91 research outputs found

    Stato dell’arte nella sintesi di texture sonore

    Get PDF
    The synthesis of sound textures, such as rain, wind, or crowds, is an important application for cinema, multimedia creation, games and installations. However, despite the clearly defined requirements of naturalness and flexibility, no automatic method has yet found widespread use. After clarifying the definition, terminology, and usages of sound texture synthesis, we will give an overview of the many existing methods and approaches, and the few available software implementations, and classify them by the synthesis model they are based on, such as subtractive or additive synthesis, granular synthesis, corpus-based concatenative synthesis, wavelets, or physical modeling. Additionally, an overview is given over analysis methods used for sound texture synthesis, such as segmentation, statistical modeling, timbral analysis, and modeling of transitions

    Perceptual Evaluation of Synthesized Sound Effects

    Get PDF
    Sound synthesis is the process of generating artificial sounds through some form of simulation or modelling. This article aims to identify which sound synthesis methods achieve the goal of producing a believable audio sample that may replace a recorded sound sample. A perceptual evaluation experiment of five different sound synthesis techniques was undertaken. Additive synthesis, statistical modelling synthesis with two different feature sets, physically inspired synthesis, concatenative synthesis, and sinusoidal modelling synthesis were all compared. Evaluation using eight different sound class stimuli and 66 different samples was undertaken. The additive synthesizer is the only synthesis method not considered significantly different from the reference sample across all sounds classes. The results demonstrate that sound synthesis can be considered as realistic as a recorded sample and makes recommendations for use of synthesis methods, given different sound class contexts

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed

    Non-Standard Sound Synthesis with Dynamic Models

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This Thesis proposes three main objectives: (i) to provide the concept of a new generalized non-standard synthesis model that would provide the framework for incorporating other non-standard synthesis approaches; (ii) to explore dynamic sound modeling through the application of new non-standard synthesis techniques and procedures; and (iii) to experiment with dynamic sound synthesis for the creation of novel sound objects. In order to achieve these objectives, this Thesis introduces a new paradigm for non-standard synthesis that is based in the algorithmic assemblage of minute wave segments to form sound waveforms. This paradigm is called Extended Waveform Segment Synthesis (EWSS) and incorporates a hierarchy of algorithmic models for the generation of microsound structures. The concepts of EWSS are illustrated with the development and presentation of a novel non-standard synthesis system, the Dynamic Waveform Segment Synthesis (DWSS). DWSS features and combines a variety of algorithmic models for direct synthesis generation: list generation and permutation, tendency masks, trigonometric functions, stochastic functions, chaotic functions and grammars. The core mechanism of DWSS is based in an extended application of Cellular Automata. The potential of the synthetic capabilities of DWSS is explored in a series of Case Studies where a number of sound object were generated revealing (i) the capabilities of the system to generate sound morphologies belonging to other non-standard synthesis approaches and, (ii) the capabilities of the system of generating novel sound objects with dynamic morphologies. The introduction of EWSS and DWSS is preceded by an extensive and critical overview on the concepts of microsound synthesis, algorithmic composition, the two cultures of computer music, the heretical approach in composition, non- standard synthesis and sonic emergence along with the thorough examination of algorithmic models and their application in sound synthesis and electroacoustic composition. This Thesis also proposes (i) a new definition for “algorithmic composition”, (ii) the term “totalistic algorithmic composition”, and (iii) four discrete aspects of non-standard synthesis

    Interactive physically-based sound simulation

    Get PDF
    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation behind obstructions, reverberation, scattering from complex geometry and sound focusing. This is enabled by a novel compact representation that takes a thousand times less memory than a direct scheme, thus reducing memory footprints to within available main memory. To the best of my knowledge, this is the only technique and system in existence to demonstrate auralization of physical wave-based effects in real-time on large, complex 3D scenes

    ICASE/LaRC Symposium on Visualizing Time-Varying Data

    Get PDF
    Time-varying datasets present difficult problems for both analysis and visualization. For example, the data may be terabytes in size, distributed across mass storage systems at several sites, with time scales ranging from femtoseconds to eons. In response to these challenges, ICASE and NASA Langley Research Center, in cooperation with ACM SIGGRAPH, organized the first symposium on visualizing time-varying data. The purpose was to bring the producers of time-varying data together with visualization specialists to assess open issues in the field, present new solutions, and encourage collaborative problem-solving. These proceedings contain the peer-reviewed papers which were presented at the symposium. They cover a broad range of topics, from methods for modeling and compressing data to systems for visualizing CFD simulations and World Wide Web traffic. Because the subject matter is inherently dynamic, a paper proceedings cannot adequately convey all aspects of the work. The accompanying video proceedings provide additional context for several of the papers

    Technology, Science and Culture

    Get PDF
    From the success of the first and second volume of this series, we are enthusiastic to continue our discussions on research topics related to the fields of Food Science, Intelligent Systems, Molecular Biomedicine, Water Science, and Creation and Theories of Culture. Our aims are to discuss the newest topics, theories, and research methods in each of the mentioned fields, to promote debates among top researchers and graduate students and to generate collaborative works among them

    Evaluation of Synthesised Sound Effects

    Get PDF
    PhDThe current fi eld of sound synthesis research presents a range of methods and approaches for synthesising a given sound. Sounds are synthesised to facilitate interaction or control of a sound, to enable sound searching through parametric control of a sound or to allow for the creation of an arti ficial nonexistent sound. In all of these cases, the ability of a synthesis technique to reproduce a desired sound is integral. This thesis uses an audio feature representation of audio to produce a sonically inspired taxonomy, based entirely on the sonic content of sound, which enables a user to search through a large set of sounds without the need for understanding of context. This provides an approach for using audio features to compare similarity between different audio effect samples in a sound effects library. This thesis then develops approaches for evaluation of synthesised sound effects. A large scale methodic subjective evaluation of synthesised sound effects is performed, evaluating a range of different synthesis methods in a range of different sound classes or sonic contexts. It is then identi fied that there are cases where synthesised sound effects can be considered as realistic as a recorded sample. An objective evaluation approach is then presented. Audio feature vectors are used to measure the relative objective similarities between two samples, and this is correlated with a perceptual evaluation of sound similarity. These objective measures are then compared based on the perceptual evaluations. Both evaluation approaches are then demonstrated in a case study of aeroacoustic sound effects, where these subjective and objective evaluation techniques are demonstrated for a speci fic case. There is no single best approach to synthesising sound effects. More consistent and rigorous evaluation methodologies will lead to a better understanding as to the advantages and disadvantages of each method. The outcome of this research suggests that further consistent perceptual and objective evaluation within the sound effect synthesis community will lead to a better understanding as to the successes and failings of existing work and thus facilitate an enhancement of current sound synthesis technologies.This work was supported by the EPSRC grant EP/M506394/1
    corecore