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Abstract

The current field of sound synthesis research presents a range of methods and approaches

for synthesising a given sound. Sounds are synthesised to facilitate interaction or control

of a sound, to enable sound searching through parametric control of a sound or to allow

for the creation of an artificial nonexistent sound. In all of these cases, the ability of a

synthesis technique to reproduce a desired sound is integral.

This thesis uses an audio feature representation of audio to produce a sonically inspired

taxonomy, based entirely on the sonic content of sound, which enables a user to search

through a large set of sounds without the need for understanding of context. This

provides an approach for using audio features to compare similarity between different

audio effect samples in a sound effects library. This thesis then develops approaches for

evaluation of synthesised sound effects.

A large scale methodic subjective evaluation of synthesised sound effects is performed,

evaluating a range of different synthesis methods in a range of different sound classes

or sonic contexts. It is then identified that there are cases where synthesised sound

effects can be considered as realistic as a recorded sample. An objective evaluation

approach is then presented. Audio feature vectors are used to measure the relative

objective similarities between two samples, and this is correlated with a perceptual

evaluation of sound similarity. These objective measures are then compared based on

the perceptual evaluations. Both evaluation approaches are then demonstrated in a

case study of aeroacoustic sound effects, where these subjective and objective evaluation

techniques are demonstrated for a specific case.

There is no single best approach to synthesising sound effects. More consistent and rig-

orous evaluation methodologies will lead to a better understanding as to the advantages

and disadvantages of each method. The outcome of this research suggests that further

consistent perceptual and objective evaluation within the sound effect synthesis commu-

nity will lead to a better understanding as to the successes and failings of existing work

and thus facilitate an enhancement of current sound synthesis technologies.
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Chapter 1

Introduction

1.1 Motivation

Sound effects are commonly defined as non-musical, non-speech sounds used in some

artificial context, such as theatre, TV, film, video games or virtual reality. The purpose

of a sound effect is typically to provide diegetic context to some event or action, that

is, a sound that exists within the narrative. Sound effects can often be the linchpin of

a soundscape, and the use of sounds and different styles of sound will vary drastically

depending on the medium’s design and format, among other factors.

Sound synthesis is the technique of generating sound through artificial means, either in

analogue or digital or a combination of the two. Synthesis of sound effects is typically

performed for one of three reasons:

• to create something that does not exist as a recorded file, such as creating new

artificial sci-fi sounds;

• to repair damaged sound files, where a segment of the sound file has been lost;

• to facilitate some interaction with or control of a sound, whether for a performance

or direct parameter-driven manipulation of an auditory effect; or

• to facilitate a sound designer searching for a suitable sound within a synthesis

space rather than through a sound effects library.

1



Chapter 1 Introduction 2

Within the context of this thesis, sound synthesis is considered to be the process of

computer generation of audio. Synthesised sound effects can be applied to a range

of sound design fields including film, TV, video games, virtual reality and augmented

reality [Merer et al., 2013].

A clear overview of synthesis research is presented by Misra and Cook [2009a]. The

aims of current sound synthesis research include producing realistic sounding or con-

trollable systems for artificially replicating real world sounds. The primary focus is

either on implementation efficiency [Horner and Wun, 2006], interfacing and interaction

control [Nordahl et al., 2010] or producing accurate models of the physical environ-

ment [Bilbao and Chick, 2013]. Evaluation is vital, as it helps us understand both

how well our synthesis method performs, and how the community can improve these

systems. Without a rigorous evaluation method, one cannot understand if a synthesis

method performs as required or where it fails. There are many different methods of

evaluating a sound synthesis system. Examples of various evaluation methods being

employed in literature, include: evaluation of controls and control parameters [Merer

et al., 2013; Rocchesso et al., 2003; Selfridge et al., 2017b]; human perception of differ-

ent timbre [Aramaki et al., 2012; Merer et al., 2011]; sound identification [Ballas, 1993;

McDermott and Simoncelli, 2011]; sonic classification [Gabrielli et al., 2011; Hoffman

and Cook, 2006a; Moffat et al., 2017] and perceived sonic realism [Moffat and Reiss,

2018b; Selfridge et al., 2018a, 2017c].

Fundamentally, these evaluation methods can be broken down into one of two categories:

evaluation of sonic qualities and evaluation of human control and interaction.

1.1.1 Evaluation of Sonic Qualities

One of the fundamental metrics by which a synthesis method can be evaluated is the

sonic quality of the sound produced. Does the synthesis method produce the desired

sound? If not, then no quantity of sonic interaction will make a synthesis model effec-

tive. Generally, this evaluation needs to be performed with human participants, where

recorded samples of a given sound can be compared, by those participants, to samples
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rendered from a synthesis method, in a multi-stimulus subjective evaluation experi-

ment [Bech and Zacharov, 2007; Moffat and Reiss, 2018b]. This comparison method

will evaluate synthesised sounds against recordings in the same contextual environment,

with suitable isolation from external acoustic environments. This method of evaluation

can be applied to a range of different sounds [Mengual et al., 2016; Selfridge et al., 2018a,

2017a,b,c,d].

It is important that similar sounds are compared, and that participants are asked suitable

questions. Generally participants are asked to evaluate how real, plausible or believable

a given sound is. This is important as, although participants may have a strong idea

of what a sound is, this does not mean that their impression of that real sound is

correct. It has often been the case that a participant will rate a synthetic sound as ‘more

realistic’ than a real recording of the same sound [Moffat and Reiss, 2018b], especially

in less common sounds. This is due to the hyper-realism effect. As people are generally

expecting explosions and gunshot sounds to be ‘larger than life’, when they hear a real

recording compared to a synthesised sound, the recording seems less exciting than the

synthesised sound [Mengual et al., 2016; Puronas, 2014].

1.1.2 Evaluation of Human Control and Interaction

The other popular evaluation method focuses on control and interaction. Evaluating the

control and interaction of a synthesis engine is a vital aspect of understanding in which

environment the sound can be used. Much in the same way as Foley is the performance of

‘analog’ sounds, synthesis is the performance of digital sounds, where the primary focus

is on the control of the parameter interaction. However, in most cases, the physical

interaction that creates the sound will not be suitable for directly driving the individual

synthesis parameters and, as such, some mapping layer for parameters and physical

properties will be required [Heinrichs and McPherson, 2014; Heinrichs et al., 2014], such

as a hardware sensor or a game engine physical parameter. There are numerous methods

for evaluating these sonic interactions and, in many cases, the control evaluation has to

be a bespoke design for the synthesis methods and parametric controls [Heinrichs and

McPherson, 2014; Heinrichs et al., 2014; Selfridge et al., 2017b; Turchet et al., 2016].
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User listening tests, where participants are able to interact with the synthesis engine

through some mapping layer, can be performed to evaluate a series of criteria. Key

aspects of synthesis control systems to evaluate, as defined by Heinrichs and McPherson

[2014], are whether it is:

• intuitive - Are the controls adjusting the sound in a way that a user would expect

and understand?

• perceptible - To what extent can someone identify the change each control makes,

at all times.

• consistent - Does a given control value always produce the same modification or

reproduction of sound, or is there some control hysteresis?

• reactive - Do the controls immediately change the sound output, or is there a

delay on control parameters, impacting the ease of usability? Typically 20ms of

latency is acceptable, in most cases, so long as the latency is consistent [Jack et al.,

2018].

1.1.3 Sound Effect Searching

The ability to search through different perceivable dimensions of sound, such as pitch

and timbre, is an advantage of using sound synthesis approaches, and is an important

aspect for sound design. Sound design is the practice of constructing and controlling

sonic elements creatively. This is usually done to tell a story, evoke a particular emotion

or mood, or to emphasise a non-auditory element of the context or scene to happen

simultaneously. A typical sound design process will involve combining a number of pre-

recorded elements with bespoke recordings in an aesthetically pleasing manner. In the

case of film, this could be a number of sound effects taken from a library, mixed with

some specific recorded sound effects, vocal tracks, and Foley recordings [Farnell, 2010;

Sonnenschein, 2001]. Sound effects can often be the linchpin of a sound scene, and

different sounds and styles will vary drastically dependent on the style and design of the

medium, among other factors [BBC, 1931; Tremblay et al., 2000]. Sound designers will
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regularly record their own specific sounds for a given project, but will often incorporate

pre-recorded sounds from a library. As such, sound effects libraries typically consist of

an individual’s personal recordings and large commercial royalty free audio collections,

such as the BBC sound effects library [BBC, 2011]. Searching through these large

collections of sound recording can often be a challenging task, and typically the metadata

associated can hold great importance in the ability to find and select appropriate audio

recordings [Cano et al., 2004]. Metadata could consist of sound effect description, or

appropriate words to describe the sonic properties of the sound [Turnbull et al., 2008].

There have also been numerous approaches in attempting to support the searching of

sound effects without the use of supportive metadata [Black et al., 2009; Pearce et al.,

2017; Rice and Bailey, 2004; Wold et al., 1996].

The rest of this chapter will outline the principal aims and structure of this thesis. The

primary contributions are outlined, and associated publications are identified.

1.2 Research Objectives

This thesis aims to develop the current state of evaluation within the field of sound effect

synthesis. Within this thesis, the following research questions are addressed:

• What sort of sound effect taxonomy can be produced, based on the sonic content

of sound samples? (Chapter 4)

• To what extent can unsupervised learning be used to produce an objective simi-

larity measure of synthesised sound effects? (Chapter 4)

• Which synthesis methods are best able to synthesise a given sound? (Chapter 5)

• Which objective similarity metrics can be used to evaluate synthesised sound ef-

fects, through comparison to a reference audio sample? (Chapter 6)

• Does a physical approach of modelling aeolian tones produce a more plausible

sound than other existing synthesis methods? (Chapter 7)
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1.3 Contributions

The contributions of this thesis are the sonic comparison and evaluation of synthesised

sound effects. Utilising a review of existing audio analysis tools, presented in Chap-

ter 3, an unsupervised machine learning approach is used, in Chapter 4, to generate a

sound effects taxonomy based purely on the sonic elements of the sound effect. It was

identified that the repetitive nature and dynamic range of sounds are some of the best

attributes to split sound effects into grouping, given the specific dataset used. This work

proposes an approach for a fully sonically inspired hierarchical classification of sound

effects, which may help with the ability to search for appropriate sounds. Further to

this, the use of a new audio feature set for measuring the similarity between sounds

was proposed, based on the loudness, pitch, periodicity, timbral, envelope and spectral

contrast attributes of a sound. Chapter 5 presents a large scale investigation into the

perception of synthesised sound effects. Six different synthesis approaches are used to

produce eight different sound effects, of different sound classes. A subjective evaluation

is performed to determine the perceived realism of each synthesis method, in the case of

each sound effect. It is identified that there are cases where synthesised sound effects can

be considered to be as realistic as a recorded sample. As such, it can be determined that

real-time sound synthesis can be appropriate for replacing a number of sound samples in

some sound design cases. There are also many cases where synthesis is not as realistic as

a recorded sample. These cases are identified and potential justifications are proposed.

As such, this new understanding as to the state-of-the-art of synthesis can be used to

develop new synthesis approaches, through identifying where more work is required.

Chapter 6 uses the sonic similarity measure proposed in Chapter 4, and evaluates this

through comparison to a number of other similarity measures, utilising an evaluation

method derived from Chapter 5. A set of six different objective evaluation metrics, used

within the literature, are presented and evaluated through synthesis optimisation. This

identifies that the Wichern objective similarity measure performed best, and is the only

method to be statistically significant and correlate highly with human perception. The

other five methods did not correlate with human perception. The Wichern similarity

measure is therefore shown to provide an effective audio feature representation for sound
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effect similarity. Chapter 7 demonstrates the range of this work, through performing a

number of subjective evaluations on a range of different aeroacoustic sound effects. The

plausibility of each of the sound effects is presented, and the ability to use a standard

evaluation framework, with modifications to each of the specific requirements of the

sound case is shown. Furthermore, the objective evaluation metrics presented in Chap-

ter 6 are used to demonstrate their ability to correlate with human perception, and the

cases where this method fails is identified.

1.4 Thesis Structure

Chapter 1 – Introduction

This chapter introduces the structure of the thesis, identifies the research questions

addressed and states the contributions of this thesis.

Chapter 2 – Background

This chapter briefly introduced a range of sound synthesis approaches and presents a

summary of existing synthesis methods. A review of existing sound synthesis evaluation

approaches is performed. The background of evaluation within the field of sound effect

synthesis is provided, and an overview of existing systems of evaluation, including sub-

jective evaluation and objective evaluation. This systematic review demonstrates the

lack of formalised and rigorous evaluation within the sound effect synthesis field.

Chapter 3 – Audio Feature Extraction Toolboxes

This chapter discusses a set of tools used within this thesis. An evaluation of existing

audio feature extraction libraries was undertaken. Ten libraries and toolboxes were

evaluated using the Cranfield Model for evaluation of information retrieval systems, to

review the coverage, effort, presentation and time lag of a system. Comparisons between

these tools were undertaken and example use cases are presented as to when toolboxes

are most suitable.
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Chapter 4 – Taxonomy of Sound Effects

This chapter produces a taxonomy of sound effects based on the sonic content of sounds,

rather than the human interpretation of them, through the use of unsupervised machine

learning. This approach further identifies the audio features most relevant for classifying

sound effects.

Chapter 5 – Subjective Evaluation of Synthesised Sound Effects

This chapter presents a formal listening experiment . Existing research, as presented in

Chapter 2 is reimplemented and evaluated, and subjective evaluation is used to assess

the perceived ‘realism’ of different sound synthesis methods under various conditions.

This detailed subjective evaluation provides insights which suggest the further research

directions. It is found, among other things, that the performance of synthesis methods

is highly dependent on the type of sound being synthesised. Subjective evaluation is

used in this case to refer to a human subject performing an evaluation.

Chapter 6 – Objective Evaluation Metric for Synthesised Environmental

Sounds

This chapter discusses a range of different objective methods (computational or au-

tomated evaluation processes) for comparing or measuring the similarity between en-

vironmental sound effects. These methods are currently used as objective evaluation

techniques to measure the effectiveness of a sound synthesis method by assessing the sim-

ilarity between synthesised and recorded samples. Evaluation is performed on a number

of different synthesis objective evaluation metrics by using the different distance metrics

as fitness functions within a resynthesis algorithm. The recorded samples are excerpts

from a sound effects library, and the results are evaluated through a subjective listening

test. Results show that one objective function performs significantly worse than several

others. Only one method exhibited a significant and strong correlation between the

user subjective similarity and the objective distance. A recommendation is made, for



Chapter 1 Introduction 9

a perceptually motivated evaluation function (that is, relating to our understanding of

human perception) for measuring similarity between synthesised environmental sounds.

Chapter 7 – Case Study: Evaluation of Aeroacoustic Sound Effects

This chapter presents a case study that was undertaken in the field of synthesising

aeroacoustic sounds. It builds on our understanding to demonstrate a rigorous evalu-

ation of a new sound synthesis approach, and integrates the subjective and objective

evaluation approaches into improved synthesis design. This further demonstrates the

importance of evaluation, and how it benefits even physical modelling, where the model

and its parameters are not derived directly from sample analysis or prior knowledge of

perception.

Chapter 8 – Conclusion

This chapter draws conclusions across the field of sound effect synthesis and the impor-

tance of evaluation to the field. It identifies directions for new research and focus.

1.5 Related publications

This section presents work considered part of this thesis that has previously been pub-

lished, with an indication to what chapter the work appears in. If the author is not the

primary author of the paper, the author’s contributions to the paper are detailed.

Chapter 2

Moffat, D., Selfridge, R., and Reiss, J. D. (2019). Sound effect synthesis. In Filimowicz,

M., editor, Foundations in Sound Design for Interactive Media: A Multidisciplinary

Approach. Routledge
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Chapter 3

Moffat, D., Ronan, D., and Reiss, J. D. (2015). An evaluation of audio feature extraction

toolboxes. In Proc. 18th International Conference on Digital Audio Effects (DAFx-

15)

Chapter 4

Moffat, D., Ronan, D., and Reiss, J. D. (2017). Unsupervised taxonomy of sound

effects. In Proc. 20th International Conference on Digital Audio Effects (DAFx-

17), Edinburgh, UK

Ronan, D., Moffat, D., Gunes, H., and Reiss, J. D. (2015). Automatic subgrouping of

multitrack audio. In Proc. 18th International Conference on Digital Audio Effects

(DAFx-15). DAFx-15

The author supported initial concepts, aided in data analysis, edited text.

Chapter 5

Moffat, D. and Reiss, J. D. (2018b). Perceptual evaluation of synthesized sound effects.

ACM Transactions on Applied Perception (TAP), 15(2):19

Chapter 6

Moffat, D. and Reiss, J. D. (2018a). Objective evaluations of synthesised environmental

sounds. In Proc. 21th International Conference on Digital Audio Effects (DAFx-

17), Aveiro, Portugal

Chapter 7

Selfridge, R., Moffat, D., Avital, E. J., and Reiss, J. D. (2018a). Creating real-time

aeroacoustic sound effects using physically informed models. Journal of the Audio

Engineering Society, 66(7/8):594–607
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The author developed evaluation methodology, performed evaluations, analysed

results and edited text.

Selfridge, R., Moffat, D., and Reiss, J. D. (2017c). Sound synthesis of objects swinging

through air using physical models. Applied Sciences, 7(11)

The author developed evaluation methodology, performed evaluations, analysed

results and edited text.

Selfridge, R., Moffat, D., and Reiss, J. D. (2017a). Physically inspired sound synthesis

model of a propeller. In ACM Audio Mostly Conference, London, UK

The author developed evaluation methodology, performed evaluations, analysed

results and edited text.

Selfridge, R., Moffat, D., and Reiss, J. D. (2017b). Real-time physical model for syn-

thesis of sword swing sounds. In International Conference on Sound and Music

Computing (SMC), Espoo, Finland

The author developed evaluation methodology, performed evaluations, analysed

results and edited text.

Selfridge, R., Moffat, D., Reiss, J. D., and Avital, E. J. (2017d). Real-time physical

model for an aeolian harp. In International Congress on Sound and Vibration,

London, UK

The author developed evaluation methodology, performed evaluations, analysed

results and edited text.

Additional Papers

The following is a list of papers which do not directly relate to specific chapters, but

generally contribute to the research performed throughout this thesis.

Jillings, N., Moffat, D., De Man, B., and Reiss, J. D. (2016). Web audio evaluation

tool: A framework for subjective assessment of audio. In Proc. 2nd Web Audio

Conference, Atlanta, Georgia, USA
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The author produced initial set of evaluation frameworks, provided software im-

plementations, edited text and supported users.

Jillings, N., De Man, B., Moffat, D., Reiss, J. D., and Stables, R. (2015). Web audio

evaluation tool: A browser-based listening test environment. In Proceedings of the

International Sound and Music Computing Conference, Maynooth, Ireland

The author produced initial set of evaluation frameworks, provided software im-

plementations, edited text and supported users.

Turchet, L., Moffat, D., Tajadura-Jiménez, A., Reiss, J. D., and Stockman, T. (2016).

What do your footsteps sound like? an investigation on interactive footstep sounds

adjustment. Applied Acoustics, 111:77–85

The author aided in experimental design, evaluated, collated and analysed results

and edited text.

Mengual, L., Moffat, D., and Reiss, J. D. (2016). Modal synthesis of weapon sounds. In

Proc. Audio Engineering Society Conference: 61st International Conference: Audio

for Games, London. Audio Engineering Society

The author created evaluation methodology, performed evaluations, analysed re-

sults, edited text and presented the work
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Background

2.1 Introduction

This chapter presents a summary of synthesis methods, particularly relating to work

evaluated in Chapter 5. The breadth of evaluation methodologies that are often under-

taken within sound effect synthesis research is presented, and the key failings within the

field identified. It will be shown that there is limited consistency or rigour in the current

methods for evaluating sound effect synthesis, therefore justifying the further research

presented within this thesis. A review of existing sound effects is presented, which will

be extended in Chapter 4.

2.2 Sound Effect Synthesis

There are many methods and techniques for synthesising different sound effects, and

each one has varying advantages and disadvantages. There are almost as many sound

synthesis classification methods, but the most prominent was produced by Smith [1991].

Sound synthesis can generally be separated into the following categories: sample based;

signal modelling; abstract; and physical modelling synthesis [Smith, 1991].

13
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2.2.1 Sample Based Synthesis

In sample based synthesis, audio recordings are cut and spliced together to produce new

or similar sounds. This is effective for pulse-train or granular sound textures, based on

a given sound timbre.

The most common example of this is granular synthesis. Granular synthesis is the

method of analysing a sound file or set of sound files and extracting sonic ‘grains’. A

sound grain is generally a small element or component of a sound, typically between

10-200ms in length. Once a set of sound grains have been extracted, they can then be

reconstructed and played back with components of the sound modified, such as selecting

a subset of grains for a different timbre, or modifying the grain density, or rate, to change

the pitched qualities of the sound.

2.2.1.1 Concatenative Synthesis

Concatenative synthesis is a subset of granular synthesis and a form of sample based

synthesis. Segments or ‘grains’ are made from small segments of sound samples. Grains

can range from 10ms to 1s samples of audio. Concatenative synthesis is the process of

selecting and recombining the grains together, in such a manner that it does not create

any perceivable discontinuities.

For the purpose of the work in Chapter 5, a library of 46ms audio grains was constructed,

selected at 1.5ms intervals from the samples. Grain selection from the library was

performed using a time domain probabilistic method. Given the current grain, a subset

library of grains was selected based on the Spearman correlation distance of the time

domain waveform signal, such that

dt = 1− (vr − v̄r)(vt − v̄t)′√
(vr − v̄r)(vr − v̄r)′

√
(vt − v̄t)(vt − v̄t)′

(2.1)

where v is a coordinate-wise vector of either the current grain r or query grain t, for

which the distance is calculated. v̄ denotes the mean of the vector, to normalise the

vector around its current mean. The Spearman distance was used, as it considers the
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sample vector in sequence, so small variations in sample do not result in a significant

overall difference. The time domain vector to represent each grain is taken as the second

half (23ms) of the current grain, and the first half of the grain within the grain library.

The time domain waveform vectors of the current grain and all possible grains were

selected.

From this calculated subset library of possible grains, one grain gt is selected with

probability

P (gt) =
1− dt∑K
k=1 dk

(2.2)

where dt is the Spearman distance from the current input grain and K is the number of

selected nearest neighbours, in this case 10. The selected grain is then overlapped with

the current audio grain, and the two audio samples crossfaded.

Due to the lack of available open source implementations of concatenate synthesis, this

synthesis method was implemented by the authors, based on O’Leary and Robel [2014].

The implementation is available to download.1

2.2.2 Signal Modelling Synthesis

Signal modelling synthesis is the method where sounds are created based on some anal-

ysis of real world sounds, and then attempting to resynthesise the waveform sound,

not the underlying physical system. The premise of signal modelling, is that through

comparing and reproducing the actual sound components, one can extrapolate the con-

trol parameters and accurately model the synthesis system. The most common method

of signal modelling synthesis is Spectral Modelling Synthesis (SMS) [Serra and Smith,

1990]. SMS assumes that sounds can be synthesised as a summation of sine waves

and a filtered noise component. Spectral modelling is often performed by analysing the

original audio file, selecting a series of sine waves to be used for resynthesis, and then

creating some ‘residual’ noise shape, which can be summed together to produce the

original sound [Amatriain et al., 2002].

1https://code.soundsoftware.ac.uk/projects/time-domain-probabilistic-concatenative-synthesis

https://code.soundsoftware.ac.uk/projects/time-domain-probabilistic-concatenative-synthesis
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Figure 2.1: Flow diagram of sinusoidal modelling, based on Serra and Smith [1990].

2.2.2.1 Sinusoidal Modelling

Sinusoidal Modeling Synthesis or Spectral Modeling Synthesis (SMS) [Serra and Smith,

1990] is an example of signal modelling synthesis. Sinusoidal modelling assumes that

sounds can be synthesised as a summation of sine waves and a filtered noise component

such that any sound x(t) can be represented as

x(t) =
R∑
r=1

Ar(t) sin (θr(t)) + e(t) (2.3)

where x(t) is a summation of R sinusoids, Ar and θr are the amplitude and phase,

respectively, of a given sinusoid at time t and e(t) is the noise component, referred to as

the residual.

As presented in Figure 2.1, sinusoidal modelling is performed by peak selection from

the frequency spectra. These peaks are resynthesised using sine waves. The output sine

waves are summed together and the residual is calculated as the result of subtracting

the summation of sine waves from the initial sound signal. The synthesis method evalu-

ated was based on the documentation and implementation from Serra and Smith [1990]
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and Amatriain et al. [2002]. SMS best performs on simple harmonic sounds, such as a

metal impact sound [Mengual et al., 2016; Van Den Doel et al., 2001; Zheng and James,

2011].

2.2.2.2 Statistical Modelling and Marginal Statistics

Statistical modelling is a signal modelling synthesis technique where an input sound file

is decomposed into a set of summary statistics. These statistics are used to shape an

input noise signal, and resynthesise the input audio file. The extracted statistics are

based on perceptual models of audio signals. Statistics of the sound are calculated from

an auditory inspired cochlear filter bank representation of the signal.

There are two different use cases presented using this algorithm, one is described as

Marginal Statistics and the other as Statistical Modelling. They both take the same

form, but use a different set of statistics to represent the audio file. Marginal statistics

are the mean, variance, skew and kurtosis of the subband envelope and modulation

power, extracted from the filtered signal representation. Statistical Modelling includes

all the statistics of the marginal statistics and includes the cross-sub-band envelope

correlation and cross-sub-band modulation correlations. Full mathematical descriptions

are presented in McDermott and Simoncelli [2011].

Sounds were resynthesised from the set of chosen statistics, through an iterative process

of shaping Gaussian white noise, as can be seen in Figures 2.2 and 2.3. For the purposes

of evaluation, the synthesis method, documentation and implementation were taken

from McDermott and Simoncelli [2011].

2.2.2.3 Additive Synthesis

Traditionally additive synthesis was a form of signal based modelling where a series

of sine waves were added together to produce complex waveform. This technique was

further developed and became sinusoidal modelling, as discussed in Section 2.2.2.1. Ad-

ditive synthesis has since become the process of modelling sounds as a summation of

synthesised audio signals, such as noise signals, sinusoids and chirp sounds.
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Figure 2.2: Flow diagram for Statis-
tical Synthesis, based on McDermott

and Simoncelli [2011].

Figure 2.3: The iterative process un-
dertaken to perform Statistical Synthe-

sis

For the purposes of evaluation, performed within Chapter 5, the Spatialized Additive

Synthesizer for Environmental Sounds (SPAD) from Verron et al. [2010a] was used.

SPAD works on the principle of breaking every sound into one of five core sound elements,

or atoms, and synthesising each sound as one of these core elements. Elements are

synthesised as per Table 2.1. All synthesis of atoms occurs in the time domain, apart

from band-limited noise, which is synthesised in the frequency domain.

2.2.3 Abstract Synthesis

Sounds are created from abstract methods and algorithms, typically to create entirely

new sounds. A classic example of abstract synthesis is Frequency Modulation (FM)

Synthesis [Chowning, 1973]. FM synthesis is a method derived from telecommunications.

Two sine waves are multiplied together to create a much richer sound. These sounds can

be controlled in real-time, as computation is low, to create a set of sounds that do not

exist in the natural world. A lot of traditional video game sounds and 1980’s keyboard

sounds were based on FM synthesis.



Chapter 2 Background 19

Table 2.1: The five classes of atoms used for the sound synthesis models, with their
respective synthesis equations and parameters, as taken from Verron et al. [2010a].

Atom Equation Parameters

Modal impact x1(t) =

M∑
m=1

am sin(2πfmt)e
−αmt am initial amplitudes,

αm decays,
fm frequencies

Noisy impact x2(t) =

N∑
n=1

ansn(t)e−αnt an subband amplitudes,

αn subband decays

Chirped impact x3(t) = a sin(2π

∫ t

0
f(ν) dν)e−αt f0 initial frequency,

σ linear frequency shift,
α decay

Band-limited noise X4(f) =

{
A(t), if|f − F (t)| < B(t)

2

A(t)e
−α(t)

(
|f−F (t)|−B(t)

2

)
, otherwise

F (t) center frequency,

B(t) bandwidth,
α(t) filter slope,
A(t) amplitude

Equalized noise x5(t) =

32∑
n=1

an(t)sn(t) [a1(t)...a32(t)] amplitudes

sn(t) represents subband filtered noise, band n at time step t. x(t) represents a time domain
signal, whereas X(f) represents a frequency domain signal. x1...x3 and x5 are calculated in

the time domain, whereas X4 is calculated in the frequency domain.

2.2.4 Physical Modelling Synthesis

Sounds are generated based on modelling of the physics of the system that created

the sound. The more physics is incorporated into the system, the better the model is

considered to be, however the models often end up very computationally intensive and

can take a long time to run. Despite the computational nature of these approaches,

with GPU and accelerated computing, physical models are beginning to be capable of

running in real-time [Harrison-Harsley and Bilbao, 2018; Webb and Bilbao, 2015]. As

such, physical models are based on fundamental physical properties of a system and

solving partial differential equations at each step sample [Bilbao, 2009].

2.2.4.1 Physically Inspired Synthesis

Physically inspired synthesis [Cook, 2007] is derived from physical modelling. It is possi-

ble to construct synthesis systems by modelling the entire physical environment in which
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the sound was created, but this can be incredibly complex to construct. Physically in-

spired or physically informed synthesis is considered as another form of signal based

modelling or as a hybrid approach between signal based modelling and physical mod-

elling, where the user controls represent the physics of the system, but the calculations

are all approximations to allow the system to run in realtime. Sounds are constructed

as a combination of base units, such as filtered noise, sine, triangle and square waves,

envelope shapes and filters.

Producing a physically inspired synthesis simulation or model of a sonic context is con-

sidered a time consuming process. Each individual sound synthesis model needs to be

manually constructed with knowledge of the physics, understanding of psychoacoustics

and experience in sound synthesis model production and workflows. Despite the la-

bor intensive nature, physically inspired synthesis is an effective and flexible method

of sound synthesis, as once a context has been modelled, it is possible to vary a large

range of parameters to create very different sounding environments, with physically and

perceptually relevant interface controls.

For the purposes of evaluation performed within Chapter 5, a number of synthesis models

were taken from Farnell [2010] and Peltola et al. [2007].

2.2.5 Synthesis Methods Summary

There are a range of different synthesis methods, that can produce a range of differ-

ent sounds. From abstract synthesis techniques that are lightweight and can be imple-

mented on old 80’s hardware, to physical modelling techniques that require optimisation

and GPU and even still, are only just able to operate in real-time. Each approach and

methodology has its advantages and disadvantages. Misra and Cook [2009b] perform a

rigorous survey of synthesis methods, and recommend different synthesis techniques for

each type of sound to be produced. Abstract synthesis is highly effective for producing

artificial sounds, ‘retro’ style synthetic sounds and some musical sounds. Signal mod-

elling can produce excellent voiced sounds and environmental sounds. Physical models

are great for impact or force driven sounds, such as the pluck of a string, whereas sound

textures and environmental sounds are often best produced by sample based models.
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Sound Type Synthesis Method

Sci-Fi / Technology Sounds Abstract Synthesis
Environmental Sounds Sample Based Model / Signal Models
Impact Sounds Physical Models / Signal Models
Voiced Sounds Signal Models
Sound Textures / Soundscapes Sample Based Models

Table 2.2: Recommendation of Synthesis Method for Each Sound Type

A summary of recommendations as to a method of synthesis that would work for each

type of sound class can be found in Table 2.2. A large collection of these synthesised

sound effects is presented on the FXive website,2 developed by Queen Mary University

of London [Bahadoran et al., 2017, 2018a,b].

2.3 Synthesis Evaluation

The aims of sound synthesis, as noted above, are to produce realistic and controllable

systems for artificially replicating real world sounds. Current research generally focuses

on either implementation efficiency, interfacing control or physical modelling, and pro-

vides very limited evaluation. Subjective evaluation, performed with participants, is

occasionally used in current sound synthesis research, and there is no consistency in

objective evaluation metrics used.

Schwarz [2011] noted in a review of 94 published papers on sound texture synthesis that

only seven contained any subjective evaluation of the synthesis method. Jaffe [1995]

presents ten criteria for evaluating sound synthesis: five based on parameter control,

three on computation of the synthesis method and two on the sonic qualities of the

synthesis method. Tolonen et al. [1998] used this framework for evaluation to produce

a rigorous review of a range of synthesis methods. Despite this work, these criteria and

frameworks are not commonly used and there is no consistently used standard process

for evaluating the subjective realism of sound synthesis.

The aim of this section is to identify and summarise the diversity of evaluation methods

used for different synthesis approaches undertaken in literature.

2http://fxive.com

http://fxive.com
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2.3.1 Subjective Evaluation

Bonebright et al. [2005] discussed three different methods for determining subjective

qualities of audio: identification testing, context-based rating and attribute rating. Iden-

tification testing is an approach where sounds are rated based on whether a participant

can identify the intended source of the sound. Context-based rating is where partici-

pants score how close a sound is to a provided context, such as a visual scene or text

phrase. Attribute rating is where participants are asked to rate a set of given attributes

of a sound, such as loudness, pitch, roughness or pleasantness. Bonebright et al. [2005]

stated that context-based rating is appropriate for sound in video games and sound syn-

thesis, whereas Merer et al. [2011], proposed an attribute rating is most appropriate for

synthesised abstract sounds, as they believe abstract sounds are not easily associated

with a source.

There are a range of different subjective test methodologies, and some work will use mul-

tiple different methodologies for evaluation. McDermott and Simoncelli [2011] performed

an identification task where participants needed to pick the correct word describing the

sound, from a set of five words. McDermott and Simoncelli [2011] then performed a

context test, where an original recorded sound was played as a reference and partici-

pants had to select which of two different synthesised sounds were most similar to the

reference. Participants were then asked to provide a rating for realism on a scale of

one to seven for various different synthesised and recorded sounds. No formal anchors

were identified as the lower bounds for sound quality. This is problematic, as Bech

and Zacharov [2007] state that, with no lower reference against which to compare the

effectiveness or realism of each sound effect, each participant’s scores are based on an

arbitrary scale. Given a fixed lower point, which is known to be a poor quality sample,

the presentation of results makes it clear as to what should be considered reasonable or

poor results.

However, most subjective evaluation takes the form of a single test. An evaluation

of concatenative synthesis methods was performed via an online MUSHRA (MUltiple

Stimulus Hidden Reference and Anchor [ITU-R BS.1534-3, 2015]) style listening test, in

which participants rated both the quality of samples and their similarity to a reference
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sample [Schwarz and O’Leary, 2015; Schwarz et al., 2016]. Their sample order was not

randomised, so potential ordering bias may be an issue, and no recording of the par-

ticipants’ listening conditions was made. The authors concluded that all concatenative

synthesis methods are indistinguishable from each other, in terms of both the perceived

quality and realism of the sound produced, and thus no method was distinguishable

from random. A similar evaluation methodology was used by Mengual et al. [2016], in

evaluating gunshot and metal impact sounds, with order randomisation to remove bias,

and under controlled listening conditions. Adami et al. [2017] used a MUSHRA test

to rate density of applause sounds and the similarity of a sample to their synthesised

sounds.

Bonneel et al. [2008] performed a MUS (MUltiple Stimulus) style test to evaluate the

synthesis quality, though no references or anchors were included. Henter et al. [2014]

asked participants to rate the ‘naturalness’, through a MUSHRA test and Fröjd and

Horner [2009] instead used a fixed point scale to evaluate naturalness of a sound tex-

ture granular synthesis approach. Moss et al. [2010] evaluated a physical approach to

producing liquid sounds using a ten point fixed scale, rating how realistic a sound is.

Nordahl et al. [2010] performed evaluation of footstep sounds, where recognition of sur-

face material and subjective realism were reported on a seven point scale. However,

neither samples nor an alternative synthesis approach was used for comparison.

Selfridge et al. [2017b] evaluated synthesis of sword swing sounds using a similar struc-

ture: comparing to multiple different synthesis methods, recorded samples and a specific

anchor. Murphy et al. [2008] performed an attribute test in which participants were

asked to rate the quality of ‘rollingness’ of synthesised rolling sounds in a MUS style

test, but no alternative synthesis methods, samples or hidden anchors were provided

for comparison. In Rocchesso and Fontana [2003] participants were asked to browse

through a range of synthesised sounds to find their preferred sound, and then asked to

rate the perceived realism on a seven point Likert scale. ‘Perceived realism’ was also the

evaluation criterion in Böttcher and Serafin [2009], on a five point scale and McDermott

and Simoncelli [2011], on a seven point fixed scale.
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Gabrielli et al. [2011] proposed an alternative form of evaluation of synthesis, an ‘RS

Test’, where participants are played a single sound only once and had to determine if

it was real or synthetic. It is then possible to use this approach to test a large number

of audio samples, however it is important to include an anchor. Hahn [2015] evaluated

musical instrument sounds using the RS test, and Hoskinson [2002] modified this eval-

uation framework using pairs of real and synthesised sounds. Hoskinson [2002] setup a

paired test, where participants were played two sounds, one real and one synthesised,

each sound was played only once and the participant had to identify which was the real

sample. To evaluate instrument synthesis, Järveläinen et al. [2002] asked participants

to match real and synthesised equivalents of samples together based on their harmonic

components.

It is vital that the manner in which an individual interacts with a synthesis engine

is understood, and there is considerable research on this. As part of the Sounding

Object project, a large body of work was undertaken in sound effect synthesis, primarily

focusing on interactions with sound synthesis models [Rocchesso et al., 2003]. Böttcher

and Serafin [2009] evaluated the perceived quality of an interaction with a synthesis

engine, and this work was further developed in Böttcher et al. [2013]. However, this

type of work often measures the parameter mapping more than the quality of the sound

synthesis [Heinrichs and McPherson, 2014; Heinrichs et al., 2014]. Hoffman and Cook

[2006b] discussed the generalised process of synthesis parameter mapping to perceptual

controls through feature vector mapping. Aramaki et al. [2012] presented other methods

for mapping physical controls of a synthesis engine to perceptual parameters.

Scavone et al. [2001] created a program for presenting sound effects on a 2D plane

using multi-dimensional scaling (MDS), while Lakatos et al. [1997] asked participants

if they could identify the material dimensions of an impact sound in a two-alternatives

forced choice experiment, and then employed MDS on the results. Aramaki et al. [2011]

performed further synthesis evaluation through a forced choice ABCX test, in which

participants are required to select one of three categories for a reference sound, and EEG

(Electroencephalogram) recordings were taken. Kersten and Purwins [2010] evaluated

sound textures through subjective sound categorisation, and Ma et al. [2010] played
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samples to participants, who were asked to write free text response descriptions of the

sound sample.

As can be seen from the above examples, whilst many studies use some form of evalua-

tion, it is demonstrably diverse and intermittent, when it is employed at all.

2.3.2 No Evaluation

There are a number of reports of synthesis methods where no evaluation was performed.

Concatenative synthesis is performed in An et al. [2012]; Schwarz [2000]; Schwarz et al.

[2006]. Serra and Smith [1990] introduce the SMS method. Goodwin [1996] proposed a

modification to include the residual element of the signal, and Pampin [2004] extend the

model to include masking models, and no analysis of the output sounds were presented.

Rath [2003]; Van Den Doel et al. [2001]; Van den Doel and Pai [2003] all performed

modal synthesis approaches, where harmonic modes of materials are identified. This

approach is often described as interpreting some physical properties of the material,

and synthesising that based on harmonic resonances. Physically based modal synthesis

approaches are presented by Castagné and Cadoz [2000]; Karjalainen et al. [1993], and

the computational approaches by Peltola et al. [2007]; Zita [2003]. Lee et al. [2010],Kahrs

and Avanzini [2001] and Hahn and Röbel [2013] all demonstrate further source filter

synthesis approaches that relate filter coefficients to physical properties, but not the

output result of each of the synthesis methods.

2.3.2.1 Evaluation by Visual Inspection

Hoffman and Cook [2006b] discussed control parameter mapping layers and evaluation

is performed through visual comparison of spectrograms. Numerous other synthesis

approaches have performed similar evaluation, through visual comparison of spectro-

grams [Bascou and Pottier, 2005; Bruna and Mallat, 2013; Doel, 1998; Dubnov et al.,

2002; O’Leary and Robel, 2014; O’Regan and Kokaram, 2007a; Ren et al., 2013], com-

parison of time domain waveform plots [Bar-Joseph et al., 1999; Smith and Serra, 1987;
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Verma and Meng, 2000], or showing both spectrograms and time domain plots [Kar-

jalainen et al., 2002; Oksanen et al., 2013; O’Regan and Kokaram, 2007b; Verron et al.,

2010b].

2.3.2.2 Informal Evaluation

Fontana and Bresin [2003] demonstrated a range of synthesis models, and informal lis-

tening tests, but no results were reported, instead comparing spectrogram plots. Similar

mentions of informal subjective evaluation is present in Siddiq [2017] and Gaver [1993].

A five point rating scale for similarity was used by Miner and Caudell [2005], though no

results were reported. Guggiana et al. [1995] discussed psychoacoustic tests for sound

classification, without reporting results. O’Modhrain and Essl [2004] demonstrate a

granular synthesis approach with a tactile interface and report performing evaluation,

however no results are presented.

Often a lack of evaluation is due to the synthesis method being seen as a creative

tool [Chowning, 1973; Kleimola, 2013; Sturm, 2004]. A lack of any baseline for com-

parison within any field of research, however, will inevitably stifle technological ad-

vances [Paul et al., 2013; Rumsey et al., 2005].

2.3.3 Objective Metrics

A summary of all sound synthesis papers that use objective evaluation is presented

in Table 2.3. Objective evaluation is considered to be a computational or automated

evaluation processes.

There are a range of methods for objective evaluation of synthesised sound effects, How-

ever there is little to no consistency on objective metrics to use. Horner and Wun [2006]

objectively compared different wavetable synthesis methods using “Relative Spectral

Error”, with no comparison to samples. In contrast, Hendry and Reiss [2010] compared

a synthesis method to reference samples, through visual comparison of spectrograms,

and comparison of low level audio features, such as fundamental frequency, first 4 har-

monic frequencies, spectral centroid and zero crossing rate, but no comparison with other
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Table 2.3: Range of Objective Evaluation Metrics used in Current Sound Synthesis
Research

Research paper Objective Evaluation Methods

Sound Effects
Hendry and Reiss [2010] Fundamental and four harmonics

Spectral centroid
Zero crossing rate

Adami et al. [2017] Spectral envelope
Applause density

Raghuvanshi and Lin [2006] Fundamental and harmonics
Horner and Wun [2006] Fundamental and harmonics

Cook [1997] Fundamental and harmonics frequency, amplitude and decay
Cook [2002] Linear predictive coding (LPC) coefficients

Petrausch and Rabenstein [2003] Number of harmonics
Filter distortion from filterbank (dB)

Kersten and Purwins [2012] Temporal centroid
Signal to noise ratio

Musical Instruments
Kreutzer et al. [2008] Amplitude envelopes for frequency bands
Valimaki et al. [1999] Envelope of fundamental frequency and 4 harmonics
Cantzos et al. [2005] Ceptral distance in 3 frequency bands
Bensa et al. [2000] Perceptual excitation model

Perceptual brightness model (spectral centroid)
Hamadicharef and Ifeachor [2003] PEAQ
Hamadicharef and Ifeachor [2005] PEAQ

Garcia [2001a] Least Square Error (LSE) in FD
Simultaneous Frequency Masking (SFM)

Heise et al. [2009] 1D-DCT of each MFCC coefficient over time
Fundamental frequency

Spectral shape
Attack and decay characteristics

Overall duration

Speech
Huang [2011] FW-SNR

Weighted spectral slope measure
Itakura-Saito distance
Log-Likelihood ratio

PESQ
Valentini-Botinhao et al. [2011] PESQ
Theobald and Matthews [2012] Correlation

Normalised RMS error
Normalised peak RMS error

Dynamic time warp cost
Phone-based mahalonabis distance
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synthesis methods was undertaken. Objective evaluation was also performed, through

inspection and discussion of spectrogram plots. This work was extended to a range

of other aeroacoustic sounds, with the same evaluation methodology [Selfridge et al.,

2018a, 2017a,c,d].

Hamadicharef and Ifeachor [2003] proposed evaluating sound using Perceptual Evalua-

tion of Audio Quality (PEAQ [Thiede et al., 2000]). PEAQ is an algorithm designed

for determining the quality of audio compression codecs, which analyses the sound on

a sample by sample basis to determine any perceptual artifacts. This work was further

developed to select parameters for a piano synthesiser, to replicate an input audio sig-

nal [Hamadicharef and Ifeachor, 2005]. However, the notes will never be exactly the

same if played with slightly different attack or at a different sample time - thus resulting

in a perceptual difference that should not be attributed to the synthesis model.

Similarly, Heise et al. [2009] evaluated synthesis parameter selection using a range of

low level audio features, such as fundamental frequency, spectral shape, envelope char-

acteristics and overall duration. They also used the Discrete Cosine Transform (DCT)

of the Mel-Frequency Cepstral Coefficients (MFCC’s) as a measure of how similar the

synthesised sound was to a recorded sample. Allamanche et al. [2001] evaluated a set of

audio features for similarity on their ability to perform classification on a labeled data

set, identifying different modifications of an audio file, such as whether equalisation or

dynamic range compression had been applied, whether it had been encoded to MPEG

or whether it had been processed through a loudspeaker and microphone chain. Mof-

fat et al. [2017] used feature vectors to compare the sonic similarity of different sound

effects.

2.3.4 Synthesis Evaluation Summary

In summary, although there is a large body of work on sound synthesis, many proposed

methods have not performed evaluation of how effectively the desired sound is produced

or the perceived sound quality. When evaluation has been performed, it is often ob-

jective, and it is even rarer for it to be comparative, where the proposed technique is

compared against alternatives. Nor have standard methodologies been established. This
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failing of the sound synthesis community to address evaluation is a clear contributing

factor to the lack of understanding of the current state-of-the-art in sound synthesis.

Many fields have tried to address this issue within their respective research areas. This

has resulted in the MIREX Competition [Downie, 2008], the BSS Eval toolbox [Vincent

et al., 2006] and the PEAQ algorithm [Câmpeanu and Câmpeanu, 2005], which are all

attempts to standardise the evaluation approaches in their specific audio fields.

Evaluation of existing synthesis methods could potentially yield significant insight into

the state-of-the-art in synthesis technology. Without understanding the benefits and

weaknesses of current synthesis techniques, it is not possible to understand where current

deficits exist. The lack of standardised evaluation methods and metrics is evident, and

can potentially prohibit progress in this field.

As is evident from the literature, it is not expected that a single synthesis method is

effectively able to produce all possible sounds. In every case, there may be a range of

synthesis approaches that are appropriate. However, this simply highlights the impor-

tance of evaluation. Identification of suitable use cases and occasions where a particular

sound synthesis method is applicable is vital to having a convincing synthesis process.

2.4 Sound Effects Taxonomy

There are numerous examples of work attempting to create a taxonomy of sound.

In Schafer [1993], the author classified sounds by acoustic, psychoacoustic, semantic, aes-

thetic and referential properties. Russolo and Pratella [1967], classified “noise-sound”

into six groups: roars, hisses, whispers, impactful noises, voiced sounds and screams.

This is further discussed in Russolo [2004]. Production of a taxonomy of sounds heard

in a cafe or restaurant were produced, basing the grouping on the sound source or

context [Lindborg, 2016; Stevenson, 2016].

Gaver [1993] presented a classification scheme of sounds based on the state of the physical

property of the material. The sound classifications were vibrating solids, liquids and

aerodynamic sounds (gas). A series of sub-classifications based on hybrid sounds were
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also produced along with a set of properties that would impact the perception of the

sound. Houix et al. [2012] developed this further by attempting to understand how

participants would arbitrarily categorise sounds. Ballas [1993] asked participants to

identify how similar sounds are to each other along a series of different dimensions. They

then performed hierarchical cluster analysis on the results, to produce a hierarchical

linkage structure of the sounds. Furthermore, Gygi et al. [2007] performed a similar

study where participants were asked how alike sets of sounds were. Audio features were

then correlated to a likeness measure and a hierarchical cluster was produced on the set

of selected features.

In Aldrich et al. [2009] participants were asked to rate the similarity of audio sam-

ples, and performed hierarchical cluster analysis to demonstrate the related similarity

structure of the sounds. Rychtáriková and Vermeir [2013] captured the acoustic prop-

erties of sound walk recordings and performed unsupervised clustering. These clusters

were identified and related back to some semantic terms. Similarly, Davies et al. [2013]

used sound walks and interviews to identify appropriate words as sound descriptors.

McGregor et al. [2006] performed classification of sound effects by asking individuals

to identify suitable adjectives to differentiate sound samples and similarly in Pedersen

[2008] where the authors define classes of sound descriptor words that can be used to

relate the similarity of words. In an extension to this, Woodcock et al. [2016] asked

participants to perform a sorting and labelling task on broadcast audio objects, again

yielding a hierarchical cluster.

Salamon et al. [2014] produced a dataset of urban sounds, and a taxonomy for the

dataset, where sounds are clustered based on the source of the audio, rather than the

relative similarity of the audio sample themselves. This dataset is used for unsupervised

learning classification [Salamon and Bello, 2015, 2017]. In the context of synthesised

sounds, Rocchesso and Fontana [2003] grouped sounds by their control parameters.

There is no clear standard method for grouping sounds such as those found in a sound

effects library. It becomes clear from the literature that there is limited work utilising

audio features to produce a taxonomy of sound. Table 2.4 shows relevant work that

performs classification of sound, and the approach taken in each case. In many cases,
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classification is performed through subjective rating or word clustering. It is also appar-

ent there is little work clustering the acoustic properties of individual samples. Schafer

[1993] discussed sound classification based on the acoustic properties of samples, but

only a high level discussion is presented and the full idea and taxonomy is not developed

further.
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Audio Feature Extraction

Toolboxes

3.1 Introduction

This chapter presents a series of audio feature extraction toolboxes that were evaluated

as part of this work. Audio feature extraction is one of the cornerstones of current audio

signal processing research and development. This chapter will perform a rigorous review

of a range of toolboxes, supporting work later within this thesis.

An audio feature is a statistical or computational representation of an audio file. Audio

features can range for low level measures, such as average frequency of a sound, to

a high level interpretation, such as attack time or chord structure. Audio features

are typically hand crafted statistical representations of audio, designed with a specific

purpose, such as representing timbral context or the pitch of a piece of audio. Audio

features are often used for sonic similarity [Aldrich et al., 2009; Gygi et al., 2007; Pachet

and Aucouturier, 2004; Peeters, 2004; Virtanen and Helén, 2007]. This is typically

performed by measuring distances between sets of audio features, which can then produce

a relative distance or similarity measure between two different sounds. These audio

features represent all of the important perceptual aspects of a sound, and allow for a set

of summary statistics to represent the signal. This is particularly important in the area

33
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of computational processing of audio. Computers have no ability to hear two different

sounds for comparison, so instead can calculate some audio features and use this as a

basis for comparison. Audio features are an important computational summary of a

piece of audio, and are a prominent aspect of many audio based research fields.

Audio features are contextual information that can be extracted from an audio signal.

Although these problems are somewhat dissimilar in nature, they rely heavily on a set of

related audio features. Low level features are computed directly from the audio signal,

often in a frame-by-frame basis such as zero-crossing rate, spectral centroid or signal

energy, and generally have little perceptual relevance in comparison to higher level fea-

tures, like chord or key of musical piece, which hold greater semantic meaning. In Music

Information Retrieval (MIR), it is common to refer to audio features or descriptors,

whereas, in psychology distinctions are made between dimensions and features, where

dimensions are continuous and features are discrete. Audio features are relevant in a

range of research fields including:

• feature extraction linked to audio effects [Stables et al., 2014],

• statistical synthesis [McDermott and Simoncelli, 2011],

• feature-based synthesis [Hoffman and Cook, 2006a],

• evaluation of synthesis techniques [Hendry and Reiss, 2010],

• similarity measures [Gygi et al., 2007],

• data classification [McKinney and Breebaart, 2003], and

• data mining [Li et al., 2011].

These audio features can be broken down into groups, as presented in the Cuidado

Project [Peeters, 2004], which includes definitions of a range of features. Descriptor is

used as a general term that can refer to either continuous or discrete content [Peeters,

2004]. Seventeen low level descriptors (LLDs), or audio features, are defined in the

MPEG-7 standard, with feature categorisation, for the purpose of performing audio

similarity searching via associated metadata contained within the audio file [Lindsay
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and Herre, 2001; Manjunath et al., 2002]. The Cuidado project takes this work further

to define 54 audio features for audio similarity and classification [Peeters, 2004]. This

project provides definitions of a range of features, groups them, and identifies which

are relevant as frame based features. These audio features can then be used to identify

a particular aspect of an audio signal. A good overview of features for extraction is

presented by Mitrović et al. [2010]

A range of audio feature extraction libraries and toolboxes have been constructed. Some

are built as workflow tools, with pre-processing and batch operations, some are written

for algorithmic efficiency or parallelisation, some for specific programming environments

or platforms. Despite significant growth and research in the field of audio signal process-

ing and feature extraction, there has been little research on evaluating and identifying

suitable feature extraction tools and their appropriate applications.

It has been identified that MIR primarily focuses on precision and recall, which may be

considered a limitation [Reiss and Sandler, 2002b, 2003]. Cleverdon and Keen [1966]

developed a six point scale for measuring and evaluating information retrieval systems.

This model is widely known as the Cranfield model of information retrieval evaluation.

The Cranfield model properties are: Coverage; Time Lag; Effort; Presentation; Preci-

sion; Recall. This model is an appropriate platform for evaluation and benchmarking of

MIR systems.

Reviews and evaluations of existing feature extraction libraries based on the Cranfield

model are presented. The properties of the model can be suitably related to the MIR

feature extraction tool evaluation [Reiss and Sandler, 2002a] and presents an evaluation

based on the following criteria:

Coverage - The range of audio descriptor features presented by a toolkit, along with

additional pre-processing or post-processing functionality.

Effort - User Interface, how easily one can create a new specific query or modify queries,

and appropriate documentation.

Presentation - File Output format options and consistency.
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Time Lag - Computational Efficiency of each tool.

Precision and recall are both included as part of the Cranfield Model. However, within

the case of evaluating feature extraction toolboxes, precision and recall are not considered

applicable to the task, and as such are not used. Existing work discusses the merits of

using precision and recall within MIR application [Downie, 2004].

Ten audio feature extraction toolboxes are evaluated based on the Cranfield model, as

proposed by Reiss and Sandler [2002b]. Section 3.3 compares the functionality of the

tools with respect to the range of audio features that can be extracted and any further

pre or post processing that the tool implements. The interface options of each toolboxes

is presented and discussed in Section 3.4. The output format of data of each toolbox is

presented in Section 3.5 and the computational time is presented in Section 3.6.

3.2 Existing Feature Extraction toolboxes

There are a large number of audio feature extraction toolboxes available, delivered to

the community in differing formats, but usually as at least one of the following formats:

• stand alone applications,

• plug-ins for a host application, and

• software function library.

To allow for delivery of tools, some Application Programming Interfaces (API) have been

constructed to allow for feature extraction plug-ins to be developed. Vamp [Cannam,

2009] is a C++ API specification which functions with standalone applications such as

Sonic Visualiser, a content and feature visualiser with Graphical User Interface (GUI)

and its command line interface (CLI) counterpart Sonic Annotator [Cannam et al.,

2010]. The Vamp Plugin API is an independent plugin development framework and as

a result plugin libraries have been developed by numerous research labs and academic

institutions. However due to the nature of the framework, it is not possible to create
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plug-ins that depend on pre-existing plug-ins. This results in multiple implementations

and instances of certain features being calculated, which causes potential system ineffi-

ciencies. Feature Extraction API is another plugin framework API in C and C++ [Lerch

et al., 2005], though it is less commonly used than the VAMP plugin format. There are

also feature extraction libraries that provide their own plugin API for extending their

stand alone system [McKay et al., 2005], though this is less common. There has been a

rise in MIR web services, such as the web based audio feature extraction API produced

by Echo Nest,1 where users submit files online and receive extensible markup language

(XML) descriptions. These tools have resulted in large music feature datasets, such as

the Million Song Dataset [Bertin-Mahieux et al., 2011].

The feature extraction tools evaluated are:

Aubio A high level feature extraction library that extracts features such as onset de-

tection, beat tracking, tempo, melody [Brossier, 2006].

Essentia Full function workflow environment for high and low level features, facilitating

audio input, pre-processing and statistical analysis of output. Written in C++,

with Matlab and Python binding and export data in YAML (YAML Ain’t Markup

Language) or JSON (JavaScript Object Notation) format [Bogdanov et al., 2013].

jAudio Java based stand alone application with GUI and CLI. Designed for batch

processing to output in XML or ARFF (Attribute-Relation File Format) format

for loading into Weka [McKay et al., 2005].

Librosa API for feature extraction, for processing data in Python [McFee et al., 2015]

LibXtract Low level feature extraction tool written with the aim of efficient realtime

feature extraction, originally in C but now ported to Max, Pure Data, Super

Collider and Vamp formats [Bullock, 2007].

Marsyas Full real-time audio processing standalone framework for data flow audio pro-

cessing with GUI and CLI. This programme includes a low level feature extraction

tool built in C++, with ability to perform machine learning and synthesis within

1http://static.echonest.com/enspex/

http://static.echonest.com/enspex/
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the framework. The feature extraction aspects have also been translated to Vamp

plugin format [Tzanetakis and Cook, 2000].

Meyda Web Audio API based low level feature extraction tool, written in Javascript.

Designed for web browser based efficient real-time processing [Rawlinson et al.,

2015].

MIR Toolbox Audio processing API for offline extraction of high and low level audio

features in Matlab. Includes pre-processing, classification and clustering function-

ality along with audio similarity and distance metrics as part of the toolbox func-

tionality. Algorithms are fragmented allowing detailed control with simple syntax,

but often suffers from standard Matlab memory management limitations [Lartillot

and Toiviainen, 2007].

Timbre Toolbox A Matlab toolbox for offline high and low level feature extraction.

A toolbox that provides different set of features to the MIR Toolbox, specifically

made efficient for identifying timbre and to fulfil the Cuidado standards [Peeters

et al., 2011].

YAAFE Low level feature extraction library designed for computational efficiency and

batch processing by utilising data flow graphs, written in C++ with a CLI and

bindings for Python and Matlab [Mathieu et al., 2010].

This list is not exhaustive, as there are many other feature extraction tools out there [Brent,

2010; Bryant, 2014; Deliege et al., 2008; Eyben et al., 2013]. However the list of tools se-

lected was designed with popularity, programming environment range and how recently

it has been updated all being taken into consideration.

3.3 Coverage

The coverage of an information retrieval system can be defined as the extent to which

all relevant matters are covered by the system. Within the context of audio feature

extraction tools, the coverage can be considered as the range of features a tool can
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Figure 3.1: Percentage Coverage of Multiple Feature Sets

extract. This section presents the features provided by each toolbox, relative to the

total number of unique features from all presented tool boxes and the features from the

MPEG-7 and Cuidado standard sets of audio descriptors. The relative importance of

audio features is heavily context based. To provide a meaningful measure of the relative

importance of audio features within each toolbox, the toolboxes will be compared to

their compliance with the MPEG-7 and Cuidado standards. Additional functionality,

including pre-processing and post-processing available with each feature extraction tool

will also be discussed. The accuracy of audio features or specific implementation detail

is beyond the scope of this work, but is discussed by Raffel et al. [2014].

The features available within each tool are evaluated, and a list of unique features is

created. Each tool is then compared to the total list of unique features. Each tool

is also evaluated based on the feature coverage when compared to the MPEG-7 and

Cuidado standard feature sets. The results of this can be seen in Figure 3.1. It can

be seen that Essentia provides the largest range of features, and is the only toolbox

to produce 100% coverage of the MPEG-7 audio descriptors. Following this the MIR

Toolbox and LibXtract both fulfill over 85% of the MPEG-7 and provide 85% and 75%

of the features contained within the Cuidado project, respectfully. The Timbre Toolbox

provides nearly 75% of the Cuidado feature set, however this may be unsurprising as they

were both written by the same principal author. YAAFE, jAudio and Librosa provide
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fairly similar features sets, presenting between 30% and 38% of the MPEG-7 standard

feature set, with YAAFE presenting some more perceptually motivated features than

the others. Meyda and Aubio provide a relatively low number of features, however this is

not without justification: Meyda is written for real-time processing in the browser, and

as such is inherently limited to a set of frame based features; Aubio is designed to focus

on more high level feature extraction tools, and though providing a number of low level

features, this is only to facilitate the high level feature extraction. Marsyas performs the

worst in terms of feature range, complying to just 25% of MPEG-7 standard and 20%

of the Cuidado standard. Marsyas is designed as an audio processing platform, where

clustering, classification and synthesis can all be performed within the entire workflow,

so the range of available features may be limited, but the tool provides functionality

beyond feature extraction. It is worth noting that only three features, spectral centroid,

spectral rolloff and signal energy, are present in all the toolboxes and just 30 features

are present in more than half of the toolboxes, and so attention must be paid if specific

features are required.

Table 3.1 shows that LibXtract and Meyda do not provide any high level features.

jAudio provides a limited range of high level features, such as beat histogram, and

strongest beat. Aubio provides a limited range of low level features, such as spectral

centroid, spread, skew and kurtosis. Aubio is designed specifically as a high level feature

extraction tool, with particular focus on segmentation, whereas LibXtract, Meyda and

jAudio are principally designed to extract low level features.

Additional functionality, such as pre-processing or post processing, is provided by a

range of tools. Pre-processing is an important aspect of evaluating any audio processing

system, as it allows the user to be confident of a classification in any low quality environ-

ment where the audio may be degraded Mauch and Ewert [2013]. The resample function

allows a standardisation of sample rates within a toolbox, which can be used to ensure

that expected results for spectral comparisons are within the same range. For example,

if a sample rate of 96kHz is used, it would be possible to have a spectral centroid of

30kHz, which has no perceptual meaning, compared to a file sampled at 44.1kHz, where

the maximum spectral centroid would be 22050Hz.
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It can be seen from Table 3.1 that Aubio, Essentia, jAudio, Librosa, Marsyas and

YAAFE all provide the user with some resample function as part of the toolbox, where

as Meyda, MIR Toolbox and Timbre Toolbox all inherit a resample function from their

native environments, as Web Audio API and Matlab both have resample functions built

in. LibXtract does not provide a resample function, however, if used as a Vamp plugin,

many Vamp hosts contain resample functions.

Clustering, as a post-processing tool, is also a useful functionality for many MIR pro-

cesses. The post processing tools allow the user to directly analyse the output results

as part of a single process. Essentia, Marsyas and MIR Toolbox all provide some form

of clustering algorithm within them, and jAudio, Marsyas and MIR Toolbox can ex-

port files directly to ARFF format for loading directly into Weka, a data mining and

clustering tool [Hall et al., 2009].

Essentia, MIR Toolbox and LibXtract produce a strong range of feature coverage, and

the Timbre Toolbox covers the Cuidado feature set well. In terms of feature range these

tools seem to perform better than many other existing tools. Essentia and MIR Toolbox

both provide a powerful range of additional pre and post processing tools to benefit the

user.

3.4 Effort

Effort is used to define how challenging a user finds a system to use, and whether any

user experience considerations have been made while developing a system. Within this

section, effort is evaluated relative to the user interface that is provided, whether it is a

GUI, CLI or an API. The existence and quality of documentation and suitable examples

is evaluated. The purpose is to identify how intuitively a tool’s interface is presented to

a user.

Table 3.1 outlines the user interfaces presented by each of the feature extraction tools.

It can be seen that jAudio is the only tool that comes with its own GUI, though Aubio,

LibXtract and Marsyas all have GUI capabilities through virtue of being Vamp plug-

ins, when paired with a visualisation tool such as Sonic Visualiser. CLI’s are more
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common, as Aubio, Marsyas, jAudio and YAAFE come with complete command line

interfaces and Essentia comes with a series of precompiled C++ binary files that can

be run from the command line. However, this limits control functionality, as all the

control is included in the software implementation. LibXtract can also be controlled

via command line, through the use of its Vamp plugin format and a Vamp CLI tool

such as Sonic Annotator. All tools come with APIs, which means Librosa, Meyda, MIR

Toolbox and Timbre Toolbox are all only presented as software APIs, and as such all

require software implementation before feature extraction is possible.

There are five different APIs written for both C and Python. Four APIs are available

for Matlab, including the Essentia Matlab project.2 Java has three APIs and only a

single API for Javascript, Pure Data, Max-MSP, Supercollider, Lua and R are provided.

Although Python and C are common programming languages, it is believed that Matlab

is one of the most common frameworks used within MIR [Page et al., 2012]. Environ-

ments such as web audio, in Javascript, Pure Data and Max-MSP are much less common

in the MIR and audio research field, but are advantageous as they are real-time audio

environments where features are calculated in realtime and as such are excellent for

prototyping.

Most toolboxes have clear documentation with examples, but there is limited documen-

tation for LibXtract, Meyda and the Timbre toolbox. Though the documentation is not

unclear, all the other tools provide a lot more information regarding basic access and

software applications. Similarly, all toolboxes supply basic examples of implementation,

however YAAFE, Essentia, Aubio and MIR Toolbox all have a strong range of examples

that run straight away. Marsyas has clear documentation and a range of examples from

which to draw inspiration, but required the user to learn a proprietary language for use

as part of the system.

In conclusion, when looking for a standalone tool which covers a user flexibility and

usability with a user interface, then the Vamp plugin route is a useful one to take. This

provides a simple intuitive interface and any number of specific features can be loaded

in as required. If batch processing is required, then either the GUI from jAudio or CLI

2https://github.com/MTG/Matlab-c-tools/tree/master/essentia

https://github.com/MTG/Matlab-c-tools/tree/master/essentia
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from YAAFE are intuitive, flexible and simple to use. If a user requires a programming

API, then, depending on their environment, there are potentially a range of tools. C,

C++ Python and Matlab APIs are provided by a range of tools, with often multiple

being offered by each toolkit, as can be seen in Table 3.1.

3.5 Presentation

An important aspect of any information retrieval system is how the resulting information

is presented back to the user. Within this section, the output format of data is discussed

and the relative merits of each approach outlined.

Document output format is one of the most significant barriers in fully integrated work-

flow solutions within MIR [Casey et al., 2008]. Output format is important, primarily

as it impacts the ease and format of analysis someone can carry out on a dataset. Typi-

cally, a software API is used to store values in a relevant data structure within the given

development language and as such, file output format becomes irrelevant in this case.

XML, YAML and JSON are all standard structured data formats, that allow the pre-

sentation of hierarchical structures of data. HDF5 (Hierarchical Data Format 5) is also

a hierarchical data structure specifically designed for efficient storage and accuracy of

contents and relating to the Semantic web - as such is well suited to big data tasks.

CSV (Comma-separated values) and TSV (Tab-separated values) are table structures

that allow users to view data in most spreadsheet applications, and ARFF is also a

table structure with specific metadata about each column format and available options.

ARFF is specifically designed for use with Weka, which is a powerful data mining tool.

CSV and TSV formats are considered to be suitable output formats if the resulting value

can be considered as a table, however within the feature extraction, generally there is a

much more complex data structure than simply two dimensions. Features carry varying

levels of complexity, as some features are global for a signal where as some are based

on windowed frames of a signal. Some features, such as MFCCs produce 13 numerical

values per frame. As such it seems suitable that the data format used to output these

results can represent these hierarchical feature formats. JSON and XML file formats
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are well supported by almost all programming languages, so there should not be any

issues with processing the data results. CSV is also well supported within programming

languages, but the lack of complexity or data structure can lead to potential ambiguities

or errors with data transfer. The benefits of producing ARFF files, which can be loaded

direct into Weka allows the user a great range of data mining opportunities and should

not be underestimated.

Although it is clear that the file format is reliant on further applications, any feature

extraction library should be able to present its data output in a data structure to suitably

represent the hierarchical nature of the data it intends to represent. YAAFE, Essentia,

jAudio and LibXtract all provide some from of suitable data structure, however only

jAudio can also pass files direct into Weka. Marsays and MIR Toolbox both allow for

unstructured data, but can produce ARFF files for easy data mining, and Librosa and

Timbre Toolbox will only allow users an unstructured data in a table format. YAAFE

and jAudio are the only two applications that allow users the choice of structured or

tabular data.

3.6 Time Lag

Time lag is the measure of how long a given task will take to complete. Understanding

the time necessary to perform a task, and comparing the relative speed of systems will

give users an informed choice as to what system to use, particularly when they want to

analyse large data sets. This section will discuss the computational complexity of the

ten feature extractions tools and identify whether they are implemented in real-time or

if they are offline methods.

Meyda and the various LibXtract ports to Pure Data, Supercollider and Max-MSP

are all designed to run in realtime. Each of these real-time environments are provided

with suitable feature extraction, which provides a user with powerful visualisation and

real-time interactivity but is less useful for users wishing to focus on offline approaches.
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Figure 3.2: Graph of Computational Time of Feature Extraction Tools

The offline approaches were all evaluated for computational efficiency. A dataset for

evaluation is a subset of the Cambridge Multitrack Data Set.3 Thirty two different

songs were used. The dataset consists of 561 tracks with an average duration of 106s,

which totalled over 16.5 hours of audio and 8.79Gb of data. Each toolbox is used to

calculate the MFCC’s from this data set, with a 512 sample window size and 256 sample

hop size. The input audio is at a variety of different sample rates and bit depths to

ensure that variable input file formats is allowable. This test is run on a MacBook Pro

2.9GHz i7 processor and 8Gb of RAM. The results are presented in Figure 3.2. The

MFCCs were used, as they are a computational method, that exists within nine of the

ten given tool boxes, and so should provide a good basis for comparison of computational

efficiency. MFCCs are not computed by the Timbre Toolbox and Meyda will only run

in real-time.

As can be seen from Figure 3.2, Yaafe is the fastest toolbox, processing over 16.5 hours

of audio in just over 3 minutes 30s, with Essentia coming in as a close second place at

4 minutes 12s. LibXtract and Marsyas both completed in under 10 minutes, and both

Aubio and jAudio ran in under 15 minutes. The MIR toolbox took over 31 minutes to

3http://www.cambridge-mt.com/ms-mtk.htm

http://www.cambridge-mt.com/ms-mtk.htm
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run and Librosa took 1hour 53 minutes. It is evident that tools written in C or C++

run faster than tools written in Python or java.

3.7 Discussion

Require Real 
Time Features?

Within a 
Website?

Features  within 
programming 
environment

GUI or CLI Programming 
Environment?

Meyda

VAMPjAudio Essentia

MIRToolbox 
and 

TimbreToolbox
jAudio VAMPEssentia

LibXtract
-Max MSP -
Supercollider
-PD

MatlabJava PythonC/C++

Yes
No

GUI CLI

UI
API

Figure 3.3: Flowchart to recommend what tool to use

N.B. Vamp = LibXtract and Marsyas Vamp Packages

Ten audio feature extraction toolboxes are discussed and evaluated relative to four of

the six criteria of the Cranfield Model.

Meyda and LibXtract provide excellent real-time feature extraction tools in various

programming environments. When high level features and segmentation is required,

Aubio provides a simple and intuitive tool. It also provides a Vamp plugin format.

When visualisation is required, for annotation or basic exploration of features, using the

Vamp plugin format is very powerful, and the combination of LibXtract and Marsysas as

Vamp plug-ins provide excellent coverage of audio features. Research based in MATLAB

should use the MIR Toolbox combined with the Timbre Toolbox for maximum feature
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coverage, or Essentia where computational efficiency is important with little sacrifice of

feature range. Essentia performs the best with regards to computation, feature coverage

and output presentation, with a range of APIs.

As the suitable feature extraction toolbox is entirely application dependent, there is no

single case where a certain tool is better or more powerful than another. However sug-

gestions for suitable toolboxes to use can be identified from Figure 3.3. When working on

real-time applications, either Meyda or LibXtract will be most suitable for applications,

whereas when working in an offline fashion, there is an option for either user interfaces

or APIs. If a user interface is required then Vamp plug-ins, of LibXtract and Marsyas,

are very powerful and advantageous tools, that can be hosted in either graphic interfaces

or command line interfaces. jAudio provides a strong user interface with batch process-

ing tool, but its range of features is limited. Essentia provides a strong CLI with large

range of features, but low level of control, so implementation is required for accurate

control of the features. If an API is required, then a range of example suggestions are

proposed for some commonly used programming languages. A Java API is provided by

jAudio, which is powerful and efficient, but performs on a reduced feature set. Strong

Matlab APIs are provided by either a combination of MIR Toolbox and Timbre Toolbox

or Essentia, with the ‘Matlab-C-tools’.4 As such, the Essentia tool box will be used for

feature extraction throughout the rest of this thesis.

4https://github.com/MTG/matlab-c-tools

https://github.com/MTG/matlab-c-tools


Chapter 4

Taxonomy of Sound Effects

4.1 Introduction

This chapter demonstrates the production of a hierarchical taxonomy of sound effects,

based entirely on the sonic properties of the audio samples, through the use of unsuper-

vised machine learning. Unsupervised machine learning is a machine learning approach

that can be performed on unlabelled data. This will provide a better understanding of

the relative structure and similarity of different sound effects. An unsupervised, sonically

inspired taxonomy offers an alternative to standard categorisation, in the hope that it

will aid the search process by alleviating dependence on manually annotated labels and

inconsistent grouping of sounds.

Sound designers regularly use sound effects libraries to design audio scenes, layering

different sounds in order to realise a design aesthetic. For example, numerous explosion

audio samples are often combined to create an effect with the desired weight of impact.

A large part of this work involves the use of Foley, where an artist will perform sound

with a range of props. A key aspect of Foley is that the prop being used may not match

the object in the visual scene, but is capable of mimicking its sonic properties. An

example would be the use of a mechanical whisk, which becomes a convincing gun rattle

sound effect when combined in a scene with explosions and shouting.

49
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Sound designers are less interested in the physical properties or causes of a sound, and

more interested in their sonic properties. Despite this, many sound effects libraries are

organised into location based or physical categories. It is common for sound effects

libraries to use location categories such as ‘Forest’, ‘Urban’, ‘Boat’ or ‘Kitchen’. Phys-

ical properties of the object such as ‘Telephone’ or ‘Glass’ are often used. These two

grouping approaches can be problematic as often a sound derived from a specific prop-

erty or location may be appropriate for use in other cases, such as in the field of Foley

sound. In Wold et al. [1996] a sound search tool based on sonic properties is proposed,

considering loudness, pitch and timbral attributes. A similar tool for semantic browsing

of a small library of urban environmental sounds has also been proposed by Lafay et al.

[2016]. No other known classification methods for sound effects based on their sonic

attributes exist, though Heller and Wolf [2002] discuss the importance of acoustical fea-

tures for associating sound effects to target events. Most previous work focuses either

on subjective similarity or the context and source of the sound.

Given that the practical use for a sound sample is often abstracted from its original

intention, source, or semantic label, categorisation based on this information is not

always desirable. Furthermore, no standard exists for the labelling of recorded sound,

and the metadata within a sound effects library can be highly inconsistent. This can

make the task of searching and identifying useful sounds extremely challenging, and the

neuances desired are often missing. For this reason, along with many others, sound

designers may resort to recording new sound effects for each new project.

Different approaches to developing taxonomies of sound are discussed in Section 2.4. A

review of different feature extraction toolboxes was presented in Section 3.1. Section 4.2

presents the dataset, feature selection technique and unsupervised learning method un-

dertaken to produce a hierarchy within a sound effects library. The taxonomy produced

is presented in Section 4.3. The evaluation of the presented taxonomy is undertaken

in Section 4.4 and discussed in Section 4.5. Finally, the validity of the taxonomy is

discussed in Section 4.6.
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4.2 Methodology

An unsupervised machine learning technique is used to develop an inherent taxonomy of

sound effects. This section will detail the various development stages of the taxonomy,

as presented in Figure 4.1. The Adobe sound effects library was used. A set of audio

features were extracted, feature selection was performed using Random Forests (see

Section 4.2.3), and a Gaussian Mixture Model (see Section 4.2.3) was used to predict

the optimal number of clusters in the final taxonomy. From the reduced feature set,

unsupervised hierarchical clustering was performed to produce the number of clusters as

predicted using the Gaussian Mixture Model. Finally the hierarchical clustering results

are interpreted. All software is available online.1

Feature 
Extraction

Sound Effects 
Library

Feature 
Selection

Hierarchical 
Clustering

Traverse 
Tree

Sound Effects 
Taxonomy

Feature 
Selection

Grow 
Decision Tree

Interpret Tree

Expectation 
Maximisation

Figure 4.1: Flow Diagram of unsupervised sound effects taxonomy system.

1https://goo.gl/9aWhTX

https://goo.gl/9aWhTX
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4.2.1 Dataset

A dataset containing around 9,000 audio samples from the Adobe sound effects library

is used.2 This sound effects library contains a range of audio samples, between 0.1s and

4 minutes in length. The average sample length was 6 seconds with a standard deviation

of 14.7. All input audio signals were downmixed to mono, downsampled to 44.1 kHz if

required, and had the initial and final silence removed. All audio samples were loudness

normalised using ReplayGain [Robinson and Hawksfords, 2000]. Each sound effect was

placed in a different folder, describing the context of the original sound effect. The

original labels from the sound effects library can be found in Table 4.1, along with the

number of samples found in each folder.

Table 4.1: Original label classification of the Adobe Sound Effects Dataset.

Class Quantity of Class Quantity of
Name Samples Name Samples

Ambience 92 Animals 173
Cartoon 261 Crashes 266

DC 6 DTMF 26
Drones 75 Emergency Effects 158

Fire and Explosions 106 Foley 702
Foley Footsteps 56 Horror 221

Household 556 Human Elements 506
Impacts 575 Industry 378

Liquid-Water 254 Multichannel 98
Multimedia 1223 Noise 43

Production Elements 1308 Science Fiction 312
Sports 319 Technology 219
Tones 33 Transportation 460

Underwater 73 Weapons 424
Weather 54

DC are offset component audio signals, typically used for system tests. DTMF is Dual Tone
Multi Frequency - a set of old telephone tones.

4.2.2 Feature Extraction

The dataset described in Section 4.2.1 was used. The Essentia Freesound Extractor was

used to extract audio features [Bogdanov et al., 2013]; as Essentia allows for extraction

of a large number of audio features, is easy to use in a number of different systems and

2https://goo.gl/TzQgsB

https://goo.gl/TzQgsB
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produced the data in a highly usable format, as discussed in Section 3.1. A range of

180 different audio features were extracted, which are the essentia freesound extractor

set.3 This extractor set was used, as it is purposely designed for computations on large

non-musical sound collections, and it was felt that this best applies to the data being

investigated. All frame based features were calculated using a frame size of 46ms with

a hop size of 23ms, with the exception of pitch based features, which used a frame

size of 92ms and the hop size 46ms. The statistics of these audio features were then

calculated, to summarise frame based features over the audio file. The statistics used are

the mean, variance, skewness, kurtosis, median, mean of the derivative, the mean of the

second derivative, the variance of the derivative, the variance of the second derivative,

the maximum and minimum values. Non-frame based features were computed directly,

so no statistics were required. This produced a set of 1450 features, extracted from each

file. The original feature set was reduced to 1364 features, as features were removed if

they provided no variance over the dataset. All features were then normalised to the

range [0, 1].

4.2.3 Feature Selection

Feature selection was performed using a similar method to the one described in Ronan

et al. [2015], where a Random Forest classifier is used to determine audio feature im-

portance. Random forests are an unsupervised classification technique where a series of

decision trees are created, each with a random subset of features. As such, the clusters

were intended to separate out the data in the most natural manner presented from the

data. The out-of-bag (OOB) error is then calculated, as a measure of the random forests

classification accuracy. OOB error is a measure of the predicted error for each feature,

if that feature were to be removed from the feature set, for each given tree. From this

OOB error, it is possible to allocate each feature with a Feature Importance Index (FII),

which ranks all audio features in terms of importance by evaluating the OOB error for

each tree grown with a given feature, to the overall OOB error [Breiman, 2001].

3https://essentia.upf.edu/documentation/freesound_extractor.html

https://essentia.upf.edu/documentation/freesound_extractor.html
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Ronan et al. [2015] eliminated the audio features from a Random Forest that had an

FII less than the average FII and then grew a new Random Forest with the reduced

audio feature set. This elimination process would repeat until the OOB error for a newly

grown Random Forest started to increase.

In this work, the 1% worst performing audio features were eliminated, on each step of

growing a Random Forest, in a similar to but more conservative than the approach taken

by Genuer et al. [2010]. In order to select the correct set of audio features that fitted the

dataset, the feature set that provided the lowest mean OOB error over all the feature

selection iterations was chosen.

On each step of the audio feature selection process, the data was clustered using a

Gaussian Mixture Model (GMM). GMM’s are an unsupervised method for clustering

data, on the assumption that data points can be modelled by a gaussian. In this method,

the number of clusters is specified and get a measure of GMM quality using the Akaike

Information Criterion (AIC). The AIC is a measure of the relative quality of a statistical

model for a given dataset. The number of clusters used to create each GMM was

continuously increased, while performing 10-fold cross-validation until the AIC measure

stops decreasing. This provides the optimal number of clusters to fit the dataset.

4.2.4 Hierarchical Clustering

There are two main methods for hierarchical clustering. Agglomerative clustering is

a bottom up approach, where the algorithm starts with singular element clusters and

recursively merges two or more of the most similar clusters. Divisive clustering is a top

down approach, where the data is one large cluster, and is recursively separated out into

a fixed number of smaller clusters.

Agglomerative clustering was used in this chapter, as it is frequently applied to problems

within this field [Aldrich et al., 2009; Ballas, 1993; Gygi et al., 2007; Ronan et al., 2015;

Rychtáriková and Vermeir, 2013; Woodcock et al., 2016]. It also provides the benefit of

providing cophonetic distances between different clusters, so that the relative distances

between nodes of the hierarchy are clear. Agglomerative clustering was performed,



Chapter 4 Taxonomy of Sound Effects 55

on the feature reduced dataset, by assigning each individual sample in the dataset as a

cluster. The distance was then calculated for every cluster pair based on Ward’s method

[Ward Jr, 1963],

d(ci, cj) =

√
2ncincj
nci + ncj

euc(xci , xcj ) (4.1)

where for clusters ci and cj , xc is the centroid of a cluster c, nc is the number of elements

in a cluster c and euc(xci , xcj ) is the euclidean distance between the centroids of clusters

ci and cj . This introduces a penalty for clusters that are too large, which reduces the

chances of a single cluster containing the majority of the dataset and that an even

distribution across a hierarchical structure is produced. The distance is calculated for

all pairs of clusters, and the two clusters with the minimum distance d are merged into

a single cluster. This is performed iteratively until there is only a single cluster. This

provides us with a full structure of the data, which can be visualised from the whole

dataset, down to each individual component sample.

4.2.5 Node Semantic Context

In order to interpret the dendrogram produced from the previous step, it is important to

have an understanding of what is causing the separation at each of the node points within

the dendrogram. Visualising the results of machine learning algorithms is a challenging

task. According to Baehrens et al. [2010], decision trees are the only classification

method which provides a semantic explanation of the classification. This is because a

decision tree faciliates inspection of individual features and threshold values, allowing

interpretation of the separation of different clusters. This is not possible with any other

classification methods. As such, feature selection was undertaken and then a decision

tree is grown to provide some semantic meaning to the results.

Each node point can be addressed as a binary classification problem. For each node

point, every cluster that falls underneath one side is put into a single cluster, and

everything that falls on the other side of the node is placed in another separate cluster.

Everything that does not fall underneath the node is ignored. This produces two clusters,

which represent the binary selection problem at that node point. From this node point,
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a random forest is grown to perform the binary classification between the two sets and

feature selection is then performed as described in Section 4.2.3. The main difference

here is that only the five most relevant features, based on the FII are selected at each

stage. Five features were selected, so as to allow for a low number of features in order

to allow some interpretability to the separation. This is performed for interpretability

of the separation at this node point.

A decision tree is grown with this reduced set of five audio features, to allow manual

visualisation of the separation of data at each node point within the hierarchical struc-

ture. The decision tree is constructed by minimising the Gini Diversity Index (GDI), at

each node point within the decision tree, which is calculated as:

GDI = 1−
∑
i

p(i)2 (4.2)

where i is the class and p(i) is the fraction of objects within class i following the branch.

The decision trees are grown using the CART algorithm [Breiman, 1984]. To allow for a

more meaningful visualisation of the proposed taxonomy, the audio features and values

were translated to a semantically meaningful context based on the audio interpretation

of the audio feature. The definitions of the particular audio features were investigated

and the perceptual context of these features are identified, providing relevant semantic

terms in order to describe the classification of sounds at each node point.

4.3 Results and Evaluation

4.3.1 Feature Extraction Results

Figure 4.2 plots the mean OOB error for each Random Forest that is grown for each

iteration of the audio feature selection process. In total there were 325 iterations of the

feature selection process, where the lowest OOB error occurred at iteration 203 with

a value of 0.3242. This reduced the number of audio features from 1450 to 193. 193

features were remaining, as the bottom 1% of features were removed in each one of the

203 iterations, as discussed in Section 4.2.3
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Figure 4.2: Mean OOB Error for each Random Forest grown plotted against number
of feature selection iterations
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Figure 4.3: Mean OOB Error for each Random Forest grown plotted against optimal
number of clusters for each feature selection iteration

Figure 4.3 depicts the mean OOB error for each Random Forest feature selection itera-

tion against the optimal amount of clusters, where the optimal amount of clusters was

calculated using the AIC for each GMM created. The optimal amount of clusters was

found to be 9, as this coincides with the minimum mean OOB error in Figure 4.3.
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Figure 4.4: Dendrogram of arbitrary clusters

The dotted line represents the cut-off for the depth of analysis (9 clusters)

4.3.2 Hierarchical Clustering Results

Having applied agglomerative hierarchical clustering to the reduced dataset, the resul-

tant dendrogram can be seen in Figure 4.4. The dotted line represents the cut-off for

depth analysis, chosen based on the result that the optimal choice of clusters is 9.

The results of the pruned decision trees are presented in Figure 4.5. Each node point

identified the specific audio feature that provides the best split in the data, to create

the structure as presented in Figure 4.4.
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Figure 4.5: Machine learned structure of sound effects library, where clusters are
hierarchical clusters.

The single audio feature contributing to the separation is used as the node point,with nor-
malised audio feature values down each branch to understand the impact the audio feature
has on the sound classification. The ∗ represents a feature separation where the classification

accuracy is less than 80%, never less than 75%.

4.3.3 Sound Effects Taxonomy Result

The audio features used for classification were related to their semantic meanings by

manual inspection of the audio features used and the feature definitions. This is pre-

sented in Figure 4.6. As can be seen, the two key factors that make a difference to the

clustering are periodicity and dynamic range.

Periodicity is calculated as the relative weight of the tallest peak in the beat histogram.

Therefore strongly periodic signals have a much higher relative peak weight than ran-

dom signals, which is expected to have near-flat beat histograms. Dynamic range is

represented by the ratio of analysis frames under 60dB to the number over 60dB as all

audio samples were loudness normalised and all leading and trailing silence was removed,

as discussed in Section 4.2.2. Further down the taxonomy, it is clear that periodicity
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Figure 4.6: Interpretable machine learned taxonomy

Each node separation point is determined by hierarchical clustering and text within each node
is an semantic interpretation of the most contributing audio feature for classification. Each
final cluster is given a cluster number and a brief semantic description. The ∗ represents a

feature separation where the classification accuracy is less than 80%, never less than 75%.

stands out as a key factor, in many different locations, along with the metric structure

of periodicity, calculated as the weight of the second most prominent peak in the beat

histogram. Structured music with beats and bars will have a high metrical structure,

whereas single impulse beats or ticks will have a high beat histogram at one point but

the rest of the histogram should look flat.

4.4 Evaluation

To evaluate the results of the produced sound effects taxonomy, as presented in Fig-

ure 4.6, the generated taxonomy was compared to the original sound effects library
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classification scheme, as presented in Section 4.2.1. The purpose of this is to produce

a better understanding of the resulting classifications, and how it compares to more

traditional sound effects library classifications. It is not expected that these clusters will

appropriately represent any pre-existing data clusters, but that it may give us a better

insight into the representation of the data.

Each of the 9 clusters identified in Figures 4.5 and 4.6 were evaluated by comparing

the original classification labels found in Table 4.1 to the new classification structure.

This is presented in Figures 4.7–4.15, where each cluster has a pie chart representing

the distribution of original labels from the dataset. Only labels that make up more than

5% of the dataset were plotted. Each of the legend items are plotted alphabetically,

clockwise from the centre top of the figure.

In cluster 1 (Figure 4.7), which has quick, periodic, high dynamic range sounds with a

gradual decay, the majority of the results are from a range of production elements which

are highly reverberant repetitive sounds, such as slide transition sounds. Many of these

sounds are artificial or reverberant in nature, which follows the intuition of the cluster

identification.

Figure 4.7: Dataset labels of cluster 1

Cluster 2 (Figure 4.8), with quick periodic highly dynamic sharp sounds contains a

combination of Foley sounds and water-splashing sounds. These sounds are somewhat

periodic, such as lapping water, but do not have the same decay as in cluster 1.
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Figure 4.8: Dataset labels of cluster 2

Cluster 3 (Figure 4.9) is very mixed. The cluster is made up of quick, highly periodic,

high dynamic range sounds. Impacts, household sounds and Foley make up the largest

parts of the dataset, but there is also contribution from crashes, production elements

and weapon sounds. It is clear from the distribution of sounds that this cluster contains

mostly impactful sounds. It is also evident that a range of impactful sounds from across

the sound effects library have been grouped together.

Figure 4.9: Dataset labels of cluster 4

In cluster 4 (Figure 4.10), with highly periodic sounds with a high dynamic range, most

of the samples are from the production elements label. These elements are moderately
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periodic at a high rate, such as clicking and whooshing elements, which are also similar

to the next category of multimedia.

Figure 4.10: Dataset labels of cluster 4

Cluster 5 (Figure 4.11) contains sounds that are periodic, structured sounds with a low

dynamic range. A spread of sound labels is included in this cluster, which includes

transport and production elements as the two largest components. In particular, the

transport sounds will be a periodic repetition of engine noises or vehicles passing, while

remaining at a consistent volume.

Figure 4.11: Dataset labels of cluster 5

Cluster 6 (Figure 4.12) contains sounds which have a low dynamic range, periodic,

unstructured sounds. There is a large range of labels within cluster 6. The three
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most prominent are human, multimedia and production elements, though cartoon and

emergency sounds also contribute to this cluster. Human elements are primarily speech

sounds, so the idea that periodic sounds that do not have a lot of high mid seems suitable,

as the human voice fundamental frequency is usually between 90Hz and 300Hz.

Figure 4.12: Dataset labels of cluster 6

Cluster 7 (Figure 4.13) is entirely represented by the science fiction label. This is made

up of periodic, unstructured sounds with a low dynamic range and a large emphasis on

the high mid frequency range. These fairly repetitive, constant volume sounds have an

unnaturally large amount of high mid frequency around the 2kHz range.

Figure 4.13: Dataset labels of cluster 7
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Within cluster 8 (Figure 4.14) there are aperiodic low dynamic range sounds. The largest

group of samples in this cluster is multimedia, which consists of whooshes and swipe

sounds. These are aperiodic, and the artificial nature suggests a long reverb tail or echo.

A low dynamic range suggests that the samples are consistent in loudness, with very

few transients.

Figure 4.14: Dataset labels of cluster 8

Finally, cluster 9 (Figure 4.15) consists of a range of aperiodic impactful sounds with a

high dynamic range from the impact, Foley, multimedia and weapon categories.

Figure 4.15: Dataset labels of cluster 9
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4.5 Discussion

The nine inferred clusters were compared to the 29 original source based labels. It is

clear that some clusters relate to intuition, and that this structure may aid a sound

designer and present a suitable method for finding sounds, such as impactful sounds

in cluster 9. Despite this, there are some clusters that do not make intuitive sense, or

are difficult to fully interpret. It is suspected that this is due to the depth of analysis

on the dataset. Despite the GMM predicting 9 clusters within the data, it is believed

that a greater depth of analysis and clustering could aid in providing more meaningful,

interpretable results, as many of the clusters are currently too large. The target of nine

clusters was used within this work, as that was the optimal number of clusters suggested

by the GMM approach, and any other depth level of study would have been an arbitrary

selected number of clusters.

As can be seen from Figure 4.6 and discussed in Section 4.3, dynamic range and periodic

structure are the key factors that create separations in this dataset. It is surprising that

no timbral attributes and only one spectral attribute appears in the top features for

classification within the dataset, and that seven of the eight features are time domain

features.

Cluster 7 was described entirely as ‘Science Fiction’ in Section 4.4. This set of sound ef-

fects is entirely artificial, created using synthesisers and audio production. The grouping

using this audio feature is most likely an artefact of the artificial nature of the samples

and the fact they all come from a single source. This is also caused by the analysis and

evaluation of a single produced sound effects library. This artefact may be avoided with

a large range of sound effects from different sources.

Section 4.4 shows that the current classification system for sound effects may not be ideal,

especially since expert sound designers often know what sonic attributes they wish to

obtain. This is one of the reasons that audio search tools have become so prominent,

yet many audio search tools only work using tag metadata and not the sonic attributes

of the audio files. As such, by considering the sonic elements of the audio files, it has
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been possible to form a taxonomy that separates audio into clusters based entirely on

their sonic properties.

The produced taxonomy is very different from current work. As presented in Section 2.4,

most literature bases a taxonomy on either audio source, environmental context or sub-

jective ratings. This alternative taxonomy can provide a new approach for searching

though groups of sounds that are related only to the sonic properties of the sounds. The

hope is that this could provide variety in searching for specific sound effects by focusing

on sonic attributes of the sound sample, rather than associated tags.

4.6 Conclusion

Given a commercial sound effects library, a taxonomy of sound effects has been learned

using unsupervised learning techniques.

At the first level, a hierarchical structure of the data was extracted and presented in

Figure 4.4. Following from this, a decision tree was created and pruned, to allow for

visualisation of the data, as in Figure 4.5. Finally a semantically relevant context was

applied to data, to produce a meaningful taxonomy of sound effects which is presented

in Figure 4.6. A semantic relationship between different sonic clusters was identified.

The hierarchical clusters of the data provide deeper understanding of the separating

attributes of sound effects, and gives us an insight into relevant audio features for sound

effects classification. The importance of the periodicity, dynamic range and spectral

features for classification is demonstrated. It should be noted that although the entire

classification was performed in an unsupervised manner, there is still a perceptual rel-

evance to the results and there is a level of intuition provided by the decision tree and

the presented semantic descriptors. Furthermore, the clustering and structure will be

heavily reliant on the sound effects library used.

It has also been demonstrated that current sound effects classification and taxonomies

may not be ideal for their purpose. They are both non-standard and often place son-

ically similar sounds in very different categories, as demonstrated in Section 4.3. This
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new approach could potentially afford new approaches for a sound designer to find an

appropriate sound. This work proposes a new direction for producing new sound ef-

fects taxonomies based purely on the sonic content of the samples, rather than source

or context metadata. As such, a natural extension of this work would be to scale this

investigation up to larger sound effects libraries.

This work requires some user experience led development to produce an interactive sys-

tem to allow users to search through large systems of sound effects. This approach has

the potential to be a disruptive technology [Bower and Christensen, 1995]. Regardless

of whether the current sound design practitioners recognise a direct need for new tech-

nology, there is the potential for developments to have considerable impact on the field.

The uptake of technology in sound design may well grow as technological innovation

and advancements develop further, and the technology has been demonstrated to be

effective.



Chapter 5

Subjective Evaluation of

Synthesised Sound Effects

5.1 Introduction

This chapter proposes to evaluate sounds produced by a synthesis system and compare

them against recorded samples, in the same contextual environment. This facilitates

direct comparison and helps establish if a particular synthesis method can be considered

indistinguishable from a recording of the original sound. In this context, there may be

instances where a synthesis method would be beneficial for use in a professional capacity,

since there are typically more direct ways to control the sonic properties of a synthesis

method than of a sample. The synthesis methods used will inevitably rely heavily on

the sonic properties of the sound effect being represented. This builds on the previous

chapter on investigating sonic properties and their ability to group sounds together, and

investigates the extent to which realistic sound effects can be computationally generated.

The ability to produce realistic, real-time synthesised sounds is considered a challeng-

ing [Miner and Caudell, 2005] and unsolved problem [Caramiaux et al., 2014]. This

work aims to highlight the shortcomings of current research and to provide insight into

which synthesis methods are most effective given a specific context. Through better

understanding of the subjective realism of a range of synthesis methods, on a range of

69
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different sounds, the intention is to highlight particular sound classes or contexts that

would benefit from further work. Section 2.2 presented the range of synthesis methods

to be evaluated. The listening test set-up is presented in Section 5.2 and the results pre-

sented in Section 5.3. An evaluation of the results and discussion of the impact of these

results is presented in Section 5.4. Section 5.5 will present conclusions and discussion of

this work.

5.2 Experimental Method

5.2.1 Participants

Eighteen participants between the ages of 18 and 40 took part in the experiment, of which

11 were male and 7 female. The procedure was approved by the local ethics committee.

The average test duration was 17.5 minutes, so fatigue was not an issue Schatz et al.

[2012].

5.2.2 Experimental Setup

The experiment took place in a dedicated, professionally acoustically treated listening

room at Queen Mary University of London. The audio was played back over a pair of

PMC AML2 loudspeakers, where the participant could adjust the volume of the audio

to a comfortable level. Participants were asked to set the volume during the first test,

and then refrain from adjusting it during the remainder of the test. No participant

moved the volume more than 3dB from its starting position, so this effect is considered

negligible. Background noise was measured to be below 40dB SPL (Sound Pressure

Level) for all frequencies below 100Hz on a callibrated SPL meter.

5.2.3 Materials

Six different synthesis methods were used to synthesise a range of different sound effects.

The synthesis methods were selected to represent a large range of published work in the
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field, as presented in Section 2.2 (additive, concatenative, sinusoidal modelling, physi-

cally inspired synthesis and statistical modelling and marginal statistics). Evaluation

of physical models is a difficult task and is specific to the type of physical modelling.

The complex nature and detail of some physical models makes it challenging to com-

pare these to more general sample based or signal based synthesis methods. As such,

evaluation of physical models is beyond the scope of this work, but physically inspired

synthesis will be used for evaluation purposes.

Participants were asked to evaluate sound textures for eight categories (applause, babble,

bees, fire, rain, stream, waves, wind). These textures comprise a large range of sounds

that have been used for sound synthesis evaluation in existing work [McDermott and

Simoncelli, 2011; Schwarz et al., 2016]. They represent composite scenes containing a

range of different timbres of sounds. The long term evolution and structure of the sound

are as important contributing factors as the timbre of each individual sonic element

within the complex scenes. Thus any synthesis method should model the temporal

development of the sound along with the instantaneous qualities. In particular, the

applause and babble sounds were selected as they are known to be challenging sounds

to reproduce, and may test sound synthesis methods to the limit of their capabilities.

In every category between six and eleven samples were provided. Sixty-six samples were

evaluated in total. All samples were 44.1kHz audio files, that were loudness normalised

in accordance with ITU-R BS.1387-1 [1998]. Each category had at least one anchor and

at least one recorded sample. The recorded samples were all selected by a group of five

experienced critical listeners as being realistic samples, given at least 5 different sample

options all selected from a professional sound effects library. Each anchor was con-

structed from a trivial additive synthesis model, produced by deconstructing either the

additive or physically inspired model to the point that it was barely perceivable as the

intended sound. Anchors were not used from the MUSHRA standard (MUltiple Stimuli

Hidden Reference and Anchor [ITU-R BS. 1534-1, 2001]), as the standard MUSHRA

anchors are downsampled versions of the original recorded sample. MUSHRA was orig-

inally designed to evaluate audio encoding algorithms, but in the context of measuring

realism, it was a concern that a downsampled real recording would potentially be more



Chapter 5 Subjective Evaluation of Synthesised Sound Effects 72

Table 5.1: Synthesis method used to created each sound sample

Synthesis Method Applause Babble Bees Fire Rain Stream Waves Wind

Physically Inspired N N Y Y Y Y N Y
Marginal Statistics Y Y N Y Y Y N Y
Sinusoidal Modelling Y Y Y Y Y Y N N
Additive N N N Y Y N Y Y
Statistical Modelling Y Y Y Y Y Y Y Y
Concatenative Y Y Y Y Y Y Y Y

realistic than some of the synthesis methods. As such, a poor quality synthesis method

was generated, to act as a suitable anchor.

The references and anchors were important within this test to encourage participants

to use the entire evaluation scale, and to review how samples were distributed within

that scale, in accordance with ITU-R BS.1534-3 [2015]. The reference samples allowed

evaluation of how synthesis methods compared to the genuine sound, and to allow for

identification as to whether the samples are distinguishable from the real sample. The

purpose of the anchor sample was to support evaluation of how synthesis methods com-

pared to each other. If every synthesis method was highly realistic, participants may

decide to use the entire evaluation scale, to identify micro-differences between samples,

or may decide to group all samples together at the high end of the scale. The anchor

ensures that there is a lower limit sample to compare against. It also performs as a con-

firmation that a participant has fully understood the requirements for the experiment.

If a participant rated the anchor as higher than the sample, then it would be inferred

that the participant may not have fully understood the requirements, or may have some

hearing defect.

A list of synthesis methods used within each sound class is presented in Table 5.1. To

demonstrate the full range of reference sound samples, audio features were extracted

from the samples using the Essentia toolbox [Bogdanov et al., 2013] based on recom-

mendations from Chapter 3, and in Moffat et al. [2015], and summarised attributes are

presented in Table 5.2. All sound samples used, software implementations and parameter

settings, are available online.1

1https://code.soundsoftware.ac.uk/projects/perceptual-evaluation-of-sound-synthesis

https://code.soundsoftware.ac.uk/projects/perceptual-evaluation-of-sound-synthesis
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Table 5.2: Summary of attributes of different sounds classes used for evaluation

Environmental Animal/Human Synchronised Noisy Harmonic Granular

Applause N Y Y Y N Y
Babble N Y N N Y Y
Bees N Y N N Y N
Fire Y N N Y Y Y
Rain Y N N Y Y Y
Stream Y N Y N Y Y
Waves Y N Y Y N N
Wind Y N Y Y N N

Figure 5.1: A screenshot of the user interface used by participants for inter-
comparison of sound samples.

5.2.4 Web Audio Evaluation Tool

The listening test was set up using the Web Audio Evaluation Tool [Jillings et al., 2015].

A screenshot of the user interface used for this experiment is presented in Figure 5.1.

An online version of the listening test is available, with the same user interface and set

of samples that were used by participants.2

5.2.5 Procedure

Participants were provided with instructions as to the experiment they were to under-

take, and were asked whether they had previous experience of listening tests and whether

they would consider themselves as accomplished musicians or audio engineers.

Participants were then asked to rate how realistic they perceived the samples within a

given category, relative to all the other samples within that category. Participants were

provided with a continuous linear scale on which to rate all sounds, labeled from “very

unrealistic” to “very realistic”. All sounds were rated on a single horizontal scale, to

encourage inter-sample comparison. Participants were provided with the sound category

2https://goo.gl/789eWl

https://goo.gl/789eWl


Chapter 5 Subjective Evaluation of Synthesised Sound Effects 74

Anc
ho

r

Phy
sic

all
y I

ns
pir

ed

Refe
ren

ce

M
arg

ina
l S

tat
ist

ics

Spe
ctr

al 
M

od
eli

ng

Add
iti

ve

Stat
ist

ica
l M

od
el

Con
ca

ten
ati

ve

U
se

r 
R

at
in

g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: Plot of the median, standard deviation and 95% confidence intervals of
all synthesis results.

Table 5.3: Mean and standard deviation of each sound class

Sound Class Mean Standard Deviation

Applause 0.40 0.37
Babble 0.35 0.33
Bees 0.44 0.35
Fire 0.38 0.32
Rain 0.40 0.37
Stream 0.39 0.36
Waves 0.49 0.37
Wind 0.57 0.32

name, but other than that, did not have any information regarding the samples. Both

the ordering of categories and the initial ordering of samples within a category were

randomised.

5.3 Results

The overall results for the experiment are presented in Figure 5.2 using a notched box

plot. In all plots the red line represents the median. The end of the notches, where
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the angled lines become parallel within the box plot, represents the 95% confidence

intervals, and the end of the boxes represent the 1st and 3rd quartiles. The end of the

whiskers represent the data range not considered as an outlier. Red crosses are outliers.

The anchor and reference have very low and very high median values, respectively, with

small confidence ranges. This informs us that the anchor and reference function as

intended.

The null hypothesis is that the subjective evaluation scores are from the same distri-

bution. A one way ANalysis Of VAriance (ANOVA), with Bonferroni correction, shows

that for all sound classes, the effect of each synthesis method on user perception was

statistically significant F(7,946) = 176.51, p < 0.0001. Table 5.4 shows the statistical

significance of the difference in ratings between synthesis methods, for all sound samples.

A post-hoc Tukey pairwise comparison, with Bonferroni correction to reduce the chance

of type I errors, was used. It can be seen, for example, that concatenative synthesis is

significantly different from the reference sample, marginal statistics, additive synthesis

and statistical modelling all with a p < 0.0001. However, concatenative synthesis is not

significantly different from the anchor, physically inspired synthesis or the sinusoidal

modelling. These results are presented in more detail, broken down by sound class in

Table 5.5.

Table 5.4: Results of pairwise comparison of synthesis method on subjective realism
rating, with Bonferroni Correction

Anch PhISM Ref Marg SMS Add Stat Concat

Anch . ** **** **** *** **** **** o
PhISM ** . **** **** o **** *** o

Ref **** **** . **** **** o **** ****
Marg **** **** **** . **** **** o ****
SMS *** o **** **** . **** *** o
Add **** **** o **** **** . **** ****
Stat **** *** **** o *** **** . ****

Concat o o **** **** o **** **** .
o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.

Anch = Anchor, Ref = Reference, PhISM = Physically Inspired, Marg = Marginal Statistics,
SMS = Sinusoidal Modelling, Add = Additive, Concat = Concatenative, Stat = Statistical

Modelling.

The additive method performed best overall, and was the only synthesis method where

the results were not significantly different from the reference. It was also significantly
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Figure 5.3: Applause result distribu-
tion

Figure 5.4: Babble result distribu-
tion

Figure 5.5: Bees result distribution Figure 5.6: Fire result distribution

different from all other synthesis methods. However, this method was not used in all

tests, as only a subset of sounds (fire, rain, wind and waves) could be synthesised using

additive synthesis. Table 5.3 shows the mean and standard deviation of each sound

class. With the exception of wind, there is little variation between the means of each

sound class. This suggests that the superior performance of additive synthesis was not

due to higher ratings for these sound classes, but instead, the synthesis method itself

must have performed well.

Concatenative synthesis is the only method not significantly different from the provided

anchor sounds. Table 5.4 shows that the different synthesis techniques can be broken
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Figure 5.7: Rain result distribution
Figure 5.8: Stream result distribu-

tion

Figure 5.9: Waves result distribution Figure 5.10: Wind result distribution

down into three subjective groupings, where Sinusoidal Modelling, Physically Inspired

and Concatenative are all grouped together with the Anchor.

Statistical Modelling and Marginal Statistics can also be grouped together. This is to be

expected, as they are based on the same implementation with different sets of synthesis

statistics.
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Table 5.5: Results of pairwise comparison of synthesis method on subjective realism
rating for each class of sound, with Bonferroni Correction

Group 1 Group 2 Applause Babble Bees Fire Rain Stream Waves Wind

Anch Ref **** **** **** **** **** **** **** o
Anch PhISM . . o * o o . o
Anch Marg o o . * **** **** . o
Anch SMS **** **** **** o o o . .
Anch Add . . . **** **** . **** **
Anch Stat **** *** **** o **** **** * ***
Anch Concat o o **** o o o o ****
Ref PhISM . . **** **** **** **** . ***
Ref Marg **** **** . **** **** o . o
Ref SMS **** **** * **** **** **** . .
Ref Add . . . o o . ** o
Ref Stat **** **** **** **** *** *** **** ****
Ref Concat **** **** **** **** **** **** **** ****
PhISM Marg . . . o **** **** . *
PhISM SMS . . **** o o o . .
PhISM Add . . . **** **** . . ****
PhISM Stat . . **** o **** **** . ***
PhISM Concat . . **** o o o . ****
Marg SMS *** o . o **** **** . .
Marg Add . . . **** o . . o
Marg Stat **** o . o o o . ****
Marg Concat o o . o **** **** . ****
SMS Add . . . **** **** **** . .
SMS Stat o o o o **** . . .
SMS Concat o o o o o o . .
Add Stat . . . **** o . **** ****
Add Concat . . . **** **** . **** ****
Stat Concat *** o o o **** **** o o

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.
Anch = Anchor, Ref = Reference, PhISM = Physically Inspired, Marg = Marginal Statistics,
SMS = Sinusoidal Modelling, Add = Additive, Concat = Concatenative, Stat = Statistical

Modelling.

5.3.1 Results Per Sound Class

An ANOVA with Bonferroni correction showed that for a given sound class the effect of

each synthesis method on user perception was significant and in all cases p < 0.0001. A

post-hoc Tukey pairwise comparisons shows the statistical significance of the differences

between each synthesis methods, given each sound class, seen in Table 5.5. For all sound

classes the anchor, the physically inspired model, the sinusoidal modelling, the statistical

modelling and the concatenative synthesis all had subjective rating distributions that
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were significantly different from the reference. Marginal statistics and additive were the

only two synthesis methods under which there is sometimes no clear difference between

their subjective rating distributions, given a specific sound class.

The median, standard deviation and 95% confidence intervals for each synthesis method,

for each sound class, are reported in Figures 5.3-5.10. For all sounds except wind and

stream sounds, the anchor had the lowest median rating, with small confidence inter-

vals. For wind sounds, though sinusoidal modelling had a lower median rating, there is

statistically no discernible difference in their distributions, and as such, it can be said

they are equally poor. Wind is the only case where the anchor is not one of the worst

samples selected. This suggests that the anchor may not have been ideal. However, the

concatenative synthesis method produced a very low subjective rating with small confi-

dence intervals, so the concatenative synthesis method can be considered as the anchor

in this case. This is confirmed by the fact there is no significant difference between the

anchor and the reference for wind.

In the case of synthesising wind, additive performed better than the reference sound.

This is the only case where a synthesis method outperformed the reference recorded sig-

nal. The difference in distributions between additive and the reference is not significant.

The null hypothesis was not rejected, and thus additive might be considered as realistic

as a recording of wind, and possibly more realistic. In the case of fire and rain synthe-

sis, additive could also be considered as realistic as a recorded reference sample, since

the null hypothesis could not be rejected, and the confidence intervals are significantly

overlapping.

A summary of the results are presented in Table 5.6, including summaries of the effec-

tiveness of each synthesis method at producing the relevant sounds.

5.4 Discussion

The results of this subjective evaluation suggest that additive synthesis is an effec-

tive approach for environmental sounds such as fire, water and wind sounds. These

sounds can be considered as sounds constructed from band-pass filtered noise. Marginal
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Table 5.6: Rating of Synthesis Method per Sound Class

Synthesis Method Applause Babble Bees Fire Rain Stream Waves Wind

Physically Inspired . . 5 3 5 4 . 3
Marginal Statistics 4 5 . 3 3 1 . 1
Sinusoidal Modelling 3 3 3 5 4 5 . .
Additive . . . 1 1 . 2 1
Statistical Modelling 3 3 4 4 3 2 3 4
Concatenative 3 3 4 4 4 4 4 5

1 = Best Method, Comparable with Reference, 5 = Worst Method, Comparable with Anchor,
. = No Comparison Made. The best score for each sound class in highlighted in bold.

Statistics are effective for synthesising wind and stream type sounds. For applause and

babble sounds, which are more dynamic and impulsive, the statistical modelling synthe-

sis proved to be the most effective approach in synthesising these types of sounds. As

can be seen in Table 5.5, wind and stream sound synthesis can effectively be produced

with marginal statistical synthesis, in such a manner that the realism rating distribu-

tion is not significantly different from that of the reference sounds. Despite this, it is

noted that marginal statistics are “sufficient to produce compelling synthetic examples

of many water textures (rain, streams etc.), but not much else” [McDermott et al., 2009].

McDermott et al. [2009] suggests this applies to all sounds that are based around filtered

noise signals, where sounds are primarily made up of noisy audio signals with little har-

monic component. As such, water and wind sounds are all effectively synthesised using

the Marginal Statistical method for synthesis.

In the case of the wind sounds, the additive synthesis method performed better than

the reference sample. However, the difference was not considered to be significant, so

this may be a statistical abnormality. This may also be an indication of hyper-realism.

The idea of hyper-realism is simply that an unreal sound can sound ‘more real’ than a

real sound. This is particularly prominent in weapon and explosion sounds [Mengual

et al., 2016], where a listener may never have heard a real gunshot sound, but will have

a strong opinion of a gun sound based on TV, film and video games [Puronas, 2014].

Concatenative synthesis created noticeable artifacts in some of the samples. The arte-

facts seem to be caused by non-smooth transitions between frames, but are only per-

ceivable in a small number of sound contexts. This caused this synthesis method to

under-perform in certain cases, particularly rain and fire sounds and to a lesser extent,
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babble. These are impulsive sounds, where the individual sonic elements may be smaller

than an individual grain of sound, with variable size.

The sinusoidal modelling method also caused some audible artefacts, particularly in

the fire and babble sounds. It is suspected that this was caused by spectral peaks

being modelled as harmonic components, when they are actually noisy spectral peaks.

There also appears to have been issues with phase recognition, which again is due to

noisy signal components being modelled as harmonic components resulting in an audible

vocoder-like effect.

Many of the physically inspired models were taken from Farnell [2010], which is designed

as a textbook for teaching the principles of procedural audio. Thus, these sound syn-

thesis models were designed for their sonic interaction capabilities rather than the exact

replication of realistic sounds. These sound synthesis models did not produce convincing

sounds. Despite this, it is considered important to evaluate this range of algorithms, as

they are popular, well known synthesis methods.

The results show that additive synthesis is an effective synthesis method for both slow

moving and impulsive sounds. Despite this, additive synthesis allows for a very large

range of possible parameters, and the individual parameter ranges were manually se-

lected by the original authors. As such, this sound synthesis method cannot easily be

generalised to a large number of sounds.

Particularly for slow changing sounds, statistical synthesis is effective, either using a

reduced feature set, or the full feature set. It is speculated that a granular synthesis

method may be most effective for impulse sounds, due to the fact that these sound

textures are generally made up of a large number of small sound atoms eg. individual

plosives in babble, claps within applause or raindrops in rain.

No synthesis technique was capable of producing convincing applause or babble sound.

This was expected, as these sounds are known for being challenging to synthesise. How-

ever the sinusoidal modelling and statistical modelling performed relatively well on these

sounds. This suggests that noise components are important in the reproduction of a re-

alistic applause or babble sound, since statistical modelling and sinusoidal modelling
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involve careful noise shaping. Additive synthesis produced realistic sounding examples

of fire and rain sounds. This may be because the method focuses on synthesising in-

dividual sonic elements separately and then constructing a composite scene from these

elements, rather than alternative methods, such as statistical modelling, which models

the statistics of the entire sounds. In particularly composite scenes, such as fire and rain,

the individual sonic element synthesis is more important than overall sonic structure.

5.5 Conclusions

An experiment in which participants were asked to rate 66 examples of synthesised

sounds from eight different sound classes and five different synthesis methods, in terms

of their perceived ‘realism’ was presented. The results demonstrate that, in some cases,

sound synthesis methods can be as convincing as a recorded audio sample. However,

in the case of wind, the users consistently rated the sound as more realistic than the

recorded sample. In five of the eight sound classes tested, there exist synthesis techniques

where synthesised sounds were indistinguishable, in terms of realism, from recorded

samples.

This experiment presents a method for evaluation of synthesised sounds in a range of

different sound classes and provides recommendations for synthesising different types of

sounds. It is clear that although sound synthesis can effectively synthesise a range of

realistic sounds, there are many potential future directions for development of plausible

sound synthesis across the full sonic range.

Despite this, there are limitations of the work presented. Only a relatively small number

of sound synthesis methods were evaluated, and as such substantial claims cannot be

made about entire areas of synthesis research. There is a requirement for further work

in comparing and evaluating more synthesis techniques.

The need for evaluation and further development of sound synthesis was clearly iden-

tified. Evaluation of sound synthesis can assist in improving upon the state-of-the-art

and developing future sound synthesis. A clear and rigorous method for evaluation of

sound synthesis was presented, through a double blind multiple comparison evaluation
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test. This test methodology can be used to evaluate any sounds synthesis method, to

determine the perceived realism of the synthesised sound, given a single word or phrase

context.



Chapter 6

Objective Evaluation Metric for

Synthesised Environmental

Sounds

6.1 Introduction

Following on from the subjective evaluation technique presented in the previous chap-

ter, this chapter considers ways to improve synthesised sound effect objective evaluation

methods. Taking the audio feature representation and analysis presented in Chapter 4,

this chapter will compare a set of different audio feature sets to determine which ap-

proach correlates the best with human perception. The perception of these sound effects

will be compared in a method similar to the work presented in Chapter 5. The aim of

this is to provide a consistent validated objective evaluation metric. Through improved

standardised objective evaluation, a greater consistency within the evaluation methods

for sound synthesis can be produced, without the necessity for intensive and difficult

to perform subjective evaluations. A comparison of sound similarity measures, through

resynthesis, is proposed. The aim is to identify an objective measure that can encapsu-

late the perceptual similarity of sounds. Optimisation of this measure would then select

appropriate parameters for a synthesis engine to match a given sound. Optimisation

84
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of synthesis parameters to evaluation of sound perception has been previously demon-

strated [McDermott and Simoncelli, 2011]. Parameter selection can be viewed as an

optimisation problem in which synthesis parameters are dimensions through a fitness

landscape. In many cases, search spaces are highly nonlinear, and thus evolutionary

optimisation functions are effective methods to use [Garcia, 2001b; McDermott et al.,

2008; Yee-King and Roth, 2011].

The objective metrics and evaluation framework will be presented in Section 6.3. The

subjective listening test is presented in Section 6.4. Results of the subjective and objec-

tive measures are given in Section 6.5. Recommendations for objective synthesis evalu-

ation metrics are presented in Section 6.6, and final comments and outline of impact in

the community are presented in Section 6.7.

6.2 Parameter Optimisation Background

There have been a number of approaches to searching audio parameter spaces, within

a synthesised environment. An iterative process to control parameters and minimise a

set of perceptually motivated audio features was developed by McDermott et al. [2011]

and McDermott and Simoncelli [2011]. The results were subjectively evaluated based

on participants identification and synthesis realism. Further approaches using genetic

algorithms that have attempted to modify musical parameters based on varying fitness

functions were used. No other method performed any formal evaluation of the synthesis

results, typically reporting their final distance measure. Fitness function methods are

typically calculated as distances features such as between Mel Frequency Cepstrum

Coefficients (MFCCs) [Yee-King and Roth, 2011], the Discrete Cosine Transform of the

MFCCs [Heise et al., 2009]. The Perceptual Evaluation of Audio Quality (PEAQ Thiede

et al. [2000]) distances were measured for piano string synthesis [Hamadicharef and

Ifeachor, 2003, 2005], where as the distance between Least Square Error(LSE) of time

domain waveform, LSE of spectrograms and LSE of spectrograms with some masking

weighting were all used as distance measures [Garcia, 2001a,b]. McDermott et al. [2008]

used sets of different audio features to measure distances.



Chapter 6 Objective Evaluation Metric for Synthesised Environmental Sounds 86

6.3 Objective Measure Through Synthesis

In this section, the methodology of evaluating a range of objective measures will be pre-

sented. The principal is that evaluation of different objective measures can be compared

through resynthesis. By using the objective measure as a fitness function in an itera-

tive synthesis process, the most effective measure that best encapsulates aspects of the

perception of the sounds can be identified. The aim of the optimisation is to interpret

which objective similarity measure correlates with the perceptual similarity, evaluated

through a listening test. Essentially, this will be used for comparison of different ob-

jective similarity measures, by producing audio samples. Through subjective listening

tests, the results of the objective measures can be validated and compared.

6.3.1 Parameter Optimisation

Given a specific synthesis method and a recording of a sound, the parameters of that

synthesis model were selected to best reflect an original audio sample. This parameter

selection was performed using a particle swarm optimisation (PSO) technique. PSO is

an evolutionary inspired, population based, optimisation technique in which a swarm of

particles iteratively propagate in a search space, where a weighting between individual

and global preferences is modelled. Each particle is evaluated with a ‘fitness’ function,

which, in this case, is a computational objective similarity measure. This fitness function

was used to compare each objective function presented in Section 6.3.3, given a range

of audio samples.

Given a single input audio file, and a specific synthesis method, an iterative approach

was undertaken. The aim of this iterative approach was to find the set of synthesis

parameters that match the closest possible sound the synthesis method can make to the

original input audio file.

This is demonstrated in Figure 6.1. An initial input audio file is analysed, and this is

used to measure the similarity between a synthesised example and the input audio file.

The synthesis engine parameters were initialised at random values, so the sample is likely

to be very different. The PSO algorithm then makes suggestions for how to modify the
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Figure 6.1: Flow Diagram of Synthesis Optimisation Approach

synthesis parameters, which are passed to the synthesis engine. The new audio sample

is then compared, using the objective similarity measure or fitness function, to compare

how similar the sounds are. Once the PSO algorithm believes that a global minima

has been found, the algorithm stops, and reports the best synthesis parameters and the

output audio example.

PSO is a method of optimisation, inspired by evolutionary biology and social behaviour

of a flock of birds or swarm of insects, and is an effective optimisation method for highly

nonlinear search spaces. There are many examples of evolutionary algorithms applied

to audio research [Garcia, 2001b; Mäkinen et al., 2012; McDermott et al., 2008; Ronan

et al., 2018; Yee-King and Roth, 2011]. PSO works on the basis of a large number

of particles, each of which is a potential solution, which can sample the search space.

Each particle can then evaluate its effectiveness and both the local and global results

are considered when directing the particle in which direction to move. A comprehensive

overview of PSO is presented by Marini and Walczak [2015].

6.3.2 Sound Synthesis Methods

Four different sound effects were used for evaluation purposes. All of them are avail-

able and hosted online as part of the FXive synthesis platform [Bahadoran et al., 2017,
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2018a].1 The FXive platform is a free online hosted web service for sound synthesis,

created at Queen Mary University. This system was used, as it contains a large number

of synthesis methods which are all openly accessible through a simple URL (Uniform

Resource Locator) interface, which allowed for a simple and standard method for in-

teraction. Each of the selected synthesis methods have a limited number of control

parameters, and are all designed to produce a sound of a specific type. All approaches

used within this chapter were originally derived from work by Farnell [2010] and are all

examples of physically inspired synthesis.

Fire The fire synthesis model2 is a noise shaping synthesis method. Individual sonic

components of a fire, the hiss, crackle and lapping, are all modelled through filtered

and envelope shaped noise signals. Three control parameters are exposed to the

user, which are lapping, hissing and crackling.

Rain In the rain model,3 components of rain are broken into a number of categories.

Ambience, which is modelled as constant shaped noise, droplets, rumble and drips.

Three control parameters are exposed to the user, which are density, rumble and

ambience.

Stream The stream4 is modelled entirely on the bubbling sounds that are made as

water runs over substances, based on control of filtered chirp sounds. Three control

parameters are exposed to the user, which are bubbles, frequency and filter Q.

Wind The wind model5 uses a varying filtered noise approach, where wind parameters

control the overall envelope of the sound. Different wind hitting materials, such as

door or branches/wires, select the timesteps over which the wind envelope shap-

ing will occur. Ten parameters are exposed to the user: Wind Speed, Gustiness,

Squall, Buildings, Doorways, Branches, Leaves, Pan, Directionality and Gain. The

parameters Pan, Directionality and Gain were all left constant at their default

values, as discussed in Section 6.3.2.

1https://fxive.com/
2https://fxive.com/app/main-panel/fire.html
3https://fxive.com/app/main-panel/rain.html
4https://fxive.com/app/main-panel/stream.html
5https://fxive.com/app/main-panel/wind.html
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Parameters Not Changed

Several parameters were not used, to limit the search space and as these parameters

were considered to make no immediate impact to the synthesis of the sound. During

analysis, all samples were loudness normalised, so output gain controls were redundant.

As no evaluation metric used spatial aspects to evaluate synthesis, pan controls were

also not considered. With each sound effect, there was the ability to apply a range of

audio effects, including equalisation, distortion, delay, convolution reverb and HRTF

spatialisation. However, because all of these controls can be added to every single

synthesised sample, it was felt this would significantly grow the search space without

significant improvements in the synthesis. The impact of individual audio effects on the

perceived realism of a synthesised sound is out of the scope of this work.

6.3.3 Objective Function

The set of fitness functions, or objective functions, were taken from literature. Each of

the objective measures describe a set of audio features that are used to summarise the

audio sample, as a set of audio statistics. The distance measure between sets of audio

samples was constructed as the euclidian distance between these audio feature sets. This

measure was then used as the fitness function for the PSO, described in Section 6.3.1.

The audio features that make up each objective measure are described in Table 6.1. To

standardise implementations, all audio features were extracted using Essentia [Bogdanov

et al., 2013], based on recommendations from Chapter 3, and in Moffat et al. [2015].

The Allamanche et al. [2001] distance measure was first designed for measuring similarity

of musical content, and is included as part of the MPEG-7 standard list of low level

descriptors. Gygi et al. [2007] produced a set of audio features to apply to environmental

sounds, both for measuring similarity and performing categorisation. Moffat et al. [2017]

produced a set of reduced audio features to perform hierarchical classification of an

audio effects library, where the audio features were selected through a machine learning

feature selection approach, as discussed in Chapter 4. The Wichern et al. [2007] feature

set was produced for indexing and segmenting natural sound environments. MFCCs
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Table 6.1: Attributes of Each Objective Function

Objective Function Features and Attributes

Allamanche [Allamanche et al., 2001] Loudness
Spectral Flatness

Spectral Crest Factor

Gygi [Gygi et al., 2007] Envelope Statistics
Pitch

Autocorrelation Waveform Peaks
Spectral Centroid
Spectral Moments

Frequency Band Energy
Modulation Statistics
Subband Correlation

Spectral Flux

MFCC [Yee-King and Roth, 2011] MFCC

Moffat [Moffat et al., 2017] Loudness
Pitch

MFCC
Envelope Statistics
Spectral Contrast

Spectral Flux

PEAQ [Thiede et al., 2000] Signal Bandwidth
Masking Content

Modulation Difference
Distortion

Harmonic Structure

Wichern [Wichern et al., 2007] Loudness
Spectral Centroid
Spectral Sparsity

Harmonicity
Temporal Sparsity

Transient Index (∆MFCC)

were used for parameter optimisation of musical tones, and are generally considered as

a good measure of timbre [Pachet and Aucouturier, 2004; Yee-King and Roth, 2011].

This method was intended to be a baseline measure, through which to compare each

synthesis method. PEAQ [Thiede et al., 2000] (Perceptual Evaluation of Audio Quality)

is an evaluation method specifically designed to measure the sample by sample difference

in audio samples. This method was first designed to measure the impact different audio

compression algorithms will have, such as comparing MP3 to WAV.
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6.4 Synthesis Evaluation - Listening Test

6.4.1 Participants

Nineteen participants took part in the experiment, of which 7 were female and 12 were

male. Their average age was 29 with a standard deviation of 3 years. The average test

duration was 23 minutes, so fatigue was not an issue [Schatz et al., 2012]. The procedure

was approved by the local ethics committee.

6.4.2 Experimental Setup

The experiment was performed in a similar methodology as presented in Section 5.2. The

listening test was set up using the Web Audio Evaluation Tool [Jillings et al., 2015]. A

pair of high quality calibrated PMC AML-2 loudspeakers were used in the Queen Mary

Studio [Morrell et al., 2011]. The volume was adjusted by participant to a comfortable

level at the beginning of the test. The listening test is available with the same user

interface and set of samples that were used by participants.6

6.4.3 Materials

Participants were asked to evaluate sound samples for four categories (fire, rain, stream

and wind). In each category there were two different reference samples compared. For

each sound example, six synthesised samples were provided and compared to a recorded

sample reference. Each synthesised sample was produced using a different objective

function. The reference samples were all selected from a professionally available sound

effects library.7 All samples were 48kHz wav files, and loudness normalised in accordance

with ITU-R BS.1387-1 [1998]. Each category had one anchor, where random parameter

values were used to generate a sample.

The reference samples were: Big Fire; Candle; Wind Gusts; Medium Wind; Fast Flow-

ing Stream; Gentle Bubbling Stream; Rain on Umbrella; Rain Storm. There were two

6https://goo.gl/2Bp3Ju
7https://www.prosoundeffects.com/hybrid-library/

https://goo.gl/2Bp3Ju
https://www.prosoundeffects.com/hybrid-library/
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reference samples selected for each category, and they were chosen to be distinct and

different from each other, to cover a range of sonic properties. On each stage of the lis-

tening test, there were eight audio samples: one hidden reference; one random parameter

anchor; and six synthesised samples, each using a different objective metric.

The anchors were included to encourage participants to use the entire evaluation scale,

and to review how samples were distributed within that scale, in accordance with ITU-R

BS.1534-3 [2015]. This ensures that there is a lower limit sample to compare against. It

also performs as a confirmation that a participant has fully understood the requirements

for the experiment. If a participant rated the anchor as higher than the sample, then it

could be inferred that the participant may not have fully understood the requirements,

or may have some hearing defect.

6.4.4 Procedure

Participants were then asked to rate how similar they perceived a set of given samples

to a provided reference, on a continuous linear scale on which to rate all sounds, labeled

from “most similar” to “very different”. All other aspects of the procedure are as

described in Section 5.2.5.

6.5 Results

One participant’s results was identified as an outlier as over 30% of their answers was

more than three scaled median absolute deviations from the median result. As such

all results presented are of the remaining 18 participants. User similarity ratings are

presented in Figure 6.3, where the distributions of the results can be seen.

A Shapiro-Wilk normality test showed that the data is not-normally distributed (W =

0.95208, p <2.2e-16). A Kruskal Wallis test was performed to evaluate the impact of each

objective function. A significant difference between the objective evaluation methods

was found (H=18.2, p=0.0057). A post-hoc multiple comparison was performed, with

results presented in Table 6.2.
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Synthesis Model
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Figure 6.3: Distribution of User Similarity Ratings per Objective Function

6.5.1 Results per Synthesis Method

Table 6.2 shows that across all sound synthesis models, there is limited consistent vari-

ation. The PEAQ objective function is significantly worse than both Allamanche and

Moffat. There are no further significant results at this level. To analyse the data further,

the results per synthesis method are investigated, as shown in Figure 6.2. Kruskal Wallis

tests were performed to identify the impact of each objective function for each synthesis

method. The results show that there are significantly different groupings in three of the

four sound synthesis methods. These results are presented in Tables 6.3-6.5. Within the

wind synthesis method, no significant differences in subjective similarity to the reference

sample were found between different objective synthesis methods (H=11.72, p=0.069).

As seen in Table 6.3, the PEAQ method is significantly worse than every other objective

evaluation function with regards to fire sounds. Other than the rain sounds, in Table 6.4

MFCCs are significantly worse than Allamanche, PEAQ, random and Wichern. For

stream sounds, Table 6.5 shows that Allamanche, Moffat and PEAQ are all significantly
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Table 6.2: Multiple Comparisons Test Significance Results for All Synthesis Models,
Kruskal Wallis Results (H=18.2, p=0.0057)

All Methods Allamanche Gygi MFCC Moffat PEAQ Random Wichern

Allamanche . o o o ** o o
Gygi o . o o o o o

MFCC o o . o o o o
Moffat o o o . * o o
PEAQ ** o o * . o o

Random o o o o o . o
Wichern o o o o o o .

o >0.05, * <0.05, ** <0.01, *** <0.001, **** <0.0001, . = no comparison made

Table 6.3: Multiple Comparisons Test Significance Results for Fire Synthesis Method,
Kruskal Wallis Results (H=53.19, p=1.08e-9)

Fire Allamanche Gygi MFCC Moffat PEAQ Random Wichern

Allamanche . o o o *** o o
Gygi o . o o **** o o

MFCC o o . o **** o o
Moffat o o o . **** o o
PEAQ *** **** **** **** . *** ****

Random o o o o *** . o
Wichern o o o o **** o .

o >0.05, * <0.05, ** <0.01, *** <0.001, **** <0.0001, . = no comparison made

Table 6.4: Multiple Comparisons Test Significance Results for Rain Synthesis Method,
Kruskal Wallis Results (H=26.81, p=1.57e-4)

Rain Allamanche Gygi MFCC Moffat PEAQ Random Wichern

Allamanche . o *** o o o o
Gygi o . o o o o o

MFCC *** o . o * * ***
Moffat o o o . o o o
PEAQ o o * o . o o

Random o o * o o . o
Wichern o o *** o o o .

o >0.05, * <0.05, ** <0.01, *** <0.001, **** <0.0001, . = no comparison made

better than both random and Wichern. MFCC is also significantly better than Wichern,

and Moffat is significantly better than Gygi.



Chapter 6 Objective Evaluation Metric for Synthesised Environmental Sounds 96

Table 6.5: Multiple Comparisons Test Significance Results for Stream Synthesis
Method, Kruskal Wallis Results (H=54.91, p=4.84e-10)

Stream Allamanche Gygi MFCC Moffat PEAQ Random Wichern

Allamanche . o o o o *** ****
Gygi o . o * o o o

MFCC o o . o o o *
Moffat o * o . o **** ****
PEAQ o o o o . ** **

Random *** o o **** ** . o
Wichern **** o * **** ** o .

o >0.05, * <0.05, ** <0.01, *** <0.001, **** <0.0001, . = no comparison made

Table 6.6: Correlations of Objective Function Distance Measure with Mean User
Similarity Rating

Objective Function Correlations ρ P-Value p

Allamanche -0.3095 0.4618
Gygi -0.0952 0.8401

MFCC 0.0238 0.9768
Moffat -0.3095 0.4618
PEAQ -0.4059 0.3155

Wichern 0.7857 0.0279*
o >0.05, * <0.05, ** <0.01, *** <0.001, **** <0.0001, . = no comparison made

6.5.2 Comparison with Objective Function Results

Each of the objective functions also produced a distance measure, which is the value

that was minimised as part of the synthesis. These distances indicate how successful

the synthesis method believes it has performed in each case. The objective distances

are compared with the subjective distances, and are plotted in Figure 6.4, along with

linear regression lines of best fit. The user similarity ratings were inverted to make

the graphical representation easier to interpret, and correlations more clear. Each of

the objective and subjective results were correlated, using a Spearman correlation, for

non-parametric data, and the results presented in Table 6.6. Only the Wichern result is

statistically significant, with a strong positive correlation.
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6.6 Discussion

Figure 6.3 and Table 6.2 shows minimal significant variation in the distributions of

similarity ratings. Overall Moffat performs as the best objective evaluation method,

whereas Allamanche shows positive results with a lower variance in the data. PEAQ

performs the worst, and is significantly worse than both Allamanche and Moffat, which

is the only significant generalised result.

For further analysis, the breakdown per synthesis method was investigated. Within

the fire sound, every objective function was significantly better than PEAQ. PEAQ is

the only method that models distortion and bandwidth, and it is believed that these

components of the objective function caused it to perform poorly for fire. A large portion

of a fire sound is crackling and popping, and broadband noise. As PEAQ is designed

for evaluating the quality of audio compression algorithms, it is designed to be sensitive

to cracking and distortion artefacts. However, this is principally what makes up a fire

sound. As such, it is expected that PEAQ failed to appropriately model fire due to the
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wide-band, impulsive nature of the sound, which PEAQ is often identifies as a flaw. It is

suspected that PEAQ will also fail to accurately model other sounds that are broadband

and highly impulsive, such as applause [Adami et al., 2017] or gunshot [Mengual et al.,

2016] sounds.

Within the rain sounds, the MFCC evaluation metric performed significantly worse than

Allamanche, PEAQ, Wichern and random. MFCCs are often used in music information

retrieval as a descriptor for timbre. However, the variation in rain sounds are less timbral

and more related to the ambient noise versus individual impulsive tones. The separation

between constant noise tones and impulsive tones will not be identified by MFCCs. As

MFCCs are no better than the random parameters, it is clear that MFCCs are not a

good measure for parameter estimation within rain sounds. There is no other significant

variation in objective evaluation functions. Wichern was the only method to perform

better than random parameter selection, though this was not significantly better. This

could be due to the random parameters being very good parameters selected by chance,

or that there is limited variation within the synthesis method.

Regarding stream sounds, Figure 6.2 shows that Wichern and random both perform

poorly, and are significantly worse than Allamanche, Moffat and PEAQ methods, and

Alllamanche is significantly worse than MFCCs. It is suspected that this is due to

Wichern primarily looking at harmonic content and transient sounds, where less atten-

tion was paid to broadband sound similarities. Within the stream model, most water

noises will be highly broadband signals, and Wichern will most likely tend to produce

more harmonic tuned sounds, than those present in a real signal. Wichern and random

are not significantly worse than Gygi, which is most likely due to the large variation

in the distribution of the Gygi results. This suggests that individuals were undecided

or opinions were split on the result. Moffat was the best performing result and is sig-

nificantly better than Gygi, along with random and Wichern. It is suspected that this

is due to the inclusion of the spectral contrast feature. Spectral contrast is an audio

feature that identifies the peaks and valleys in the magnitude spectrum, and performs

dimensionality reduction on the result. Spectral contrast is often considered an effec-

tive method for evaluating audio masking and for identifying high contrast variations in
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Table 6.7: Ratings of Success of each Objective Evaluation Method

Overall Fire Rain Stream Wind

Allamanche 2 4 5 1 1
Gygi 2 1 1 3 4

MFCC 2 1 2 5 3
Moffat 1 3 3 4 1
PEAQ 5 5 5 3 2

Wichern 4 1 5 1 5
1 = Best, 5 = Worse. Ratings were created manually, based on ranking and clustering of

results

frequency spectra.

The wind model failed to produce any significant difference between any objective met-

rics. Gygi performed the best, closely followed by random parameter allocation, but all

methods are fairly similar to each other. This could be a failing of the synthesis model,

as there were highly harmonic artefacts within the synthesis model, that no parameters

could be removed. Further investigation of the synthesis model shows that a number

of filter center frequencies are hard-coded into the model, which most likely lead to in-

consistent and inconclusive results. It is also possible that the number of parameters

may also have influenced the results. Wind had more than twice the parameters to

optimise compared to any other synthesis model, which the PSO algorithm may have

had challenges optimising. The larger search space may have lead to issues in finding

appropriate minima.

Each of the objective functions were compared and grouped in terms of their effectiveness

on a 1-5 rating scale, as presented in Table 6.7. It can be seen that the Gygi method

performs best for both fire and wind sounds and fairly well for rain sounds, but is one of

the worse sounds for stream. Gygi contains a large set of parameters relating to subband

correlations and modulation statistics, which have been tied to the human auditory

system [McDermott and Simoncelli, 2011]. As such, Gygi method seems to be the best

overall performer, as consistently produced reasonable results in all cases, and between

that and Moffat, it never produced the worst results. Moffat performed best overall, and

was best for wind sounds, which it is suspected is due to the spectral contrast feature.

It also performed reasonably well for fire and rain sounds, as the spectral contrast and
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spectral flux sounds will perform well for granular impulsive sounds. The Allamanche

method performs best for rain sounds and reasonably well for stream sounds, but is

one of the worse methods for wind and fire sounds. This suggests that the spectral

characteristics are more complex for wind and fire sounds, as Allamanche only uses a

spectral flatness and spectral crest factor as the evaluation, as all samples were loudness

normalised before analysis. PEAQ performed worse overall, through performing worse

in both fire and rain sounds, however performed reasonably well for stream and wind

sounds. This demonstrates that PEAQ represents broadband noisy signals fairly well,

however the low level textual and highly impulsive sounds are not effectively modelled

by this method. The Wichern method is highly inconsistent as it performs best for fire

and stream however is the worse for rain and wind sounds.

Wichern was the only objective evaluation method where the objective distance signifi-

cantly correlated with the subjective distance ratings. The correlations of the objective

distance are a vital aspect of any objective evaluation function, where it is possible to

predict how well the objective function performs and how effective the synthesised sound

is.

6.7 Conclusion

A set of six different objective evaluation functions, for measuring similarity between

environmental sounds, were tested and compared, for their ability to direct a resynthe-

sis algorithm towards an appropriate parameter setting. The Wichern method results

correlate significantly and strongly to subjective distance measures. This suggests that

the Wichern method can be used as an effective objective metric, comparing similarity

between different sets of sounds. Further evaluation with different synthesis methods

is required to verify these results and to identify whether the synthesis methods them-

selves impacted the results. The use of further different sounds samples and sound

classes would also provide further data points, which would aid in correlating the ob-

jective results with the subjective ratings. This would ensure that the results can be

applied to a range of different sound types. It has been clearly identified that, in the
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context of environmental sounds, the Wichern set of audio features can be used to mea-

sure the similarity of two audio samples, and these results correlate with the subjective

similarity measure reported from a listening test.

The PEAQ method performed the worst, performing significantly worse than both Mof-

fat and Allamanche. This demonstrates that PEAQ is not suitable for evaluating sound

similarity in a range of different cases, though it was effective for comparing broadband

noisy signals, such as wind.

The limited scope of this work, and the focus on environmental sounds could be a

limitation. Further work will be needed to verify if this work can be generalised to

other areas of sounds. Another potential issue could be the synthesis models used.

The limitation for each method to produce a wide range of sounds, could result in

many different samples being challenging to synthesise, and thus cause all methods to

underperform. Furthermore, there could be a large set of other audio features that could

also be reviewed, such as the work in McDermott and Simoncelli [2011].



Chapter 7

Case Study: Evaluation of

Aeroacoustic Sound Effects

7.1 Introduction

This chapter develops the evaluation approaches presented in Chapters 5 and 6, and

applies it to a set of aeroacoustic sound effect synthesis models developed at Queen

Mary University. A set of evaluations for each of the different types of sound effects is

presented, to identify the benefit and contribution to understanding that was provided

by the evaluation format for each sound effect. The modifications made to the stan-

dardised evaluation approach will be outlined, and the different context of each sound

effect will have some impact on the evaluation methodology. Based on the work pre-

sented in Chapter 5, evaluations are presented, and then the experimental results and

modifications for each of the types of sound effects evaluation performed are discussed,

identifying specific experimental design choices. The results of this subjective evaluation

will then be compared to the objective evaluation metrics discussed in Chapter 6. The

benefit of these evaluation methodologies will then be discussed and conclusion drawn

as to the appropriateness of this evaluation framework.

This chapter performs evaluation of aeroacoustic sound effects. A range of real-time

sound effects synthesis models were developed, based on semi-empirical calculations

102



Chapter 7 Case Study: Evaluation of Aeroacoustic Sound Effects 103

of computational fluid dynamics. An aeroacoustic sound effect, is any sound that is

created by air moving over object. It produces a distinctive noisy sound, dependant

on the type of object that is being passed by air. This could be a sword or golf club

object being swung through the air [Selfridge et al., 2017b], a propellor swinging round

in the air [Selfridge et al., 2017a] or wind passing over vibrating strings, such as in an

Aeolian Harp [Selfridge et al., 2017d]. In each of these cases, the core sound component

modelled is an Aeolian Tone [Selfridge et al., 2018a, 2017c, 2016].

A series of sound synthesis models will be evaluated, for the sounds of objects swinging

through the air, propellors and aeolian harps. In each case, a sound is produced as a

function of the distance and direction of the object and object diameter, length and air

flow speed. The sounds produced are the result of sampling individual points along the

simulated object, which allowed the creation of a range of different objects with varying

profiles. Full description of the synthesis method can be found in Selfridge et al. [2018a,

2017a,b,c,d,e, 2016].

7.2 Generalised Experimental Method

The subjective evaluations were carried out for a series of different sound synthesis

methods. The general experimental method, based on Moffat and Reiss [2018b], is

described within this section, and specific variations of the experimental method will be

presented in the relevant section for the synthesis method.

A double-blind listening test was carried out to evaluate the effectiveness of the syn-

thesis model, where participants were asked to evaluate a range of samples in terms of

‘plausibly’, or how realistic they perceived the sounds to be. Participants were provided

with a continuous linear scale to rate each sample based on how plausible the sound rep-

resented the given sonic category. Rating the plausibility of sound from a physical model

was the preferred judgement in Castagné and Cadoz [2003], stating a plausible sound as

one that listeners thought “was produced in some physical manner”. The Web Audio

Evaluation Tool [Jillings et al., 2015, 2016] was used to build and run listening tests in

the browser. This allowed test page order and samples on each page to be randomised
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and loudness normalised in accordance with ITU-R BS.1534-3 [2015]. Headphones were

used to administer the sounds to participants. Headphones were used for simplicity

and convenience, and it has been shown that high quality headphones will provide a

comparable listening test experience to a configured loudspeaker setup [Koehl et al.,

2011]. All experimental procedure was approved by local ethics committee and tests

were all designed to take less than 30 minutes, to ensure fatigue was not an issue. High

quality real world recordings were used to compare each synthesis method to real world

examples, to allow for an understanding of whether the sound is indistinguishable from

a recording. Alternative synthesis methods were used as a benchmark, to understand

how well within a scale the synthesis method performed, or whether another standard

analysis-synthesis method can produce better results. Anchors were used to standardise

the bottom level of the scale, and to allow for comparison as to how badly a synthesis

method performed. The knowledge that a method performed better or worse than an

example designed to be unrealistic provides a better understanding of the participants’

accuracy in rating the other samples.

The aeolian approaches for synthesis will be referred to as the physical approach, and

all other approach will be referred to as the alt or alternative approach.

7.3 Aeolian Harp

A synthesis model for an aeolian harp was developed from aeolian tones in Selfridge

et al. [2017d]. A full software implementation of the aeolian harp is available.1 To

evaluate how close the model sounds like an Aeolian harp, a subjective listening test

was undertaken. Since Aeolian harps are not common, participants were given training

to assist identification of an Aeolian harp. Prior to the start participants were invited to

watch a short video explaining the Aeolian harp and how it sounds.2 Participants then

undertook three steps of pre-training, where, at each step, they were presented with a

real examples of Aeolian Harps, and then provided a list of six audio samples and asked

to identify if these samples were aeolian harps. In total there were 18 training samples

1https://code.soundsoftware.ac.uk/projects/aeolianharp
2https://www.youtube.com/watch?v=d6c6-u3MQDk

https://code.soundsoftware.ac.uk/projects/aeolianharp
https://www.youtube.com/watch?v=d6c6-u3MQDk
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Table 7.1: Post-hoc multiple comparison test results for aeolian harp, for different
synthesis models with subjective ratings

Harp Physical Alt Sample

Physical . o ****
Alt o . ****

Sample **** **** .
o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.

that participants were asked to identify. Nine were genuine recordings of aeolian harps,

and nine were constructed with digital synthesisers, to be noticeably different from any

aeolian harp samples. Thereafter participants were asked to rate four groups of Aeolian

harp sounds, each having six sound clips, two from the physical model, two created by

SMS [Zölzer and Amatriain, 2002], and two recordings of actual harps giving 24 clips

overall. The SMS clips are produced by analysis of real recordings, not used in the

test, and then synthesised from these, therefore wind generation should not be an issue

with these. Recorded samples were taken from the Windsongs CD [Winfield, 1993].

The test is available online.3 There were 32 participants in the tests, 22 male and

10 female, aged from 16 years old to 77 years old with an average age of 36. Eight

participants had previously heard an Aeolian harp. No anchor was included within this

test, as it was known that participants were most likely not familiar with an Aeolian

Harp, and as such, wanted to make the listening test as simple as possible for them.

This allowed for them to select one of three options as their preferred sound. The

possibility of excluding participants based on their score in the pre-training was reviewed,

however, no participant scored below 70% accuracy and setting a higher threshold did

not meaningfully change the distribution of the results.

The results, as presented in Figure 7.1 show that the recorded sample was considered

better than both synthesis methods. However, there seems to be little difference between

the two synthesis methods. A Kruskal Wallis test shows that the results for each method

are not drawn from the same distributions (H = 169.84, p = 1.32e-37), and a post-hoc

multiple comparison test, as presented in Table 7.1 shows that both the physical and the

alternative synthesis methods are significantly different from the recorded sample, but

there is no significant difference between them. This demonstrates that although the

3https://goo.gl/cHp49J

https://goo.gl/cHp49J
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Figure 7.1: Plausibility rating of Aeolian Harp.

Alt = Alternative Synthesis Model (SMS)

physical approach is indistinguishable from an alternative synthesis method; the physical

approach provides the participant with a much greater level of detailed control over the

sound produced. The model gives users control over up to 13 strings, controlling length,

diameter, tension, mass and damping.

7.4 Propellor

A synthesis model for a propellor was developed in Selfridge et al. [2017a]. Propellor

controls include blade length, number of blades, RPM, number of propellors and a

series of presets for pre measured planes. In total six planes were modelled, they are the

Hercules C13, Boeing B17, Tiger Moth, Yakovlev Yak-52, Cessna 340 and P51 Mustang.

A full software implementation of the propellor, with engine noise, is available.4 A

listening test was carried out to evaluate the effectiveness of the propellor model. The

test is available online.5 20 participants, 6 female and 14 male, aged between 17 and 70,

4https://code.soundsoftware.ac.uk/projects/propeller-model
5https://goo.gl/36bXQm

https://code.soundsoftware.ac.uk/projects/propeller-model
https://goo.gl/36bXQm
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with a median age of 39, were asked to rate a number of sounds for authenticity. Each

participant was presented with 4 test pages, in which each page contained 2 real samples,

2 samples from our model, 2 samples generated by SMS [Amatriain et al., 2002] of a

recording, and an anchor, which was created by downgrading the quality of our model.

The anchors were created from the downgraded synthesis signal, to allow a thorough

comparison of how plausible the synthesis method is compared to the recorded sample.

It was expected that a low pass filtered sample, as used in the MUSHRA standard,

would still be considered plausible, whereas a low quality downgraded anchor would

encourage the full use of the scale and allow for better understanding as to effectiveness

of the synthesis method.

The physical approach is producing the sound of a propellor alone, and typically a

propellor will never be heard without the sound of the associated airplane engine. As

such, for a fair evaluation, an engine noise would be added to all propellor sounds, which

is designed to match all the audio samples found. It is outside the scope of this work to

design and replicate the motor component of a plane, so a model was adapted from the

helicopter sound effect in Farnell [2010].

As presented in Figure 7.2, the sample again performed as the most plausible result,

and the anchor performed poorest. This was entirely to be expected. There is also

a small difference between the median of the alternative synthesis approach and the

physical one, and the physical approach also has a more concentrated distribution. This

shows that it may be a slight favourite, and that there is more consistence towards

the positive plausibility rating of the physical approach, than that of the alternative

synthesis approach. A Kruskal Wallis test demonstrated that the distributions of each

method are significantly different (H = 292.37, p = 4.45e-63), and the results of a

post-hoc multiple comparison test is presented in Table 7.2. It is shown that there are

significant differences between every set of stimuli in Table 7.2, with the exception of

the two different synthesis methods. As such, there are no significant differences in

the subjective rating of the physical approach and the alternative synthesis approach.

Despite this, both synthesised approaches are significantly worse than a recorded sample.
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Figure 7.2: Plausibility rating of Propellor.

Alt = Alternative Synthesis Model (SMS), Anch = Anchor

Table 7.2: Post-hoc multiple comparison test results for propellor, for different syn-
thesis models with subjective ratings

Anch Sample Physical Alt

Anch . **** **** **
Sample **** . **** ****
Physical **** **** . o

Alt ** **** o .
o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.

7.5 Swinging Object

A real-time physical model was produced of objects swinging through the air, such as

a baseball bat or a golf club. This work was originally presented in Selfridge et al.

[2017b] and then developed further in Selfridge et al. [2017c]. Controls are presented for

the length, hilt, profile/thickness along its length and details on any cavities [Selfridge

et al., 2017e] within the object. The full implementation of is available online.6

6https://code.soundsoftware.ac.uk/projects/physicallyderivedswingingobjects

https://code.soundsoftware.ac.uk/projects/physicallyderivedswingingobjects
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The experimental evaluation was split into two different tests, a plausibility rating test

and an object recognition test. A total of 26 participants undertook the test. The order

of the plausibility rating test and object recognition was split to examine if the order

had any influence on the results.

The author of this thesis collected five objects, measured their physical dimensions, and

recorded the sound of each of them swinging through the air to create a set of reference

samples for the plausibility rating component of the listening test. These objects were

synthesised through the approach described in Selfridge et al. [2017c]. A metal sword,

a wooden sword, a baseball bat a 3-wood golf club and a broom handle. Samples of

each object being swung were recorded. The objects were then measured to allow for

synthesis. All the sampled recordings were captured in the Listening Room of Queen

Mary University of London [Morrell et al., 2011]. They were recorded on a Neumann

U87 microphone placed approximately 20 cm from the midpoint of the swing and at 90

degrees to the plane of the swing. The impulse response of the room was captured and

applied to all other sounds in the listening test so that the natural reverb of the room

would not influence the results, except samples from Böttcher and Serafin [2009] and

Dobashi et al. [2003].

Five categories of sounds were presented to the participant, on 5 different test pages.

The wooden sword, baseball bat, golf club and broom handle pages contained two real

samples, two samples from the physical model, two samples generated by an alternative

synthesis approach (SMS [Amatriain et al., 2002]) from a recording and an anchor. The

metal sword page included two real samples, one synthesis sample from Böttcher and

Serafin [2009], in which a granular synthesis approach is taken, one synthesis sample

from Dobashi et al. [2003], where a computational fluid dynamics approach is taken,

one SMS sample, one sample from the physical aeolain model and a sample from the

physical model with cavity tone compact sound sources added. The anchors were created

from a real-time browser-based synthesis effect [Bahadoran et al., 2017, 2018a], to allow a

thorough comparison of how plausible the synthesis method is compared to the recorded

sample.
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During the object recognition test, participants were provided with a Wii Controller,

and asked to swing the controller that was directly controlling physical parameters of

the synthesis engine. The five preset objects were presented in a pseudorandom order

and the user asked to identify which object they were swinging from the list of presets.

Fourteen participants completed the object recognition test prior to the listening test,

and 12 completed it after the listening test. Each preset was presented twice giving 10

individual tests in total. The listening test is available online.7

7.5.1 Plausibility Rating

Box plots for all five objects are shown in Figures 7.3-7.7. The physical model outper-

forms the alternative synthesis methods on all of the objects except the metal sword.

The metal sword performed poorly for plausibility in this test.

Alt Anch Physical Sample

Synthesis Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ar

tic
ip

an
t P

la
us

ib
ili

ty
 R

at
in

g

Broom

Figure 7.3: Broom Handle Plausibility Rating

Alt = Alternative Synthesis Model (SMS), Anch = Anchor

A Kruskal Wallis test was performed for each sound type, which demonstrated that there

is significant difference between the sound method distributions for each of the sound

7https://goo.gl/v63D7m

https://goo.gl/v63D7m
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Figure 7.4: Baseball Bat Plausibility Rating

Alt = Alternative Synthesis Model (SMS), Anch = Anchor
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Figure 7.5: Golf Club Plausibility Rating

Alt = Alternative Synthesis Model (SMS), Anch = Anchor
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Figure 7.6: Wooden Sword Plausibility Rating

Alt = Alternative Synthesis Model (SMS), Anch = Anchor
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Figure 7.7: Metal Sword Plausibility Rating

Alt = Alternative Synthesis Model, Anch = Anchor
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types, as shown in Table 7.3, and a post-hoc multiple comparisons test was performed,

and presented in Table 7.4

Table 7.3: Kruskal wallis test results

Sound Type H p

Broom Handle 106.27 6.97e-23
Baseball Bat 82.61 8.46e-18

Golf Club 89.74 2.49e-19
Wooden Sword 68.70 8.10e-15
Metal Sword 102.31 4.96e-22

Table 7.4: Post-hoc multiple comparison test results for swinging objects, with dif-
ferent synthesis models subjective ratings

Broom Handle Anchor Physical Alternative Synthesis Sample

Anchor . **** o ****
Physical **** . **** o

Alternative Synthesis o **** . ****
Sample **** o **** .

Baseball Bat Anchor Physical Alternative Synthesis Sample

Anchor . **** o ****
Physical **** . **** o

Alternative Synthesis o **** . ****
Sample **** o **** .

Golf Club Anchor Physical Alternative Synthesis Sample

Anchor . **** *** ****
Physical **** . **** o

Alternative Synthesis *** **** . ****
Sample **** o **** .

Wooden Sword Anchor Physical Alternative Synthesis Sample

Anchor . **** o ****
Physical **** . **** o

Alternative Synthesis o **** . ****
Sample **** o **** .

Metal Sword Anchor Physical Alternative Synthesis Sample

Anchor . * *** ****
Physical * . o ****

Alternative Synthesis *** o . **
Sample **** **** ** .

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.
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As can be seen in Table 7.4, in every single case except the metal sword, the physical

synthesis approach is indistinguishable from the real recording. In all these cases, both

the physical synthesis and the sample are significantly different from an alternative

synthesis approach. Only in the case of the golf club, is the alternative synthesis approach

significantly different from the anchor. This demonstrates that under four different

conditions, the physical model is as plausible as a recording. In the case of the metal

sword, there were a lot more variations in the evaluation process. As the alternative

synthesis approaches were taken from existing sword swing synthesis work, and there

were variations within the physical approach used, with a cavity model included, there

is a requirement to investigate the results in more detail.
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Figure 7.8: Metal Sword Plausibility Rating, per sound sample

The two sword samples are not significantly different from each other and the Dobashi

sample, as can be seen in Figure 7.8 and Table 7.5. Bottcher is significantly different

from one of the two samples. Both of the physical approaches, and the SMS model

are significantly different from all the samples. The physical model with no cavity is
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Table 7.5: Post-hoc multiple comparison test results for metal swords, for subjective
ratings of each sample

Bottcher Dobashi Anchor Physical Phys+Cavity SMS Sample1 Sample2

Bottcher . o **** ** o o o **
Dobashi o . **** *** o o o o
Anchor **** **** . o * ** **** ****
Physical ** *** o . o o **** ****

Phys+Cavity o o * o . o ** ****
SMS o o ** o o . * ****

Sample1 o o **** **** ** * . o
Sample2 ** o **** **** **** **** o .

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.

not significantly different from the Anchor, and is significantly worse than Bottcher,

Dobashi and the recorded samples. The physical model with cavity is indistinguishable

from the other three alternative synthesis methods, SMS, Bottcher and Dobashi. It is

clear that the Dobashi synthesis model performed best, followed by the Bottcher method.

One possible reason for the poorer performance of the metal sword physical model was

that all the other modelled objects were thicker than the metal sword. Thicker objects

produce much noisier signals, with lower filter Q values, whereas thinner objects produce

sounds much closer to pure tones. SMS analyses and extracts sinusoidal components,

much closer to pure tones, and so are more appropriate for modelling thinner objects.

Results given in Selfridge et al. [2017b] indicated that the lower quality physical model

sounds were rated as more plausible. These sounds had a fixed Q value that gave

the impression of a thicker object. The diameter used to generate sounds by Dobashi

et al. [2003] was 10mm, more than twice the thickness of the sword modelled with the

physical approach, which was 4.6mm at the widest and 1.3mm at the tip. It may be

the case that listeners perceive a thicker sound as more plausible even if not physically

accurate. Aeolian tones make the assumption that the object air is flowing over is a

cylinder, however in cases of a thin sword, this assumption is not valid. The assumption

of cylindricality is more valid for baseball bats or broom handles.

Another possible reason for the poor rating of the metal sword object compared to

the other objects is that the number of participants who have swung a real sword and

heard the sound may well be less than those who have perhaps swung a golf club and

the other objects. Memory plays an important role in perception [Gaver and Norman,
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1988]. As such, participants may be revealing the effects of hyper-realism [Moffat et al.,

2019; Puronas, 2014], as they are far more likely to have heard a Foley sound effect or

artificial sword, than to have swung a sword themselves in real life. This may influence

their perception of the physical model, though does not explain why the real recording

was rated higher than the synthesis model.

7.5.2 Object Recognition

Table 7.6 give the results of how often participants correctly identified the object being

represented by the physical model. This shows a clear difference can be seen between

participants who completed the object recognition test prior to the listening test com-

pared to those who completed the object recognition after. It is reasonable to conclude

that completing the listening test first provides some level of training for the sound

object recognition.

Table 7.6: Objects correctly identified from the Wii Controller test

Correctly Guessed Before Correctly Guessed After
Object

Listening Test(%) Listening Test(%)

Wooden Sword 0 38
Metal Sword 36 63

Broom Handle 7 42
Baseball Bat 11 46

Golf Club 21 38

Results presented in Table 7.6 show that participants were far less able to identify the

object being modelled by our synthesis model when having to choose before the listening

test. In fact, it was more common to choose one of the other objects being modelled

rather than the correct one. The wooden sword model was never correctly identified,

while the metal sword object was correctly identified more than any other object, but

still less than 50% of the time.

On examination of those who completed the object recognition test after the listening

test, shown in Table 7.6, it can be seen that there was an increase for all objects being

correctly identified. The metal sword object was correctly identified more often than the

other objects and on this occasion, more often than not. Although the results for the

other objects are higher than those presented, it was still more common for participants
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Figure 7.9: Confusion Matrix for Object Recognition
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Figure 7.10: Confusion matrix for object recognition for group with pre-training
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Figure 7.11: Confusion matrix for object recognition for group with no training

to choose one of the other objects being modelled rather than the one being replicated

by our synthesis model.

Figures 7.10 and 7.11 show the confusion matrices for the object recognition part of

the test. It is particularly interesting the difficulties participants had in recognising a

set of fairly similar sounds into the discrete categories, particularly as recognition and

categorisation tasks are commonplace for evaluating sound synthesis work, as discussed

in Chapter 2

In all cases the metal sword and the golf club are one of the most commonly confused

objects. It is believed that this is due to these being the two thinnest objects, and thus

are likely to sound very similar. However, the golf club makes a louder, more powerful

sound, due to the large golf club head and being one of the longest objects tested. The

sonic properties of this object may be more associated with a weapon, such as a sword,

than a golf club.
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Figure 7.12: Plausibility Rating for All Sounds

7.6 Overall Evaluation

A series of different approaches for modelling aeroacoustic sound effects, have been

subjectively evaluated, through the use of a range of listening tests. Some specific mod-

ifications have been made for each specific case. The overall results for all listening

tests and synthesis models are presented in Figure 7.12. It can be seen that the phys-

ical approach overall outperformed the alternative synthesis approaches and anchors,

though not as plausible as recorded samples. A Kruskal Wallis test showed that these

distributions are significantly different (H = 752.9624, p = 6.8739e-163), and there are

significant differences between each approach (p < 0.0001), as presented in Table 7.7.

From this, it can be concluded that the physical approach can, in general, improve the

perceived plausibility of sound synthesis methods, though this is dependant heavily on

specific developments for each specific physical case.
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Table 7.7: Post-hoc multiple comparison test results for all sounds, for different
synthesis models with subjective ratings

Sample Alternative Physical Anchor

Sample . **** **** ****
Alternative **** . **** ****

Physical **** **** . ****
Anchor **** **** **** .

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made.

Figure 7.13: Comparison between Similarity of Subjective Ratings and Objective
Distance Measure for Each Sound Category

7.7 Objective Evaluation

Following the approach of objective evaluation discussed in Chapter 6, the Wichern

objective function was used to evaluate each of the different sound classes identified in

this chapter. To validate the results, the objective distances were correlated with the

subjective distance metrics. In each case, the distance was measured from the recorded

sample to each of the other recordings in that group. Figure 7.13 shows the mean user

distance rating with the Wichern objective distance measure. The lines, of each colour,
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represent a regression best fit line, which is to ease the visualisation of the data and

correlations.

Table 7.8: Spearman Correlation between Objective Distance Measure and User Dis-
tance Measure

Sample Correlation (r) Probability Value (p)

All 0.25 0.048*
Baseball -0.50 0.45
Broom 0.60 0.35

Golf Club 0.64 0.14
Harp 0.36 0.18
Metal 0.71 0.14

Propellor -0.14 0.56
Wood -1.0 0.33

Table 7.8 shows the correlation between user distance rating and the objective distance

measures taken. ‘All’ represents the correlation with every single point shown, and

then each other sonic class, and the correlations and probability of those correlations

occurring by chance. The condition with all data points is the only one which correlates

the subjective and objective evaluations, with a p < 0.05. However the correlation is a

very weak one. There are other cases, such as with the golf club and metal sword, where

the correlations are stronger, however these results are not statistically significant.

This demonstrates that the objective evaluation metric does perform reasonably, in some

cases. This approach does extend past the original domain of environmental sounds, to

aeroacoustic sounds, however different statistical significance of results were found, as

compared to Chapter 6.

These results may also be difficult to interpret. Participants were not asked to measure

the similarity between the samples, but were asked to compare which are more plausible.

This does mean that, in some cases, the recorded sample and synthesised sample were

never intended to be identical replications of the exact same world environments. In the

case of the harps and propellor sounds, the exact physical constructions of the original

recordings was not known, so a number of estimations had to be made about original

recording environments.
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7.8 Conclusion

A series of subjective evaluation experiments were presented, utilising a generalised

evaluation framework to identify how plausible the synthesised sounds are perceived to

be. The specific use cases of each sound effect were discussed and modifications to the

subjective evaluation process were implemented to facilitate evaluations appropriate to

the types of sounds being tested. In every case, the synthesis method was compared to

at least one other synthesis method and to recorded samples, and in all cases, except the

aeolian harp, an anchor was used, to standardise test scores within given range. This

was able to appropriately identify the effectiveness of each given synthesis method, and

how it compared to other such synthesis methods.

Objective evaluations were then performed, comparing recorded samples to synthesised

samples. The objective metric performs best for physically narrower objects, such as

metal swords, golf clubs, and broom handles. The results are worse for thicker objects,

such as a wooden sword, baseball bat or propellor. This suggests that the harmonic

elements of the sonic model perform well, however the more broadband sounds, are not

effectively measured or compared in this objective evaluation metric. The overall results

were statistically significant, however the correlations were very weak. As such, objective

evaluations can be utilised for comparison between audio samples, but will not replace

subjective listening tests and human perception.

Overall, the results demonstrate the importance of pre-training of participants before

any identification or classification tasks can be undertaken, agreeing with existing work

within other fields of audio technology [Reiss, 2016]. This suggests that the environ-

mental context and individuals’ experience will significantly impact their perception of

a specific sound. Memory plays an important role in perception [Gaver and Norman,

1988]. Many participants may be revealing the effects of hyper-realism [Moffat et al.,

2019; Puronas, 2014], as they are far more likely to have heard a Foley sound effect or

artificial sword, than to have swung a sword themselves in real life. This may influence

their perception of the physical model. This could be revealed in future subjective eval-

uations. This may suggest that synthesised sounds do not need to be indistinguishable
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from real recordings, in order to be believable in the context of a virtual world.



Chapter 8

Conclusion

The evaluation of sound effect synthesis has been reviewed throughout this thesis and

a number of developments and directions for improvements have been proposed. De-

velopments for methods of evaluation, through objective and subjective approaches are

presented, and a better understanding of sound effect structures is identified.

Chapter 4 presented a sonically motivated sound effects taxonomy, produced using unsu-

pervised learning techniques applied to a commercial sound effects library. The purpose

of the research presented in this chapter is to identify an alternative approach to struc-

turing and searching sound effects libraries and ensure that sound groupings are made

which are more sonically relevant. Hierarchical clustering within an audio feature space

was used to produce sonic structures and hierarchical grouping of sounds.

It is also demonstrated that current sound effects classification and taxonomies may not

be ideal for their purpose. It has been shown that existing classification approaches

differ from the sonic similarity approaches used within Chapter 4. An approach for

producing new sound effect taxonomies based on the sonic content of the samples has

been proposed. This approach has also provided a set of audio features to represent

sound similarity.

However, in the current format the taxonomy will be difficult for people to search for

individual samples without training and regular use. Each of the sound effects categories

identified are not necessarily intuitive, and the branches are inconsistent. A simple

124



Chapter 8 Conclusion 125

structure taxonomy, with consistent separating attributes would be more advantageous

and intuitive to use, or a suitable sound browsing tool. Any resulting taxonomy produced

through this method, will be highly dependant on the dataset used, and as such a

small dataset was used, the result cannot be generalised to larger datasets. Artefacts

from the Adobe Sound Effects Library may well result in some specific categorisation

that would not be present within other datasets. This could negatively impact the

details of the findings presented, or justify further validation requirements. Further to

this, more intuitive and consistent data sets could be produced with a better semantic

understanding and relationship between audio features and human perception.

There are many approaches to search for sound, and any successful approach will need

to be a hybrid approach of sonic similarity and sound context or source labelling to

provide an intuitive approach to explore a sonic space.

The work on audio features for evaluation of sound effects is contrasted with the im-

portance of human subjective perspectives. A subjective listening test, presented in

Chapter 5, identifies a method for subjective evaluation of the effectiveness of sound ef-

fects synthesis algorithms, based on how well the intended sound was synthesised. There

is a lack of consistency for evaluation across the field of synthesis research, as identified

in Chapter 2, and this subjective evaluation approach has addressed this failing. The

failing of consistent evaluation across the field is not unique to sound synthesis, however,

will have an impact on the focus of future research. Through the inter-comparison of

different synthesis methods, it is possible to gain a better understanding as to the suc-

cesses and failings of each synthesis approach and thus inform approaches for improving

synthesis.

It is unsurprising to find that there is no single best approach to sound synthesis. One

synthesis approach, additive synthesis, did consistently perform well, though this was the

result of handcrafting specific parameters and can only be applied to a small number

of applications - as such this approach is highly labour intensive. Additive synthesis

performs well for granular type sounds, such as rain and fire sounds, where many small

sonic elements combine together to produce a sound texture, whereas envelope shaped

noise approaches performs well for slower moving sound types, such as wind and flowing
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water. This seems intuitive, based on the structures of the sound and the approaches

used to perform the synthesis.

The restricted number of sound examples evaluated limits the extent to which claims

can be made regarding the entire field of synthesis. However, it is clear that better

evaluation and understanding of synthesis will identify and develop the quality of syn-

thesis models produced. It was also identified that some synthesis approaches are good

enough that participants will find them indistinguishable from recorded samples, par-

ticularly environmental sounds. More human sounds, such as babble and applause are,

however, consistently difficult to synthesise. Evaluation of sound synthesis can assist in

improving upon the state-of-the-art and developing future sound synthesis. The subjec-

tive evaluation approaches suggested here, would support effective comparison of sound

synthesis methods and thus support improvements in the field. It has also been shown

that there are cases where synthesised sound effects can be considered as realistic as

recorded sound effects. This is important, as there are many cases where a synthesised

sound effect could be used in place of a recorded sample, which can further justify the

use of computationally generated sounds.

Chapter 6 utilised the audio feature comparison measures developed in Chapter 4, and

evaluated them using an analysis and synthesis approach with subjective evaluation in-

spired from Chapter 5. Chapter 6 presented an approach for evaluating and comparing

objective evaluation metrics for synthesised sound effects. Through analysis and synthe-

sis, where an objective function is used as a fitness function for a parameter optimisation

problem, any objective function that correlates highly with a subjective perception of

similarity must encapsulate a perceptual representation of similarity. A series of exist-

ing objective measures for sound effects were compared. It was shown that the Wichern

et al. [2007] approach has a strong and statistically significant correlation with subjec-

tive similarity measures. The Wichern method defines a set of audio features, described

as “loudness, spectral centroid, spectral sparsity, harmonicity, temporal sparsity, and

transient index” [Wichern et al., 2007]. This work presented these audio features, as

purpose selected for indexing of natural environmental sounds. This agrees with the

work presented in this chapter, which had a particular focus on environmental sounds.
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It was also uncovered that the objective similarity measure produced in Chapter 4, and

evaluated in Chapter 6, while an effective method in some conditions, particularly wind

sounds, did not correlate with any subjective ratings of similarity.

It is surprising that only one of the tested objective evaluation functions presented had

a high correlation with subjective results, as each of the objective functions had been

used in published research for comparing sound effects. Due to the low number of data

points being used, the impact of a single outlier will change the results significantly,

so viewing the results with caution is essential. Further to this, random parameter

settings were compared to the objective functions, and it was found that no method was

ever consistently better than random parameter assignment. This demonstrates that

there must be an issue either with the random parameter allocation, or every single

method performed poorly. To fully explore the implications, in future tests the random

parameters should be recalculated for each listening experiment in order to achieve

a reasonable distribution, or hand engineered parameters to ensure that the random

parameters were not accidentally a good fit. It would also be worthwhile to further

explore the appropriateness of this evaluation method outside of the environmental sound

context.

Further failings of the synthesis methods may have impacted the results. There were

occasions that the synthesis method was unable to produce the sounds represented in

the recorded samples, particularly in the context of wind sounds. A larger range of

synthesis models, including non-environmental sounds, of better quality, and a further

range of sound samples would all be required to confirm the results. The set of objective

evaluation metrics used was based primarily on audio feature vector distances, however

there are a range of objective functions used in other studies that implement different

similarity measures, such as LSE of spectrograms or auditory models of similarity that

are not explored here, such as that used by McDermott and Simoncelli [2011]. The

method presented, whilst not covering the full range of measures available, still shows

a strong correlation with subjective similarity measures for some objective functions,

which could have considerable impact in the field of sound synthesis. Either using

this objective function for parameter tuning on a range of synthesis methods or for
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synthesis method evaluation and validation would aid the field of synthesis research.

A standardised objective evaluation methodology with standardised sound samples can

transform the field of synthesis research. This has the potential to identify current sound

synthesis failings and push the boundary of the perceptual quality of synthesis.

The case study presented in Chapter 7 employed generalised subjective and objective

evaluation methodologies of aeroacoustic sound effects. Modifications were made for

different test cases, such as an aeolian harp, a propellor and a series of objects swinging

through the air. This demonstrated the practical application of a standard evaluation

technique to the field, and presents some examples of modifications that can be made for

specific use cases. The results show that a physical modelling approach to synthesising

these range of sounds perform as least as well as an alternative synthesis approach, with

the exception of the metal sword. In the case of object swinging sounds, four of the five

different objects were significantly better than SMS. When the results are combined, the

physical model approach is significantly better than the alternative synthesis approach,

though not as good as a sample. The object swinging results clearly impacted these

results, and with just the harp and propellor sounds, it is expected that there would be

no discernible difference between the two synthesis approaches.

It should also be noted that the physical modelling approach focuses on modelling ae-

olian tones, which are produced by the interaction of cylindrical objects and air. In

many cases, including a thin metal sword and a propellor blade, this assumption is

broken. This is being corrected in work modelling edge tones [Selfridge et al., 2018b].

One of the key advantages of a physically modelled synthesis approach is the interaction

and control that can be achieved, so the advantage of a synthesis approach, with some

physical interaction parameters, cannot be understated. During the object recognition

evaluation, the importance of participant pre-training before an experiment was high-

lighted. There are many cases in literature where evaluation was performed through

recognition or classification [Aldrich, 2005; Gygi et al., 2007; Houix et al., 2012; Kersten

and Purwins, 2010; McDermott et al., 2009; Woodcock et al., 2016], however it has been

clearly demonstrated that this can be highly dependant on the pre-training and does
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not provide us with a greater insight into the effectiveness of our synthesis approach,

though it does demonstrate the value of consistent evaluation approaches.

8.1 Future Perspectives

There are clear opportunities to develop a better understanding of the current state-

of-the-art within sound synthesis. The following recommendations in this thesis could

certainly lead to significant improvements of evaluation within the field of sound effects

synthesis. A single process for evaluating synthesis will never be able to encapsulate

everything that is required to evaluate such a multidimensional problem as sound syn-

thesis, however, it can help to provide a systematic approach to analysis. It is also

the case that measuring the effectiveness of a synthesis method designed to synthesise

a real world sound is only one of a range of important evaluation metrics. This type

of evaluation does not negate the need for other evaluation forms, but merely adds to

the understanding of the utility of existing work. Globally comparing sound synthesis

methods and looking within sound groupings can both yield meaningful results. Iden-

tification of suitable sonic groupings, in which groups of sounds can be produced and

inter-evaluated would be highly beneficial, and would encourage bespoke grouping-based

synthesis research, rather than global synthesis approaches.

Developments of a biologically-inspired model for sound similarity, where a psychoacous-

tic model could be produced to represent similarity in the context of two sounds, would

aid in production of objective metrics for system evaluation, and would even facilitate

the opportunities of machine learned approaches to synthesising sound effects. The sin-

gle biggest constraint to high quality intractable synthesis models is the labor intensive

time taken to produce effective and realistic sound synthesis. A biologically inspired

perceptual model for similarity, combined with an unsupervised learning hierarchical

clustering approach, could remove some of these challenges, and potentially allow for an

intelligent approach to synthesis.

The potential for implementation of sound similarity measures could be highly advanta-

geous to the sound design community. The creation of sound replacement tools, or the
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ability to find synthesis parameters based on sound effect searching, could significantly

change the field. The idea of searching for sounds based on similarity would allow a

sound designer to quickly limit the search for the correct audio sample. In this case,

there could be a list of different sounds, each similar in some different sonic dimension.

This would provide a new approach to searching for sounds effects. Furthermore, the

synthesis and alignment of previously recorded sounds could be advantageous to the

work in sound design communities. For example, footsteps sounds often have to be

re-created after the scene is filmed, in order to accurately reflect the sound designer’s

creative intention. An approach to automatically synchronise and control parameters of

a sound from the recording could potentially afford a much greater sense of expressive

control within the restrictive time constraints many sound designers experience.



Acronyms

AIC Akaike information criterion

ANOVA ANalysis of VAriance

API Application Program Interface

ARFF Attribute-Relation File Format

BS British Standard

CLI Command Line Interface

CSV Comma-separated values

DC Direct Current

DCT Discrete Cosine Transform

FII Feature Importance Index

FM Frequency Modulation

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

GUI Graphical User Interface

HDF Hierarchical Data Format

HRTF Head Related Transfer Function
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ITU-R International Telecommunication Union - Radiocommunication Sector

JSON JavaScript Object Notation

LLD Low Level Descriptors

LSE Least Square Error

MDS Multi-Dimensional Scaling

MFCC Mel Frequency Cepstrum Coefficient

MIR Music Information Retrevial

ML Machine Learning

MPEG Moving Picture Experts Group

MUS MUltiple Stimulus

MUSHRA MUltiple Stimulus Hidden Reference and Anchor

OOB Out-Of-Bag

PEAQ Perceptual Evaluation of Audio Quality

PSO Particle Swarm Optimisation

RS Real Synthetic

SMS Sinusoidal Modelling Synthesis / Spectral Modelling Synthesis

SPAD SPatialized ADditive synthesiser for environmental sounds

SPL Sound Pressure Level

TSV Tab-separated values

URL Uniform Resource Locator

WAET Web Audio Evaluation Tool
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XML eXtensible Markup Language

YAML YAML Ain’t Markup Language



Glossary

Aeroacoustic A branch of acoustics relating to the sound produced by turbulent fluid

motion. In this context of this thesis, the fluid in question is air.

Audio Feature An attribute or aspect description of a piece of audio. Can be a low

level attribute, eg. mean frequency, or a high level attribute eg. chord sequence.

Diegetic An aspect of story telling, where the element is within the narration of the

story, but not within the world of the story.

Foley The creative practice of performing sound effects.

Gaussian Mixture Model An approach where a feature space is modelled with a

number of multivariate gaussians [Bilmes, 1998].

Multivariate A variable which contains more than a single dimension.

Objective Evaluation a computational process for automated evaluation.

OOB Error Out-of-bag error. A process for measuring the error introduced by a single

attribute or feature. This is calculated as the difference in error with a given feature

both included and excluded.

Perceptual a method that relates to our understanding of human perception.

Random Forest A machine learning approach, where random subsets of features are

selected, and a number of decision trees are grown using the CART algorithm [Breiman,

1984, 2001].
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Sound Effect A non-musical non-speech sound which can be used to create a specific

effect.

Sound Synthesis Artificially generated audio signal.

Subjective Evaluation A human subject performing an evaluation.

Taxonomy A scheme of classification, typically with some form of hierarchical struc-

ture.

Unsupervised Learning Shorthand for unsupervised machine learning.

Unsupervised Machine Learning A machine learning approach where the data is

unlabelled - often used for data exploration or determining inherent structures of

data.

VAMP A plugin format for audio processing and analysis.
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Böttcher, N. and Serafin, S. (2009). Design and evaluation of physically inspired models

of sound effects in computer games. In Audio Engineering Society Conference: 35th

International Conference: Audio for Games, London. AES.

Bower, J. L. and Christensen, C. M. (1995). Disruptive technologies: catching the wave.

Harvard Business Review.

Breiman, L. (1984). Classification and regression trees. CRC press.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brent, W. (2010). A timbre analysis and classification toolkit for pure data. Ann Arbor,

MI: MPublishing, University of Michigan Library.

Brossier, P. M. (2006). The aubio library at MIREX 2006. MIREX 2006, page 1.

Bruna, J. and Mallat, S. (2013). Audio texture synthesis with scattering moments. arXiv

preprint arXiv:1311.0407.

Bryant, D. L. (2014). Scalable audio feature extraction. Master’s thesis, University of

Colorado Colorado Springs.

Bullock, J. (2007). Libxtract: A lightweight library for audio feature extraction. In

Proceedings of the International Computer Music Conference, volume 43.
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Mitrović, D., Zeppelzauer, M., and Breiteneder, C. (2010). Features for content-based

audio retrieval. Advances in computers, 78:71–150.

Moffat, D. and Reiss, J. D. (2018a). Objective evaluations of synthesised environmental

sounds. In Proc. 21th International Conference on Digital Audio Effects (DAFx-17),

Aveiro, Portugal.

Moffat, D. and Reiss, J. D. (2018b). Perceptual evaluation of synthesized sound effects.

ACM Transactions on Applied Perception (TAP), 15(2):19.

Moffat, D., Ronan, D., and Reiss, J. D. (2015). An evaluation of audio feature extraction

toolboxes. In Proc. 18th International Conference on Digital Audio Effects (DAFx-

15).

Moffat, D., Ronan, D., and Reiss, J. D. (2017). Unsupervised taxonomy of sound

effects. In Proc. 20th International Conference on Digital Audio Effects (DAFx-17),

Edinburgh, UK.

Moffat, D., Selfridge, R., and Reiss, J. D. (2019). Sound effect synthesis. In Filimowicz,

M., editor, Foundations in Sound Design for Interactive Media: A Multidisciplinary

Approach. Routledge.



BIBLIOGRAPHY 150

Morrell, M. J., Harte, C. A., and Reiss, J. D. (2011). Queen Mary’s “Media and Arts

Technology studios” audio system design. In 130th Audio Engineering Society Con-

vention. Audio Engineering Society.

Moss, W., Yeh, H., Hong, J.-M., Lin, M. C., and Manocha, D. (2010). Sounding liquids:

Automatic sound synthesis from fluid simulation. ACM Transactions on Graphics

(TOG), 29(3):21.

Murphy, E., Lagrange, M., Scavone, G., Depalle, P., and Guastavino, C. (2008). Per-

ceptual evaluation of a real-time synthesis technique for rolling sounds. In Conference

on Enactive Interfaces, Pisa, Italy. Interactive Design Foundation.

Nordahl, R., Serafin, S., and Turchet, L. (2010). Sound synthesis and evaluation of inter-

active footsteps for virtual reality applications. In IEEE Virtual Reality Conference,

pages 147–153, Waltham, MA, USA. IEEE.
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