
Isabelle/DOF
User and Implementation Manual

Achim D. Brucker Burkhart Wolff

August 18, 2019

Department of Computer Science
University of Exeter
Exeter, EX4 4QF
UK

Laboratoire en Recherche en Informatique (LRI)
Université Paris-Saclay

91405 Orsay Cedex
France

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/226955127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2019 University of Exeter, UK
2018–2019 Université Paris-Saclay, France
2018–2019 The University of Sheffield, UK

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

SPDX-License-Identifier: BSD-2-Clause

This manual describes Isabelle/DOF version 1.0.0/Isabelle2019. The latest official release is
1.0.0/Isabelle2019 (doi:10.5281/zenodo.3370483). The latest development version as well as
official releases are available at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF.

Contributors. We would like to thank the following contributors to Isabelle/DOF (in al-
phabetical order): Idir Ait-Sadoune, Paolo Crisafulli, and Chantal Keller.

Acknowledgments. This work has been partially supported by IRT SystemX, Paris-Saclay,
France, and therefore granted with public funds of the Program “Investissements d’Avenir.”

https://doi.org/10.5281/zenodo.3370483
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

Contents

1 Introduction 7

2 Background 11
2.1 The Isabelle System Architecture . 11
2.2 The Document Model Required by DOF . 11
2.3 Implementability of the Required Document Model. 13

3 Isabelle/DOF: A Guided Tour 15
3.1 Getting Started . 15

3.1.1 Installation . 15
3.1.2 Creating an Isabelle/DOF Project . 18

3.2 Writing Academic Publications (scholarly_paper) 19
3.2.1 The Scholarly Paper Example . 19
3.2.2 Modeling Academic Publications . 20
3.2.3 Editing Support for Academic Papers 22

3.3 Writing Certification Documents (CENELEC_50128) 23
3.3.1 The CENELEC 50128 Example . 23
3.3.2 Modeling CENELEC 50128 . 24
3.3.3 Editing Support for CENELEC 50128 25

3.4 Writing Exams (math_exam) . 26
3.4.1 The Math Exam Example . 26
3.4.2 Modeling Exams . 27

3.5 Style Guide . 29

4 Developing Ontologies 31
4.1 Overview and Technical Infrastructure . 31

4.1.1 Ontologies . 31
4.1.2 Document Templates . 33

4.2 The Ontology Definition Language (ODL) 33
4.2.1 Some Isabelle/HOL Specification Constructs Revisited 35
4.2.2 Defining Document Classes . 37
4.2.3 Common Ontology Library (COL) 40
4.2.4 Annotatable Top-level Text-Elements 43
4.2.5 Status and Inspection Commands . 46
4.2.6 Advanced ODL Concepts . 46

4.3 Defining Document Templates . 48
4.3.1 The Core Template . 48

3

Contents

4.3.2 Tips, Tricks, and Known Limitations 49

5 Extending Isabelle/DOF 53
5.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar 53
5.2 Programming Antiquotations . 55
5.3 Implementing Second-level Type-Checking 56
5.4 Programming Class Invariants . 56
5.5 Implementing Monitors . 57
5.6 The LATEX-Core of Isabelle/DOF . 57

4

Abstract

Isabelle/DOF provides an implementation of DOF on top of Isabelle/HOL. DOF itself is a
novel framework for defining ontologies and enforcing them during document development
and document evolution. Isabelle/DOF targets use-cases such as mathematical texts refer-
ring to a theory development or technical reports requiring a particular structure. A major
application of DOF is the integrated development of formal certification documents (e.g.,
for Common Criteria or CENELEC 50128) that require consistency across both formal and
informal arguments.
Isabelle/DOF is integrated into Isabelle’s IDE, which allows for smooth ontology develop-

ment as well as immediate ontological feedback during the editing of a document. Its checking
facilities leverage the collaborative development of documents required to be consistent with
an underlying ontological structure.

In this user-manual, we give an in-depth presentation of the design concepts of DOF’s On-
tology Definition Language (ODL) and describe comprehensively its major commands. Many
examples show typical best-practice applications of the system. Isabelle/DOF is the first on-
tology language supporting machine-checked links between the formal and informal parts in
an LCF-style interactive theorem proving environment.

Keywords: Ontology, Ontological Modeling, Document Management, Formal Document De-
velopment, Document Authoring, Isabelle/DOF

Contents

6

1 Introduction

The linking of the formal to the informal is perhaps the most pervasive challenge in the
digitization of knowledge and its propagation. This challenge incites numerous research
efforts summarized under the labels “semantic web,” “data mining,” or any form of advanced
“semantic” text processing. A key role in structuring this linking play document ontologies
(also called vocabulary in the semantic web community [19]), i.e., a machine-readable form
of the structure of documents as well as the document discourse.
Such ontologies can be used for the scientific discourse within scholarly articles, mathe-

matical libraries, and in the engineering discourse of standardized software certification doc-
uments [3, 7]: certification documents have to follow a structure. In practice, large groups
of developers have to produce a substantial set of documents where the consistency is noto-
riously difficult to maintain. In particular, certifications are centered around the traceability
of requirements throughout the entire set of documents. While technical solutions for the
traceability problem exists (most notably: DOORS [10]), they are weak in the treatment of
formal entities (such as formulas and their logical contexts).
Further applications are the domain-specific discourse in juridical texts or medical reports.

In general, an ontology is a formal explicit description of concepts in a domain of discourse
(called classes), properties of each concept describing attributes of the concept, as well as
links between them. A particular link between concepts is the is-a relation declaring the
instances of a subclass to be instances of the super-class.
To adress this challenge, we present the Document Ontology Framework (DOF) and an

implementation of DOF called Isabelle/DOF. DOF is designed for building scalable and user-
friendly tools on top of interactive theorem provers. Isabelle/DOF is a novel framework,
implemented as extension of Isabelle/HOL, to model typed ontologies and to enforce them
during document evolution. Based on Isabelle’s infrastructures, ontologies may refer to types,
terms, proven theorems, code, or established assertions. Based on a novel adaption of the
Isabelle IDE, a document is checked to be conform to a particular ontology—Isabelle/DOF
is designed to give fast user-feedback during the capture of content. This is particularly
valuable in case of document evolution, where the coherence between the formal and the
informal parts of the content can be mechanically checked.
To avoid any misunderstanding: Isabelle/DOF is not a theory in HOL on ontologies and

operations to track and trace links in texts, it is an environment to write structured text which
may contain Isabelle/HOL definitions and proofs like mathematical articles, tech-reports and
scientific papers—as the present one, which is written in Isabelle/DOF itself. Isabelle/DOF
is a plugin into the Isabelle/Isar framework in the style of [24].

7

1 Introduction

How to Read This Manual

This manual can be read in different ways, depending on what you want to accomplish. We
see three different main user groups:

1. Isabelle/DOF users, i.e., users that just want to edit a core document, be it for a paper
or a technical report, using a given ontology. These users should focus on Chapter 3
and, depending on their knowledge of Isabelle/HOL, also Chapter 2.

2. Ontology developers, i.e., users that want to develop new ontologies or modify existing
document ontologies. These users should, after having gained acquaintance as a user,
focus on Chapter 4.

3. Isabelle/DOF developers, i.e., users that want to extend or modify Isabelle/DOF, e.g.,
by adding new text-elements. These users should read Chapter 5

Typographical Conventions

We acknowledge that understanding Isabelle/DOF and its implementation in all details re-
quires separating multiple technological layers or languages. To help the reader with this, we
will type-set the different languages in different styles. In particular, we will use

• a light-blue background for input written in Isabelle’s Isar language, e.g.:

Isar
lemma refl: x = x
by simp

• a green background for examples of generated document fragments (i.e., PDF output):

Document
The axiom refl

• a red background for For (S)ML-code:

SML
fun id x = x

• a yellow background for LATEX-code:

LATEX
\newcommand{\refl}{$x = x$}

8

• a grey background for shell scripts and interactive shell sessions:

Bash
achim@logicalhacking:~$ ls
CHANGELOG.md CITATION examples install LICENSE README.md ROOTS src

How to Cite Isabelle/DOF

If you use or extend Isabelle/DOF in your publications, please use

• for the Isabelle/DOF system [5]:
A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, and B. Wolff. Using the Isabelle ontol-
ogy framework: Linking the formal with the informal. In Conference on Intelligent
Computer Mathematics (CICM), number 11006 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, Heidelberg, 2018. 10.1007/978-3-319-96812-4_3.

A BIBTEX-entry is available at: https://www.brucker.ch/bibliography/abstract/brucker.
ea-isabelle-ontologies-2018.

• for the implementation of Isabelle/DOF [4]:
A. D. Brucker and B. Wolff. Isabelle/DOF: Design and implementation. In
P.C. Ölveczky and G. Salaün, editors, Software Engineering and Formal Methods
(SEFM), number 11724 in Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, 2019. 10.1007/978-3-030-30446-1_15.

A BIBTEX-entry is available at: https://www.brucker.ch/bibliography/abstract/brucker.
ea-isabelledof-2019.

Availability

The implementation of the framework is available at https://git.logicalhacking.com/Isabelle_
DOF/Isabelle_DOF. The website also provides links to the latest releases. Isabelle/DOF is
licensed under a 2-clause BSD license (SPDX-License-Identifier: BSD-2-Clause).

9

https://doi.org/10.1007/978-3-319-96812-4_3
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://doi.org/10.1007/978-3-030-30446-1_15
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

2 Background

2.1 The Isabelle System Architecture

While Isabelle [18] is widely perceived as an interactive theorem prover for HOL (Higher-
order Logic) [18], we would like to emphasize the view that Isabelle is far more than that:
it is the Eclipse of Formal Methods Tools. This refers to the “generic system framework
of Isabelle/Isar underlying recent versions of Isabelle. Among other things, Isar provides an
infrastructure for Isabelle plug-ins, comprising extensible state components and extensible
syntax that can be bound to ML programs. Thus, the Isabelle/Isar architecture may be
understood as an extension and refinement of the traditional ‘LCF approach’, with explicit
infrastructure for building derivative systems.” [24]
The current system framework offers moreover the following features:
• a build management grouping components into to pre-compiled sessions,

• a prover IDE (PIDE) framework [20] with various front-ends

• documentation-generation,

• code generators for various target languages,

• an extensible front-end language Isabelle/Isar, and,

• last but not least, an LCF style, generic theorem prover kernel as the most prominent
and deeply integrated system component.

The Isabelle system architecture shown in Figure 2.1 comes with many layers, with
Standard ML (SML) at the bottom layer as implementation language. The archi-
tecture actually foresees a Nano-Kernel (our terminology) which resides in the SML
structure Context. This structure provides a kind of container called context providing
an identity, an ancestor-list as well as typed, user-defined state for components (plugins)
such as Isabelle/DOF. On top of the latter, the LCF-Kernel, tactics, automated proof
procedures as well as specific support for higher specification constructs were built.

2.2 The Document Model Required by DOF

In this section, we explain the assumed document model underlying our Document Ontology
Framework (DOF) in general. In particular we discuss the concepts integrated document, sub-
document, text-element and semantic macros occurring inside text-elements. Furthermore,
we assume two different levels of parsers (for outer and inner syntax) where the inner-syntax
is basically a typed λ-calculus and some Higher-order Logic (HOL).

11

2 Background

PIDE SCALA

PIDE SML

Editor Front-End

Isabelle
evaluation

approx. display

edits markup

Editor Front-End

Isabelle

(e.g., JEdit, VSCode, Eclipse)

PIDE

SML Environment

Integrators
(e.g., sledgehammer)

Project &
Dependency
Management

Code
Generator

Document
Generator

Components
(e.g., datatype, record)

Tactic Procedures
(e.g., simp, fast, metis)

Kernel
(e.g., typ, term, thm,thy)

Nano-Kernel
(e.g., context)

Z3
. . .
CVC4

PDF/LaTeX
. . .
HTML

Haskell
. . .
Scala

Figure 2.1: The system architecture of Isabelle (left-hand side) and the asynchronous com-
munication between the Isabelle system and the IDE (right-hand side).

We assume a hierarchical document model, i.e., an integrated document consist of a hierar-
chy sub-documents (files) that can depend acyclically on each other. Sub-documents can have
different document types in order to capture documentations consisting of documentation,
models, proofs, code of various forms and other technical artifacts. We call the main sub-
document type, for historical reasons, theory -files. A theory file consists of a header , a context
definition, and a body consisting of a sequence of commands (see Figure 2.2). Even the header
consists of a sequence of commands used for introductory text elements not depending on
any context. The context-definition contains an import and a keyword section, for example:

Isar
theory Example (* Name of the 'theory' *)
imports (* Declaration of 'theory' dependencies *)
Main (* Imports a library called 'Main' *)

keywords (* Registration of keywords defined locally *)
requirement (* A command for describing requirements *)

where Example is the abstract name of the text-file, Main refers to an imported theory (recall
that the import relation must be acyclic) and keywords are used to separate commands from
each other.

We distinguish fundamentally two different syntactic levels:
• the outer-syntax (i.e., the syntax for commands) is processed by a lexer-library and

parser combinators built on top, and

• the inner-syntax (i.e., the syntax for λ-terms in HOL) with its own parametric poly-
morphism type checking.

On the semantic level, we assume a validation process for an integrated document, where
the semantics of a command is a transformation θ → θ for some system state θ. This
document model can be instantiated with outer-syntax commands for common text elements,

12

2.3 Implementability of the Required Document Model.

context definition
A header

command
command
command context definition

C header

command
command
command

context definition
B header

command
command
command

context definition
D header

command
command
command

Figure 2.2: A Theory-Graph in the Document Model.

e.g., section〈 . . . 〉 or text〈 . . . 〉. Thus, users can add informal text to a sub-document
using a text command:

Isar
text〈This is a description.〉

This will type-set the corresponding text in, for example, a PDF document. However,
this translation is not necessarily one-to-one: text elements can be enriched by formal, i.e.,
machine-checked content via semantic macros, called antiquotations:

Isar
text〈According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term fac 5} the result @{value fac 5}.〉

which is represented in the final document (e.g., a PDF) by:

Document
According to the reflexivity axiom x = x, we obtain in Γ for fac 5 the result 120.

Semantic macros are partial functions of type θ → text; since they can use the system
state, they can perform all sorts of specific checks or evaluations (type-checks, executions
of code-elements, references to text-elements or proven theorems such as refl, which is the
reference to the axiom of reflexivity).
Semantic macros establish formal content inside informal content; they can be type-checked

before being displayed and can be used for calculations before being typeset. They represent
the device for linking the formal with the informal.

2.3 Implementability of the Required Document Model.

Batch-mode checkers for DOF can be implemented in all systems of the LCF-style prover
family, i.e., systems with a type-checked term, and abstract thm-type for theorems (pro-
tected by a kernel). This includes, e.g., ProofPower, HOL4, HOL-light, Isabelle, or Coq and

13

2 Background

Figure 2.3: The Isabelle/DOF IDE (left) and the corresponding PDF (right), showing the first
page of [5].

its derivatives. DOF is, however, designed for fast interaction in an IDE. If a user wants
to benefit from this experience, only Isabelle and Coq have the necessary infrastructure of
asynchronous proof-processing and support by a PIDE [1, 9, 20, 21] which in many features
over-accomplishes the required features of DOF. For example, current Isabelle versions offer
cascade-syntaxes (different syntaxes and even parser-technologies which can be nested along
the 〈 . . . 〉 barriers, while DOF actually only requires a two-level syntax model.

We call the present implementation of DOF on the Isabelle platform Isabelle/DOF. Fig-
ure 2.3 shows a screen-shot of an introductory paper on Isabelle/DOF [5]: the Isabelle/DOF
PIDE can be seen on the left, while the generated presentation in PDF is shown on the right.
Isabelle provides, beyond the features required for DOF, a lot of additional benefits. For

example, it also allows the asynchronous evaluation and checking of the document content [1,
20, 21] and is dynamically extensible. Its PIDE provides a continuous build, continuous check
functionality, syntax highlighting, and auto-completion. It also provides infrastructure for
displaying meta-information (e.g., binding and type annotation) as pop-ups, while hovering
over sub-expressions. A fine-grained dependency analysis allows the processing of individual
parts of theory files asynchronously, allowing Isabelle to interactively process large (hundreds
of theory files) documents. Isabelle can group sub-documents into sessions, i.e., sub-graphs of
the document-structure that can be “pre-compiled” and loaded instantaneously, i.e., without
re-processing.

14

3 Isabelle/DOF: A Guided Tour

In this chapter, we will give a introduction into using Isabelle/DOF for users that want to
create and maintain documents following an existing document ontology.

3.1 Getting Started

As an alternative to installing Isabelle/DOF locally, the latest official release Isabelle/DOF
is also available on Docker Hub. Thus, if you have Docker installed and your installation of
Docker supports X11 application, you can start Isabelle/DOF as follows:

Bash
achim@logicalhacking:~$ docker run -ti --rm -e DISPLAY=$DISPLAY \

-v /tmp/.X11-unix:/tmp/.X11-unix \
logicalhacking/isabelle_dof-1.0.0_isabelle2019 \
isabelle jedit

3.1.1 Installation

In this section, we will show how to install Isabelle/DOF and its pre-requisites: Isabelle and
LATEX. We assume a basic familiarity with a Linux/Unix-like command line (i.e., a shell).

Pre-requisites

Isabelle/DOF has to major pre-requisites:
• Isabelle (Isabelle2019: June 2019). Isabelle/DOF uses a two-part version system (e.g.,

1.0.0/2019), where the first part is the version of Isabelle/DOF (using semantic version-
ing) and the second part is the supported version of Isabelle. Thus, the same version
of Isabelle/DOF might be available for different versions of Isabelle.

• TEXLive 2019 or any other modern LATEX-distribution where pdfTEX supports \

expanded (https://www.texdev.net/2018/12/06/a-new-primitive-expanded).

Installing Isabelle Please download and install the Isabelle Isabelle2019 distribu-
tion for your operating system from the Isabelle website (https://isabelle.in.tum.de/
website-Isabelle2019/). After the successful installation of Isabelle, you should be able to
call the isabelle tool on the command line:

Bash
achim@logicalhacking:~$ isabelle version
Isabelle2019: June 2019

Depending on your operating system and depending if you put Isabelle’s bin directory in
your PATH, you will need to invoke isabelle using its full qualified path, e.g.:

15

https://cloud.docker.com/u/logicalhacking/
https://www.docker.com
https://www.texdev.net/2018/12/06/a-new-primitive-expanded
https://isabelle.in.tum.de/website-Isabelle2019/
https://isabelle.in.tum.de/website-Isabelle2019/
https://isabelle.in.tum.de/website-Isabelle2019/

3 Isabelle/DOF: A Guided Tour

Bash
achim@logicalhacking:~$ /usr/local/IsabelleIsabelle2019/bin/isabelle version
Isabelle2019: June 2019

Installing TEXLive Modern Linux distribution will allow you to install TEXLive using their
respective package managers. On a modern Debian system or a Debian derivative (e.g.,
Ubuntu), the following command should install all required LATEX packages:

Bash
achim@logicalhacking:~$ sudo aptitude install texlive-latex-extra \

texlive-fonts-extra

Please check that this, indeed, installs a version of pdfTEX that supports the \expanded-
primitive. To check your pdfTEX-binary, execute

Bash
achim@logicalhacking:~$ pdftex \\expanded{Success}\\end
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian).
Output written on texput.pdf (1 page, 8650 bytes).
Transcript written on texput.log.

If this generates successfully a file texput.pdf, your pdfTEX-binary supports the \expanded

-primitive. If your Linux distribution does not (yet) ship TEXLive 2019 or your are running
Windows or OS X, please follow the installation instructions from https://www.tug.org/
texlive/acquire-netinstall.html.

Installing Isabelle/DOF

In the following, we assume that you already downloaded the Isabelle/DOF distribution
(Isabelle_DOF-1.0.0_Isabelle2019.tar.xz) from the Isabelle/DOF web site. The main steps
for installing are extracting the Isabelle/DOF distribution and calling its install script. We
start by extracting the Isabelle/DOF archive:

Bash
achim@logicalhacking:~$ tar xf Isabelle_DOF-1.0.0_Isabelle2019.tar.xz

This will create a directory Isabelle_DOF-1.0.0_Isabelle2019 containing Isabelle/DOF
distribution. Next, we need to invoke the install script. If necessary, the installations
automatically downloads additional dependencies from the AFP (https://www.isa-afp.org),
namely the AFP entries “Functional Automata” [16] and “Regular Sets and Expressions” [14].
This might take a few minutes to complete. Moreover, the installation script applies a patch
to the Isabelle system, which requires write permissions for the Isabelle system directory and
registers Isabelle/DOF as Isabelle component.

If the isabelle tool is not in your PATH, you need to call the install script with the
--isabelle option, passing the full-qualified path of the isabelle tool (install --help

16

https://www.tug.org/texlive/acquire-netinstall.html
https://www.tug.org/texlive/acquire-netinstall.html
https://artifacts.logicalhacking.com/releases/Isabelle_DOF/Isabelle_DOF/Isabelle_DOF-1.0.0_Isabelle2019.tar.xz
https://artifacts.logicalhacking.com/releases/Isabelle_DOF/Isabelle_DOF/Isabelle_DOF-1.0.0_Isabelle2019.tar.xz
https://www.isa-afp.org

3.1 Getting Started

gives you an overview of all available configuration options):
Bash

achim@logicalhacking:~$ cd Isabelle_DOF-1.0.0_Isabelle2019
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$./install --isabelle \

/usr/local/IsabelleIsabelle2019/bin/isabelle

Isabelle/DOF Installer
======================
* Checking Isabelle version:
Success: found supported Isabelle version (Isabelle2019: June 2019)

* Checking (La)TeX installation:
Success: pdftex supports \expanded{} primitive.

* Check availability of Isabelle/DOF patch:
Warning: Isabelle/DOF patch is not available or outdated.

Trying to patch system
Applied patch successfully, Isabelle/HOL will be rebuilt during
the next start of Isabelle.

* Checking availability of AFP entries:
Warning: could not find AFP entry Regular-Sets.
Warning: could not find AFP entry Functional-Automata.

Trying to install AFP (this might take a few *minutes*)
Registering Regular-Sets in

/home/achim/.isabelle/IsabelleIsabelle2019/ROOTS
Registering Functional-Automata in

/home/achim/.isabelle/IsabelleIsabelle2019/ROOTS
AFP installation successful.

* Searching for existing installation:
No old installation found.

* Installing Isabelle/DOF
- Installing Tools in

/home/achim/.isabelle/IsabelleIsabelle2019/DOF/Tools
- Installing document templates in

/home/achim/.isabelle/IsabelleIsabelle2019/DOF/document-template
- Installing LaTeX styles in

/home/achim/.isabelle/IsabelleIsabelle2019/DOF/latex
- Registering Isabelle/DOF
* Registering tools in

/home/achim/.isabelle/IsabelleIsabelle2019/etc/settings
* Installation successful. Enjoy Isabelle/DOF, you can build the session
Isabelle/DOF and all example documents by executing:
/usr/local/IsabelleIsabelle2019/bin/isabelle build -D .

After the successful installation, you can now explore the examples (in the sub-directory
examples or create your own project. On the first start, the session Isabelle_DOF will be
built automatically. If you want to pre-build this session and all example documents, execute:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$ isabelle build -D .

17

3 Isabelle/DOF: A Guided Tour

3.1.2 Creating an Isabelle/DOF Project

Isabelle/DOF provides its own variant of Isabelle’s mkroot tool, called mkroot_DOF:
Bash

achim@logicalhacking:~$ isabelle mkroot_DOF -h

Usage: isabelle mkroot_DOF [OPTIONS] [DIR]

Options are:
-h print this help text and exit
-n NAME alternative session name (default: DIR base name)
-o ONTOLOGY (default: scholarly_paper)
Available ontologies:
* CENELEC_50128
* math_exam
* scholarly_paper
* technical_report
-t TEMPLATE (default: scrartcl)
Available document templates:
* lncs
* scrartcl
* scrreprt-modern
* scrreprt

Prepare session root DIR (default: current directory).

Creating a new document setup requires two decisions:
• which ontologies (e.g., scholarly_paper) are required and

• which document template (layout) should be used (e.g., scrartcl). Some templates
(e.g., lncs) require that the users manually obtains and adds the necessary LATEXclass
file (e.g., llncs.cls. This is mostly due to licensing restrictions.

If you are happy with the defaults, i.e., using the ontology for writing academic papers
(scholarly_paper) using a report layout based on the article class (scrartcl) of the KOMA-
Script bundle [12], you can create your first project myproject as follows:

Bash
achim@logicalhacking:~$ isabelle mkroot_DOF myproject

Preparing session "myproject" in "myproject"
creating "myproject/ROOT"
creating "myproject/document/root.tex"

Now use the following command line to build the session:
isabelle build -D myproject

This creates a directory myproject containing the Isabelle/DOF-setup for your new doc-
ument. To check the document formally, including the generation of the document in PDF,

18

3.2 Writing Academic Publications (scholarly_paper)

you only need to execute
Bash

achim@logicalhacking:~$ isabelle build -d . myproject

This will create the directory myproject:

myproject
document

build..Build Script
isadof.cfg........................Isabelle/DOF configuraiton
preamble.tex........................Manual LATEX-configuration

ROOT................................Isabelle build-configuration

The Isabelle/DOF configuration (isadof.cfg) specifies the required ontologies and the doc-
ument template using a YAML syntax.1 The main two configuration files for users are:

• The file ROOT, which defines the Isabelle session. New theory files as well as new files
required by the document generation (e.g., images, bibliography database using BIBTEX,
local LATEX-styles) need to be registered in this file. For details of Isabelle’s build system,
please consult the Isabelle System Manual [23].

• The file praemble.tex, which allows users to add additional LATEX-packages or to
add/modify LATEX-commands.

3.2 Writing Academic Publications (scholarly_paper)

3.2.1 The Scholarly Paper Example

The ontology “scholarly_paper” is a small ontology modeling academic/scientific papers. In
this Isabelle/DOF application scenario, we deliberately refrain from integrating references to
(Isabelle) formal content in order demonstrate that Isabelle/DOF is not a framework from
Isabelle users to Isabelle users only. Of course, such references can be added easily and
represent a particular strength of Isabelle/DOF.

The Isabelle/DOF distribution contains an example (actually, our CICM 2018 pa-
per [5]) using the ontology “scholarly_paper” in the directory examples/scholarly_paper/
2018-cicm-isabelle_dof-applications/. You can inspect/edit the example in Isabelle’s IDE,
by either

• starting Isabelle/jedit using your graphical user interface (e.g., by clicking on the
Isabelle-Icon provided by the Isabelle installation) and loading the file examples/
scholarly_paper/2018-cicm-isabelle_dof-applications/IsaDofApplications.thy.

1Isabelle power users will recognize that Isabelle/DOF’s document setup does not make use of a file root.
tex: this file is replaced by built-in document templates.

19

3 Isabelle/DOF: A Guided Tour

• starting Isabelle/jedit from the command line by calling:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$
isabelle jedit \

examples/scholarly_paper/2018-cicm-isabelle_dof-applications/\
IsaDofApplications.thy

You can build the PDF-document by calling:
Bash

achim@logicalhacking:~$ isabelle build \
2018-cicm-isabelle_dof-applications

3.2.2 Modeling Academic Publications

We start by modeling the usual text-elements of an academic paper: the title and author
information, abstract, and text section:

Isar
doc_class title =

short_title :: string option <= None

doc_class subtitle =
abbrev :: string option <= None

doc_class author =
affiliation :: string

doc_class abstract =
keyword_list :: string list <= None

doc_class text_section =
main_author :: author option <= None
todo_list :: string list <= []

The attributes short_title, abbrev etc are introduced with their types as well as their
default values. Our model prescribes an optional main_author and a todo-list attached to an
arbitrary text section; since instances of this class are mutable (meta)-objects of text-elements,
they can be modified arbitrarily through subsequent text and of course globally during text
evolution. Since author is a HOL-type internally generated by Isabelle/DOF framework and
can therefore appear in the main_author attribute of the text_section class; semantic links
between concepts can be modeled this way.

Figure 3.1 shows the corresponding view in the Isabelle/jedit of the start of an academic
paper. The text uses Isabelle/DOF’s own text-commands containing the meta-information

20

3.2 Writing Academic Publications (scholarly_paper)

Figure 3.1: Ouroboros I: This paper from inside . . .

provided by the underlying ontology. We proceed by a definition of introduction’s, which we
define as the extension of text_section which is intended to capture common infrastructure:

Isar
doc_class introduction = text_section +

comment :: string

As a consequence of the definition as extension, the introduction class inherits the at-
tributes main_author and todo_list together with the corresponding default values.

We proceed more or less conventionally by the subsequent sections:

Isar
doc_class technical = text_section +

definition_list :: string list <= []

doc_class example = text_section +
comment :: string

doc_class conclusion = text_section +
main_author :: author option <= None

doc_class related_work = conclusion +
main_author :: author option <= None

Moreover, we model a document class for including figures (actually, this document class
is already defined in the core ontology of Isabelle/DOF):

21

3 Isabelle/DOF: A Guided Tour

Figure 3.2: Ouroboros II: figures . . .

(a) Exploring a reference of a text-element. (b) Exploring the class of a text element.

Figure 3.3: Exploring text elements.

Isar
datatype placement = h | t | b | ht | hb
doc_class figure = text_section +

relative_width :: int (* percent of textwidth *)
src :: string
placement :: placement
spawn_columns :: bool <= True

The document class figure (supported by the Isabelle/DOF command figure*) makes it
possible to express the pictures and diagrams such as Figure 3.2.

Finally, we define a monitor class definition that enforces a textual ordering in the document
core by a regular expression:

Isar
doc_class article =

style_id :: string <= ''LNCS''
version :: (int × int × int) <= (0,0,0)
where (title [[subtitle]] {|author|}++ abstract

introduction {|technical || example|}+ conclusion
bibliography)

3.2.3 Editing Support for Academic Papers

From these class definitions, Isabelle/DOF also automatically generated editing support for
Isabelle/jedit. In Figure 3.3a and Figure 3.3b we show how hovering over links permits to
explore its meta-information. Clicking on a document class identifier permits to hyperlink into
the corresponding class definition (Figure 3.4a); hovering over an attribute-definition (which
is qualified in order to disambiguate; Figure 3.4b).

An ontological reference application in Figure 3.5: the ontology-dependant antiquotation @
{example . . . } refers to the corresponding text-elements. Hovering allows for inspection,

22

3.3 Writing Certification Documents (CENELEC_50128)

(a) Hyperlink to class-definition. (b) Exploring an attribute.

Figure 3.4: Hyperlinks.

Figure 3.5: Exploring an attribute (hyperlinked to the class).

clicking for jumping to the definition. If the link does not exist or has a non-compatible type,
the text is not validated.

3.3 Writing Certification Documents (CENELEC_50128)

3.3.1 The CENELEC 50128 Example

The ontology “CENELEC_50128” is a small ontology modeling documents for a certification
following CENELEC 50128 [3]. The Isabelle/DOF distribution contains a small example using
the ontology “CENELEC_50128” in the directory examples/CENELEC_50128/mini_odo/.
You can inspect/edit the example in Isabelle’s IDE, by either

• starting Isabelle/jedit using your graphical user interface (e.g., by clicking on the
Isabelle-Icon provided by the Isabelle installation) and loading the file examples/
CENELEC_50128/mini_odo/mini_odo.thy.

• starting Isabelle/jedit from the command line by calling:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$
isabelle jedit examples/CENELEC_50128/mini_odo/mini_odo.thy

You can build the PDF-document by calling:

Bash
achim@logicalhacking:~$ isabelle build mini_odo

23

3 Isabelle/DOF: A Guided Tour

3.3.2 Modeling CENELEC 50128

Documents to be provided in formal certifications (such as CENELEC 50128 [3] or Common
Criteria [7]) can much profit from the control of ontological consistency: a lot of an evaluators
work consists in tracing down the links from requirements over assumptions down to elements
of evidence, be it in the models, the code, or the tests. In a certification process, traceability
becomes a major concern; and providing mechanisms to ensure complete traceability already
at the development of the global document will clearly increase speed and reduce risk and
cost of a certification process. Making the link-structure machine-checkable, be it between
requirements, assumptions, their implementation and their discharge by evidence (be it tests,
proofs, or authoritative arguments), is therefore natural and has the potential to decrease
the cost of developments targeting certifications. Continuously checking the links between
the formal and the semi-formal parts of such documents is particularly valuable during the
(usually collaborative) development effort.
As in many other cases, formal certification documents come with an own terminology

and pragmatics of what has to be demonstrated and where, and how the trace-ability of
requirements through design-models over code to system environment assumptions has to be
assured.
In the sequel, we present a simplified version of an ontological model used in a case-study [2].

We start with an introduction of the concept of requirement:

Isar
doc_class requirement = long_name :: string option

doc_class requirement_analysis = no :: nat
where requirement_item +

doc_class hypothesis = requirement +
hyp_type :: hyp_type <= physical (* default *)

datatype ass_kind = informal | semiformal | formal

doc_class assumption = requirement +
assumption_kind :: ass_kind <= informal

Such ontologies can be enriched by larger explanations and examples, which may help the
team of engineers substantially when developing the central document for a certification, like
an explication what is precisely the difference between an hypothesis and an assumption in
the context of the evaluation standard. Since the PIDE makes for each document class its
definition available by a simple mouse-click, this kind on meta-knowledge can be made far
more accessible during the document evolution.

For example, the term of category assumption is used for domain-specific assumptions. It
has formal, semi-formal and informal sub-categories. They have to be tracked and discharged
by appropriate validation procedures within a certification process, by it by test or proof. It
is different from a hypothesis, which is globally assumed and accepted.

In the sequel, the category exported constraint (or ec for short) is used for formal assump-

24

3.3 Writing Certification Documents (CENELEC_50128)

Figure 3.6: Standard antiquotations referring to theory elements.

tions, that arise during the analysis, design or implementation and have to be tracked till
the final evaluation target, and discharged by appropriate validation procedures within the
certification process, by it by test or proof. A particular class of interest is the category safety
related application condition (or srac for short) which is used for ec ’s that establish safety
properties of the evaluation target. Their track-ability throughout the certification is therefore
particularly critical. This is naturally modeled as follows:

Isar
doc_class ec = assumption +

assumption_kind :: ass_kind <= (*default *) formal

doc_class srac = ec +
assumption_kind :: ass_kind <= (*default *) formal

We now can, e.g., write
Isar

text*[ass123::SRAC]〈

The overall sampling frequence of the odometer subsystem is therefore
14 khz, which includes sampling, computing and result communication
times \ldots

〉

This will be shown in the PDF as follows:

SRAC 1. The overall sampling frequence of the odometer subsystem is therefore 14
khz, which includes sampling, computing and result communication times . . .

3.3.3 Editing Support for CENELEC 50128

The corresponding view in Figure 3.6 shows core part of a document conformimg to the
CENELEC 50128 ontology. The first sample shows standard Isabelle antiquotations [22] into
formal entities of a theory. This way, the informal parts of a document get “formal content”
and become more robust under change.

25

3 Isabelle/DOF: A Guided Tour

Figure 3.7: Defining a SRAC reference . . .

Figure 3.8: Using a SRAC as EC document reference.

The subsequent sample in Figure 3.7 shows the definition of an safety-related application
condition, a side-condition of a theorem which has the consequence that a certain calculation
must be executed sufficiently fast on an embedded device. This condition can not be estab-
lished inside the formal theory but has to be checked by system integration tests. Now we
reference in Figure 3.8 this safety-related condition; however, this happens in a context where
general exported constraints are listed. Isabelle/DOF’s checks establish that this is legal in
the given ontology.

3.4 Writing Exams (math_exam)

3.4.1 The Math Exam Example

The ontology “math_exam” is an experimental ontology modeling the process of writing
exams at higher education institution in the United Kingdom, where exams undergo both an
internal and external review process. The Isabelle/DOF distribution contains a tiny example
using the ontology “math_exam” in the directory examples/math_exam/MathExam/. You
can inspect/edit the example in Isabelle’s IDE, by either

• starting Isabelle/jedit using your graphical user interface (e.g., by clicking on the
Isabelle-Icon provided by the Isabelle installation) and loading the file examples/math_
exam/MathExam/MathExam.thy.

• starting Isabelle/jedit from the command line by calling:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$
isabelle jedit examples/math_exam/MathExam/MathExam.thy

You can build the PDF-document by calling:

26

3.4 Writing Exams (math_exam)

Bash
achim@logicalhacking:~$ isabelle build MathExam

3.4.2 Modeling Exams

The math-exam scenario is an application with mixed formal and semi-formal content. It
addresses applications where the author of the exam is not present during the exam and the
preparation requires a very rigorous process.
We assume that the content has four different types of addressees, which have a different

view on the integrated document:

• the setter, i.e., the author of the exam,

• the checker, i.e., an internal person that checks the exam for feasibility and non-
ambiguity,

• the external, i.e., an external person that checks the exam for feasibility and non-
ambiguity, and

• the student, i.e., the addressee of the exam.

The latter quality assurance mechanism is used in many universities, where for organiza-
tional reasons the execution of an exam takes place in facilities where the author of the exam
is not expected to be physically present. Furthermore, we assume a simple grade system
(thus, some calculation is required). We can model this as follows:

Isar
doc_class Author = . . .
datatype Subject = algebra | geometry | statistical
datatype Grade = A1 | A2 | A3
doc_class Header = examTitle :: string

examSubject :: Subject
date :: string
timeAllowed :: int -- minutes

datatype ContentClass = setter
| checker
| external_examiner
| student

doc_class Exam_item = concerns :: ContentClass set
doc_class Exam_item = concerns :: ContentClass set

type_synonym SubQuestion = string

The heart of this ontology is an alternation of questions and answers, where the answers
can consist of simple yes-no answers or lists of formulas. Since we do not assume familiarity
of the students with Isabelle (term would assume that this is a parse-able and type-checkable
entity), we basically model a derivation as a sequence of strings:

27

3 Isabelle/DOF: A Guided Tour

Isar
doc_class Answer_Formal_Step = Exam_item +
justification :: string
term :: string

doc_class Answer_YesNo = Exam_item +
step_label :: string
yes_no :: bool -- \isa{for\ checkboxes}

datatype Question_Type =
formal | informal | mixed

doc_class Task = Exam_item +
level :: Level
type :: Question_Type
subitems :: (SubQuestion *

(Answer_Formal_Step list + Answer_YesNo) list) list
concerns :: ContentClass set <= UNIV
mark :: int

doc_class Exercise = Exam_item +
type :: Question_Type
content :: (Task) list
concerns :: ContentClass set <= UNIV
mark :: int

In many institutions, having a rigorous process of validation for exam subjects makes sense:
is the initial question correct? Is a proof in the sense of the question possible? We model the
possibility that the examiner validates a question by a sample proof validated by Isabelle:

Isar
doc_class Validation =

tests :: term list <=[]
proofs :: thm list <=[]

doc_class Solution = Exam_item +
content :: Exercise list
valids :: Validation list
concerns :: ContentClass set <= {setter,checker,external_examiner}

doc_class MathExam=
content :: (Header + Author + Exercise) list
global_grade :: Grade
where {|Author|}+ Header {|Exercise Solution|}+

In our scenario this sample proofs are completely intern, i.e., not exposed to the students
but just additional material for the internal review process of the exam.

28

3.5 Style Guide

3.5 Style Guide

The document generation process of Isabelle/DOF is based on Isabelle’s document genera-
tion framework, using LATEX as the underlying back-end. As Isabelle’s document generation
framework, it is possible to embed (nearly) arbitrary LATEX-commands in text-commands, e.g.:

Isar
text〈 This is \emph{emphasized} and this is a

citation \cite{brucker.ea:isabelle-ontologies:2018}〉

In general, we advise against this practice and, whenever positive, use the Isabelle/DOF
(respetively Isabelle) provided alternatives:

Isar
text〈 This is *〈emphasized〉 and this is a

citation @{cite brucker.ea:isabelle-ontologies:2018}.〉

Clearly, this is not always possible and, in fact, often Isabelle/DOF documents will contain
LATEX-commands, this should be restricted to layout improvements that otherwise are (cur-
rently) not possible. As far as possible, the use of LATEX-commands should be restricted to
the definition of ontologies and document templates (see Chapter 4).
Restricting the use of LATEXhas two advantages: first, LATEXcommands can circumvent

the consistency checks of Isabelle/DOF and, hence, only if no LATEXcommands are used,
Isabelle/DOF can ensure that a document that does not generate any error messages in
Isabelle/jedit also generated a PDF document. Second, future version of Isabelle/DOF might
support different targets for the document generation (e.g., HTML) which, naturally, are only
available to documents not using native LATEX-commands.

Similarly, (unchecked) forward references should, if possible, be avoided, as they also might
create dangeling references during the document generation that break the document gener-
ation.

Finally, we recommend to use the check_doc_global command at the end of your docu-
ment to check the global reference structure.

29

4 Developing Ontologies

In this chapter, we explain the concepts for modeling new ontologies, developing a document
representation for them, as well as developing new document templates.

4.1 Overview and Technical Infrastructure

Isabelle/DOF is embedded in the underlying generic document model of Isabelle as de-
scribed in Section 2.2. Recall that the document language can be extended dynamically, i.e.,
new user−defined can be introduced at run-time. This is similar to the definition of new
functions in an interpreter. Isabelle/DOF as a system plugin is is a number of new command
definitions in Isabelle’s document model.
Isabelle/DOF consists consists basically of four components:
• an own family of text-elements such as title∗, chapter∗ text∗, etc., which can be

annotated with meta-information defined in the underlying ontology definition and allow
to build a core document,

• the ontology definition language (called ODL) which allow for the definitions of
document-classes and necessary auxiliary datatypes,

• an infrastructure for ontology-specific layout definitions, exploiting this meta-
information, and

• an infrastructure for generic layout definitions for documents following, e.g., the format
guidelines of publishers or standardization bodies.

The list of fully supported (i.e., supporting both interactive ontological modeling and docu-
ment generation) ontologies and the list of supported document templates can be obtained by
calling isabelle mkroot_DOF -h (see Section 3.1.2). Note that the postfix -UNSUPPORTED
denotes experimental ontologies or templates for which further manual setup steps might be
required or that are not fully tested. Also note that the LATEX-class files required by the
templates need to be already installed on your system. This is mostly a problem for publisher
specific templates (e.g., Springer’s llncs.cls), which cannot be re-distributed due to copyright
restrictions.

4.1.1 Ontologies

The document core may, but must not use Isabelle definitions or proofs for checking the
formal content—this manual is actually an example of a document not containing any proof.
Consequently, the document editing and checking facility provided by Isabelle/DOF addresses

31

4 Developing Ontologies

the needs of common users for an advanced text-editing environment, neither modeling nor
proof knowledge is inherently required.
We expect authors of ontologies to have experience in the use of Isabelle/DOF, basic mod-

eling (and, potentially, some basic SML programming) experience, basic LATEX knowledge,
and, last but not least, domain knowledge of the ontology to be modeled. Users with experi-
ence in UML-like meta-modeling will feel familiar with most concepts; however, we expect no
need for insight in the Isabelle proof language, for example, or other more advanced concepts.

Technically, ontologies are stored in a directory src/ontologies and consist of a Isabelle
theory file and a LATEX-style file:

src
ontologies ... Ontologies

ontologies.thy.........................Ontology Registration
CENELEC_50128 CENELEC_50128

CENELEC_50128.thy
DOF-CENELEC_50128.sty

scholarly_paper...............................scholarly_paper
scholarly_paper.thy
DOF-scholarly_paper.sty

. . .

Developing a new ontology “foo” requires, from a technical perspective, the following steps:

• create a new sub-directory foo in the directory src/ontologies

• definition of the ontological concepts, using Isabelle/DOF’s Ontology Definition Lan-
guage (ODL), in a new theory file src/ontologies/foo/foo.thy.

• definition of the document representation for the ontological concepts in a LATEX-style
file src/ontologies/foo/DOF-foo.sty

• registration (as import) of the new ontology in the file. src/ontologies/ontologies.thy.

• activation of the new document setup by executing the install script. You can skip the
lengthy checks for the AFP entries and the installation of the Isabelle patch by using
the --skip-patch-and-afp option:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$./install \

--skip-patch-and-afp

32

4.2 The Ontology Definition Language (ODL)

4.1.2 Document Templates

Document-templates define the overall layout (page size, margins, fonts, etc.) of the gener-
ated documents and are the the main technical means for implementing layout requirements
that are, e.g., required by publishers or standardization bodies. Document-templates are
stored in a directory src/document-templates:

src
document-templates...........................Document templates

root-lncs.tex
root-scrartcl.tex
root-scrreprt-modern.tex
root-scrreprt.tex

Developing a new document template “bar” requires the following steps:

• develop a new LATEX-template src/document-templates/root-bar.tex

• activation of the new document template by executing the install script. You can skip
the lengthy checks for the AFP entries and the installation of the Isabelle patch by
using the --skip-patch-and-afp option:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.0.0_Isabelle2019$./install \

--skip-patch-and-afp

As the document generation of Isabelle/DOF is based on LATEX, the Isabelle/DOF doc-
ument templates can (and should) make use of any LATEX-classes provided by publishers or
standardization bodies.

4.2 The Ontology Definition Language (ODL)

ODL shares some similarities with meta-modeling languages such as UML class models: It
builds upon concepts like class, inheritance, class-instances, attributes, references to instances,
and class-invariants. Some concepts like advanced type-checking, referencing to formal en-
tities of Isabelle, and monitors are due to its specific application in the Isabelle context.
Conceptually, ontologies specified in ODL consist of:

• document classes (doc_class) that describe concepts;

• an optional document base class expressing single inheritance class extensions;

• attributes specific to document classes, where

33

4 Developing Ontologies

– attributes are HOL-typed;

– attributes of instances of document elements are mutable;

– attributes can refer to other document classes, thus, document classes must also
be HOL-types (such attributes are called links);

– attribute values were denoted by HOL-terms;

• a special link, the reference to a super-class, establishes an is-a relation between classes;

• classes may refer to other classes via a regular expression in a where clause;

• attributes may have default values in order to facilitate notation.

The Isabelle/DOF ontology specification language consists basically on a notation for doc-
ument classes, where the attributes were typed with HOL-types and can be instantiated
by terms HOL-terms, i.e., the actual parsers and type-checkers of the Isabelle system were
reused. This has the particular advantage that Isabelle/DOF commands can be arbitrarily
mixed with Isabelle/HOL commands providing the machinery for type declarations and term
specifications such as enumerations. In particular, document class definitions provide:

• a HOL-type for each document class as well as inheritance,

• support for attributes with HOL-types and optional default values,

• support for overriding of attribute defaults but not overloading, and

• text-elements annotated with document classes; they are mutable instances of docu-
ment classes.

Attributes referring to other ontological concepts are called links. The HOL-types inside
the document specification language support built-in types for Isabelle/HOL typ’s, term’s,
and thm’s reflecting internal Isabelle’s internal types for these entities; when denoted in HOL-
terms to instantiate an attribute, for example, there is a specific syntax (called inner syntax
antiquotations) that is checked by Isabelle/DOF for consistency.

Document classes support where-clauses containing a regular expression over class names.
Classes with a where were called monitor classes. While document classes and their inher-
itance relation structure meta-data of text-elements in an object-oriented manner, monitor
classes enforce structural organization of documents via the language specified by the regular
expression enforcing a sequence of text-elements.

A major design decision of ODL is to denote attribute values by HOL-terms and HOL-types.
Consequently, ODL can refer to any predefined type defined in the HOL library, e.g., string
or int as well as parameterized types, e.g., _ option, _ list, _ set, or products _ × _. As
a consequence of the document model, ODL definitions may be arbitrarily intertwined with
standard HOL type definitions. Finally, document class definitions result in themselves in a
HOL-types in order to allow links to and between ontological concepts.

34

4.2 The Ontology Definition Language (ODL)

4.2.1 Some Isabelle/HOL Specification Constructs Revisited

As ODL is an extension of Isabelle/HOL, document class definitions can therefore be arbitrarily
mixed with standard HOL specification constructs. To make this manual self-contained, we
present syntax and semantics of the specification constructs that are most likely relevant for
the developer of ontologies (for more details, see [22]. Our presentation is a simplification of
the original sources following the needs of ontology developers in Isabelle/DOF:

• name: with the syntactic category of name’s we refer to alpha-numerical identifiers
(called short_id ’s in [22]) and identifiers in . . . which might contain certain “quasi-
letters” such as _, -, . (see [22] for details).

• tyargs:

typefree�
� (

����
� typefree�

� ,
���

�

�

)
���

�

typefree denotes fixed type variable(′a, ′b, ...) (see [22])

• dt_name:

�
� tyargs

�

name �
�mixfix

�

The syntactic entity name denotes an identifier, mixfix denotes the usual parenthesized
mixfix notation (see [22]). The name’s referred here are type names such as int,
string, list, set, etc.

• type_spec :

�
� tyargs

�

name

The name’s referred here are type names such as int, string, list, set, etc.

• type:

35

4 Developing Ontologies

�
� (

����
� type�

� ,
���

�

�

)
���

�

name�

� typefree

�

36

4.2 The Ontology Definition Language (ODL)

• dt_ctor :

name �
� type

�

�
�mixfix

�

• datatype_specification:

datatype
�� �dt-name =

����
� dt-ctor�

� |
���

�

�

• type_synonym_specification:

type_synonym
�� �type-spec =

���type

• constant_definition :

definition
�� �name ::

�� �type where
�� �"

���name =
����

�
� expr "

���
• expr : the syntactic category expr here denotes the very rich “inner-syntax” language

of mathematical notations for λ-terms in Isabelle/HOL. Example expressions are: 1+2
(arithmetics), [1,2,3] (lists), ''ab c'' (strings), {1,2,3} (sets), (1,2,3) (tuples),
[x. P(x) ∧ Q x = C (formulas). For details, see [17].

Advanced ontologies can, e.g., use recursive function definitions with pattern-matching [13],
extensible record pecifications [22], and abstract type declarations.

Note that Isabelle/DOF works internally with fully qualified names in order to avoid con-
fusions occurring otherwise, for example, in disjoint class hierarchies. This also extends to
names for doc_classes, which must be representable as type-names as well since they can be
used in attribute types. Since theory names are lexically very liberal (0.thy is a legal theory
name), this can lead to subtle problems when constructing a class: foo can be a legal name
for a type definition, the corresponding type-name 0.foo is not. For this reason, additional
checks at the definition of a doc_class reject problematic lexical overlaps.

4.2.2 Defining Document Classes

A document class can be defined using the doc_class keyword:

37

4 Developing Ontologies

• class_id : a type-name that has been introduced via a doc_class_specification.

• doc_class_specification: We call document classes with an accepts_clause monitor
classes or monitors for short.

doc_class
�� �class-id =

����
� class-id +

���
�

attribute-decl�
�

�

�
�

��
� accepts-clause �

� rejects-clause

�

�

• attribute_decl :

name ::
�� �"

���type "
����

�default-clause

�

• accepts_clause:

accepts
�� �"

���regexpr "
���

• rejects_clause:

rejects
�� ��

� class-id�
� ,

���
�

�

• default_clause:

<=
�� �"

���expr "
���

38

4.2 The Ontology Definition Language (ODL)

• regexpr :

b
���class-id c

����
� (

���regexpr)
���� regexpr ||

�� �regexpr

� regexpr ~~
�� �regexpr

� {|
���regexpr |}

���� {|
���regexpr |}∗

���

�

Regular expressions describe sequences of class_ids (and indirect sequences of docu-
ment items corresponding to the class_ids). The constructors for alternative, sequence,
repetitions and non-empty sequence follow in the top-down order of the above diagram.

Isabelle/DOF provides a default document representation (i.e., content and layout of the
generated PDF) that only prints the main text, omitting all attributes. Isabelle/DOF provides
the \newisadof[]{} command for defining a dedicated layout for a document class in LATEX.
Such a document class-specific LATEX-definition can not only provide a specific layout (e.g.,
a specific highlighting, printing of certain attributes), it can also generate entries in in the
table of contents or an index. Overall, the \newisadof[]{} command follows the structure of
the doc_class-command:

LATEX
\newisadof{class_id}[label=,type=, attribute_decl][1]{%
% LATEX-definition of the document class representation
\begin{isamarkuptext}%
#1%
\end{isamarkuptext}%
}

The class_id is the full-qualified name of the document class and the list of attribute_decl
needs to declare all attributes of the document class. Within the LATEX-definition of the
document class representation, the identifier #1 refers to the content of the main text of
the document class (written in 〈 . . . 〉) and the attributes can be referenced by their
name using the \commandkey{...}-command (see the documentation of the LATEX-package
“keycommand” [6] for details). Usually, the representations definition needs to be wrapped in
a \begin{isarmarkup}...\end{isamarkup}-environment, to ensure the correct context within
Isabelle’s LATEX-setup.
Moreover, Isabelle/DOF also provides the following two variants of \newisadof{}[]{}:

• \renewisadof{}[]{} for re-defining (over-writing) an already defined command, and

• \provideisadof{}[]{} for providing a definition if it is not yet defined.

39

4 Developing Ontologies

While arbitrary LATEX-commands can be used within these commands, special care is re-
quired for arguments containing special characters (e.g., the underscore “_”) that do have
a special meaning in LATEX. Moreover, as usual, special care has to be taken for com-
mands that write into aux-files that are included in a following LATEX-run. For such complex
examples, we refer the interested reader, in general, to the style files provided in the Is-
abelle/DOF distribution. In particular the definitions of the concepts title* and author*
in the file ontologies/scholarly_paper/DOF-scholarly_paper.sty show examples of protecting
special characters in definitions that need to make use of a entries in an aux-file.

4.2.3 Common Ontology Library (COL)

Isabelle/DOF uses the concept of implicit abstract classes (or: shadow classes). These refer
to the set of possible doc_class declarations that posses a number of attributes with their
types in common. Shadow classes represent an implicit requirement (or pre-condition) on
a given class to posses these attributes in order to work properly for certain Isabelle/DOF
commands.

shadow classes will find concrete instances in COL, but Isabelle/DOF text elements do not
depend on our COL definitions: Ontology developers are free to build own class instances for
these shadow classes, with own attributes and, last not least, own definitions of invariants
independent from ours.

In particular, these shadow classes are used at present in Isabelle/DOF:

Isar
DOCUMENT_ALIKES =

level :: int option <= None

ASSERTION_ALIKES =
properties :: term list

FORMAL_STATEMENT_ALIKE =
properties :: thm list

These shadow-classes correspond to semantic macros
ODL_Command_Parser.enriched_document_command, ODL_Command_Parser.assertion_cmd’,
and ODL_Command_Parser.enriched_formal_statement_command.

Isabelle/DOF provides a Common Ontology Library (COL) that introduces ontology con-
cepts that are either sample instances for shadow classes as we use them in our own document
generation processes or, in some cases, are so generic that they we expect them to be useful
for all types of documents (figures, for example).

In particular it defines the super-class text_element: the root of all text-elements,

40

4.2 The Ontology Definition Language (ODL)

Isar
doc_class text_element =

level :: int option <= None
referentiable :: bool <= False
variants :: String.literal set <= {STR ''outline'', STR ''document''}

Here, level defines the section-level (e.g., using a LATEX-inspired hierarchy: from Some -1
(corresponding to \part) to Some 0 (corresponding to \chapter, respectively, chapter*) to
Some 3 (corresponding to \subsubsection, respectively, subsubsection*). Using an invari-
ant, a derived ontology could, e.g., require that any sequence of technical-elements must be
introduced by a text-element with a higher level (this would require that technical text section
are introduce by a section element).
Similarly, we provide "minimal" instances of the ASSERTION_ALIKES and

FORMAL_STATEMENT_ALIKE shadow classes:

Isar
doc_class assertions =

properties :: term list

doc_class thms =
properties :: thm list

Example: Text Elemens with Levels

The category “exported constraint (EC)” is, in the file ontologies/CENELEC_50128/
CENELEC_50128.thy defined as follows:

Isar
doc_class requirement = text_element +

long_name :: string option
is_concerned :: role set

doc_class AC = requirement +
is_concerned :: role set <= UNIV

doc_class EC = AC +
assumption_kind :: ass_kind <= (*default *) formal

We now define the document representations, in the file ontologies/CENELEC_50128/
DOF-CENELEC_50128.sty. Let us assume that we want to register the definition of ECs
in a dedicated table of contents (tos) and use an earlier defined environment \begin{EC

}...\end{EC} for their graphical representation. Note that the \newisadof{}[]{}-command
requires the full-qualified names, e.g., text.CENELEC_50128.EC for the document class and
CENELEC_50128.requirement.long_name for the attribute long_name, inherited from the
document class requirement. The representation of ECs can now be defined as follows:

41

4 Developing Ontologies

LATEX
\newisadof{text.CENELEC_50128.EC}%
[label=,type=%
,Isa_COL.text_element.level=%
,Isa_COL.text_element.referentiable=%
,Isa_COL.text_element.variants=%
,CENELEC_50128.requirement.is_concerned=%
,CENELEC_50128.requirement.long_name=%
,CENELEC_50128.EC.assumption_kind=][1]{%
\begin{isamarkuptext}%

\ifthenelse{\equal{\commandkey{CENELEC_50128.requirement.long_name}}{}}{%
% If long_name is not defined, we only create an entry in the table tos
% using the auto-generated number of the EC
\begin{EC}%

\addxcontentsline{tos}{chapter}[]{\autoref{\commandkey{label}}}%
}{%
% If long_name is defined, we use the long_name as title in the
% layout of the EC, in the table "tos" and as index entry. .
\begin{EC}[\commandkey{CENELEC_50128.requirement.long_name}]%
\addxcontentsline{toe}{chapter}[]{\autoref{\commandkey{label}}: %

\commandkey{CENELEC_50128.requirement.long_name}}%
\DOFindex{EC}{\commandkey{CENELEC_50128.requirement.long_name}}%

}%
\label{\commandkey{label}}% we use the label attribute as anchor
#1% The main text of the EC

\end{EC}
\end{isamarkuptext}%
}

Example: Assertions

Assertions are a common feature to validate properties of models, presented as a collection
of Isabelle/HOL definitions. They are particularly relevant for highlighting corner cases of a
formal model. For example, assume a definition:

definition last :: ′a list ⇒ ′a where last S = hd (rev S)

We want to check the consequences of this definition and can add the following statements:
Isar

text*[claim::assertions]〈For non-empty lists, our definition yields indeed
the last element of a list.〉

assert*[claim::assertions] last[4::int] = 4
assert*[claim::assertions] last[1,2,3,4::int] = 4

As an ASSERTION_ALIKES, the assertions class possesses a properties attribute. The
assert* command evaluates its argument; in case it evaluates to true the property is added

42

4.2 The Ontology Definition Language (ODL)

to the property list of the claim - text-element. Commands like Definitions* or Theorem*
work analogously.

4.2.4 Annotatable Top-level Text-Elements

While the default user interface for class definitions via the text*〈 . . . 〉-command allow
to access all features of the document class, Isabelle/DOF provides short-hands for certain,
widely-used, concepts such as title*〈 . . . 〉 or section*〈 . . . 〉, e.g.:

Isar
title*[title::title]〈Isabelle/DOF〉

subtitle*[subtitle::subtitle]〈User and Implementation Manual〉

text*[adb:: author, email=〈a.brucker@exeter.ac.uk〉,
orcid=〈0000-0002-6355-1200〉, http_site=〈https://brucker.ch/〉,
affiliation=〈University of Exeter, Exeter, UK〉] 〈Achim D. Brucker〉

text*[bu::author, email = 〈wolff@lri.fr〉,
affiliation = 〈Université Paris-Saclay, LRI, Paris, France〉]〈Burkhart Wolff〉

In general, all standard text-elements from the Isabelle document model such as chapter,
section, text, have in the Isabelle/DOF implementation their counterparts in the family of
text-elements that are ontology-aware, i.e., they dispose on a meta-argument list that allows
to define that a test-element that has an identity as a text-object labelled as obj_id, belongs
to a document class class_id that has been defined earlier, and has its class-attributes set
with particular values (which are denotable in Isabelle/HOL mathematical term syntax).

• meta_args :

�
� obj-id ::

�� �class-id attribute =
���term�

� ,
���

�

�

• rich_meta_args :

obj-id ::
�� �class-id �

� attribute =
����

� +=
�� �

�

term�
� ,

���

�

�

43

4 Developing Ontologies

• annotated_text_element :

title*
�� ��

�subtitle*
�� ��chapter*
�� ��section*
�� ��subsection*
�� ��subsubsection*
�� ��paragraph*
�� ��subparagraph*
�� ��text*
�� ��figure*
�� ��side_by_side_figure*
�� ��open_monitor*
�� ��close_monitor*
�� ��Definition*
�� ��Lemma*
�� ��Theorem*
�� ��Conjecture*
�� �

�

�

�
� [

���meta-args]
��� 〈

���text 〉

���

�

� change-status-command

� inspection-command

�

Experts: Defining New Top-Level Commands

Defining such new top-level commands requires some Isabelle knowledge as well as extending
the dispatcher of the LATEX-backend. For the details of defining top-level commands, we refer

44

4.2 The Ontology Definition Language (ODL)

the reader to the Isar manual [22]. Here, we only give a brief example how the section*-
command is defined; we refer the reader to the source code of Isabelle/DOF for details.
First, new top-level keywords need to be declared in the keywords-section of the theory

header defining new keywords:

Isar
theory

. . .
imports

. . .
keywords
section*

begin
. . .
end

Second, given an implementation of the functionality of the new keyword (implemented in
SML), the new keyword needs to be registered, together with its parser, as outer syntax:

SML
val _ =
Outer_Syntax.command ("section*", @{here}) "section␣heading"
(attributes -- Parse.opt_target -- Parse.document_source --| semi
>> (Toplevel.theory o (enriched_document_command (SOME(SOME 1))

{markdown = false})));

Finally, for the document generation, a new dispatcher has to be defined in LATEX—this
is mandatory, otherwise the document generation will break. These dispatcher always follow
the same schemata:

LATEX
%%
% begin: section*-dispatcher
\NewEnviron{isamarkupsection*}[1][]{\isaDof[env={section},#1]{\BODY}}
% end: section*-dispatcher
%%

After the definition of the dispatcher, one can, optionally, define a custom representation
using the newisadof-command, as introduced in the previous section:

LATEX
\newisadof{section}[label=,type=][1]{%
\isamarkupfalse%
\isamarkupsection{#1}\label{\commandkey{label}}%

\isamarkuptrue%
}

45

4 Developing Ontologies

4.2.5 Status and Inspection Commands

• Isabelle/DOF change_status_command :

update_instance*
�� �[

���rich-meta-args]
����

�declare_reference*
�� �obj-id ::

�� �class-id

�

• Isabelle/DOF inspection_command :

print_doc_classes
�� ��

�print_doc_items
�� ��check_doc_global
�� �

�

4.2.6 Advanced ODL Concepts

Meta-types as Types

To express the dependencies between text elements to the formal entities, e.g., term (λ-term),
typ, or thm, we represent the types of the implementation language inside the HOL type
system. We do, however, not reflect the data of these types. They are just declared abstract
types, “inhabited” by special constant symbols carrying strings, for example of the format
@{thm <string>}. When HOL expressions were used to denote values of doc_class instance
attributes, this requires additional checks after conventional type-checking that this string
represents actually a defined entity in the context of the system state θ. For example, the
establish attribute in the previous section is the power of the ODL: here, we model a relation
between claims and results which may be a formal, machine-check theorem of type thm
denoted by, for example: property = [@{thm ''system_is_safe''}] in a system context
θ where this theorem is established. Similarly, attribute values like property = @{term 〈A
↔ B〉} require that the HOL-string A ↔ B is again type-checked and represents indeed a
formula in θ. Another instance of this process, which we call second−level type−checking,
are term-constants generated from the ontology such as @{definition <string>}.

ODL Monitors

We call a document class with an accept-clause a monitor. Syntactically, an accept-clause
contains a regular expression over class identifiers. For example:

Isar
doc_class article = style_id :: string <= ''CENELEC_50128''

accepts (title {|author|}\+\ abstract {|introduction|}\+\

{|technical || example|}\+\ {|conclusion|}\+\)

46

4.2 The Ontology Definition Language (ODL)

Semantically, monitors introduce a behavioral element into ODL:
Isar

open_monitor*[this::article] (* begin of scope of monitor this *)
. . .
close_monitor*[this] (* end of scope of monitor this *)

Inside the scope of a monitor, all instances of classes mentioned in its accept-clause (the
accept-set) have to appear in the order specified by the regular expression; instances not
covered by an accept-set may freely occur. Monitors may additionally contain a reject-clause
with a list of class-ids (the reject-list). This allows specifying ranges of admissible instances
along the class hierarchy:

• a superclass in the reject-list and a subclass in the accept-expression forbids instances
superior to the subclass, and

• a subclass S in the reject-list and a superclass T in the accept-list allows instances of
superclasses of T to occur freely, instances of T to occur in the specified order and
forbids instances of S .

Monitored document sections can be nested and overlap; thus, it is possible to combine the
effect of different monitors. For example, it would be possible to refine the example section
by its own monitor and enforce a particular structure in the presentation of examples.
Monitors manage an implicit attribute trace containing the list of “observed” text element

instances belonging to the accept-set. Together with the concept of ODL class invariants, it
is possible to specify properties of a sequence of instances occurring in the document section.
For example, it is possible to express that in the sub-list of introduction-elements, the
first has an introduction element with a level strictly smaller than the others. Thus, an
introduction is forced to have a header delimiting the borders of its representation. Class
invariants on monitors allow for specifying structural properties on document sections.

ODL Class Invariants

Ontological classes as described so far are too liberal in many situations. For example, one
would like to express that any instance of a result class finally has a non-empty property list,
if its kind is proof, or that the establish relation between claim and result is surjective.

In a high-level syntax, this type of constraints could be expressed, e.g., by:
Isar

(* 1 *) [x ∈ result. x@kind = proof ↔ x@kind , []
(* 2 *) [x ∈ conclusion. [y ∈ Domain(x@establish)

→ \ y ∈ Range(x@establish). (y,z) ∈ x@establish
(* 3 *) [x ∈ introduction. finite(x@authored_by)

where result, conclusion, and introduction are the set of all possible instances of
these document classes. All specified constraints are already checked in the IDE of DOF

47

4 Developing Ontologies

while editing; it is however possible to delay a final error message till the closing of a monitor
(see next section). The third constraint enforces that the user sets the authored_by set,
otherwise an error will be reported.

For the moment, there is no high-level syntax for the definition of class invariants. A
formulation, in SML, of the first class-invariant in Section 4.2.3 is straight-forward:

SML
fun check_result_inv oid {is_monitor:bool} ctxt =
let val kind = compute_attr_access ctxt "kind" oid @{here} @{here}

val prop = compute_attr_access ctxt "property" oid @{here} @{here}
val tS = HOLogic.dest_list prop

in case kind_term of
@{term "proof"} => if not(null tS) then true

else error("class␣result␣invariant␣violation")
| _ => false

end
val _ = Theory.setup (DOF_core.update_class_invariant

"tiny_cert.result" check_result_inv)

The setup-command (last line) registers the check_result_inv function into the
Isabelle/DOF kernel, which activates any creation or modification of an instance of
result. We cannot replace compute_attr_access by the corresponding antiquotation
@{docitem_value kind::oid}, since oid is bound to a variable here and can therefore not
be statically expanded.

4.3 Defining Document Templates

4.3.1 The Core Template

Document-templates define the overall layout (page size, margins, fonts, etc.) of the gener-
ated documents and are the the main technical means for implementing layout requirements
that are, e.g., required by publishers or standardization bodies. If a new layout is already
supported by a LATEX-class, then developing basic support for it is straight forwards: after
reading the authors guidelines of the new template, Developing basic support for a new doc-
ument template is straight forwards In most cases, it is sufficient to replace the document
class in Line 1 of the template and add the LATEX-packages that are (strictly) required by
the used LATEX-setup. In general, we recommend to only add LATEX-packages that are al-
ways necessary fro this particular template, as loading packages in the templates minimizes
the freedom users have by adapting the preample.tex. Moreover, you might want to ad-
d/modify the template specific configuration (Line 22-24). The new template should be
stored in src/document-templates and its file name should start with the prefix root-. After
adding a new template, call the install script (see Section 4.1 The common structure of an
Isabelle/DOF document template looks as follows:

48

4.3 Defining Document Templates

LATEX
1 \documentclass{article} % The LaTeX-class of your template
2 %% The following part is (mostly) required by Isabelle/DOF, do not modify
3 \usepackage[T1]{fontenc} % Font encoding
4 \usepackage[utf8]{inputenc} % UTF8 support
5 \usepackage{xcolor}
6 \usepackage{isabelle,isabellesym,amssymb} % Required (by Isabelle)
7 \usepackage{amsmath} % Used by some ontologies
8 \bibliographystyle{abbrv}
9 \IfFileExists{DOF-core.sty}{}{ % Required by Isabelle/DOF

10 \PackageError{DOF-core}{The document preparation
11 requires the Isabelle/DOF framework.}{For further help, see
12 https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF
13 }
14 \input{ontologies} % This will include the document specific
15 % ontologies from isadof.cfg
16 \IfFileExists{preamble.tex}{\input{preamble.tex}}{}
17 \usepackage{graphicx} % Required for images.
18 \usepackage[caption]{subfig}
19 \usepackage[size=footnotesize]{caption}
20 \usepackage{hyperref} % Required by Isabelle/DOF
21

22 %% Begin of template specific configuration
23 \urlstyle{rm}
24 \isabellestyle{it}
25

26 %% Main document, do not modify
27 \begin{document}
28 \maketitle\input{session}
29 \IfFileExists{root.bib}{\bibliography{root}}{}
30 \end{document}

4.3.2 Tips, Tricks, and Known Limitations

In this sectin, we sill discuss several tips and tricks for developing new or adapting existing
document templates or LATEX-represenations of ontologies.

Getting Started

In general, we recommend to create a test project (e.g., using isabelle mkroot_DOF) to
develop new document templates or ontology representations. The default setup of the Is-
abelle/DOF build system generated a output/document directory with a self-contained LATEX-
setup. In this directory, you can directly use LATEX on the main file, called root.tex:

Bash
achim@logicalhacking:~/MyProject/output/document$ pdflatex root.tex

49

https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

4 Developing Ontologies

This allows you to develop and check your LATEX-setup without the overhead of running
isabelle build after each change of your template (or ontology-style). Note that the
content of the output directory is overwritten by executing isabelle build.

Truncated Warning and Error Messages

By default, LATEX cuts of many warning or error messages after 79 characters. Due to the
use of full-qualified names in Isabelle/DOF, this can often result in important information
being cut off. Thus, it can be very helpful to configure LATEX in such a way that it prints
long error or warning messages. This can easily be done on the command line for individual
LATEX invocations:

Bash
achim@logicalhacking:~/MyProject/output/document$ max_print_line=200 \

error_line=200 half_error_line=100 pdflatex root.tex

Deferred Declaration of Information

During document generation, sometimes, information needs to be printed prior to its declara-
tion in a Isabelle/DOF theory. This violation the declaration-before-use-principle requires that
information is written into an auxiliary file during the first run of LATEX so that the information
is available at further runs of LATEX. While, on the one hand, this is a standard process (e.g.,
used for updating references), implementing it correctly requires a solid understanding of
LATEX’s expansion mechanism. In this context, the recently introduced \expanded{}-primitive
(see https://www.texdev.net/2018/12/06/a-new-primitive-expanded) is particularly useful.
Examples of its use can be found, e.g., in the ontology-styles ontologies/scholarly_paper/
DOF-scholarly_paper.sty or ontologies/CENELEC_50128/DOF-CENELEC_50128.sty. For
details about the expansion mechanism in general, we refer the reader to the LATEX literature
(e.g., [8, 11, 15]).

Authors and Affiliation Information

In the context of academic papers, the defining the representations for the author and affilia-
tion information is particularly challenges as, firstly, they inherently are breaking the declare-
before-use-principle and, secondly, each publisher uses a different LATEX-setup for their decla-
ration. Moreover, the mapping from the ontological modeling to the document representation
might also need to bridge the gap between different common modeling styles of authors and
their affiliations, namely: affiliations as attributes of authors vs. authors and affiliations both
as entities with a many-to-many relationship.

The ontology representation ontologies/scholarly_paper/DOF-scholarly_paper.sty con-
tains an example that, firstly, shows how to write the author and affiliation information
into the auxiliary file for re-use in the next LATEX-run and, secondly, shows how to collect
the author and affiliation information into an \author and a \institution statement, each of

50

https://www.texdev.net/2018/12/06/a-new-primitive-expanded

4.3 Defining Document Templates

which containing the information for all authors. The collection of the author information is
provided by the following LATEX-code:

LATEX
\def\dof@author{}%
\newcommand{\DOFauthor}{\author{\dof@author}}
\AtBeginDocument{\DOFauthor}
\def\leftadd#1#2{\expandafter\leftaddaux\expandafter{#1}{#2}{#1}}
\def\leftaddaux#1#2#3{\gdef#3{#1#2}}
\newcounter{dof@cnt@author}
\newcommand{\addauthor}[1]{%
\ifthenelse{\equal{\dof@author}{}}{%
\gdef\dof@author{#1}%

}{%
\leftadd\dof@author{\protect\and #1}%

}
}

The new command \addauthor and a similarly defined command \addaffiliation can now
be used in the definition of the representation of the concept text.scholarly_paper.author,
which writes the collected information in the job’s aux-file. The intermediate step of writing
this information into the job’s aux-file is necessary, as the author and affiliation information is
required right at the begin of the document (i.e., when LATEX’s \maketitle is invoked) while
Isabelle/DOF allows to define authors at any place within a document:

LATEX
\provideisadof{text.scholarly_paper.author}%
[label=,type=%
,scholarly_paper.author.email=%
,scholarly_paper.author.affiliation=%
,scholarly_paper.author.orcid=%
,scholarly_paper.author.http_site=%
][1]{%
\stepcounter{dof@cnt@author}
\def\dof@a{\commandkey{scholarly_paper.author.affiliation}}
\ifthenelse{\equal{\commandkey{scholarly_paper.author.orcid}}{}}{%
\immediate\write\@auxout%

{\noexpand\addauthor{#1\noexpand\inst{\thedof@cnt@author}}}%
}{%
\immediate\write\@auxout%

{\noexpand\addauthor{#1\noexpand%
\inst{\thedof@cnt@author}%

\orcidID{\commandkey{scholarly_paper.author.orcid}}}}%
}
\protected@write\@auxout{}{%

\string\addaffiliation{\dof@a\\\string\email{%
\commandkey{scholarly_paper.author.email}}}}%

}

51

4 Developing Ontologies

Finally, the collected information is used in the \author command using the AtBeginDocument
-hook:

LATEX
\newcommand{\DOFauthor}{\author{\dof@author}}
\AtBeginDocument{%
\DOFauthor

}

Restricting the Use of Ontologies to Specific Templates

As ontology representations might rely on features only provided by certain templates (LATEX-
classes), authors of ontology representations might restrict their use to specific classes. This
can, e.g., be done using the \@ifclassloaded{} command:

LATEX
\@ifclassloaded{llncs}{}%
{% LLNCS class not loaded

\PackageError{DOF-scholarly_paper}
{Scholarly Paper only supports LNCS as document class.}{}\stop%

}

For a real-world example testing for multiple classes, see ontologies/scholarly_paper/
DOF-scholarly_paper.sty):

We encourage this clear and machine-checkable enforcement of restrictions while, at the
same time, we also encourage to provide a package option to overwrite them. The latter allows
inherited ontologies to overwrite these restrictions and, therefore, to provide also support
for additional document templates. For example, the ontology technical_report extends
the scholarly_paper ontology and its LATEXsupports provides support for the scrrept-class
which is not supported by the LATEXsupport for scholarly_paper.

Outdated Version of comment.sty

Isabelle’s LATEX-setup relies on an ancient version of comment.sty that, moreover, is used
in plainTEX-mode. This is known to cause issues with some modern LATEX-classes such as
LPICS. Such a conflict might require the help of an Isabelle wizard.

52

5 Extending Isabelle/DOF

In this chapter, we describe the basic implementation aspects of Isabelle/DOF, which is
based on the following design-decisions:

• the entire Isabelle/DOF is a “pure add-on,” i.e., we deliberately resign on the possibility
to modify Isabelle itself.

• we made a small exception to this rule: the Isabelle/DOF package modifies in its in-
stallation about 10 lines in the LATEX-generator (src/patches/thy_output.ML).

• we decided to make the markup-generation by itself to adapt it as well as possible to
the needs of tracking the linking in documents.

• Isabelle/DOF is deeply integrated into the Isabelle’s IDE (PIDE) to give immediate
feedback during editing and other forms of document evolution.

Semantic macros, as required by our document model, are called document antiquotations
in the Isabelle literature [22]. While Isabelle’s code-antiquotations are an old concept going
back to Lisp and having found via SML and OCaml their ways into modern proof systems,
special annotation syntax inside documentation comments have their roots in documentation
generators such as Javadoc. Their use, however, as a mechanism to embed machine-checked
formal content is usually very limited and also lacks IDE support.

5.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar

A plugin in Isabelle starts with defining the local data and registering it in the framework.
As mentioned before, contexts are structures with independent cells/compartments having
three primitives init, extend and merge. Technically this is done by instantiating a functor
Generic_Data, and the following fairly typical code-fragment is drawn from Isabelle/DOF:

SML
structure Data = Generic_Data
(type T = docobj_tab * docclass_tab * ...

val empty = (initial_docobj_tab, initial_docclass_tab, ...)
val extend = I
fun merge((d1,c1,...),(d2,c2,...)) = (merge_docobj_tab (d1,d2,...),

merge_docclass_tab(c1,c2,...))
);

where the table docobj_tab manages document classes and docclass_tab the environ-
ment for class definitions (inducing the inheritance relation). Other tables capture, e.g.,

53

5 Extending Isabelle/DOF

the class invariants, inner-syntax antiquotations. Operations follow the MVC-pattern, where
Isabelle/Isar provides the controller part. A typical model operation has the type:

SML
val opn :: <args_type> -> Context.generic -> Context.generic

representing a transformation on system contexts. For example, the operation of declaring
a local reference in the context is presented as follows:

SML
fun declare_object_local oid ctxt =
let fun decl {tab,maxano} = {tab=Symtab.update_new(oid,NONE) tab,

maxano=maxano}
in (Data.map(apfst decl)(ctxt)
handle Symtab.DUP _ =>

error("multiple␣declaration␣of␣document␣reference"))
end

where Data.map is the update function resulting from the instantiation of the functor
Generic_Data. This code fragment uses operations from a library structure Symtab that
were used to update the appropriate table for document objects in the plugin-local state.
Possible exceptions to the update operation were mapped to a system-global error reporting
function.

Finally, the view-aspects were handled by an API for parsing-combinators. The library
structure Scan provides the operators:

SML
op || : ('a -> 'b) * ('a -> 'b) -> 'a -> 'b
op -- : ('a -> 'b * 'c) * ('c -> 'd * 'e) -> 'a -> ('b * 'd) * 'e
op >> : ('a -> 'b * 'c) * ('b -> 'd) -> 'a -> 'd * 'c
op option : ('a -> 'b * 'a) -> 'a -> 'b option * 'a
op repeat : ('a -> 'b * 'a) -> 'a -> 'b list * 'a

for alternative, sequence, and piping, as well as combinators for option and repeat. Parsing
combinators have the advantage that they can be smoothlessly integrated into standard
programs, and they enable the dynamic extension of the grammar. There is a more high-level
structure Parse providing specific combinators for the command-language Isar:

SML
val attribute = Parse.position Parse.name

-- Scan.optional(Parse.$$$ "=" |-- Parse.!!! Parse.name)"";
val reference = Parse.position Parse.name

-- Scan.option (Parse.$$$ "::" |-- Parse.!!!
(Parse.position Parse.name));

val attributes =(Parse.$$$ "[" |-- (reference
-- (Scan.optional(Parse.$$$ ","

|--(Parse.enum ","attribute)))[]))--| Parse.$$$ "]"

The “model” declare_reference_opn and “new” attributes parts were combined via the

54

5.2 Programming Antiquotations

piping operator and registered in the Isar toplevel:

SML
fun declare_reference_opn (((oid,_),_),_) =

(Toplevel.theory (DOF_core.declare_object_global oid))
val _ = Outer_Syntax.command @{command_keyword "declare_reference"}

"declare␣document␣reference"
(attributes >> declare_reference_opn);

Altogether, this gives the extension of Isabelle/HOL with Isar syntax and semantics for the
new command :

Isar
declare_reference [lal::requirement, alpha=main, beta=42]

The construction also generates implicitly some markup information; for example, when
hovering over the declare_reference command in the IDE, a popup window with the text:
“declare document reference” will appear.

5.2 Programming Antiquotations

The definition and registration of text antiquotations and ML-antiquotations is similar in
principle: based on a number of combinators, new user-defined antiquotation syntax and
semantics can be added to the system that works on the internal plugin-data freely. For
example, in

SML
val _ = Theory.setup(

Thy_Output.antiquotation @{binding docitem}
docitem_antiq_parser
(docitem_antiq_gen default_cid) #>

ML_Antiquotation.inline @{binding docitem_value}
ML_antiq_docitem_value)

the text antiquotation docitem is declared and bounded to a parser for the argument
syntax and the overall semantics. This code defines a generic antiquotation to be used in
text elements such as

Isar
text〈as defined in @{docitem 〈d1〉} . . . 〉

The subsequent registration docitem_value binds code to a ML-antiquotation usable in
an ML context for user-defined extensions; it permits the access to the current “value” of
document element, i.e.; a term with the entire update history.
It is possible to generate antiquotations dynamically, as a consequence of a class definition

in ODL. The processing of the ODL class definition also generates a text antiquotation
@{definition 〈d1〉}, which works similar to @{docitem 〈d1〉} except for an additional type-

55

5 Extending Isabelle/DOF

check that assures that d1 is a reference to a definition. These type-checks support the
subclass hierarchy.

5.3 Implementing Second-level Type-Checking

On expressions for attribute values, for which we chose to use HOL syntax to avoid that users
need to learn another syntax, we implemented an own pass over type-checked terms. Stored
in the late-binding table ISA_transformer_tab, we register for each inner-syntax-annotation
(ISA’s), a function of type

SML
theory -> term * typ * Position.T -> term option

Executed in a second pass of term parsing, ISA’s may just return None. This is adequate for
ISA’s just performing some checking in the logical context theory; ISA’s of this kind report
errors by exceptions. In contrast, transforming ISA’s will yield a term; this is adequate, for
example, by replacing a string-reference to some term denoted by it. This late-binding table
is also used to generate standard inner-syntax-antiquotations from a doc_class.

5.4 Programming Class Invariants

For the moment, there is no high-level syntax for the definition of class invariants. A formu-
lation, in SML, of the first class-invariant in Section 4.2.3 is straight-forward:

SML
fun check_result_inv oid {is_monitor:bool} ctxt =
let val kind = compute_attr_access ctxt "kind" oid @{here} @{here}

val prop = compute_attr_access ctxt "property" oid @{here} @{here}
val tS = HOLogic.dest_list prop

in case kind_term of
@{term "proof"} => if not(null tS) then true

else error("class␣result␣invariant␣violation")
| _ => false

end
val _ = Theory.setup (DOF_core.update_class_invariant

"tiny_cert.result" check_result_inv)

The setup-command (last line) registers the check_result_inv function into the
Isabelle/DOF kernel, which activates any creation or modification of an instance of
result. We cannot replace compute_attr_access by the corresponding antiquotation
@{docitem_value kind::oid}, since oid is bound to a variable here and can therefore not
be statically expanded.

56

5.5 Implementing Monitors

5.5 Implementing Monitors

Since monitor-clauses have a regular expression syntax, it is natural to implement them as
deterministic automata. These are stored in the docobj_tab for monitor-objects in the
Isabelle/DOF component. We implemented the functions:

SML
val enabled : automaton -> env -> cid list

val next : automaton -> env -> cid -> automaton

where env is basically a map between internal automaton states and class-id’s (cid’s).
An automaton is said to be enabled for a class-id, iff it either occurs in its accept-set or
its reject-set (see Section 4.2.3). During top-down document validation, whenever a text-
element is encountered, it is checked if a monitor is enabled for this class; in this case, the
next-operation is executed. The transformed automaton recognizing the rest-language is
stored in docobj_tab if possible; otherwise, if next fails, an error is reported. The automata
implementation is, in large parts, generated from a formalization of functional automata [16].

5.6 The LATEX-Core of Isabelle/DOF

The LATEX-implementation of Isabelle/DOF heavily relies on the “keycommand” [6] package.
In fact, the core Isabelle/DOF LATEX-commands are just wrappers for the corresponding
commands from the keycommand package:

LATEX
\newcommand\newisadof[1]{%
\expandafter\newkeycommand\csname isaDof.#1\endcsname}%

\newcommand\renewisadof[1]{%
\expandafter\renewkeycommand\csname isaDof.#1\endcsname}%

\newcommand\provideisadof[1]{%
\expandafter\providekeycommand\csname isaDof.#1\endcsname}%

The LATEX-generator of Isabelle/DOF maps each doc_item to an LATEX-environment (recall
Section 4.2.4). As generic doc_item are derived from the text element, the enviornment {

isamarkuptext*} builds the core of Isabelle/DOF’s LATEX implementation. For example, the
SRAC 1 from page 25 is mapped to

LATEX
\begin{isamarkuptext*}%
[label = {ass122},type = {CENELEC_50128.SRAC},
args={label = {ass122}, type = {CENELEC_50128.SRAC},

CENELEC_50128.EC.assumption_kind = {formal}}
] The overall sampling frequence of the odometer subsystem is therefore
14 khz, which includes sampling, computing and result communication
times ...
\end{isamarkuptext*}

57

5 Extending Isabelle/DOF

This environment is mapped to a plain LATEXcommand via (again, recall Section 4.2.4):

LATEX
\NewEnviron{isamarkuptext*}[1][]{\isaDof[env={text},#1]{\BODY}}

For the command-based setup, Isabelle/DOF provides a dispatcher that selects the most
specific implementation for a given doc_class:

LATEX
%% The Isabelle/DOF dispatcher:
\newkeycommand+[\|]\isaDof[env={UNKNOWN},label=,type={dummyT},args={}][1]{%
\ifcsname isaDof.\commandkey{type}\endcsname%

\csname isaDof.\commandkey{type}\endcsname%
[label=\commandkey{label},\commandkey{args}]{#1}%

\else\relax\fi%
\ifcsname isaDof.\commandkey{env}.\commandkey{type}\endcsname%

\csname isaDof.\commandkey{env}.\commandkey{type}\endcsname%
[label=\commandkey{label},\commandkey{args}]{#1}%

\else%
\message{Isabelle/DOF: Using default LaTeX representation for concept %
"\commandkey{env}.\commandkey{type}".}%

\ifcsname isaDof.\commandkey{env}\endcsname%
\csname isaDof.\commandkey{env}\endcsname%

[label=\commandkey{label}]{#1}%
\else%
\errmessage{Isabelle/DOF: No LaTeX representation for concept %
"\commandkey{env}.\commandkey{type}" defined and no default %
definition for "\commandkey{env}" available either.}%

\fi%
\fi%

}

58

Bibliography

[1] B. Barras, L. D. C. González-Huesca, H. Herbelin, Y. Régis-Gianas, E. Tassi, M. Wen-
zel, and B. Wolff. Pervasive parallelism in highly-trustable interactive theorem proving
systems. In MKM, pages 359–363, 2013. doi: 10.1007/978-3-642-39320-4_29.

[2] S. Bezzecchi, P. Crisafulli, C. Pichot, and B. Wolff. Making agile development processes
fit for v-style certification procedures. In ERTS’18, ERTS Conference Proceedings, 2018.

[3] J.-L. Boulanger. CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE, Boston, 2015.

[4] A. D. Brucker and B. Wolff. Isabelle/DOF: Design and implementation. In P. C. Ölveczky
and G. Salaün, editors, Software Engineering and Formal Methods (SEFM), number
11724 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2019. ISBN
3-540-25109-X. doi: 10.1007/978-3-030-30446-1_15. URL https://www.brucker.ch/
bibliography/abstract/brucker.ea-isabelledof-2019.

[5] A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, and B. Wolff. Using the Isabelle ontology
framework: Linking the formal with the informal. In Conference on Intelligent Computer
Mathematics (CICM), number 11006 in Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, 2018. doi: 10.1007/978-3-319-96812-4_3. URL https://www.
brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018.

[6] F. Chervet. The free and open source keycommand package: key-value interface for
commands and environments in LATEX., 2010.

[7] Common Criteria. Common criteria for information technology security evaluation (ver-
sion 3.1), Part 3: Security assurance components, Sept. 2006. Available as document
CCMB-2006-09-003.

[8] V. Eijkhout. The Computer Science of TeX and LaTeX. 2012.

[9] A. Faithfull, J. Bengtson, E. Tassi, and C. Tankink. Coqoon. Int. J. Softw. Tools Technol.
Transf., 20(2):125–137, Apr. 2018. ISSN 1433-2779. doi: 10.1007/s10009-017-0457-2.

[10] IBM. IBM engineering requirements management DOORS family, 2019. https://www.
ibm.com/us-en/marketplace/requirements-management.

[11] D. E. Knuth. The TeXbook. Addison-Wesley Professional, 1986. ISBN 0201134470.

[12] M. Kohm. KOMA-Script: a versatile LATEX2ε bundle, 2019.

[13] A. Kraus. Defining recursive functions in isabelle/hol, 2019. https://isabelle.in.tum.de/
doc/functions.pdf.

59

https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
http://www.commoncriteriaportal.org/public/files/CCPART3V3.1R1.pdf
https://www.ibm.com/us-en/marketplace/requirements-management
https://www.ibm.com/us-en/marketplace/requirements-management
https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf

Bibliography

[14] A. Krauss and T. Nipkow. Regular sets and expressions. Archive of Formal Proofs,
May 2010. ISSN 2150-914x. http://isa-afp.org/entries/Regular-Sets.html, Formal proof
development.

[15] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley. The LaTeX Com-
panion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2004.

[16] T. Nipkow. Functional automata. Archive of Formal Proofs, Mar. 2004. ISSN 2150-914x.
http://isa-afp.org/entries/Functional-Automata.html, Formal proof development.

[17] T. Nipkow. What’s in main, 2019. https://isabelle.in.tum.de/doc/main.pdf.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002. doi: 10.1007/3-540-45949-9.

[19] W3C. Ontologies, 2015. URL https://www.w3.org/standards/semanticweb/ontology.

[20] M. Wenzel. Asynchronous user interaction and tool integration in Isabelle/PIDE. In
G. Klein and R. Gamboa, editors, ITP, volume 8558 of LNCS, pages 515–530. Springer,
2014. doi: 10.1007/978-3-319-08970-6_33.

[21] M. Wenzel. System description: Isabelle/jEdit in 2014. In UITP, pages 84–94, 2014.
doi: 10.4204/EPTCS.167.10.

[22] M. Wenzel. The Isabelle/Isar Reference Manual, 2019. Part of the Isabelle distribution.

[23] M. Wenzel. The Isabelle system manual, 2019. Part of the Isabelle distribution.

[24] M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar framework.
In K. Schneider and J. Brandt, editors, TPHOLs 2007, number 4732 in LNCS, pages
352–367. Springer, 2007. doi: 10.1007/978-3-540-74591-4_26.

60

http://isa-afp.org/entries/Regular-Sets.html
http://isa-afp.org/entries/Functional-Automata.html
https://isabelle.in.tum.de/doc/main.pdf
https://www.w3.org/standards/semanticweb/ontology

Index

A
accept-clause, 46
accepts_clause, 38
antiquotation, 13
attribute_decl, 38

C
class

see document class, 34
see monitor class, 34

class_id, 38
COL, 40
see COL, 40
constant_definition, 37
context, 12

D
datatype_specification, 37
default_clause, 38
doc_class_specification, 38
document class, 34, 37

PDF, 39
document model, 12
document template, 18, 33, 48

directory structure, 33
dt_ctor, 37
dt_name, 35

E
expr, 37

H
header, 12

I
inner syntax, see syntax, inner
Isabelle, 15

M
mkroot_DOF, 18
monitor, 46
monitor class, 34

N
name, 35
\newisadof , 39

O
ontology

CENELEC_50128, 23
directory structure, 32
math_exam, 26
scholarly_paper, 19

outer syntax, see syntax, outer

P
praemble.tex, 19
\provideisadof , 39

R
regexpr, 39
rejects_clause, 38
\renewisadof , 39
ROOT, 19

S
scrartcl, 18
syntax

inner, 12
outer, 12

T
TEXLive, 15
theory

file, 12
tyargs, 35
type, 35

61

INDEX

type_synonym_specification, 37
type_spec, 35

W
where clause, 34

62

	1 Introduction
	How to Read This Manual
	Typographical Conventions
	How to Cite Isabelle/DOF
	Availability

	2 Background
	2.1 The Isabelle System Architecture
	2.2 The Document Model Required by DOF
	2.3 Implementability of the Required Document Model.

	3 Isabelle/DOF: A Guided Tour
	3.1 Getting Started
	3.1.1 Installation
	Pre-requisites
	Installing Isabelle/DOF

	3.1.2 Creating an Isabelle/DOF Project

	3.2 Writing Academic Publications (scholarly_paper)
	3.2.1 The Scholarly Paper Example
	3.2.2 Modeling Academic Publications
	3.2.3 Editing Support for Academic Papers

	3.3 Writing Certification Documents (CENELEC_50128)
	3.3.1 The CENELEC 50128 Example
	3.3.2 Modeling CENELEC 50128
	3.3.3 Editing Support for CENELEC 50128

	3.4 Writing Exams (math_exam)
	3.4.1 The Math Exam Example
	3.4.2 Modeling Exams

	3.5 Style Guide

	4 Developing Ontologies
	4.1 Overview and Technical Infrastructure
	4.1.1 Ontologies
	4.1.2 Document Templates

	4.2 The Ontology Definition Language (ODL)
	4.2.1 Some Isabelle/HOL Specification Constructs Revisited
	4.2.2 Defining Document Classes
	4.2.3 Common Ontology Library (COL)
	Example: Text Elemens with Levels
	Example: Assertions

	4.2.4 Annotatable Top-level Text-Elements
	Experts: Defining New Top-Level Commands

	4.2.5 Status and Inspection Commands
	4.2.6 Advanced ODL Concepts
	Meta-types as Types
	ODL Monitors
	ODL Class Invariants

	4.3 Defining Document Templates
	4.3.1 The Core Template
	4.3.2 Tips, Tricks, and Known Limitations
	Getting Started
	Truncated Warning and Error Messages
	Deferred Declaration of Information
	Authors and Affiliation Information
	Restricting the Use of Ontologies to Specific Templates
	Outdated Version of ` `%%%`#`&12_`__~~~�alse

	5 Extending Isabelle/DOF
	5.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar
	5.2 Programming Antiquotations
	5.3 Implementing Second-level Type-Checking
	5.4 Programming Class Invariants
	5.5 Implementing Monitors
	5.6 The LaTeX-Core of Isabelle/DOF

