18 research outputs found

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-Aware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols

    Fairness and transmission opportunity limit in IEEE 802.11e enhanced distributed channel access

    Get PDF
    TÀmÀ diplomityö tutkii lÀhetysaikarajan vaikutusta verkon reiluuteen IEEE802.11e tehostettuun ja hajautettuun kommunikaatiokanavaan pÀÀsyyn. IEEE802.11e tuo palvelunlaatuominaisuuksia IEEE802.11 langattomiin verkkoihin. Asemat, jotka kÀyttÀvÀt IEEE802.11e-ominaisuuksia jakavat liikenteen neljÀÀn kategoriaan. Kategorioiden vÀlinen erottelu saavutetaan neljÀllÀ parametrilla, jotka kontrolloivat kanavaan pÀÀsyÀ. TÀmÀ työ tutkii yhtÀ nÀistÀ parametreistÀ, lÀhetysaikarajaa, joka kontrolloi lÀhetyksen kestoa. IEEE802.11e antaa referenssiarvoja parametreille, mutta nÀillÀ arvoilla verkon kuormituksen lisÀÀntyessÀ, alemman prioriteetin liikenne kÀrsii nopeasti. Hyvin pian kuormituksen lisÀÀntyessÀ alemman prioriteetin liikenne ei pÀÀse verkosta lÀpi lainkaan. TÀllöin myös verkon reiluus on matala. Reiluuden parantamiseksi, hÀiritsemÀttÀ korkean prioriteetin liikennettÀ, tÀmÀ työ tutkii ison lÀhetysaikarajan kÀyttöÀ. EnsimmÀisessÀ simulaatiosarjassa alemman prioriteetin lÀhetysaikaraja on ÀÀretön. TÀmÀ tarkoitta sitÀ, ettÀ alemman prioriteetin jono voi lÀhettÀÀ kaikki pakettinsa kun se pÀÀsee lÀhettÀmÀÀn. Tulokset osoittavat, ettÀ ÀÀretön lÀhetysaikaraja parantaa reiluutta kun kanava on kuormittumassa. Tulokset osoittavat myös, ettÀ ÀÀretön lÀhetysaikaraja ei merkittÀvÀsti heikennÀ korkean prioriteetin liikennettÀ. Toinen simulaatiosarja keskittyy sellaiseen verkon kuormitustilaan, missÀ ÀÀrettömÀn lÀhetysaikarajan vaikutus on suurin. NÀissÀ simulaatioissa lÀhetysaikarajan arvo on staattinen. Simulaatiosta toiseen lÀhetysaikarajan arvo muutetaan toiseen arvoon vÀliltÀ nolla-suurin sallittu arvo. Tulokset nÀistÀ simulaatioista ovat hyvin samanlaiset kuin ensimmÀisen simulaatiosarjan tulokset.This thesis investigates the effect of transmission opportunity limit on fairness in IEEE802.11e enhanced distributed channel access. IEEE802.11e brings quality of service features into IEEE802.11 wireless local area networks. In stations operating with IEEE802.11e, traffic is divided into categories. Differentiation between these categories is achieved by using four parameters to control the channel access. This thesis investigates one of these parameters, the transmission opportunity limit, which controls the channel access duration. With the reference parameter values given in IEEE802.11e, as the network congestion level increases, low priority traffic suffers quickly to a point where none of it gets transmitted. This makes the network overall fairness poor. To improve fairness while not disturbing high priority traffic, this thesis investigates the use of large transmission opportunity limit values. In the first set of simulations, the low priority traffic transmission opportunity limit values are set to infinite. This means that the low priority queue can send all its packets when it gains access to the channel. The results show that infinite transmission opportunity limit improves fairness when channel is getting congested. Also infinite transmission opportunity limit does not notably weaken high priority traffic performance. Second set of simulations focuses on the network congestion level where the effect of the infinite transmission opportunity limit is the largest. In these simulations the transmission opportunity limit is set to static value ranging from zero to a maximum allowed value. The results from these simulations are similar to the results of the first simulation set

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    End to end architecture and mechanisms for mobile and wireless communications in the Internet

    Get PDF
    Architecture et mĂ©canismes de bout en bout pour les communications mobiles et sans fil dans l'Internet. La gestion performante de la mobilitĂ© et l'amĂ©lioration des performances des couches basses sont deux enjeux fondamentaux dans le contexte des rĂ©seaux sans fil. Cette thĂšse apporte des solutions originales et innovantes qui visent Ă  rĂ©pondre Ă  ces deux problĂ©matiques empĂȘchant Ă  ce jour d'offrir des possibilitĂ©s de communication performantes et sans couture aux usagers mobiles accĂ©dant Ă  l'Internet via des rĂ©seaux d'accĂšs locaux sans fil (WLAN). Ces solutions se distinguent en particulier par l'impact minimum qu'elles ont sur les protocoles standards de l'Internet (niveaux transport et rĂ©seau) ou de l'IEEE (niveaux physique et liaison de donnĂ©es). S'inscrivant dans les paradigmes de "bout en bout" et "cross-layer", notre architecture permet d'offrir des solutions efficaces pour la gestion de la mobilitĂ© : gestion de la localisation et des handover en particulier. En outre, nous montrons que notre approche permet Ă©galement d'amĂ©liorer l'efficacitĂ© des transmissions ainsi que de rĂ©soudre efficacement plusieurs syndromes identifiĂ©s au sein de 802.11 tels que les anomalies de performance, l'iniquitĂ© entre les flux et l'absence de contrĂŽle de dĂ©bit entre la couche MAC et les couches supĂ©rieures. Cette thĂšse rĂ©sout ces problĂšmes en combinant des modĂšles analytiques, des simulations et de rĂ©elles expĂ©rimentations. Ces mĂ©canismes adaptatifs ont Ă©tĂ© dĂ©veloppĂ©s et intĂ©grĂ©s dans une architecture de communication qui fournit des services de communication Ă  haute performance pour rĂ©seaux sans fils tels que WIFI et WIMAX. ABSTRACT : Wireless networks, because of the potential pervasive and mobile communication services they offer, are becoming the dominant Internet access networks. However, the legacy Internet protocols, still dominant at that time, have not been designed with mobility and wireless in mind. Therefore, numerous maladjustments and “defaults of impedance” can be observed when combining wireless physical and MAC layers with the traditional upper layers. This thesis proposes several solutions for a pacific coexistence between these communication layers that have been defined and designed independently. Reliable mobility management and Low layer performance enhancements are two main challenging issues in the context of wireless networks. Mobility management (which is mostly based on mobile IP architecture nowadays) aims to continuously assign and control the wireless connections of mobile nodes amongst a space of wireless access networks. Low layer performance enhancements mainly focus on the transmission efficiency such as higher rate, lower loss, interference avoidance. This thesis addresses these two important issues from an original and innovative approach that, conversely to the traditional contributions, entails a minimum impact on the legacy protocols and internet infrastructure. Following the “end to end” and “cross layer” paradigms, we address and offer efficient and light solutions to fast handover, location management and continuous connection support through a space of wireless networks. Moreover, we show that such an approach makes it possible to enhance transmission efficiency and solve efficiently several syndromes that plague the performances of current wireless networks such as performance anomaly, unfairness issues and maladjustment between MAC layer and upper layers. This thesis tackles these issues by combining analytical models, simulations and real experiments. The resulting mechanisms have been developed and integrated into adaptive mobility management communication architecture that delivers high performing communication services to mobile wireless systems, with a focus on WIFI and WIMAX access networks

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Reducing Latency in Internet Access Links with Mechanisms in Endpoints and within the Network

    Get PDF
    Excessive and unpredictable end-to-end latency is a major problem for today’s Internet performance, affecting a range of applications from real-time multimedia to web traffic. This is mainly attributed to the interaction between the TCP congestion control mechanism and the unmanaged large buffers deployed across the Internet. This dissertation investigates transport and link layer solutions to solve the Internet’s latency problem on the access links. These solutions operate on the sender side, within the network or use signaling between the sender and the network based on Explicit Congestion Notification (ECN). By changing the sender’s reaction to ECN, a method proposed in this dissertation reduces latency without harming link utilization. Real-life experiments and simulations show that this goal is achieved while maintaining backward compatibility and being gradually deployable on the Internet. This mechanism’s fairness to legacy traffic is further improved by a novel use of ECN within the network
    corecore