View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by NORA - Norwegian Open Research Archives

UNIVERSITY OF OSLO
Department of Informatics

Reducing Latency
in Internet Access
Links with
Mechanisms in
Endpoints and
within the
Network

PhD Thesis

Naeem Khademi

May 28, 2015



https://core.ac.uk/display/30833764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




To my parents






Abstract

Excessive and unpredictable end-to-end latency is a major problem for today’s In-
ternet performance, affecting a range of applications from real-time multimedia to
web traffic. This is mainly attributed to the interaction between the TCP congestion
control mechanism and the unmanaged large buffers deployed across the Internet.
This dissertation investigates transport and link layer solutions to solve the Inter-
net’s latency problem on the access links. These solutions operate on the sender
side, within the network or use signaling between the sender and the network based
on Explicit Congestion Notification (ECN). By changing the sender’s reaction to
ECN, a method proposed in this dissertation reduces latency without harming link
utilization. Real-life experiments and simulations show that this goal is achieved
while maintaining backward compatibility and being gradually deployable on the
Internet. This mechanism’s fairness to legacy traffic is further improved by a novel
use of ECN within the network.
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Overview






Chapter 1

Introduction

This dissertation studies the problem of large unmanaged buffers in today’s Internet
and how they affect the performance of delay-sensitive applications. It explains that
since many of the end-hosts on the access links use Wi-Fi technology, it is therefore
important to improve the performance of such applications for Wi-Fi networks in
addition to wired networks.

It also categorizes the possible solutions as:

— Solutions based on changing the TCP sender behavior only

— Solutions based on changing the queuing policy in the middlebox — e.g. dis-
carding packets by an Active Queue Management (AQM) mechanism

— Solutions that use explicit signaling between the middlebox and the sender
and require the coordination of the two.

This chapter explains the context of the work, asks research questions and high-
lights the main contributions of this thesis. It also provides details on the research
methods employed and the published results. This thesis consists of two parts. Part
I is structured as follows: Chapter 2 presents the background on the problem of
large buffers in the Internet and the existing mechanisms to mitigate that; Chap-
ter 3 provides an overview of the solutions studied in this dissertation and Chapter 4
concludes the thesis. A complete set of published results can be found in Part II.

1.1 Context of the Work

This work focuses on finding solutions for solving the Internet’s latency problem that
is due to unmanaged and excessively large buffers deployed over decades, specifically
on the last-hop access links where most of such induced latency is present (also
known as “bufferbloat”). Network devices along the Internet paths require a certain
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amount of buffering space on their egress links to allow for the rate mismatch
between the ingress and egress links, mainly when there are short-term packet
bursts. The buffering allows to avoid the arriving packets to be discarded if the
egress link is busy for a certain amount of time. In the case of transports with
congestion control mechanisms that react to packet loss such as the commonly
deployed TCP protocol, the buffering can assure the egress link stays fully utilized
once TCP’s sending rate decreases.

The common rule-of-thumb for finding out how much buffering is needed for a
single standard TCP flow with NewReno congestion control to fully utilize the link
is to use the bandwidthxdelay product (C.RTT), with delay being the Round-Trip
Time (RTT) between the sender and receiver and bandwidth being the capacity of
the bottleneck link (C). This rule-of-thumb, also known as the Bandwidth-Delay
Product (BDP) rule, has been used for around two decades by network administra-
tors and operators to set the buffer size in the network devices although in some
cases, some network devices have been using buffers that are much larger than a
typical BDP of an Internet path. While the BDP rule assures that a single standard
TCP NewReno flow can fully utilize the link, it also has the consequence of inducing
a maximum queuing delay that is equal to one RTT, increasing the total round-trip
time to 2.RTT at maximum. In case of devices that use more than one BDP worth
of buffering, the RTT can increase even further from a few hundred milliseconds
to several seconds. This will adversely affect all other applications that share their
traffic at such buffer — e.g. delay-sensitive applications like interactive multimedia,
Voice-over-IP (VoIP), Skype, online gaming and even popular web traffic.

This forms a major challenge for the Internet today, where buffer sizes across
the Internet paths are sometimes set with the pure goal of assuring 100% link
utilization with no consideration of latency as a performance metric. This is mainly
due to the fact that traditionally Internet Service Providers (ISPs) have been using
“bandwidth” as a commercial sales argument without having incorporated latency
guarantees in their Service-Level Agreements (SLAs). Over the last decades, the
capacity of Internet paths has dramatically increased with the introduction of new
link layer technologies and buffers have therefore grown even larger, and with it the
latency.

1.2 Research Questions

The aforementioned problem of bufferbloat gives rise to the following Research Ques-
tions (RQs):

— RQ1: How should one size and manage the network buffers on the access links
appropriately to reduce the end-to-end latency?
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Buffer sizes need to be small but sufficient enough to accommodate short-term
packet bursts and provide a good level of utilization at minimal cost for the end-
to-end latency. The question of buffer sizing will depend on the Internet traffic’s
characteristics such as the number of concurrent flows, RT'Ts, and the link capacity.
In addition, such buffers should be managed by mechanisms that inform the sender
of the onset of congestion. This can provide the sender with the means to react
early enough in advance, before the buffer is full. The choice of buffer management
and sizing will also affect the trade-off between latency and utilization and should
therefore carefully be investigated.

— RQ2: Which component(s) in the network need to be modified?

The solution to the bufferbloat problem may require modifications in one or
more components in the network. This will affect the cost and practicality of the
solution as well as its deployability. Ideally, any solution should require little or
minimal modification of network devices and operate at the single point which
is controlled by the user/operator. Possible solutions can be implemented at the
sender (sender-based), within the network (network-based), or in both components.
In this thesis, all possible scenarios have been investigated and their pros and cons
have been evaluated.

— RQ3: How deployable is the solution in the current Internet?

To have a real impact on the Internet, any solution must take into account
today’s Internet traffic and design characteristics and require minimal change. A
key success factor is gradual deployment, where the solution can be introduced in
a part of the network without the rest of the Internet supporting it, yet provide
an improvement. It should also be possible to tune and improve the scheme’s
parameters over time to provide a better performance as the Internet evolves. This
thesis addresses all of the above RQs.

1.3 Main Contributions

This dissertation presents a number of solutions to the Internet’s end-to-end latency
problem that is due to the unmanaged and excessively large buffers deployed on the
last-hop access links. It begins with the study, characterization and evaluation
of end-to-end latency over 802.11 (Wi-Fi) access links since Wi-Fi networks are
commonly deployed as the last-hop access link on the Internet. Wi-Fi networks
also provide a challenge for end-to-end latency due to the multi-rate nature of their
link layer. It takes into consideration and evaluates in-depth different link layer rate
adaptation mechanisms deployed in commonly used Wi-Fi devices and identifies the
mechanism that optimizes the link-layer-induced latency in 802.11 WLANSs.



Introduction

It also investigates and evaluates CAIA Delay-Gradient (CDG), for a novel use
as a multimedia-friendly “background” transport protocol in the context of Wi-
Fi access networks. CDG is a sender-based mechanism that aims to minimize the
queuing delay using a delay-based TCP congestion control mechanism at the sender.

This dissertation extends its study further by investigating and evaluating the
solutions that rely on the network’s feedback to the sender (network-based solutions)
known as Active Queue Management (AQM) mechanisms. It studies in depth the
state-of-the-art as well as traditional AQM mechanisms that try to minimize the
latency on the access links by actively marking or dropping packets in the buffer to
notify the sender about the onset of congestion.

To more significantly reduce the end-to-end latency in the Internet, this thesis
proposes “Alternative Backoff with ECN” (ABE), a novel mechanism that is a
sender-side-only modification and can be deployed incrementally. ABE leverages
the Explicit Congestion Notification (ECN) functionality implemented across AQM-
enabled networks and updates the TCP congestion control’s backoff mechanism at
the sender (and hence is a solution based on the collaboration between the network
and the sender). Using extensive evaluations, significant performance gains are
shown without losing the delay-reduction benefits of deploying AQM mechanisms.
ABE reduces the cost of reducing latency in the Internet in terms of utilization and
thus enables to deploy AQM mechanisms at lower target queuing delay thresholds.
Moreover, ABE offers a compelling reason to deploy and enable ECN across the
Internet.

At the end, this thesis proposes and evaluates a solution that enhances ABE
further in terms of backward compatibility, by achieving perfect fairness between
traditional TCP senders and ABE senders for scenarios where perfect fairness is a
desired goal.

1.4 Research Methods

This section presents the different research methods that were employed in this
dissertation. A combination of analysis, even-driven simulation and real-life exper-
iments have been used. Details on which methods has been used are provided in
each of the published works that are presented in Section 1.5.

1.4.1 Analytic

Analysis was used in Section 2.1 of Paper V where an analytical model was devel-
oped to address the correlation between TCP congestion control’s backoff mecha-
nism, path characteristics and link utilization with regards to different values of the
bottleneck buffer size. We validated our model against even-driven simulation.
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Table 1.1: Network testbed platforms and their respective published work(s).
’ Tested Platform ‘ Paper(s) ‘

NDlab I, IV
TEACUP [37] v
Emulab [82] I, IIT

1.4.2 Network Simulation

A popular and commonly-used discrete event network simulation tool, called The
Network Simulator (ns-2) [62] was used in various parts of this dissertation. ns-2
provides substantial support for simulation of TCP, routing, and multicast proto-
cols over wired and wireless networks and is considered as the de facto standard
networking simulation tool in the academic community. Papers I, II, V and VI use
ns-2 in their evaluations.

The Linux TCP congestion control suite shipped with ns-2.35 was mostly used.
The Linux TCP networking stack in ns-2.35 was updated with the code shipped from
Linux 3.17.4 for the work done in Paper V. Moreover, the TCP code was updated
to change TCP’s backoff mechanism. Active Queue Management mechanisms such
as CoDel [60] and PIE [64] were imported into ns-2.35, using the latest code (at the
time of writing) provided by their publishers.

For the evaluations of our first and second papers (Paper I and Paper II), an ex-
tension to ns-2.29 was added to support the Adaptive Auto-Rate Fallback (AARF)
rate adaptation mechanism in 802.11 WLANSs.

1.4.3 Real-life Experiments

A variety of real-life experiments was carried out using various experimental plat-
forms. Papers II, III, IV, V use real-life tests in their evaluations. The network
testbed platforms and their employment in different parts of this dissertations are
presented in Table 1.1.

NDIlab testbed

NDlab is a dedicated network testbed for this research work, located at the Net-
work and Distributed Systems Group, Department of Informatics, University of
Oslo, Norway. It is a cluster of nodes stacked in a lab environment, where their
close proximity provides a suitable situation for the experiments that require homo-
geneous channel conditions. Each node is a Dell OptiPlex GX620 machine equipped
with 802.11 b/g and/or 802.11 b/g/n network cards and switched with 100 Mbps
Ethernet links (all nodes are interconnected with wired and wireless connectivity).
For more details about the hardware specifications and network setup, refer to the
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material presented in respective sections of Papers II and IV (Section V of Paper
IT and Section 3.1 of Paper IV).

TEACUP testbed

The TEACUP testbed is a set of physical nodes located at the Centre for Ad-
vanced Internet Architectures (CAIA), Swinburne University of Technology, Aus-
tralia. These nodes are HP Compaq dc7800 machines that can run either FreeBSD
10.1-RELEASE or openSUSE 13.2. These nodes are linked by a 64-bit software
router based on openSUSE 13.2 that is run over a Supermicro X8STi.

To provide automation to conduct a large variety of real-life TCP performance
tests, these nodes are controlled by a Python-based software called TEACUP (TCP
Experiment Automation Controlled Using Python). The detailed presentation of
the TEACUP software design is provided in [88]. The detailed CAIA network
testbed specification and setup for TEACUP software is described in [87].

For the real-life experiments used in our work, refer to the experimental setup
and network specifications presented in Appendix A.2 of Paper V.

Emulab

Emulab [19, 82] is a public network testbed available without charge to researchers
worldwide, giving them a wide range of environments in which to develop, debug,
and evaluate their systems. It is primarily run by the Flux Group at the School of
Computing of the University of Utah. The name Emulab refers both to a facility
and to a software system. There are also installations of the Emulab software at
more than two dozen sites around the world. In our real-life experiments we used
Emulab’s 802.11 wireless network testbed at the University of Utah. Emulab’s
802.11b/g testbed we used is a cluster of Pentium III 600 MHz Machines each with
two wireless interfaces, plus a wired control network under the full control of the
tester.

A more detailed explanation of Emulab’s network setup in our real-life experi-
ments is given in Section V of Paper II and Section IV.A of Paper III.

1.5 Published Works

1.5.1 Research Papers in the Thesis
Paper I:

Title: On the Uplink Performance of TCP in Multi-rate 802.11 WLANSs

Authors: Naeem Khademi, Michael Welzl and Renato Lo Cigno
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Venue: Proceedings of the 10th International IFIP TC 6 Networking Con-
ference (IFIP NETWORKING), Lecture Notes in Computer Science, Volume
6641, pages 368-378, May 2011, Valencia, Spain.

My contributions: Main authorship; contribution to the idea of the paper;
developed all ns-2 simulation scripts and codes and conducted all simulation
tests; data analysis and producing results (e.g. graphs, figures, etc); con-
tributed text and editorial work.

Summary: This paper investigates the cross-layer interaction between Dis-
tributed Coordination Function (DCF) coupled with Rate Adaptation (RA)
mechanism at the link layer and uplink TCP in Wi-Fi networks and identi-
fies that the poor choice of RA mechanism can significantly impede the TCP
performance in uplink scenarios.

Paper II:

Title: Experimental Evaluation of TCP Performance in Multi-rate 802.11
WLANSs

Authors: Naecem Khademi, Michael Welzl and Stein Gjessing

Venue: Proceedings of the 13th IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM), page 1-9,
June 2012, San Francisco, California, United States.

My contributions: Main authorship; contributed to the idea of the paper;
developed all ns-2 simulation and real-life test scripts and codes and conducted
all tests; data analysis and producing all results (e.g. graphs, figures, etc);
contributed text and editorial work.

Summary: This paper evaluates various state-of-the-art link layer RA mech-
anisms in both uplink and downlink TCP scenarios and identifies the RA
mechanism that can mitigate the problem of uplink TCP performance Wi-Fi
networks.

Paper III:

Title: Using Delay-Gradient TCP for Multimedia-Friendly ‘Background’ Trans-
port in Home Networks

Authors: Grenville Armitage and Naeem Khademi

Venue: Proceedings of the 38th IEEE Conference on Local Computer Net-
works (LCN), pages 509-515, October 2013, Sydney, Australia.
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My contributions: Co-authorship; developed all real-life test scripts/codes
(except the already-available CDG v0.1 code) and conducted all real-life tests;
data analysis and producing all results (e.g. graphs, figures, etc); contributed
text and editorial work.

Summary: This paper explores the novel use of a delay-gradient TCP for
background TCP connections in home networks. It shows that this mechanism
induces low latencies regardless of the bottleneck’s internal buffer size (use-
ful when coexisting with latency-sensitive traffic) while achieving a significant
fraction of spare link capacity. It also shows that the delay-gradient mecha-
nism does not gratuitously steal capacity from commonly deployed foreground
TCPs.

Paper 1IV:

Title: The New AQM Kids on the Block: An Experimental Evaluation of
CoDel and PIE

Authors: Naeem Khademi, David Ros and Michael Welzl

Venue: Proceedings of the 17th IEEE Global Internet Symposium, Com-
puter Communications Workshops (IEEE INFOCOM Workshops), pages 85-
90, April-May 2014, Toronto, Canada

My contributions: main authorship; contributed to the idea of the paper;
developed all real-life test scripts and codes and conducted all experiments;
data analysis and producing all results (e.g. graphs, figures, etc); contributed
text and editorial work.

Summary: The extended version of this paper evaluates two state-of-the-art
AQM mechanisms (CoDel and PIE) that are proposed to tackle the bufferbloat
problem, in a variety of network traffic scenarios and under different parameter
settings and compares them with a traditional AQM mechanism (Adaptive
RED). It surprisingly finds that in many instances results were much more
favorable towards Adaptive RED. While it does not call into question the
need for new AQM mechanisms, it concludes that there are lessons yet to be
learned from old designs.

Note: An extended technical report of this paper is included in this disser-
tation.

Paper V:

Title: Alternative Backoff: Achieving Low Latency and High Throughput
with ECN and AQM
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Authors: Naeem Khademi, Michael Welzl, Grenville Armitage, Chamil Ku-
latunga, David Ros, Gorry Fairhurst, Stein Gjessing and Sebastian Zander

Venue: TBD

My contributions: Main authorship; steering and coordination among all
authors and maintaining the paper’s coherence; contributed to the idea of
the paper; developed simulation scripts and code and conducted simulation
tests, all related to single flow bulk transfer; provided analytical model in
problem and background section; data analysis of TEACUP testbed results
related to the effect of slow-start overshoot; review, proofread and editorial
work throughout the entire paper; contributed text related to the evaluation
of single flow bulk transfer.

Summary: This paper proposes “Alternative Backoff with ECN” (ABE),
which consists of enabling Explicit Congestion Notification (ECN) and letting
individual TCP senders use a larger multiplicative decrease factor in reaction
to ECN-marks from AQM-enabled bottlenecks. Using a mix of experiments,
theory and simulations, significant performance gains in lightly-multiplexed
scenarios have been shown, without losing the delay-reduction benefits of de-
ploying CoDel or PIE.

Note: This paper is under anonymous peer-review at the time of writing.

Paper VI:

Title: Improving the Fairness of Alternative Backoff with ECN (ABE)
Authors: Naeem Khademi, Michael Welzl and Stein Gjessing

Venue: TBD

My contributions: Main authorship; contributed to the idea of the paper;
developed all ns-2 simulation scripts and codes and conducted all simulation
tests; data analysis and producing all results (e.g. graphs, figures, etc); con-
tributed text and editorial work.

Summary: This paper proposes a modification to the AQM mechanism to
provide fairness between ABE and standard TCP flows for scenarios where
fairness may be needed. The proposed method has been evaluated using RED
and is shown to provide complete fairness among TCP flows of different types
under a variety of scenarios.

Note: This paper will be submitted for peer-review after the publication of
Paper V since it relies on the mechanism proposed in Paper V.
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1.5.2 Related IETF draft

Internet Draft I:
Title: AQM Characterization Guidelines (draft-ietf-aqm-eval-guidelines)
Authors: Nicolas Kuhn, Preethi Natarajan, David Ros and Naeem Khademi

Status: Active Internet Draft, Active Queue Management Working Group
(AQM WG), Internet Engineering Task Force (IETF)

My contributions: Editorship; contributed text and editorial work as well
as the IETF meeting presentations and discussions.

Summary: This draft documents various criteria for performing characteri-
zations of AQM proposals. This document also helps in ascertaining whether
any given AQM proposal should be taken up for standardization by the IETF.
Several of the test scenarios described in this draft were inspired by the works
in this thesis.
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Chapter 2

Background

2.1 Bufferbloat (Unmanaged Buffers)

Using unnecessarily large buffers on the access networks over the last decades has
led to the high latency on the Internet, most specifically with regards to latency-
sensitive applications. This is referred to as “bufferbloat” [13]. The bufferbloat
problem most profoundly concerns delay-sensitive applications such as interactive
multimedia, VoIP, online gaming and real-time video-streaming and can highly
affect the user-perceived performance even in the case of commonly used web traffic.
This is because commonly-deployed standard loss-based TCP congestion control
mechanism as well as the more aggressive CUBIC congestion control, the default in
Linux kernel, tend to fill up any buffer — and this is problematic for flows belonging
to delay-sensitive application that share the bottleneck queue with these TCP flows.
The choice of buffer size on the access link has been driven by two factors: (1) the
wrong traditional perception of commercial device vendors as well as the users
which would translate more memory to better performance over the last years;
(2) The common rule-of-thumb (attributed to [78]) of using a bandwidth-delay
product of buffering, which is the amount of buffering needed to achieve 100% link
utilization for a single TCP NewReno flow on the path in the congestion avoidance
phase. Assumption one is completely wrong and assumption two aims for a maximal
link utilization in a scenario when only a single TCP NewReno flow exists on the
bottleneck and is unnecessarily utilization-oriented, since achieving full utilization
will come at the cost of inflating the RTT to twice the path’s intrinsic RTT.

Additionally, with applications that produce bursty traffic, the excessive size of
buffers translates to large delay spikes and jitter and can harm the other types of
traffic that share the bottleneck with such flows.

The work in [28] elaborates on the prevalence of bufferbloat. For instance the
2007 study of [17] conducted on 1894 broadband hosts connected through 11 major
commercial cable and DSL in North America and Europe shows that DSL upstream
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queues were frequently more than 600 ms, and those for cable generally exceeded one
second. Another measurement study conducted in 2010 also revealed widespread
and severe bufferbloat in the broadband edge networks [44]. However bufferbloat
is not only limited to broadband edge networks and can in fact be more severe in
Wi-Fi or cellular networks. This is because Wi-Fi or cellular networks are typically
equipped with large buffers to compensate for link layer errors and are therefore
more prone to bufferbloat. The measurements of [36, 37] identify the presence of
bufferbloat in cellular networks and Section 2.2.2 elaborates on the bufferbloat in
Wi-Fi networks.

2.2 Buffer Sizing

There has been several works that attempt to reduce the buffer sizes along Internet
paths both in the network’s core as well as in the access links. In this section we
provide a range of existing solutions and guidelines on sizing the buffers on network
devices.

2.2.1 Network’s Core

In 2004, Appenzeller et al. argued that the rule-of-thumb (the bandwidth-delay
product rule) is incorrect for core routers [6]. A large number of TCP flows are
multiplexed together on a backbone link. Using a set of real-life experiments, sim-
ulations and analysis, it was demonstrated that a link with n flows, given that n
is large enough, requires no more than B = (RTT x C)/y/n worth of buffering to
maintain a link utilization level close to 100%, for long-lived or short-lived TCP
flows where RTT is the average round-trip time of a flow passing across a link, and
C' is the data-rate of the link. This will consequently lead to a decrease in latency
induced by core routers and a significant reduction in cost of router-design due to
less Random-Access Memory (RAM) requirements. As an example, a 10 Gbps link
in the network’s core carrying 50,000 flows requires only 10 Mb of buffering which
can be easily accommodated by a low-price on-chip Static RAM (SRAM). In many
other network scenarios, this can account for more than 99% reduction in buffer
size [6].

The work in [6] shows that when the number of long-lived flows (n) is large, con-
gestion window (cwnd) of TCP flows become de-synchronized in losses and there-
fore the queue occupancy would follow a normal distribution in probability. It also
shows that in the core, the buffer size will usually be determined by the number of
long-lived flows (elephants) rather than short flows (mice).

In addition to the findings of [6], the authors of [85] argue that sacrificing a little
utilization may significantly reduce latency and jitter and identify that the goal of
100% link utilization is not always worthwhile. The authors of [85] also mention
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that small buffers can be problematic with regards to packet bursts with bursty
traffic types and also during the slow-start phase which leads to the packet drops.
They also regard this problem as a rather “philosophical” issue to either consider
this as unfairness or not, or whether to alternatively use “rate-pacing”. However,
[4] reports synchronization problems with rate-pacing due to the delay in feedback
caused by pacing.

However, [85] argues that setting the buffers small would reduce the feedback de-
lay and therefore would diminish the possible synchronization by rate-pacing. These
assertions of [85] have been investigated by a follow-up work in [69] which, using
control-theoretic analysis of synchronization, indicates that small buffers actually
induce de-synchronization.

Eventually, the work in [20] shows why very small buffers are sufficient, as long
as one is willing to sacrifice a small amount of utilization. The analysis of [20] shows
that if the packets of a TCP flow are sufficiently spaced out, then 10 to 20 packet
buffers are enough, independent of the link speed. Packets are spaced naturally
when flows enter through access links that are much slower than the backbone
links. Alternatively, packets can be spaced out using TCP Pacing.

Since the publication of the aforementioned works, there have been plenty of
works with the conclusions ranging from questioning the applicability of their results
to proposing alternative schemes. The reader is encouraged to refer to [79] that
provides a synopsis of these proposed buffer sizing strategies and broadly classifies
them according to their desired objectives and discusses the pros and cons of their
approaches.

2.2.2 Last-hop Access Links (Wired and Wi-F1i)

The last-hop access links, such as commonly used ADSL2+ [26] or CableLab’s
DOCSIS 3.0/3.1 cable modems [18] used in conjunction with widespread 802.11 Wi-
Fi [84] access points and user devices at the customer’s edge of the network, have
different characteristics than routers in the network’s core, . One major aspect here
is the varying bit-rate (or bandwidth) at the link layer due to the usage of different
Modulation and Coding Schemes (MCS). The multi-rate nature of these PHY /link
layer technologies mandates different buffering requirements than the ones common
for the links with static data rates. In addition, on the last-hop access link the
number of active long-lived TCP flows is not as large as in the core and therefore
the Appenzeller rule [6] is not applicable due to the lack of multiplexing among
TCP flows.

In addition, in a scenario like Wi-Fi, the link has a half-duplex nature, resulting
in forward and reserve traffic sharing the same medium on the channel and therefore
affecting each other’s performance — e.g. upload TCP data packets and download
TCP ACK packets would be transmitted from a station and download data packets
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and upload ACKs will be transmitted from the Access Point (AP). This also leads
to the well-known unfairness in favor of uplink traffic and deterioration of downlink
traffic since in the 802.11 DCF mode (which is commonly deployed) [84], each station
including the AP will get an equal probability to access the wireless channel. The
fairness issues in 802.11 WLAN due to the cross-layer interaction of TCP and DCF
are discussed in details in [59, 10, 68, 49, 52].

The authors of [68] identified that the buffer size in the AP plays an important
role in wireless channel bandwidth allocation. This is due to the fact that, assuming
a simple saturated link scenario with static link rates and where all K stations are
active, the AP gets only a 1/(K + 1) share of transmission opportunities to transfer
all downlink data while all other K stations get a K /(K + 1) share of transmission
opportunities to upload data. This means, assuming AP’s downstream buffer to
be the bottleneck, most of the downlink data has to be buffered in that buffer
before the AP receives its share of transmission opportunities. Such a buffer will
be occupied by download data packets as well as upload ACK packets which do not
have the same importance with regards to TCP’s self-clocking mechanism. This
has been regarded as “direction-based unfairness” in the literature [41].

There is already an extensive amount of work addressing this problem and
proposing different solutions on how to tackle it [49, 50, 55, 41, 51]. As briefly
mentioned before, another important aspect is the multi-rate nature of the 802.11
devices — e.g. changing the bit-rate by the AP or other stations participating in
the data transmission and therefore varying bandwidth and delay would affect the
buffering requirements in the AP due to the shared nature of the wireless medium.
Different MCSs on the last-hop Wi-Fi link translate to a different share of the end-
to-end latency and bandwidth and with regards to TCP may inflate the RTT to
different values from a few milliseconds to several seconds and occasionally even
more [13, 28]. This has become a complex problem since the varying bandwidth
available on the wireless shared medium depends on many factors such as: the AP’s
downlink rate, each station’s uplink rate, the number of actively competing stations,
the number of competing TCP flows, the network’s path characteristics, the traffic
pattern on the wired side of the access network, etc.

However, and perhaps because of their complexities, many of the research works
seem to have not explicitly taken into account the aforementioned factors. One of
the exceptions is [51, 50] that proposes a solution which emulates a BDP by setting
the AP’s buffer size accordingly, using the active measurement of mean service time
on the queue where its change would correlate to changes in the link-layer rate.
This solution still relies on the validity of the common rule-of-thumb for AP buffer
sizing.

Another problem with latency on Wi-Fi networks specifically and links with
varying rate in general is that there are multiple buffers at different layers — e.g.
physical transmission queues used in the 802.11 transmitter chipsets, buffers in the
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MAC layer and firmware as well as the buffer at the interface, priority queues in
QoS schemes, etc. Any or several of these buffers may contribute to the end-to-end
latency if they happen to be constantly or momentarily the bottleneck. Some of
these low-level buffers may not be accessible to control or modify by the user or the
network administrator and can only be modified by the chipset vendor for instance.

One solution to provide a better performance level in terms of bandwidth and
latency is to employ an optimal bit-rate selection (rate-adaptation) mechanism in
802.11 devices. Papers I and II investigate this. At the end we can conclude that
there can be no static buffer size that always performs well under different types of
traffic characteristics and network conditions and a more sophisticated and adaptive
scheme rather than or in addition to buffer sizing is needed.

2.3 Active Queue Management (AQM)

Loss-based standard TCP (NewReno) and CUBIC (which is the default in Linux)
congestion controls both fill up any buffer and would backoff their sending rate
(cwnd) upon the arrival of three dup-ACKs, which TCP takes as an indication
of packet loss. This means with any given buffer size and even when the buffer
is properly sized according to the previous sections’ requirements and constraints,
TCP would reduce its rate only after the link has become fully congested. This has
several drawbacks; Firstly, the tail drop, would normally trigger multiple losses and
not only one, especially with bursty packet arrivals. Secondly, it leads to constantly
or frequently full buffers, increasing latency as well as jitter — e.g. up to twice as
the intrinsic RTT with one BDP buffer. Loss-based TCP has been the standard
and predominant congestion control mechanism in the Internet since its early days
in the late 80s.

The idea of Active Queue Management (AQM) [11] is to signal the onset of
congestion to the TCP sender (or any other transport protocol that implements
congestion control) early enough to allow the sender to backoff before the buffer is
full, thus improving latency and jitter and reducing the level of burstiness in losses
which in turn leads to the de-synchronization of the flows [25]. AQM signaling
can happen through dropping packets or marking them using Explicit Congestion
Notification (ECN) [70].

While early AQM designs such as Random Early Detection (RED) [25], Adaptive-
RED (ARED) [24], CHOKe [66], BLUE [21], etc, had the goals of de-synchronization,
fairness and low latency, the main objective of AQM came into attention once again
in recent years in the light of Bufferbloat [13] community efforts, with a focus on
controlling the end-to-end latency on the access links. These recent works include
CoDel [60], FQ_CoDel [32] and PIE [64], which are briefly discussed in this section.
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2.3.1 Random Early Detection (RED)

Random Early Detection (RED) was proposed by Floyd et al. in 1993 [25] and since
then has served as the baseline AQM mechanism in the research community and
networking industry. It has also been widely implemented with different variants
in various network devices due to the recommendation of [11], although it has not
seen wide-spread deployment. One of the reasons for this lack of deployment often
mentioned by the network administrators and researchers is its complex parameter
tuning and lack of adaptability to different network conditions and path character-
istics. Authors of [7] mention that “with an appropriate set of parameters, RED is
an effective algorithm. However, dynamically predicting this set of parameters was
found to be difficult”.

RED keeps two thresholds: a lower and an upper one, called th_min and th_mazx.
When the weighted average queue size (Q) is below th_min, RED does not mark /-
drop any packet. However, when Q) grows beyond th_min, RED begins to mark/-
drop arriving packets randomly with a certain probability. This probability in-
creases as () increases and reaches a maximum value called p,,., when Q becomes
equal to th_max (see Eq. 2.2). RED will mark/drop any packet if Q goes beyond
th_max. RED uses the weighted average queue size with a weighted averaging fac-
tor (wg), instead of the instantaneous queue size to allow short-term fluctuations
and provide better system stability. Upon every packet arrival, RED calculates the
average queue size as

(2.1)

0= (1 —wq)Q + wyq, ifg>0
(1 _ wq)f(now—idle)Q’ if qg= 0

where ¢ is the current instantaneous queue size, idle is start of the queue idle
time, now is the current time and f(¢) is a linear function of time ¢. If th-min <
Q < th_maz, it calculates the dropping/marking probability (p,) as:

Pb = Pmaz(Q — thomin)/(th-max — th-min) (2.2)

Pa = P/ (1 — count.y) (2.3)

where count is the number of packets since the last marked packet. Eventually
RED marks the arriving packet with the probability of p,. For a more detailed
description of RED refer to [25]. The RED probability configuration is depicted in
Figure 2.1.

RED variants and Adaptive RED (ARED)

As mentioned before, one of the main obstacles for RED deployment has been its
parameter tuning complexity. Adaptive RED [24] is a variant of RED that tries to
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Figure 2.1: RED configuration.

tackle this problem by dynamically adjusting the RED’s maximum marking/drop-
ping probability (pmas) using an Additive-Increase Multiplicative Decrease (AIMD)
function for the aim of a desired target @ that is equal to (th-min + th-max)/2.
To the best of our knowledge, while ARED [24] was never documented in IETF or
published as a peer-reviewed publication, it has been available in the Linux kernel
and is being frequently cited and used by other works for comparison against dif-
ferent AQM mechanisms. A full description of ARED can be found in our work in
[39] as well as Section 2.3 of Paper IV.

2.3.2 CoDel

Controlled Delay (CoDel) [60, 61] was proposed as an AQM solution to the Bufferbloat
problem [13]. It tries to detect a standing queue by tracking, using timestamps, the
minimum queuing delay (or sojourn delay) packets experience in a fixed-duration
time interval, set to 100 ms by default. It assumes that a small target standing
queuing delay is tolerable so as to achieve good link utilization. When the mini-
mum queuing delay has exceeded the target delay value during at least one interval,
a packet is dropped from the tail of the queue and a control law is used to set the
next dropping time. Using the well-known relationship of dropping rate to TCP
throughput [56], this time interval is decreased in inverse proportion to the square
root of the number of drops since the dropping state was entered to ensure that
TCP does not under-utilize the link.

When the queuing delay goes below the target delay, the controller stops drop-
ping packets and exits the dropping state. In addition, no drops are carried out if
the queue contains fewer than an MTU’s worth of bytes. Additional logic avoids
re-entering the dropping state too early after exiting it, and CoDel resumes the
dropping state at a recent control level, if one exists. CoDel only enters the drop-
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ping state when the minimum queuing delay has exceeded the target delay for an
interval long enough to absorb normal packet bursts. This ensures that a burst of
packets will not experience packet drops as long as the burst can be cleared from
the queue within a reasonable period of time. A similar description of CoDel can
also be found in Section 2.1 of Paper IV.

FQ_CoDel

A variant of CoDel known as “FlowQueue CoDel” (FQ_CoDel) [32] has been avail-
able since Linux kernel version 3.5 to provide better fairness and flow isolation as
well as interactivity. FQ_CoDel is a hybrid combination of Deficit Round-Robin
(DRR) [72] and CoDel with the aim of optimizing sparse flows (called “Flow Queu-
ing”) similar to SQF [14] and DRR++ [54] and its scheduling mechanism bears a
resemblance to Stochastic Fair Queuing (SFQ) [57].

FQ_CoDel stochastically classifies the incoming packets into different sub-queues
(up to maximum 1024 sub-queues by default) by hashing the 5-tuple of IP protocol
number and source and destination IP addresses and port numbers, perturbed with
a random number selected at initiation time. Each sub-queue is managed by an
instance of the CoDel mechanism. On dequeue, it selects the sub-queue from which
to dequeue using a round-robin scheme, in which each sub-queue is allowed to
dequeue up to a configurable quantum of bytes (usually equal to one MTU) for
each iteration. FQ_CoDel maintains two set of sub-queues: “new” and “old”. The
“old” sub-queues are the sub-queues that hold more than one quantum of bytes (and
therefore build a standing queue) whereas the “new” sub-queues hold less than or
equal to one quantum of data (and therefore with no standing queue). In one round-
robin iteration, a “new” sub-queue is served and removed from the list and will be
re-added each time a packet arrives for it and therefore will get priority over “old”
sub-queues. In practice this distinction, would benefit applications that require low
latency and interactivity, e.g. HT'TP requests, SSH, DNS lookups, VoIP, etc. Flow
isolation in FQ_CoDel also better protects flows from the impact of non-responsive
flows such as Constant Bit-Rate (CBR) multimedia traffic. On the other hand there
is a potential disadvantage of enforced fairness, e.g. when a set of flows multiplexed
in a VPN tunnel are treated as a single flow by FQ_CoDel.

FQ_CoDel is implemented in and has been available since Linux kernel 3.4.0
and turned on by default on Cerowrt router firmware [1]. A detailed description of
FQ_CoDel can be found in [32].

2.3.3 Proportional Integral controller Enhanced (PIE)

The Proportional Integral controller Enhanced (PIE) AQM scheme [64, 65] devel-
oped by Cisco, randomly drops a packet at the onset of congestion. Similar to
CoDel, it uses queuing delay but in the form of estimated queuing delay instead of
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the more commonly used queue length that is used in RED (and ARED). It uses the
trend of latency over time (increasing or decreasing) to determine the congestion
level. Different from CoDel that drops packets on departure (dequeue time) and
requires timestamping, PIE drops packets on arrival (enqueuing time) with a ran-
dom probability p and does not require timestamping, making it a more lightweight
mechanism. Every t,,qqze time units, PIE estimates the current queuing delay using
Little’s law [53] in Eq. 2.4 and derives p based on Eq. 2.5:

EIT) = N/ (2.4
p=p+ax (E[T] - ﬂarget) + 6 * (E[T] - E[T]OZd) (25)

where N is the current queue length, p is the draining rate of the queue, E[T]
represents the current estimated queuing delay, E[T],q represents the previous
iteration’s estimation of the queuing delay, T}4,ge is the target queuing delay, and
« and 3 are the weights in probability calculation. The drop probability calculation
incorporates the direction in which the delay is moving by employing a classic
Proportional Integral (PI) controller design, similar to the one used in [34]. The «
factor determines how the deviation of current latency from Tj,rq4e¢ affects the drop
probability. The g factor makes additional adjustments depending on whether the
latency trend is positive or negative. PIE has been available since Linux kernel
3.13.0. A full description of PIE can be found in [65].

DOCSIS 3.1 PIE

A customized version of PIE, called DOCSIS-PIE [83] is now being specified in
increasingly popular DOCSIS 3.0 and 3.1 cable modems [18]. Implementation of
DOCSIS-PIE is mandatory for DOCSIS 3.1 cable modems, and recommended for
implementation in DOCSIS 3.0 cable modems where it is the default selection. A
full description of DOCSIS-PIE is given in [83].

2.4 Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) [23] allows network devices (such as routers
and switches) using an AQM mechanism to mark packets belonging to ECN-capable
flows in the face of congestion instead of dropping them. Without ECN, a TCP
sender relies on receiving three DupACKSs to infer that congestion has occurred
and a packet has supposedly been lost. Since these three DupACKs are caused by
packets succeeding the dropped packet, they must reach the receiver in the same
RTT in order to avoid having to wait a retransmission timeout (RTO) before the
sender can react. ECN shortens this feedback time and also saves the packets that
would otherwise be lost by dropping.
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Despite being proposed in 2001 and widely implemented, ECN has not been
widely used [76] partly due to the behavior of a subset of middleboxes that re-
sulted in the failure of ECN-enabled TCP connections, rendering 8% of web servers
unreachable in 2000 [63]. However, frequent measurements have over the course
of several years shown this has reduced significantly over time along with a wide
increase of client and server-side support for ECN [77]. ECN needs to operate in
conjunction with an AQM mechanism. ECN marking is now supported by the
CoDel and PIE in the Linux kernel and it is enabled by default in Cerowrt router
firmware [1].

The standard mechanism of ECN has been specified in [70]. An introduction
to ECN is provided in Section 7 of Paper IV and Section 1.2 of Paper V and a
comprehensive set of benefits of using ECN is listed in Section 4 of Paper VI. ECN
has been the subject of much interest in the research community and numerous
proposals have been published suggesting to re-define the use of ECN code-points
for different ways of performance improvement although none of them seem to inter-
operate with the currently deployed standard ECN without requiring significant
changes in the end-hosts and/or routers. A review of such proposals is given in
Section 5 of Paper V.

Instantaneous Marking versus Averaging

Most AQM mechanisms such as RED maintain some form of averaging to smooth
their measurements of queuing delay or length over a reasonable amount of time
to provide better system stability and filter short-term bursts or noise in the mea-
surements. While averaging has these benefits, it comes at the cost of delaying
the congestion feedback to the sender and therefore the time until the sender re-
acts. By then the queue may have potentially become full, with increased chances
of DropTail losses and more latency. Another alternative is to use “instantaneous
marking” by e.g. setting the averaging factor in RED to 0 so that the congestion
feedback will be sent to the sender immediately. Datacenter TCP (DCTCP) [5]
leverages the use of ECN for instantaneous marking to provide an accurate feed-
back to the congestion control mechanism. However, DCTCP requires changes in
both end-points as well as the middle-boxes and is not compatible with legacy ECN
although first steps towards enabling this compatibility have already been taken
[45]. The trade-off between instantaneous marking and averaging is a subject of
further research and it not tackled in this thesis.
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Overview of the Contributions

In this chapter we elaborate on the solutions being investigated or proposed in this
dissertation to tackle the latency problem in the Internet (a.k.a bufferbloat [13]).
We categorize these solutions as: (1) sender-based: solutions that solely rely on
the sender detecting the increase in network delay, either in the link layer or in the
transport layer and reacting to it accordingly; (2) solutions that rely on the network
itself trying to detect the increase in delay and signaling it back to a legacy sender,
leveraging the standard behavior of the sender to reduce the delay; (3) solutions that
require both network signaling and the sender’s collaboration with the network.

This dissertation covers this three-fold solution space for the problem of latency
in today’s Internet and investigates the problems one by one. One key factor for
the success of any solution is the possibility of gradual and easy deployment with
partial benefits even when the entire Internet does not support a new mechanism.
This requirement has guided the design of the solutions in this thesis. The upcom-
ing sections elaborate on the aforementioned solution space and present research
contributions in each of the three directions.

3.1 Solution: sender-based

A TCP sender can potentially try to predict or infer the onset of congestion in the
network either at the link layer or the transport layer. The link layer delay often
includes signal propagation delay, medium acquisition delay, serialization delay and
possible frame retransmission delays. However, for instance in the case of Wi-Fi
networks, these are often mainly dominated by the choice of Modulation and Coding
Scheme (MCS) at the link layer which would determine the link speed. A sender
needs to appropriately choose the right MCS (translated to a certain bit-rate) at the
link layer for a given channel condition and network traffic scenario to minimize the
frame transmission time and hence the overall latency experienced by end-points.
We will elaborate on this later on in this section.
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In the transport layer, a TCP sender can potentially try to detect the increase
in delay at the onset of congestion (e.g. due to buffering) and react accordingly
by reducing its rate. The commonly deployed loss-based TCP congestion control
(standard NewReno [22] and Linux’s CUBIC [29]) however, do not implement such
mechanisms and are mostly ignorant towards the changes in delay or congestion level
and would only react to packet losses. This means that on a perfect transmission
medium they would only reduce the rate when the bottleneck buffer is full and
a packet or more are dropped at the buffer’s tail. This means, using loss-based
congestion control, the buffer perpetually gets full and drains, which creates delay
and jitter often in the order of several hundreds of milliseconds [73, 74] to multiple
seconds [27, 51], which is harmful to coexisting delay-sensitive flows such as real-
time multimedia, VoIP or web traffic.

On the other hand, an alternative class of delay-based congestion control algo-
rithms exists that utilizes trends in the observed RTT (rather than packet losses)
to infer the onset of congestion along an end-to-end path. This development began
in 1989 with Jain’s CARD (Congestion Avoidance using Round-trip Delay) [35]
and several following algorithms [80, 81, 43, 75, 8, 46, 30] including the well-known
TCP Vegas [12]. Such algorithms try to optimize their sending rate without forcing
the filling of buffers to induce packet losses, by using measurements of delay. By
not fully filling buffers, they can significantly lower the queuing delays compared
to loss-based congestion control mechanisms, regardless of how much actual buffer
space is available. A full review of such mechanisms is given in Section II of Paper
IIT as well as in [40].

While trying to achieve a common goal, these delay-based mechanisms differ in
their measurement method (e.g. using RTT, one-way delay, per-packet measure-
ments, etc) as well as how they set their thresholds to infer congestion, and how
they adjust their rate in response to inferred congestion (proportional, probabilistic,
ete).

The problem with such delay-threshold mechanisms is that it is hard to find
meaningful thresholds without the knowledge of the flow and network’s path char-
acteristics over time, since these mechanisms require to accurately estimate the
path’s intrinsic (or smallest possible) RTT (a.k.a base RTT) in order to be able
to distinguish the queuing delay from propagation delay and also to be fair among
different flows. In addition, a common major problem with delay-based mechanisms
is unfairness when their flows share the bottleneck with loss-based TCP flows. This
is because delay-based mechanisms react to the increase in queuing delay (although
using different methods) by reducing their rate, while the source of delay increase
is in fact a competing loss-based flow. This can lead to poor performance of delay-
based mechanisms when their flows share the bottleneck with legacy Internet traffic.

CAIA Delay-Gradient (CDG) [31] is a sender-side algorithm compatible with all
conventional TCP receivers. By using relative variations in RTT (“delay-gradient”)

24



Solution: sender-based

to infer congestion it eliminates the need to know a path’s minimum, maximum
or typical RTT levels, and eliminates reliance on pre-configured delay thresholds.
CDG v0.1 has been available in the FreeBSD OS since kernel 9.2. Using a handful
of mechanisms, CDG tries to gain a better share of the bandwidth compared to
other delay-based mechanisms when coexisting with loss-based TCP traffic [31].
It is therefore a good and state-of-the-art candidate for a sender-based mechanism
that aims to reduce the delay on the Internet. A full description of CDG is provided
in Section III of Paper III.

CDG v0.1’s performance in wired network scenarios has been evaluated in [31].
In our works in Paper III and [40], we evaluate CDG v0.1 in the context of Wi-Fi
home networks. Using real-life experiments on an 802.11 testbed [82] with FreeBSD,
we show that in homogeneous environments (no competing loss-based traffic), CDG
is able to maintain the latency in the order of tens of milliseconds regardless of the
bottleneck’s internal buffer size and reduce the jitter while using large fraction of
spare link capacity. However, Paper III shows that in heterogeneous environments,
when sharing the bottleneck with loss-based NewReno or CUBIC traffic, CDG
noticeably loses throughput in contrast to the CDG’s performance in wired networks
[31].

This is because CDG’s design principles try to reduce the queuing delay (e.g. at
the Wi-Fi access point whenever it happens to be the bottleneck) using the delay-
gradient. However, the delay-gradient signal becomes very noisy when the source
of extra induced delay is a mixture of the AP’s queuing delay and medium access
delay taking into account different MCSs (bit-rates) used by the rate adaptation
mechanism at the link layer. Paper III leverages the good performance of CDG
in homogeneous Wi-Fi environments as well as its “scavenger-like” nature (since it
does not gratuitously steal capacity from commonly deployed “foreground” TCPs
such as CUBIC and NewReno) in heterogeneous Wi-Fi environments to propose
CDG v0.1 as multimedia-friendly “Background” transport in home networks.

In the end, we conclude that an optimal congestion control mechanism would
probably need indications from the network itself about the onset of congestion
to be able to distinguish the delay due to buffering from the link layer delay (e.g.
medium access and transmission with different bit-rates).

3.1.1 Link Layer Considerations in 802.11 Networks

As mentioned in Section 3.1, one of the major challenges for sender-based mecha-
nisms that try to reduce the end-to-end delay is to be able to distinguish the change
in queuing delay from the delay changes related to the link layer mechanisms. This
is a difficult issue in Wi-Fi networks where end-to-end delay is influenced by the
use of varying MSCs (bit-rates) for frame transmission, varying channel acquisition
delay in a shared Wi-Fi medium (contention delay), frame retransmission delay
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due to noise and interference, etc., which all may contribute to a highly varying
RTT even in short time-scales. This may not give the right indications about the
source of delay for a sender-based congestion control mechanism that operates at
the transport layer.

To minimize the delay at the link layer, and to optimize frame transmission
at the MAC sub-layer, the choice of the “Rate Adaptation” (RA) mechanism is
crucial. Several rate adaptation mechanisms have been proposed in the literature
[33, 42, 67, 86, 3, 71] and a smaller set of them have been deployed in common Wi-Fi
devices [38, 48, 58, 9]. The common problem facing RA mechanisms is to distinguish
between the frame transmission failures due to noise and interference from the frame
collisions, and only reacting to those related to the noise and channel condition.
Several of the above RA mechanisms have tried to address this issue, although
implementing some of them will require changes in the IEEE 802.11 standard and
are therefore not suitable options for deployment in common Wi-Fi networks. We
have elaborated on this in Section 2 of Paper I as well as Section III of Paper II.

The works in [15, 16] show that the choice of RA mechanism is trivial for down-
link TCP with regards to the distinction between collision-related frame loss and
the frame loss related to the channel quality. On the contrary, our work in Paper
I demonstrates, using simulations, that uplink TCP performance can drastically
deteriorate in the presence of a somewhat simplistic RA algorithm called AARF
[48] because it cannot properly distinguish the frame errors due to collision from
the frame errors due to channel quality.

Paper II extends this work to a set of RA mechanisms commonly deployed
in 802.11 drivers for Atheros-based chipsets, available in the madwifi RA suite
[2] (now superseded by athbk and ath9k drivers). Using real-life experiments in
two different testbeds (NDlab and Emulab [82, 19]), Paper II evaluates the RA
mechanisms AMRR [48], SampleRate [9] and Minstrel [58] and identifies that in
contrast to AMRR and SampleRate, Minstrel is able to keep the uplink performance
at roughly the same level as downlink in various different scenarios, e.g. with
a varying number of contending nodes, different RTT values and under different
TCP congestion control variants, thus providing the optimal performance and rate
selection with regards to the throughput.

Using a state-of-the-art RA mechanism such as Minstrel would therefore prevent
unnecessary rate downshifts that would otherwise occur using AMRR or SampleR-
ate, specifically in uplink scenarios and would therefore improve the end-to-end
latency at link layer. We argue that in Wi-Fi networks, having the right RA mech-
anism at the link layer is a necessity, and a prerequisite for any mechanism in the
transport layer that tries to minimize the end-to-end latency.
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3.2 Solution: network-based

As explained in Section 3.1, an optimal congestion control mechanism aiming at
reducing the queuing delay would probably need feedback from the network about
the onset of congestion. This normally comes in the form of an Active Queue
Management (AQM) mechanism marking/dropping packets in the network device
that is a bottleneck, in order to notify the sender to reduce its sending rate to avoid
a standing queue.

In Section 2.3 we provided a review of traditional as well as state-of-the-art
AQM mechanisms that aim at reducing delay on the access links. Several AQM
mechanisms have recently been proposed to address the Bufferbloat [13]. These
include the two state-of-the-art AQMs, CoDel [60, 61] and PIE [64, 65] which share
the goal of dynamically adapting to the network’s conditions with a traditional
AQM mechanism such as Adaptive RED [24].

Paper 1V investigates the performance of CoDel, PIE and ARED in access link
scenarios, where the bottleneck is most likely to reside, using real-life experiments
conducted in NDIlab testbed. It evaluates the performance of these AQM mecha-
nisms in a variety of scenarios, including different congestion levels and RTTs in
wired access network scenarios. In addition, it investigates the AQM performance
issues in wireless networks and also elaborates on AQM behavior with and without
Explicit Congestion Notification (ECN). The main contribution of Paper IV is its
parameter sensitivity analysis of AQM mechanisms which has also been published
in [39].

One of the key factors for AQM’s performance as well as the success in its
widespread deployment is its knob-free operation. As we noted before, RED’s com-
plex parameter tuning for varying network conditions was one of the main factors
that prevented the network operators from turning it on despite its more than a
decade long history of being available in network hardware. Both designers of CoDel
[60] and PIE [64] claimed knob-free operation of their AQM mechanism. However
in Paper IV, using a measurement-based parameter sensitivity study (also available
in our work in [39]), we identified that both CoDel and PIE in fact maintain a set
of parameters (with recommended default values) that do affect their performance.

The experimental results of Paper IV shows that in multiple scenarios ARED
performs better than CoDel and PIE with regards to reducing queuing delay while
maintaining goodput in moderately-to-highly multiplexed traffic scenarios while the
latter AQM mechanisms are able to maintain a better trade-off between goodput
and latency at the cost of extra latency in lightly multiplexed traffic scenarios.

In addition, Paper IV and Paper V demonstrate that the default parameter
settings of CoDel and PIE (as well as ARED in Paper IV) leads to poor performance
on paths with large RTTs (e.g. cross-continental paths or satellite links) where both
latency and throughput might be crucial performance factors. This is because both
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CoDel and PIE try to reduce the queuing delay to a value in the order of 5ms to
20 ms using their default parameter settings on access links where the traffic might
usually be lightly multiplexed. At such low dropping/marking AQM thresholds,
the link may go under-utilized frequently.

In order to strike a good balance between reduction in latency and throughput,
and with low marking thresholds such as the ones used in CoDel and PIE by default,
a TCP sender would perhaps need to reduce its rate more conservatively in response
to AQM congestion signals and only react in a standard way (by halving its rate)
in the presence of packet losses induced by full buffers. However, a packet loss can
be either an indication of a congestion signal from an AQM instance on the path
or a full buffer and therefore it is not a good indicator for the sender to identify an
AQM-induced congestion signal. There should be a way for the network device to
explicitly signal the onset of congestion to the sender so that the sender can react
accordingly.

3.3 Solution: signaling between the network and the
sender

An ECN-mark is a clear indication of the presence of an AQM mechanism on the
path. While there has been a significant rise in ECN support on the Internet over
the recent years [76, 63, 77], a topic that is also covered in details in Section 2.4),
the measurements of [76] only found one ECN-enabled router in the Internet despite
the fact that ECN is almost 15 years old. A hypothetical observation of an ECN-
enabled network device along an Internet path in the near future would most likely
to be accompanied with the presence of a state-of-the-art AQM mechanism such
as CoDel (or FQ_CoDel and its variants) or PIE on the same device which aims
to maintain the queuing delay at the thresholds of 5ms to 20 ms by default with
short-term packet burst tolerance. Thus, receiving an ECN-mark can be taken as
an indication of low marking thresholds for the AQM-enabled device and therefore
the TCP senders can afford to reduce their sending rate by less (e.g. with a larger
multiplicative decrease factor) in response to an ECN-mark whereas this is not the
true in case of packet loss (three DupACKs).

As we explained in Section 3.2 using a larger TCP multiplicative decrease factor
would provide a better latency versus throughput trade-off, most specifically on
large RTT paths (e.g. when a path’s intrinsic RTT is above 60 ms to 80 ms) which
are not uncommon with cross-continental and inter-continental traffic.

Our work in Paper V leverages this potential and proposes a very simple mech-
anism called “Alternative Backoff with ECN” (ABE) which consists of enabling
ECN and letting individual TCP senders use a larger multiplicative decrease factor
in reaction to ECN-marks from AQM-enabled bottlenecks. The idea of ABE is
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straightforward and requires only a minor modification to the TCP sender (chang-
ing the TCP’s multiplicative decrease factor) which can be a success factor with
regards to its widespread deployment on the Internet. It can be deployed incremen-
tally and requires no flag-day. ABE achieves this using the ECN marking specified
in RFC 3168 [70] for routers/middleboxes and the TCP receiver. It also defaults to
the standard behavior whenever ECN is not supported along the path.

The idea of using a larger multiplicative decrease factor in response to ECN is
not new, as the authors of [47] proposed to use a larger multiplicative decrease factor
in conjunction with a smaller additive increase factor for ECN in 2002. However
[47] assumes the AQM on the bottleneck to be RED (since this work was performed
before the introduction of CoDel and PIE) which may not necessarily be deployed
with low marking thresholds by default. Our work in Paper V differs from the
work in [47] since it takes into consideration the default values of the state-of-the-
art AQM mechanisms (CoDel and PIE) as being shipped and also solely relies on
updating the multiplicative decrease factor.

Using a mix of real-life experiments run with the TEACUP [87] testbed, analysis
and ns-2 simulations with standard NewReno and CUBIC flows, Paper V shows sig-
nificant throughput gains in lightly-multiplexed traffic scenarios, without losing the
delay-reduction benefits of CoDel or PIE. Paper V motivates and investigates our
proposed ABE mechanism in several scenarios: first it shows the inter-relationship
between the TCP’s back-off mechanism, bottleneck buffer size and path’s charac-
teristics provided with analysis and simulation and also demonstrates how TCP
performance degrades over CoDel and PIE bottlenecks on large RTT paths using
real-life experiments. Second, it evaluates ABE in various scenarios using a combi-
nation of real-life experiments and simulations e.g. including bulk TCP transfers as
well as short flows. Third, in doing so it also evaluates ABE flows’ convergence time
as well as their fairness with legacy TCP traffic when sharing a common bottleneck.
It is also worth noting that ABE uses the same multiplicative decrease factor in both
slow-start and congestion avoidance. In paper V, we show that using a larger factor
at the end of slow-start can significantly benefit the short flows common for web
traffic.

The significant and robust performance gain of ABE in all of the mentioned
scenarios demonstrated in Paper V gives a compelling reason for AQM deployment
with ECN turned on, all achievable with a simple and low-cost change (in terms of
implementation effort) in the TCP sender’s reaction to ECN-marks.

The results of Section 4.3 of Paper V show that ABE flows can coexist with
standard TCP flows on the same bottleneck without any of the flows being starved
and with a relatively good level of fairness (in terms of normalized throughput ratio)
between both types of flows for the paper’s recommended multiplicative decrease
factors. However, a more strict fairness level among the two types of flows may
be needed in certain scenarios e.g. for the sake of ensuring backward compatibility
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with standard Internet traffic or depending on the operator’s policy.

Paper VI proposes a certain way of configuring AQM mechanisms (using a
showcase dual-threshold RED mechanism), which aims to provide total fairness
between ABE flows and standard loss-based TCP flows. The idea behind this
mechanism is to use two different AQM thresholds: a lower one for packets belonging
to ECN-capable flows and a higher one for non ECN-capable flows allowing more
queuing for the standard TCP flows in order to achieve high utilization. Using a set
of mechanisms embedded in the dual-threshold mechanism, detailed in Section 2.3
of Paper VI, it is being assured that none of the two flow types get starved and the
bottleneck does not go underutilized, while achieving strict fairness between ABE
and standard TCP flows.
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Chapter 4

Conclusion

This dissertation evaluated approaches to solve the problem of excessive latency
on the Internet’s access links. This problem is the result of the legacy loss-based
TCP congestion control mechanism’s interaction with unnecessarily large unman-
aged buffers in access link network equipment. It is also the result of TCP’s interac-
tion with multi-rate link layer mechanisms commonly deployed on the access links.
Section 1.2 provided three Research Questions (RQs). In the upcoming subsection
we address each of these RQs.

4.1 Addressing Research Questions

— RQ1: How should one size and manage the network buffers on the access links
appropriately to reduce the end-to-end latency?

RQ1 has been addressed with regards to buffer sizing in Section 2.2 which
provides an overview of the existing methods to control the maximum buffer size
for different network scenarios including the network’s core and last-hop access links.
However, for the last-hop access links, none of the discussed works in Section 2.2.2
provides a solution that reduces the latency to less than a bandwidth-delay product
worth of buffering. With regards to the question of buffer management in RQ1,
Paper IV evaluates state-of-the-art Active Queue Management (AQM) mechanisms
for various parameter settings and network scenarios and explores the challenges for
such mechanisms to successfully control the delay under various network conditions.
We conclude that AQM mechanism should be used, but the performance with such
AQM mechanisms is highly dependent on the end-point’s behavior in reaction to
AQM dropping/marking.

— RQ2: Which component(s) in the network need to be modified?
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RQ2 examines which components in the network need to be changed in order
to maintain a low latency level. In Chapter 3 an overview is given: (1) solutions
that require a modified sender behavior to control the delay; (2) solutions that
require the network device to maintain the latency low by actively managing its
buffer and relying on legacy TCP congestion control behavior; (3) solutions that
require explicit signaling between the sender and network device about the onset of
congestion with a modified sender behavior in response to explicit signaling.

Papers I, I, and III fall in the category of solution set (1) and require a change
in the sender’s congestion control mechanism (Paper III) and potentially rate adap-
tation mechanism in the link layer (Paper I and Paper II). Paper IV belongs to
category (2) and only requires a change in the bottleneck network device to sup-
port an AQM mechanism, and Papers V and VI belong to category (3) which
require changes in both sender and bottleneck network devices. We conclude that
while either modifying the network or the sender provides an improvement, the best
solution requires modifying both.

— RQ3: How deployable is the solution in the current Internet?

RQ3 examines how deployable each solution is in the current Internet. In
each of the categories mentioned above, depending on the magnitude and location
of changes required in each of the components, the cost and the viability of its
deployment path is different.

Papers I and II conclude that in order to optimize rate adaptation in the link
layer, the sender’s 802.11 network device should use a mechanism such as Minstrel
[58]. This is normally not in control of the user or network operator but rather
the vendor or the driver developer and requires hardware compatibility and sup-
port. However, we assume that, in order to have an optimal performance in Wi-Fi
networks, it is necessary for the sender to use a suitable RA mechanism.

While CAIA Delay Gradient (CDG) v0.1 congestion control discussed and eval-
uated in Paper III is relatively easy to deploy by the user because of its availability
in the the FreeBSD kernel, it still suffers from poor performance when sharing the
bottleneck with standard loss-based TCP traffic. On the other hand, an AQM mech-
anism such as the ones evaluated in Paper IV should be deployed in the bottleneck
network device which can mostly be controlled by the Internet Service Provider
(ISP) or the home user, depending on its location and access level.

Our proposed methods in Papers V and VI require a change in both the sender
and the network device. Paper V argues that this is achievable today because
recent works (mentioned in Chapter 2) show a widespread ECN deployment in the
endpoints as well as an increasing trend in AQM deployment with the parameter
settings assumed in Paper V, reducing the cost and complexity of our solution’s
deployment. The proposed method of Paper V works with the state-of-the-art
AQM mechanisms (e.g. (FQ-)CoDel and PIE) that are currently being deployed in

32



Future Directions

access link network devices. By using their support for ECN based on the currently
existing specification in RFC 3168 [70], the required changes are reduced to a few
lines of code in the sender’s kernel that update the TCP multiplicative decrease
factor in response to ECN.

4.2 Future Directions

DCTCP [5] and similar mechanisms leverage ECN to provide a more precise and
more immediate feedback about congestion, some of which might not use ECN as
defined in RFC 3168 [70]. Most state-of-the-art AQM mechanisms use some form
of smoothing of the congestion signal for the sake of system stability. Delaying the
congestion signal is a drawback of such mechanisms that can cause extra delay and
potentially full buffers. With a more precise feedback it becomes possible to use an
instantaneous signal instead of smoothing. The introduction of such mechanisms
usually requires changes in bottleneck network devices, senders and receivers. The
gradual deployment of our proposed methods in Papers V and VI can provide the
necessary interim deployment path for such mechanisms (Section 6 of Paper V).
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