment also showed that the inter-annotator agreements are low
or moderate compared to that of concrete concepts. Round-2 experiment enabled us to
identify some interesting aspects of cultural image enrichment. Concrete concepts can be
annotated by existing image recognition tools with high accuracy [68], whereas abstract
concepts are fuzzy even when the annotation is done by human experts.

Thirdly, the digital humanities domain, particularly cultural heritage could benefit
from existing semantic web and AI domains in several ways. However, our experiment
also showed that there is a lot of work that needs to be done to ensure the quality during
the digitization process of cultural heritage resources. The integration of new annotations
on top of existing annotations should not introduce an inconsistent interpretation of the
target resources.

Finally, our research contributes additional data sets to the research community. The
data set includes more than 2000 images that are annotated by five annotators. This data
set can be used as a benchmark for evaluating future models and also serve as a starting
point for future crowd annotation. Our food vocabulary is another contribution to the
domain in that it amalgamates food concepts from different sources into one.

6. Conclusions

We presented a methodology for semantic enrichment of digital cultural heritage
images covering the domain of cultural food images. A three-phase methodology is
proposed and a case study following the methodology is implemented in the context of
a 2-year ChIA project. The proposed methodology provides a structured approach that
enables digital humanities experts to identify, enrich and publish their cultural heritage-
related collections using LOD formats. It also provides guidance and directions on how
existing artificial intelligence tools such as CV and semantic web technologies can be
combined and exploited efficiently in the digital humanities domain. This paper explored
the introduction of abstract and subjective concepts into the proposed semantic enrichment
process and identified the challenges and opportunities that exist in the emerging AI-based
technologies. We believe that the confidence of the CV model can be continually improved
by incorporating active learning steps in the methodology. In future work, we will integrate
an active learning component, as discussed in [15], where users will be provided options
to rate the output while the model continually improves its performance by learning from
the feedback. Another future research will be contributing towards an ontology of abstract
cultural concepts and the preparation of high-quality data sets that can be used in similar
research settings.
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Abstract: The paper structure of historical prints is sort of a unique fingerprint. Paper with the
same origin shows similar chain line distances. As the manual measurement of chain line distances
is time consuming, the automatic detection of chain lines is beneficial. We propose an end-to-end
trainable deep learning method for segmentation and parameterization of chain lines in transmitted
light images of German prints from the 16th Century. We trained a conditional generative adversarial
network with a multitask loss for line segmentation and line parameterization. We formulated a fully
differentiable pipeline for line coordinates’ estimation that consists of line segmentation, horizontal
line alignment, and 2D Fourier filtering of line segments, line region proposals, and differentiable
line fitting. We created a dataset of high-resolution transmitted light images of historical prints with
manual line coordinate annotations. Our method shows superior qualitative and quantitative chain
line detection results with high accuracy and reliability on our historical dataset in comparison to
competing methods. Further, we demonstrated that our method achieves a low error of less than
0.7 mm in comparison to manually measured chain line distances.

Keywords: line segmentation; line detection; line parameterization; generative adversarial networks;
Fourier transform; differentiable line fitting; chain lines; paper structure; historical prints

1. Introduction

Since ancient times, paper has played a prominent role as a carrier for information.
In the 16th Century, the only available paper was laid paper, which was manually produced
in paper mills. Wood, old rags, and other ingredients were stamped and macerated in
water into a pulp of fibers. Then, the paper was scooped by hand using a mold with a wire
sieve made of closely spaced “laid” wires and perpendicular more widely spaced “chain”
wires. After scooping the fibers from the vat, the remaining fibrous web on the wire sieve
forms the paper [1]. On its surface, the grid pattern of the wires is imparted, as can be seen
in the transmitted light photographs in Figure 1a,c,e,g. In addition, a watermark can be
embedded into the paper structure as a seal of quality and origin by placing bent metal
wires on the sieve. Concerning laid paper, the distances between the parallel chain lines
vary across the sieve, but are approximately 25–30 mm [2]. For every mold, the chain lines
form a unique pattern. Papers created by the same mold show a similar pattern of chain line
distances. The impression of the sieve provides a unique conclusion to identify the mold.
Images formed by the same mold are called moldmates [1]. Papers from different origins
have different line sequences. Characteristics of the paper structure, such as the shape
and placement of watermarks, chain line intervals, and the density of laid lines provide
possibilities for computer vision to support art historical research. Apart from analyzing
the motif itself, e.g., concerning the degree of wear, also, chain line distances can give hints
about dating, author assignment, and the chronology of writings and prints [3]. For further
refinements, chain line intervals can be analyzed in combination with the density of laid
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lines, watermarks, and histological findings on the fibers. Traditionally, chain line distances
are manually measured by art technologists during the examination and visual inspection
of the individual prints, which is very time consuming.

In this paper, we propose an end-to-end trainable method for segmentation and pa-
rameterization of chain lines in transmitted light images of German prints from the 16th
Century. Our method exploits the power of deep neural networks in combination with
prior knowledge from image and signal processing. We trained a conditional generative
adversarial network by using a multitask loss for line segmentation and line parameteriza-
tion. For the estimation of line coordinates, we designed a fully differentiable pipeline that
comprises the steps of line segmentation, horizontal alignment and 2D Fourier filtering of
line segments, line region proposals, and differentiable line fitting. For training and evalua-
tion, we created a dataset of high-resolution transmitted light images of historical prints
for which we manually annotated line coordinates. Our ChainLineNet learns to detect the
chain lines with high reliability even if there are interferences caused by watermarks or if
the lines are partly occluded by the ink of the artwork; cf. Figure 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. The paper structure in historical prints consists of chain and laid lines, which are perpen-
dicular to each other. Examples using transmitted light photography (a,c) for vertical and (e,g) for
horizontal chain lines are shown. Our ChainLineNet effectively detects the chain lines (b,d,f,h);
even so, these are partly occluded by the ink of the artworks. Detail images: (a) Hans Sebald Beham,
Martin Luther as Junker Jörg, Woodcut, Germanisches Nationalmuseum Nürnberg, H1933; (c) Un-
known, Martin Luther, Woodcut, Landesbibliothek Coburg, P I 6/12; (e) Lucas Cranach the Elder,
Martin Luther as Junker Jörg, Woodcut, Klassik Stiftung Weimar, Bestand Museen, DK 181/83; (g) Hans
Baldung Grien, Martin Luther as Augustinian monk, Woodcut, Klassik Stiftung Weimar, Herzogin
Anna Amalia Bibliothek, Aut. Luther 1520:64; images captured by Thomas Klinke; all rights reserved
by the respective museum/library.

2. Related Work

To digitize the paper structure of historical prints, several imaging techniques, e.g., beta-
radiography, transmitted light photography, transmitted infrared, or thermography, can be
applied. Transmitted light photography is a very fast application, inexpensive, and very
easy to handle. Hence, additional image processing might be necessary due to interferences
such as ink that remain visible. These interferences disappear in the images using the other
modalities, but especially beta-radiography is only applicable for large institutions due to
the necessary technical and financial input.

2.1. Segmentation and Detection of Chain Lines

There are a few approaches for the automated segmentation of chain lines of paper.
Van der Lubbe et al. [3] assumed straight and vertical chain lines for chain line detection in
radiography. They used uniform filtering and morphological opening and closing operators
as the preprocessing and applied a vertical projection to detect the vertical lines as peaks of
the projection. Atanasiu [4] proposed a software measurement tool to analyze the density
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of laid lines by using the bidimensional discrete fast Fourier transform. In a preprocessing
step, an emboss edge-enhancing high-pass filter reduces noise; however, the orientation
of the laid lines has to be determined beforehand. Van Staalduinen et al. [5] presented an
approach for moldmate matching using the specific paper features of chain and laid lines.
The lines are detected by means of the shadow around the chain lines. The sequences of line
distances for moldmate matching are computed with a combination of the discrete Fourier
transform and Radon transform based on the assumption of straight and equidistant lines.
Hiary et al. [2] focused on the digitization, extraction, and graphical representation of
watermarks. They used backlight scanning and image processing such as mathematical
morphological operations to automatically extract and convert watermarks to graphical
representations. In an intermediate step, they rotated the image to upright the chain lines
by means of chain line detection and Radon transform. Johnson et al. [1] published a
method to find moldmates among Rembrandt’s prints in beta-radiographs. Their chain
line pattern matching approach uses unique chain spacing sequences in the paper structure
rather than watermarks to identify the moldmates. Based on the assumption of straight,
but not necessarily parallel lines, they rotated the chain lines to the vertical and obtained
the angle of rotation by applying the Radon transform. Finally, the lines were detected
using a vertical filter and the Hough transform.

In our previous work [6], we trained a convolutional neural network (CNN) to au-
tomatically segment the chain lines in artworks. Therefore, we employed the UNet [7]
as the network architecture and proposed two postprocessing steps by employing either
random sample consensus (RANSAC) [8] or the Hough transform to locate and parameter-
ize complete lines in the binarized segmentation results. First, we determined the global
orientation of the lines (horizontal or vertical) based on applying the Sobel filter. For the
RANSAC-based approach, we extracted line segments from the segmentation mask using
connected components and filtered out too small or falsely oriented line segments. The
remaining line segments were grouped using agglomerative clustering, and RANSAC
was utilized to fit lines through each group of points. For the Hough-based approach, we
applied Hough voting on the segmentation masks and used agglomerative clustering to
merge line predictions.

2.2. Segmentation and Detection of Lines

Looking more generally at the task of line detection in the fields of wireframe detection
and semantic and horizon line detection, deep learning has been extensively applied.

Wireframe detection is the detection of line segments and junctions in a scene to
describe all kinds of geometric objects or architectures [9]. Huang et al. [9] proposed
a two-stage method that predicts heat maps for the line segments and junctions using
two CNNs and combines junctions and lines by applying several postprocessing steps.
To train their method, they created a large wireframe benchmark dataset. Zhou et al. [10]
designed an end-to-end trainable L-CNN that directly predicts vectorized wireframes.
The L-CNN consists of a stacked hourglass network as the feature extraction backbone,
a heat-map-based junction proposal module, a line-sampling module that generates line
candidates based on the predicted junctions, and a line verification module, for which
the line of interest (LoI) pooling layer is utilized, which compares line segments with
corresponding positions in the feature maps of the backbone. The holistically-attracted
wireframe parser (HAWP) [11] was built on the L-CNN and introduced a novel line segment
reparameterization by using a holistic attraction field map that assigns each pixel to its
closest line segment. Lin et al. [12] proposed in their deep Hough transform line priors
method to combine line priors with deep learning by incorporating a trainable Hough
transform block into a deep network and performing filtering in the Hough domain with
local convolutions. For the application of line detection on the Wireframe datasets, they
used the L-CNN [10] and the HAWP [11] as backbones and replaced the hourglass blocks
with their Hough transform blocks.
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For the application of semantic lines or horizon detection in natural scenes, Lee et al. [13]
proposed the VGG16-based semantic line network (SLNet) with line pooling layers, which
combines line detection as a multitask loss of classification and regression. The deep
Hough transform method by Zhao et al. [14] incorporates the Hough transform into a
one-shot end-to-end learning pipeline by using a CNN encoder with feature pyramids for
feature extraction and performing the line detection in Hough space. Nguyen et al. [15]
transferred the ideas from object detection to design the LS-Net for power line detection
that uses a CNN with two heads: one for classification and the other for line regression.
Brachmann et al. [16] combined neural guidance with differentiable RANSAC (DSAC) [17]
for horizon line estimation.

2.3. Contour Detection Using Generative Adversarial Networks

Another related group to our chain line segmentation method consists of contour detec-
tion methods using generative adversarial networks (GANs), as the chain lines and contours
have a similar shape, and hence, both are sparse segmentation tasks. Contour detection
datasets usually contain multiple ground truth annotations per image by different anno-
tators, since the amount of annotated lines differs between the annotators depending on
the subjective decision of the individual annotator whether a contour is important enough
to be drawn. ContourGAN [18] uses a conditional GAN with a VGG16-based generator
network for contour detection in natural images. The adversarial loss is combined with a
binary cross-entropy content loss for which the set of ground truth contour images is linearly
merged into a single ground truth image. Art2Contour [19] utilizes a conditional GAN
with a ResNet-based generator network for salient contour detection in prints and paintings.
Art2Contour is trained with a combined loss of the cGAN loss and a task loss consisting
of multiple regression terms, which separately treat the single ground truth images. Our
method was based on the network architecture used by Art2Contour, but we introduced a
novel multitask loss to simultaneously learn line segmentation and line parameterization.

3. Method

Our proposed method for the segmentation and detection of chain lines in transmitted
light images of historical prints is illustrated in Figure 2. In this section, we introduce the
network architecture, the end-to-end trainable pipeline, the loss functions, and inference.

Figure 2. ChainLineNet: End-to-end trainable segmentation and parameterization of chain lines using a conditional
generative adversarial network-based approach. The generator network is trained using a multitask loss consisting of
the segmentation task and the line parameterization task. We propose a fully differentiable pipeline for line coordinates’
estimation that is composed of line segmentation, primary line orientation prediction, horizontal alignment of the lines,
2D Fourier filtering, line region proposals, and line fitting with differentiable sample consensus (DSAC) [17]. Detail
transmitted light image (input patch): Unknown, Compilation sheet with round portraits, Woodcut, Kupferstichkabinett,
Staatliche Museen zu Berlin, 44-1884; captured by Thomas Klinke; all rights reserved by the respective museum.
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3.1. Chain Line Segmentation Network Architecture

Our chain line segmentation network is a conditional generative adversarial network
(cGAN) [20] consisting of a generator and discriminator network. Our generator network
is the ResNet-based [21] encoder–decoder architecture that was introduced for style trans-
fer [22], having ResNet blocks in the bottleneck, and in contrast to UNet [7], it does not
have skip connections between the encoder and decoder [19,23]. As the discriminator
network, we used a regular global GAN that has been shown to be effective for contour
detection [19,23].

3.2. End-to-End Training of Line Segmentation and Parameterization

We jointly trained the generator network for the tasks of line segmentation and
line parameterization in an end-to-end fashion by only using differentiable modules and
functions inspired by known operator learning [24], while the discriminator network only
evaluates the segmentation output against the ground truth segmentation mask.

In generative adversarial networks (GANs), the generator network and the discrim-
inator network are alternately optimized. The generator G is fed with a random noise
vector z to generate the output image y, while the discriminator D is trained to distinguish
real images from fake images. In the case of conditional GANs, the output of the generator
y is additionally conditioned to an input, e.g., an image x. Thus, the generator is trained to
generate realistic-looking images that are directly related to the input images. The objective
function of cGAN is formulated as:

LcGAN(x, y, z) = min
G

max
D

Ex,y[log D(x, y)]

+Ex,z[log (1 − D(x, G(x, z))] .
(1)

The cGAN principle can be directly applied to the line segmentation task. The genera-
tor G learns to produce precise line segmentation masks y ∈ R

s1×s2 for the input artwork
images x ∈ R

s1×s2 , encouraged by the discriminator D, which learns to detect those fake
ones. The cGAN loss is generally combined with a task loss. We extended this approach by
also including the line coordinates’ estimation process for the generator task loss:

LG(x, y, g, h1, · · · , hm, p, q) = LcGAN(x, y) + λ0 LTask(y, g, h1, · · · , hm, p, q) , (2)

where g ∈ R
s1×s2 is the ground truth segmentation mask, {h1, · · · , hm} the line hypotheses

sampled for DSAC, p ∈ R
M×4 the predicted line coordinates, and q ∈ R

N×4 the ground
truth lines coordinates with {xi

0, yi
0, xi

1, yi
1} being the start and end points of the lines.

Our multitask loss is defined as the weighted sum of the line segmentation task and line
parameterization task:

LTask(y, g, h1, · · · , hm, p, q) = λBCELBCE(y, g) + λDICELDICE(y, g)

+ λDSACLDSAC(h1, · · · , hm, q) + λMLELMLE(p, q),
(3)

where λBCE, λDICE are the weights for the binary cross-entropy loss (BCE) and Dice loss
(DICE) for the segmentation task and λDSAC, λMLE are the weights for the DSAC loss [17]
and the mean line distance error loss (MLE) for the line parameterization task.

3.3. Line Parameterization Pipeline and Line Loss Functions

The prediction of the line parameters is subdivided into the parts of line segmentation,
prediction of the main line orientation to horizontally align the lines, 2D Fourier filtering,
line region proposals, and line fitting with differentiable sample consensus (DSAC) [17],
as illustrated in Figure 2. As chain lines are nearly parallel to each other and have similar
distances between them, we used the 2D fast Fourier transform (FFT) to find the main
orientation of the lines in the images. The 2D Fourier representation of the segmentation
mask shows the response to the dominant direction of the lines.
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As can be seen in the centered 2D Fourier magnitude image in Figure 3, there is one
line in the center with an orientation orthogonal to that of the chain lines in the image
domain. Hence, we extracted the k = 500 points with maximal intensity in the centered
magnitude image and fit a line through them using DSAC [17]. Then, we computed
the polar angle of the line θ f t and determined the rotation angle θrot to align the lines
horizontally by:

θrot =

{
90◦ − ‖θ f t‖ θ f t < 0,
90◦ + ‖θ f t‖ otherwise

(4)

Next, we rotated the predicted segmentation masks, the ground truth segmentation
masks, and the ground truth line coordinates; see Figure 4. The segmentation mask can
show some line segments of different orientations, for instance due to watermarks, as
these have the same intensity as chain lines in the transmitted light images. To reduce
nonhorizontal line segments, we applied a vertical filter H(u, v) in the Fourier domain to
the rotated segmentation masks F(u, v) with u, v ∈ {−N/2, N/2}:

G(u, v) = F(u, v)H(u, v), H(u, v) =

{
1 ‖v‖ < τ,
0 otherwise

(5)

As convolution with a filter kernel in the time domain is elementwise matrix multipli-
cation in the Fourier domain, we can simply multiply the 2D Fourier image with a matrix
that has only zero elements except for a vertical band of width 2τ with τ = 10 pixels at
the center.

To determine the number of lines and their rough positions, we computed the hori-
zontal profile by summing up all intensity values of the filtered segmentation mask along
the x-direction (see Figure 5). All segmented lines correspond to peaks in the profile. We
applied 1D max-pooling to the profile to obtain all local maxima. To filter out all local
maxima that most likely do not belong to the horizontal lines, we applied intensity and
spatial distance thresholding. As prior knowledge, we considered that chain lines have
approximately the same distances; hence, we first selected the peaks that have a distance of
at least 0.75 of the maximal distance of all peaks and then refined the selection by keeping
only those that have at least 0.6 of the maximal distance of the selected peaks.

(a) Predicted mask (b) 2D fast Fourier transform magnitude

Figure 3. The 2D fast Fourier transform of the predicted segmentation mask in (b) shows a centered
line whose orientation is orthogonal to the dominant orientation of the line segments in (a) the
predicted segmentation mask.
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(a) Rotated predicted mask (b) 2D FFT magnitude

(c) 2D filter kernel (d) Filtering result

Figure 4. Two-dimensional filtering in Fourier domain to reduce nonhorizontal lines. In (a), the
horizontally aligned predicted segmentation mask, in (b), its 2D FFT magnitude, in (c), the 2D filter
kernel, and in (d), the filtering result of the rotated predicted segmentation mask is shown.

Figure 5. Selection of peaks in the horizontal profile for one example image (length of 2000 pixels)
with 7 chain lines from the validation set. The peaks are marked with an orange dot, and the final
selection of peaks after distance thresholding are additionally marked with a green cross. Then, a
bounding box is placed at the center of each selected peak.

A horizontally oriented bounding box [0, W, yi − Dthresh, yi + Dthresh] is defined for
each of the refined peak positions yi using the previously computed threshold Dthresh as
the length to both sides. In the case that no peak position can be found or can be selected,
we defined one bounding box for the entire image.

Next, we extracted for each bounding box the maximal kp points within the bounding
box region of the segmentation mask to use them for line fitting with DSAC. DSAC [17]
formulates the hard hypothesis selection of RANSAC as a probabilistic process that allows
end-to-end learning. The application of DSAC for line fitting (implementation by Brach-
mann et al.: https://github.com/vislearn/DSACLine (accessed on 14 July 2021)) consists
of the following steps:

1. Line hypothesis sampling: Based on the predicted point coordinates z, m line hy-
potheses {h1, · · · , hm} are randomly sampled by choosing for each hypothesis two
points of the point set. Each hypothesis predicts an estimate for the line parameters,
the slope a and intercept b of the line equation y = ax + b;
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2. Hypothesis selection: A scoring function s(h) computes a score for each hypothesis
based on the soft inlier count. The hypothesis hj is selected according to the softmax

probabilistic distribution P(j; z) =
exp(s(hj))

∑k exp(s(hk))
;

3. Hypothesis refinement: The hypothesis is refined by using the weighted Deming
regression for line fitting [25], which is a special case of the total least-squares that
accounts for errors in the observations in both the x- and y-direction, for which we
used the soft inlier scores as the weights.

The DSAC loss function, which we incorporated into our task loss function, is de-
fined as:

LDSAC(h1, · · · , hm, q) = ∑
k

(
exp(s(hj))

∑k exp(s(hk))
‖|p(hk)− q‖|2

)
, (6)

where p(hk) refers to the predicted start and end points for the line hypothesis hk and q

refers to the ground truth start and end points. The start and end points of the lines are
determined as the intersection with the image borders.

Since we applied DSAC to each bounding box region separately and the bounding box
positions are determined automatically based on the segmentation output of the network,
we needed to assign one ground truth line to each bounding box. We distinguish three
cases: (1) If there is only one ground truth line inside the bounding box region, this one is
selected. (2) If the region contains multiple ground truth lines, we chose the longest line.
(3) Lastly, if there is no ground truth line inside the region, we selected the line with the
minimal distance of its start and end points to the borders of the region.

The DSAC loss minimizes the distance of the predicted lines to the closest ground
truth lines; however, if too few bounding boxes are predicted, some ground truth lines will
not be included. To account for these false negatives, we defined a second line loss term,
the MLE loss, that picks for each ground truth line the closest predicted line of the best
hypothesis hj and computes the mean error:

LMLE(p, q) =
1
N ∑

i
min(Di), D = cdist(p, q), (7)

where D ∈ R
N×M is the Euclidean distance between each pair of the two collections of row

vectors of p ∈ R
M×4, q ∈ R

N×4, and Di is the ith row of the distance matrix.

3.4. Inference of Chain Line Segmentation and Parameterization Network

Since the network architecture is fully convolutional, the complete images are fed
to the GAN and are processed in the same manner as for training, resulting in the line
predictions of the rotated image. Hence, to obtain the final line coordinate predictions of
the original image, the inverse rotation is applied to the predicted lines.

4. Experiments and Results

In this section, we describe our dataset for chain line detection in historical prints,
we evaluate the performance of our method for line segmentation and line parameteriza-
tion, and compare it to the state-of-the-art methods and to manual line measurements.

4.1. Chain Line Dataset

The dataset consists of high-resolution grayscale transmitted light images of prints
from the 16th Century, including portraits of Martin Luther and contemporaries. For
our dataset, we selected in total 95 images in which the chain lines were recognizable by
the human eye. All images contain chain lines that are either horizontally or vertically
distributed at approximately the same distances.

We manually annotated the chain lines in the images by selecting two points on each
line and fitted a straight line through them, as illustrated in Figure 6a,b. We used the x
and y coordinates of the start and end points, as well as the corresponding mask images
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(Figure 6c) that contain the segmented ground truth lines as labels for training, validation,
and testing.

(a) Transmitted light (b) Superimposed lines (c) Ground truth mask

Figure 6. Illustration of the line annotation (a) in the transmitted light images of historical prints
by (b) selecting start and end points of the lines and (c) computing the corresponding mask images.
Image: (a) Daniel Hopfer, Martin Luther with the doctor’s cap, Etching, Germanisches Nationalmuseum
Nürnberg, K722; captured by Thomas Klinke; all rights reserved by the respective museum.

The sharp edges of the annotated lines in the mask images are smoothed by applying
a Gaussian filter with a standard deviation of 3. The images are divided into 35 images for
training, 12 images for validation, and 48 images for testing. The images were acquired
at a very high resolution with image sizes up to 5000 × 6500 pixels. Since chain lines are
very fine structures that are difficult to detect, the highest possible image resolution is
recommended, but is limited by hardware constraints. To be able to feed the entire image
at once for inference using one Nvidia Titan XP GPU (NVIDIA Corporation, Santa Clara,
CA, USA), we scaled all images to the maximal length of 2000 pixels, which is sufficient
for the chain line detection task. To train the neural network, we split the scaled images of
the training and validation set into image patches of size 768 × 768 pixels with an overlap
stride of 384. The image patches contain between one and five lines per patch. Patches
that do not contain any line were excluded from training. Further, we applied offline
data augmentation (see below) to double the number of training and validation patches,
resulting in 1150 training and 370 validation patches.

4.2. Implementation Details

Our method was implemented using the PyTorch framework, and the end-to-end
training and inference both ran completely on the GPU. The generator network (9 ResNet
blocks) and the discriminator network were trained from scratch for 100 epochs with early
stopping by using the Adam optimizer, a learning rate of η = 0.0002 with linear decay to 0
starting at Epoch 50, momentum (0.5, 0.999), a batch size of 2, λ0 = 1000 [19], λBCE = 0.5,
λDICE = 0.5, λDSAC = 0.5, and λMLE = 0.5. For DSAC, m = 64 hypotheses are sampled
based on kp = 500 points from each bounding box per patch or kp = 1300 points from each
bounding box per image.

Prior to training, we augmented our training and validation set in an offline manner
with rotated images, i.e., rotations by 90 degrees were applied to produce the same number
of vertical and horizontal lines. During training, we applied online data augmentation
(color jittering, blurring, horizontal and vertical flipping, and rotation with angles uni-
formly sampled in the range of (−20, 20) degrees) only to the training set, and not to the
validation set.

4.3. Evaluation of Line Segmentation

In this section, we compare different architectures for the task of chain line segmen-
tation using pixelwise precision, recall, and the Dice coefficient (i.e., pixelwise F1-score)
of the predicted segmentation results and ground truth segmentations. To compute the
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metrics, we applied a threshold of 0.5 to binarize the segmentation masks. For this experi-
ment, all networks were trained only for the segmentation task (i.e., λBCE = λDICE = 0.5,
λDSAC = λMLE = 0). We compared the UNet (with feature dimension F = 16; 1, 942, 289
parameters, and F = 64; 31, 036, 481 parameters) and the ResNet-based encoder–decoder
architecture (F = 64; 11, 370, 881 parameters) alone and plugged into the generative ad-
versarial training as generator networks. As summarized in Table 1 for the validation
set, all network architectures achieve higher recall than precision. Precision is highest for
the small UNet-GAN and recall for the ResNet-GAN, directly followed by the ResNet
encoder–decoder (ResNet-E-D). The Dice coefficient, which combines the pixelwise preci-
sion and recall into one measure, is also highest for the ResNet-GAN and second best for
the ResNet encoder–decoder. Concerning the Dice coefficient, UNet seems not to profit
from adversarial training in our specific case. Based on these observations, we chose the
ResNet-GAN architecture for our end-to-end trainable line segmentation and detection
method.

Table 1. Evaluation of pixelwise precision, recall, and the Dice coefficient for chain line segmentation
of the validation set with 12 images. Best scores are highlighted in bold.

Method Precision Recall Dice Coefficient

UNet (F = 16) 0.4046 0.5070 0.4464
UNet (F = 64) 0.3958 0.5034 0.4392
UNet-GAN (F = 16) 0.4283 0.4787 0.4437
UNet-GAN (F = 64) 0.3829 0.4591 0.4108
ResNet-E-D (F = 64) 0.3855 0.5935 0.4628
ResNet-GAN (F = 64) 0.3920 0.6001 0.4696

4.4. Evaluation of Line Detection and Parameterization

For the evaluation of line detection and parameterization, we compared the number
of predicted lines using precision, recall, and the F1 score. Therefore, we counted the
number of true positives, false positives, and false negatives based on a pixel distance
threshold of 50 by computing the distance between the start and end point of the predicted
lines and ground truth lines that were manually annotated on the digital images. As a
metric, we computed the mean pixel differences of chain line positions w. r. t. the ground
truth line coordinates only for the true positive lines. Furthermore, we compared the
automatically computed chain line distance intervals with the manual measurement of an
art technologist, who has measured the chain line distance intervals directly on the physical
paper during his art technological examination. To convert the predicted pixel distance
intervals into distance intervals in millimeters such that these can be directly compared to
the physical measurements, we scaled the images based on the manually measured width
of the artwork. For the chain line distance comparison, we only considered images in
which both the number of true positive lines and the total number of detected lines differs
only at most by about 2 lines from the number of reference lines by the art technologist. We
used cross-correlation to automatically find the best position to arrange the two distance
intervals as they can be shifted against each other if one or two lines are not detected. Then,
we computed the mean absolute difference of the overlap of both intervals.

4.4.1. Ablation Study

We evaluated the influence of our ChainLineNet using all task loss terms in contrast
to setting individual terms to zero. First, we compare the line detection results in Table 2
for the test set. By using our novel multitask loss consisting of the segmentation losses
(BCE+DICE) and the line parameterization losses (DSAC+MLE), we achieved a gain in the
F1 score of about 1% in comparison to training the network only for the segmentation task
(ChainLineNet-2) and of about 2% in comparison to the end-to-end training only by using
the BCE+DICE+DSAC losses (ChainLineNet-1). The DSAC loss alone does not consider
false negatives, hence resulting in a lower recall.
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Table 2. Evaluation of precision, recall, and the F1 score of chain line detection for the test set with 48 images. The number
of true positives (TP), false positives (FP), and false negatives (FN) are determined based on a distance threshold of 50 pixels
between the predicted and ground truth lines. Best scores are highlighted in bold.

Number
TP FP FN

Precision Recall F1 Score
of Lines (%) (%) (%)

Ground truth (manually annotated) 342 342 0 0 100.00 100.00 100.00
Reference (manually measured) 339 339 0 3 100.00 99.12 99.56

PatchDeepHough 528 307 221 35 58.14 89.77 70.57
PatchUNet-Hough 228 175 53 162 76.75 51.93 61.95
PatchUNet-RANSAC 325 305 20 32 93.85 90.50 92.15

ChainLineNet-1 (BCE+DICE+DSAC) 323 315 8 27 97.52 92.11 94.74
ChainLineNet-2 (BCE+DICE) 330 322 8 20 97.58 94.15 95.83
ChainLineNet (BCE+DICE+DSAC+MLE) 333 327 6 15 98.20 95.61 96.89

Secondly, we compared the difference of the line positions between the predicted
and ground truth lines in Figure 7 for the test set. The line error was only calculated for
true positives. The mean line error of true positives lies between 7 and 8 pixels with the
lowest error for ChainLineNet-2 (only segmentation), followed by ChainLineNet (all losses)
and ChainLineNet-1 (segmentation + DSAC). However, the results are very close, and the
number of true positives of the ChainLineNet is a bit higher, which could be a reason for
the slightly higher pixel error of almost 0.6 in comparison to ChainLineNet-2.

Lastly, we compare in Figure 8, for the test set, the distance intervals for the images
that contain a suitable number of lines with the reference distance measurements. For this
comparison (see Figure 8b), only one image was excluded, giving a success rate of about
98% for all versions of ChainLineNet. The mean difference of the distance intervals
(Figure 8a) is below 1 mm for all three variants, whereas ChainLineNet (all losses) achieves
the best result, directly followed by ChainLineNet-1 (with DSAC) and ChainLineNet-2
(only segmentation) being a bit inferior.
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Figure 7. Comparison of the mean pixel line error between the true positive predicted line coordinates
and the ground truth line coordinates for the test set. Our ChainLineNet (complete task loss) is
compared to the end-to-end training with the task losses BCE+DICE+DSAC (ChainLineNet-1),
to the training using only the segmentation task losses BCE+DICE (ChainLineNet-2), and to the
competing methods.
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Figure 8. Comparison of (a) the mean difference of distance intervals (MDDI) between the predicted distances and the
reference distances (manually measured by an art technologist) and (b) the success rate of images for which the distance
intervals were compared. Our ChainLineNet (complete task loss) is compared to the end-to-end training with the task losses
BCE+DICE+DSAC (ChainLineNet-1), to the training using only the segmentation task losses BCE+DICE (ChainLineNet-2),
to the competing methods, and to the ground truth on the test set.

4.4.2. Comparison to the State-of-the-Art

In this section, we measure the performance of our ChainLineNet compared to com-
peting methods. We retrained the UNet architecture (F = 16) of our previous work [6],
which was implemented in TensorFlow, for our renewed historical print dataset for 30
epochs using a learning rate of η = 0.0001 and a batch size of 5. During inference, the UNet
was executed patchwise, and two postprocessing methods were applied to the reassembled
segmentation output [6], which we refer to as PatchUNet-RANSAC and PatchUNet-Hough.
Secondly, we trained the deep Hough transform line prior method [12] for our line detec-
tion task, which we abbreviate as PatchDeepHough. The method was originally developed
for wireframe detection; thus, some modifications were necessary to make it applicable
to our task. We used their offline data augmentation, which quadrupled the number of
training patches, and trained the network from scratch for 50 epochs with early stopping
using a learning rate of η = 0.0004 and a batch size of 4. Due to the high complexity of the
voting matrix needed for the Hough transform, we were not able to increase the input size
of the network for inference, such that we used the default setting of 512 × 512 and applied
the method patchwise. We added the following postprocessing steps to filter, merge, and
extend line segments to full lines: First, we computed the dominant orientation of the line
segments, i.e., horizontal or vertical. Then, we excluded all line segments with the opposite
orientation and whose Hough score was below 0.7. For the remaining line segments, we
walked along the perpendicular direction of the line segments and grouped the segments
within a neighborhood of 20 pixels. For each group, we used linear least-squares regression
to fit a line through the start and end points of the line segments. In the case of a vertical
main orientation of the lines, we switched the x and y coordinates for line fitting to obtain
more accurate results.

The quantitative results for line detection and parameterization for the test set con-
sisting of 48 images and in total 342 correct lines are summarized in Table 2 for precision,
recall, and the F1-score. ChainLineNet outperformed all machine learning methods with
an F1-score of 96.9 %, precision of 98.2 %, and recall of 95.6 %, being close to manual mea-
surements, which obtain an F1-score of 99.6 %. In comparison to PatchUNet-RANSAC,
which also performs quite well, we achieved an absolute gain of about 4 % in the F1-score.
PatchDeepHough detects too many false positive lines; thus, it only achieved poor preci-
sion and a clearly lower F1-score of 70.6 %. PatchUNet-Hough detects distinctively less
correct lines, resulting in a low recall and the lowest F1-score of 62 %.

The comparison for the pixel mean line error of true positive lines, depicted in Figure 7,
shows that all methods predict the line coordinates comparably accurately with an error
between 7.2 and 8.3 pixels. The result of ChainLineNet with 327 out of 342 correct lines is
the most reliable, as most lines were used to compute the mean line error.
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Next, we compare the chain line distance intervals to the reference measurements in
Figure 8. The chain line distance intervals computed using ChainLineNet for 47 out of
78 test images only differ by 0.68 mm from the reference intervals, which is an excellent
result, when we consider that the comparison of the manually annotated ground truth
lines and the reference lines differs by 0.63 mm. Plausible reasons for the measurement
inaccuracies are the conversion of the images of the artworks to millimeters, the fact that
the location where the line distances are measured can differ between manual and dig-
ital measurements, and that chain lines are approximated as straight lines. The other
tested machine learning methods show less precision for the distance interval computa-
tion. PatchUNet-Hough has a slightly higher mean difference, but only less than half of
the images are suitable for the comparison (see Figure 8b). PatchUNet-RANSAC has a
slightly lower success rate than ChainLineNet with their mean difference lying just above
1 mm. PatchDeepHough performs worst. With only a success rate of 27 % of the images,
their mean difference is above 2 mm.

The qualitative results are shown in Figure 9 for one example with horizontal chain
lines and in Figure 10 for an example with vertical chain lines. For both figures, the trans-
mitted light image of the artwork, the ground truth segmentation mask, and the ground
truth lines superimposed on the artwork are depicted in the first row. Figures 9d and 10d
show the raw segmentation outputs of the ChainLineNet that contain line segments and
noise. The noise is reduced in Figures 9e and 10e by 2D Fourier filtering. Here, the fil-
tered mask images are binarized for visualization, because only the points with maximal
intensity are selected for DSAC. In Figures 9f and 10f, the final line parameterization
results of ChainLineNet are shown, which are in high accordance with the ground truth
lines. Figures 9g and 10g show the binarized segmentation output of PatchUNet that is
also composed of line segments and noise. Two different postprocessing approaches
are applied to the PatchUNet output. PatchUNet-Hough (Figures 9h and 10h) detects
clearly fewer lines than PatchUNet-RANSAC (Figures 9i and 10i). The grayscale heat
map of PatchDeepHough in Figures 9j and 10j shows many clear lines, but also areas of
uncertainty. Due to the patchwise application, line segments are separately fitted in each
patch (Figures 9k and 10k), where the Hough voting score is indicated by the line segment
color ranging from low (blue) to high (red). PatchDeepHough predicts clearly too many
lines, as can be seen in Figures 9l and 10l. Despite the watermark that is included in the
paper structure of Figure 10a, all methods are able to detect chain lines that interfere with
the watermark.

Overall, our method achieves excellent performance, but there are some limitations.
In the case of bent wires, our method cannot determine the exact chain line, but only an
approximation, because we assumed straight lines for our model. Difficult images, where
the chain lines are densely covered with ink, the paper is in an abraded condition, or when
lines in the border area of the image are only partly depicted, can lead to false positives or
false negatives. Under very difficult image conditions, the application of DSAC can lead
to inaccurate line predictions, e.g., if a too large bounding box size is determined by our
method or the estimated rotation angle is not accurate enough. In these cases, the bounding
box might contain line segments or noise that do not belong to the actual line. Difficult
cases need to be reviewed by art technologists, but our method achieves a high success
rate such that it can greatly support the art technologists in their analysis of the artworks.
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(a) Transmitted light (b) Ground truth mask (c) Ground truth

(d) ChainLineNet mask (e) ChainLineNet filtered mask (f) ChainLineNet

(g) PatchUNet mask (h) PatchUNet-Hough (i) PatchUNet-RANSAC

(j) PatchDeepHough mask (k) PatchDeepHough segments (l) PatchDeepHough

Figure 9. Qualitative results of the chain line detection for one historical print containing horizontal chain lines. Transmitted
light image: Hieronymus Hopfer, Martin Luther as Augustinian monk with Holy Spirit as a dove, Etching, British Museum,
London, 1845-0809-1486; Photo © Thomas Klinke, courtesy of the Trustees of the British Museum; all rights reserved by the
respective museum.
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(a) Transmitted light (b) Ground truth mask (c) Ground truth

(d) ChainLineNet mask (e) ChainLineNet filtered mask (f) ChainLineNet

(g) PatchUNet mask (h) PatchUNet-Hough (i) PatchUNet-RANSAC

(j) PatchDeepHough mask (k) PatchDeepHough segments (l) PatchDeepHough

Figure 10. Qualitative results of the chain line detection for one historical print containing vertical chain lines and a
watermark. Transmitted light image (detail): After Lucas Cranach the Elder, Martin Luther as Junker Jörg, Collotype,
Kunstsammlungen der Veste Coburg, H.0064; captured by Thomas Klinke; all rights reserved by the respective museum.

5. Conclusions

We presented an end-to-end trainable deep learning method for chain line segmen-
tation and parameterization in historical prints. In the experiments, we showed that our
ChainLineNet achieves the best visual and quantitative chain line detection results for
our historical print dataset. Moreover, the comparison of the automatically computed
chain line distance intervals with the manually measured distance intervals by an art
technologist shows a low error of less than 0.7 mm. The high accuracy and reliability of our
method give the opportunity to automatically compare the chain line distances of a larger
number of historical prints in order to draw conclusions about the origin of the papers.
Thus, our automatic deep-learning-based method can be very beneficial to support the art
historical and technological research of museums and libraries. Future work could build on
the automatic chain line detection and distance computation to extract chain line distance
patterns and perform a similarity search to identify moldmates.
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