2,562 research outputs found

    Using the isabelle ontology framework: Linking the formal with the informal

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordWhile Isabelle is mostly known as part of Isabelle/HOL (an interactive theorem prover), it actually provides a framework for developing a wide spectrum of applications. A particular strength of the Isabelle framework is the combination of text editing, formal verification, and code generation. Up to now, Isabelle’s document preparation system lacks a mechanism for ensuring the structure of different document types (as, e.g., required in certification processes) in general and, in particular, mechanism for linking informal and formal parts of a document. In this paper, we present Isabelle/DOF, a novel Document Ontology Framework on top of Isabelle. Isabelle/DOF allows for conventional typesetting as well as formal development. We show how to model document ontologies inside Isabelle/DOF, how to use the resulting meta-information for enforcing a certain document structure, and discuss ontology-specific IDE support

    Isabelle/DOF. User and Implementation Manual

    Get PDF
    The software for which this is the manual is available via the DOI in this recordIsabelle/DOF provides an implementation of DOF on top of Isabelle/HOL. DOF itself is a novel framework for defining ontologies and enforcing them during document development and document evolution. Isabelle/DOF targets use-cases such as mathematical texts referring to a theory development or technical reports requiring a particular structure. A major application of DOF is the integrated development of formal certification documents (e.g., for Common Criteria or CENELEC 50128) that require consistency across both formal and informal arguments. Isabelle/DOF is integrated into Isabelle’s IDE, which allows for smooth ontology development as well as immediate ontological feedback during the editing of a document. Its checking facilities leverage the collaborative development of documents required to be consistent with an underlying ontological structure. In this user-manual, we give an in-depth presentation of the design concepts of DOF’s Ontology Definition Language (ODL) and describe comprehensively its major commands. Many examples show typical best-practice applications of the system. Isabelle/DOF is the first ontology language supporting machine-checked links between the formal and informal parts in an LCF-style interactive theorem proving environment.IRT System

    Isabelle/DOF: Design and Implementation

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record17th International Conference, SEFM 2019 Oslo, Norway, September 18–20, 2019DOF is a novel framework for defining ontologies and enforcing them during document development and evolution. A major goal of DOF is the integrated development of formal certification documents (e. g., for Common Criteria or CENELEC 50128) that require consistency across both formal and informal arguments. To support a consistent development of formal and informal parts of a document, we provide Isabelle/DOF, an implementation of DOF on top of the formal methods framework Isabelle/HOL. A particular emphasis is put on a deep integration into Isabelleâs IDE, which allows for smooth ontology development as well as immediate ontological feedback during the editing of a document. In this paper, we give an in-depth presentation of the design concepts of DOFâs Ontology Definition Language (ODL) and key aspects of the technology of its implementation. Isabelle/DOF is the first ontology language supporting machine-checked links between the formal and informal parts in an LCF-style interactive theorem proving environment. Sufficiently annotated, large documents can easily be developed collabo- ratively, while ensuring their consistency, and the impact of changes (in the formal and the semi-formal content) is tracked automatically.IRT SystemX, Paris-Saclay, Franc

    Broadening the Scope of Nanopublications

    Full text link
    In this paper, we present an approach for extending the existing concept of nanopublications --- tiny entities of scientific results in RDF representation --- to broaden their application range. The proposed extension uses English sentences to represent informal and underspecified scientific claims. These sentences follow a syntactic and semantic scheme that we call AIDA (Atomic, Independent, Declarative, Absolute), which provides a uniform and succinct representation of scientific assertions. Such AIDA nanopublications are compatible with the existing nanopublication concept and enjoy most of its advantages such as information sharing, interlinking of scientific findings, and detailed attribution, while being more flexible and applicable to a much wider range of scientific results. We show that users are able to create AIDA sentences for given scientific results quickly and at high quality, and that it is feasible to automatically extract and interlink AIDA nanopublications from existing unstructured data sources. To demonstrate our approach, a web-based interface is introduced, which also exemplifies the use of nanopublications for non-scientific content, including meta-nanopublications that describe other nanopublications.Comment: To appear in the Proceedings of the 10th Extended Semantic Web Conference (ESWC 2013

    Using Ontologies in Formal Developments Targeting Certification

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordIFM 2019: 15th International Conference on integrated Formal Methods, 4-6 December 2019, Bergen, NorwayA common problem in the certification of highly safety or security critical systems is the consistency of the certification documentation in general and, in particular, the linking between semi-formal and formal content of the certification documentation. We address this problem by using an existing framework, Isabelle/DOF, that allows writing certification documents with consistency guarantees, in both, the semi-formal and formal parts. Isabelle/DOF supports the modeling of document ontologies using a strongly typed ontology definition language. An ontology is then enforced inside documents including formal parts, e.g., system models, verification proofs, code, tests and validations of corner-cases. The entire set of documents is checked within Isabelle/HOL, which includes the definition of ontologies and the editing of integrated documents based on them. This process is supported by an IDE that provides continuous checking of the document consistency. In this paper, we present how a specific software-engineering certification standard, namely CENELEC 50128, can be modeled inside Isabelle/DOF. Based on an ontology covering a substantial part of this standard, we present how Isabelle/DOF can be applied to a certification case-study in the railway domain.IRT System

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources

    Design Research and Domain Representation

    Get PDF
    While diverse theories about the nature of design research have been proposed, they are rarely considered in relation to one another across the broader disciplinary field. Discussions of design research paradigms have tended to use overarching binary models for understanding differing knowledge frameworks. This paper focuses on an analysis of theories of design research and the use of Web 3 and open content systems to explore the potential of building more relational modes of conceptual representation. The nature of this project is synthetic, building upon the work of other design theorists and researchers. A number of theoretical frameworks will be discussed and examples of the analysis and modelling of key concepts and information relationships, using concept mapping software, collaborative ontology building systems and semantic wiki technologies will be presented. The potential of building information structures from content relationships that are identified by domain specialists rather than the imposition of formal, top-down, information hierarchies developed by information scientists, will be considered. In particular the opportunity for users to engage with resources through their own knowledge frameworks, rather than through logically rigorous but largely incomprehensible ontological systems, will be explored in relation to building resources for emerging design researchers. The motivation behind this endeavour is not to create a totalising meta-theory or impose order on the ‘ill structured’ and ‘undisciplined’, domain of design. Nor is it to use machine intelligence to ‘solve design problems’. It seeks to create dynamic systems that might help researchers explore design research theories and their various relationships with one another. It is hoped such tools could help novice researchers to better locate their own projects, find reference material, identify knowledge gaps and make new linkages between bodies of knowledge by enabling forms of data-poesis - the freeing of data for different trajectories. Keywords: Design research; Design theory; Methodology; Knowledge systems; Semantic web technologies.</p
    • …
    corecore