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This thesis investigates the effect of transmission opportunity limit on fairness in 
IEEE802.11e enhanced distributed channel access. IEEE802.11e brings quality of service 
features into IEEE802.11 wireless local area networks. In stations operating with 
IEEE802.11e, traffic is divided into categories. Differentiation between these categories is 
achieved by using four parameters to control the channel access. This thesis investigates 
one of these parameters, the transmission opportunity limit, which controls the channel 
access duration. With the reference parameter values given in IEEE802.11e, as the 
network congestion level increases, low priority traffic suffers quickly to a point where 
none of it gets transmitted. This makes the network overall fairness poor. 
 
To improve fairness while not disturbing high priority traffic, this thesis investigates the 
use of large transmission opportunity limit values. In the first set of simulations, the low 
priority traffic transmission opportunity limit values are set to infinite. This means that the 
low priority queue can send all its packets when it gains access to the channel. The results 
show that infinite transmission opportunity limit improves fairness when channel is 
getting congested. Also infinite transmission opportunity limit does not notably weaken 
high priority traffic performance.  
 
Second set of simulations focuses on the network congestion level where the effect of the 
infinite transmission opportunity limit is the largest. In these simulations the transmission 
opportunity limit is set to static value ranging from zero to a maximum allowed value. The 
results from these simulations are similar to the results of the first simulation set.      
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Tämä diplomityö tutkii lähetysaikarajan vaikutusta verkon reiluuteen IEEE802.11e 
tehostettuun ja hajautettuun kommunikaatiokanavaan pääsyyn. IEEE802.11e tuo 
palvelunlaatuominaisuuksia IEEE802.11 langattomiin verkkoihin. Asemat, jotka käyttävät 
IEEE802.11e-ominaisuuksia jakavat liikenteen neljään kategoriaan. Kategorioiden välinen 
erottelu saavutetaan neljällä parametrilla, jotka kontrolloivat kanavaan pääsyä. Tämä työ 
tutkii yhtä näistä parametreistä, lähetysaikarajaa, joka kontrolloi lähetyksen kestoa. 
IEEE802.11e antaa referenssiarvoja parametreille, mutta näillä arvoilla verkon 
kuormituksen lisääntyessä, alemman prioriteetin liikenne kärsii nopeasti. Hyvin pian 
kuormituksen lisääntyessä alemman prioriteetin liikenne ei pääse verkosta läpi lainkaan. 
Tällöin myös verkon reiluus on matala. 
 
Reiluuden parantamiseksi, häiritsemättä korkean prioriteetin liikennettä, tämä työ tutkii 
ison lähetysaikarajan käyttöä. Ensimmäisessä simulaatiosarjassa alemman prioriteetin 
lähetysaikaraja on ääretön. Tämä tarkoitta sitä, että alemman prioriteetin jono voi lähettää 
kaikki pakettinsa kun se pääsee lähettämään. Tulokset osoittavat, että ääretön 
lähetysaikaraja parantaa reiluutta kun kanava on kuormittumassa. Tulokset osoittavat 
myös, että ääretön lähetysaikaraja ei merkittävästi heikennä korkean prioriteetin 
liikennettä.   
 
Toinen simulaatiosarja keskittyy sellaiseen verkon kuormitustilaan, missä äärettömän 
lähetysaikarajan vaikutus on suurin. Näissä simulaatioissa lähetysaikarajan arvo on 
staattinen. Simulaatiosta toiseen lähetysaikarajan arvo muutetaan toiseen arvoon väliltä 
nolla-suurin sallittu arvo. Tulokset näistä simulaatioista ovat hyvin samanlaiset kuin 
ensimmäisen simulaatiosarjan tulokset.      

Avainsanat: Lähetysaikaraja, IEEE802.11e tehostettu ja hajautettu kommunikaatiokanavaan 
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1. Introduction 
 
The first wireless network was developed in the University of Hawaii by Professor 

Norm Abramson and his team in the early 1970’s. They wanted the Hawaiian Islands 

to be connected into a single wireless computer network. This they accomplished with 

seven computers distributed to four islands that connected with bidirectional links to a 

central computer in Oahu. This network was named AlohaNet and in early 1971 it 

was even connected to the ARPAnet in the continental USA.  

 

From these humble but innovative beginnings wireless networks have taken over the 

world. In the past fifteen years wireless networks have spread all around the globe. 

Today it is even possible to send with an ordinary mobile phone a photo from 5000 

meters at Mt. Everest instantly to Finland.  

 

In addition to mobile phone networks that cover large areas, networks for smaller 

areas have become an everyday item. Wireless local area networks offer high data 

rates compared to GSM/GPRS/UMTS cost efficiently, their deployment is easy and 

their use convenient. There is a low barrier of entry into WLAN market due to 

unlicensed frequency bands and relative cheap hardware. This increases competition 

and drives down prices. In addition, personal user devices are getting cheaper and 

more powerful all the time and the usage of portable devices such as laptops has 

increased greatly. All these factors have made WLANs very popular.  

 

In recent years also the popularity of applications with strict delay and throughput 

requirements has grown rapidly. Examples of such applications are voice over IP 

(VoIP) and video streaming. This increasing popularity places new demands to 

networks and devices used to connect to networks. In a perfect situation a network 

can handle all demands users make, but in reality this is not always the case. In 

situations where there are more demands than the network can meet, a decision must 

be made whether to prioritize some traffic over another. This means implementing 

some sort of a Quality of Service (QoS) scheme.   
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Bringing QoS features to WLANs is difficult due to their characteristics. Wireless 

networks are far more error prone than wired networks. The availability of radio 

frequency spectrum for WLAN use and the physical properties of waves propagating 

in the air create a theoretical limit for maximum channel capacity. Because these 

ultimate restrictions exist, it is important to use the channel as efficiently as possible. 

When bringing QoS features to WLANs, this need for maximum efficiency must be 

kept in mind.  Also, because WLAN environment can rarely be totally controlled, true 

QoS guarantees are close to impossible. However, various levels of service are 

possible and they can be used to help meet the needs of demanding traffic types.  

 

Institute of Electrical and Electronics Engineering (IEEE) develops a very popular 

wireless local area network (WLAN) standard family by the number of 802.11. This 

standard family uses the unlicensed spectrum. Originally it was not well equipped to 

handle situations where QoS features are needed. However, in 2005 IEEE approved 

an amendment named 802.11e. This amendment offers a new version of the media 

access control layer (MAC layer). It can be used to replace the existing MAC layer 

presented in the 802.11 standard approved in 1999.  802.11e aims to improve QoS 

features of IEEE802.11 wireless local area networks 

 

IEEE802.11e is divided into two parts, the enhanced distributed channel access 

(EDCA) and the hybrid coordination function controlled channel access (HCCA). In 

the latter the channel access is centrally controlled, while in EDCA there is no central 

control. This thesis focuses on EDCA. In 802.11e EDCA, the differentiation between 

traffic is achieved by having four transmission queues instead of just one. Each queue 

has a different set of parameters that determine the frequency and duration of channel 

access. This creates differentiation between different traffic types, but efficiency and 

fairness issues remain. 

 

In the 802.11e amendment parameter values are set statically. This does not take the 

overall network condition into account, which might lead to wasted bandwidth.  Nor 

is there distinguishing between uplink and downlink flows, which creates unfairness 

between uplink and downlink flows. In addition, overall fairness in the network 

rapidly deteriorates as the amount of traffic increases. As the congestion increases the 

low priority flows start to suffer and very quickly no low priority traffic gets through 
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at all. This total starvation of low priority flows makes the network unfair. Even 

though we want to prioritize high category flows we still want to be able to send some 

low priority traffic.  

 

To improve fairness in EDCA, this thesis investigates modifying the transmission 

opportunity (TXOP) limit. TXOP limit is the parameter containing the channel access 

duration. In standard 802.11e, the low priority flows can only transmit one packet 

when and if they do get access to the channel. It is interesting to find out if sending 

suitable size packet clusters gives the low priority flows some chance of surviving. 

This thesis investigates modifying the TXOP limit. The aim of this thesis is to find 

out if modifying the TXOP limit improves 802.11e EDCA fairness, but in such a way 

that the delay sensitive traffic is not disturbed too much. Additionally, if changing the 

TXOP limit has an effect, the thesis studies how much and in which way the TXOP 

limit should be changed. In the thesis simulations are used to investigate the effect of 

varying the TXOP limit. 

 

Results show that a large TXOP limit improves fairness. Additionally this 

improvement is not achieved at the expense of voice traffic. Voice traffic delay, 

throughput and packet delivery ratio do not suffer significantly compared to 

simulations with standard settings. However, the fairness improvement is not very 

large. The results also show that as number of transmitting stations increases, the 

network quickly becomes too congested for either kind of traffic and in such a 

situation modifying the TXOP limit is not useful.      

 

This thesis is organized as follows. Chapter 2 describes the IEEE802.11 standard and 

the 802.11e amendment. It includes discussion about QoS in wireless local area 

networks in general and improvements IEEE802.11e amendment brings. Particular 

focus is on the details of IEEE802.11e EDCA. Chapter 3 discusses the concept of 

fairness in general and explains Jain’s fairness index, which is the metric used to 

measure fairness in this thesis. Chapter 4 presents earlier research in this area. Chapter 

5 explains good simulation practices and the particulars of simulations for this thesis. 

Chapter 6 presents and discusses the simulations results. Finally Chapter 7 draws 

some final conclusions.  
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2. IEEE 802.11 Wireless local area networks 
 
 
A key WLAN standard family is the IEEE 802.11 standard family. The 802.11 

networks have become the de facto standard used around the world and are under 

constant development. This chapter describes this development and discusses some 

challenges that wireless networks face. The 802.11e amendment will be introduced 

and described in more detail.  

 

2.1 Development of IEEE 802.11 standards  
 

The IEEE 802.11 standards body was created in May 1989 motivated by regulations, 

which allowed for unlicensed transmissions in an 83 MHz band in the 2.4-GHz range. 

The progress was slow and careful, but finally in 1997 the first completed standard 

was ratified. This standard formed the basis for all later versions of 802.11 standards 

and amendments. It defined a common medium access control (MAC) and three 

physical access (PHY) methods. The PHY methods defined were: frequency hopping 

(FH), direct sequence spread spectrum (DSSS) and infrared (IR). Of these, IR has not 

been used commercially. The other two have been used in commercial applications 

with data rates of 1 and 2 Mbit/s [Bing2002]. 

 

The connection speeds reached initially were not satisfactory for the 802.11 group. 

They aimed to get at least the 10 Mbit/s data rate offered by the standard Ethernet at 

the time. So they continued to work and divided the research into two initiatives. The 

other considered the unlicensed 5-GHz band while the other focused on improving 

speed on the 2.4-GHz band; from the 5-GHz band research came the 802.11a standard 

and from the 2.4-GHz research came the 802.11b standard. Orthogonal frequency 

division multiplexing (OFDM) modulation scheme was incorporated into 802.11a 

while 802.11b had DSSS backward compatibility with two new data rates, 5.5 and 11 

Mbit/s and two new coding forms [Bing2002]. 

 

After these standards there has been considerable activity in improving various 

aspects of the original standards. Notable improvements include 802.11g with 54 
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Mbit/s theoretical maximum speed and 802.11e, which attempts to improve QoS 

features. In 2007, IEEE created a revision 802.11-2007 to the 1999 version of 802.11 

standard. This revision combines amendments a,b,d,e,g,h,i,j into one document.  

Table 1 shows a short history of the development of the 802.11 family. Years 2008-

2009 depict planned development, since those amendments have not yet been ratified. 

 

Table 1 Development of IEEE standards and amendments over the years.  

1997 1999 2001 2003 2004 
Legacy 802.11 

2.4 GHz band 

Typ 1 Mbit/s 

Max 2 Mbit/s 

802.11a 

5.0 GHz band 

Typ 25 Mbit/s 

Max 54 Mbit/s 

Approx. 50m range 

802.11b 

2.4 GHz band 

Typ 6.5 Mbit/s 

Max 11 Mbit/s 

Approx. 100m range 

 

802.11d 
Roaming between 
regulatory domains 

802.11g 

2.4 GHz band 

Typ 25 Mbit/s 

Max 54 Mbit/s 

Approx. 100m range 

802.11h 

Spectrum 

management 

extension for 5GHz 

for Europe 

802.11i 

MAC Security 

amendments 

802.11j 

Extensions for Japan 

2005 2007 2008 
(Predicted) 

2009 
(predicted) 

 

802.11e 

MAC leyel QoS 

enhancements 

802.11-2007 

Revision to merge 

amendments 

a,b,d,e,g,h,i,j into 

802.11 standard 

802.11r 

Fast Roaming 

802.11y 

3650-3700 MHz 

operation in USA 

802.11k 

Radio resource 

management 

802.11n 

2.4 or 5.0 GHz  

Typ 200 Mbit/s 

Max 540 Mbit/s 

Approx. 50m range 

802.11p 

Wireless access for 

the vehicular 

environment 

802.11s 

ESS mesh 

networking 

 

802.11u 

Interworking with 

external networks 

802.11z 

Extensions to direct 

link setup 

802.11w 

Protected 

management frames 

802.11v 

Wireless network 

management 

 

 

As wireless local area networks are being developed, researchers have to solve issues 

concerning security, range, speed and reliability. In addition to security issues 

common to wired networks, wireless networks face some unique challenges. Since the 

signal propagates freely in air, anyone can listen and catch it and try to break 
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encryptions. The previously used wireless encryption protocol (WEP) is vulnerable 

and even wi-fi protected access (WPA) is not unbreakable. To address these security 

issues in 2004 IEEE approved a new amendment 802.11i that introduced WPA2, 

which offers stronger security than the two previously mentioned.  

 

Range versus speed trade-off is a challenge in wireless transmissions. Figure 2 shows 

the range vs. speed of some wireless technologies. The current 802.11g offers speeds 

equivalent to those of worldwide interoperability of microwave access (WiMax) 

systems but with the cost of range, while 802.11n plans to offer speeds higher than 

WiMax. Cellular networks on the other hand have a range advantage over WLANs 

but not over WiMax. So far wireless technologies have not been very interoperable. 

This is changing however, for instance many cellular phones are now capable of 

connecting to WLANs. 

 

  

 

Figure 1 Range vs. Data Rate of some wireless technologies in logarithmic scale. The 
blue circles represent the area where a given technology typically operates. 
 

Another issue in WLANs and in all wireless transmissions is the question of 

reliability. WLANs utilize the unlicensed spectrum in the super high frequency range 

(SHF) of 3 GHz -30 GHz.  Figure 3 shows the radio wave spectrum ranging from 
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very low frequencies (VLF) to extra high frequencies (EHF).  Like any radio waves, 

WLAN signals encounter fading, shadowing, reflection, refraction, scattering and 

diffraction. In addition multipath propagation is possible, where the signal disperses 

over time. Neighboring transmission can also interfere with the signal [Lehto2006]. 

 

Figure 2 Radio wave spectrum 
 

TCP traffic creates yet more issues to wireless environments. Data is lost in the 

volatile wireless environment also for reasons other than congestion. TCP on the other 

hand assumes losses are due congestion. When TCP assumes congestion, it proceeds 

to adjust its window size and retransmit packets. This leads to poor TCP performance 

in wireless networks. This is due to the fact that packets can be dropped because of 

errors in the wireless channel. Also, when TCP and UDP flows compete with each 

other the bandwidth distribution tends to favor UDP. This is because in case of 

congestion, TCP backs off due to its congestion control mechanism and UDP without 

any such mechanism consumes more aggressively the bandwidth left by TCP. 

Chapter 4 discusses some research done about TCP and IEEE802.11e. 

2.1.1 Quality of Service 
 

Wireless environments differ substantially from wired environments. The differences 

have to be taken into account when considering bringing QoS features to WLANs. In 

wireless networks, bandwidth tends to be scarce and channel conditions can vary 

greatly. Outside interference can be a burden. These issues lead to throughput 

limitations and increased loss, delay and jitter. QoS methods that work well in wired 

networks cannot necessarily be directly applied to a wireless network.   

 

There are two opposite approaches for QoS support of Internet based services in 

wireless networks. The first is based on strict control, complex mechanisms and 

protocols and is similar to the Integrated Services [RFC1633]. Integrated services 

model focuses on providing per flow QoS. It can make strict bandwidth reservations 



 8 

for flows if every router on the way implements it. The model aims to integrate real-

time services into best effort networks but is not very scalable.  The other relies on the 

Internet design principle of simplicity and minimalism and is similar to Differentiated 

Services [RFC2475]. Differentiated Services allocates resources to a small number of 

traffic classes. Packets belong to one of these classes and receive service accordingly. 

It does not provide per flow QoS but instead it focuses on QoS for flow aggregates. 

This simple mechanism is more scalable than Integrated Services, but QoS cannot be 

guaranteed. IEEE802.11e has adopted both of these viewpoints. It alternates between 

tightly controlled and loosely controlled periods.  

 

Radio link QoS is an important aspect in wireless network QoS. Phenomena such as 

propagation loss, multipath effects and interference degrade the channel quality and 

lead to retransmissions and dropped packets. This means increased latency and 

decreased throughput. This issue is unique to the wireless medium and has to be taken 

into account when designing QoS schemes for wireless networks.  

 

It is possible for a WLAN device to change its PHY sending rate based on 

deteriorating channel quality. This is called link adaptation. Using link adaptation so 

that it is not a problem for wireless network performance is challenging. This is 

because even one user sending with a low rate can degrade the performance 

significantly. So to avoid this, when station negotiates QoS parameters, a minimum 

PHY sending rate should be specified and adhered to or no guarantees about QoS can 

be made. This is an important issue for 802.11e as well. Even one node transmitting at 

a low rate can degrade QoS available to all users. 

 

Other components of QoS are admission control, scheduling, buffer management and 

policing. Admission control protects against resource overuse by comparing the 

service request with available resources. Scheduling algorithms handle packets at the 

network layer and decide which packets to forward. Both of these are of crucial 

importance to providing QoS in wireless networks. 802.11e amendment does not 

specify admission control or introduce an efficient scheduling algorithm, though both 

would be beneficial, and have been the subject of further research. 
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Ultimately it is the wireless medium that causes limitations to QoS service guarantees 

that can be made. True guarantees, especially in the unlicensed spectrum, are not 

necessarily possible.  

 

 

2.2 From 802.11 to 802.11e  
 
As IEEE standards grew in popularity there was a growing interest in improving the 

QoS properties in IEEE802.11 WLANs.  In 802.11 standard, MAC layer was 

designed to support simple QoS features. However, it was never really implemented 

in actual hardware due to its limitations and problems.  

2.2.1 802.11 
 
In traditional 802.11, a set consisting of an access point (AP) and stations (STA) is 

called a basic service set (BSS). The basic MAC protocol in 802.11 is called the 

distributed coordination function (DCF). It uses carrier sense multiple access (CSMA) 

to listen to the channel before transmitting and collision avoidance (CA). Stations 

listen to the channel. When they sense the channel is not busy anymore, they have to 

wait a DCF interframe space (DIFS), which is the minimum waiting time after the 

channel is determined free. After DIFS the stations continue sensing the medium for 

an additional random time, the backoff time. The backoff time is derived from the 

contention window (CW) and it is a multiple of a slot time parameter. The number of 

slots is chosen randomly from an interval from 0 to CW. All stations have the same 

CW but choose their random backoff time by themselves, which reduces collisions. 

However, since all stations use the same CWmin, they have the same medium access 

priority. This does not result in a mechanism to differentiate between stations and 

their traffic, so QoS support in DCF is nonexistent [Mangold2003]. Figure 4 shows 

interframe space relationships and transmission process in the 802.11. 
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Figure 3. 802.11 standard transmission process and interframe time relationships 
 
After each unsuccessful transmission the CW is doubled, which means the stations 

have to wait longer next time they attempt to transmit. The same happens during a 

random backoff performed after each successful transmission. Other mechanisms in 

use during DCF include requiring acknowledgement (ACK) messages for each 

transmitted MAC protocol data unit (MPDU). There is also an option of fragmenting 

MPDUs, which can reduce the need for retransmissions in high error situations. In 

addition, to help with the hidden terminal problem where two stations send at the 

same time because they cannot hear each other, a request-to-send/clear-to-send 

(RTS/CTS) mechanism can be used [Mangold2003]. 

 

In the 802.11 standard the point coordination function (PCF) was meant to provide 

some QoS support. In this mode a point coordinator (PC), normally the access point, 

takes control of the medium and decides who can transmit. Point coordinator polls the 

stations. If the polled station does not respond to the point coordinator’s poll in a PCF 

interframe space (PIFS), PC polls the next station. Because PIFS is longer than short 

interframe space (SIFS), the poll frame cannot interrupt an ongoing frame exchange, 

where SIFS is used.  

 

In PCF the system alternates between a contention-free period (CFP) and a contention 

period (CP).  During contention period DCF is used and during contention free period 

PCF is used. The AP also regularly transmits beacon frames, which help maintain 

synchronization of station timers and deliver other protocol related parameters. 

Beacon frames announce the change from CP to CFP. 
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There are some problems with PCF, which have lead to development enhancements in 

the form of 802.11e. Notable issues with PCF are unpredictable beacon delays due to 

poor cooperation between CP and CFP and unknown transmission durations of data 

transmission from the polled stations. Also the central polling scheme is inefficient so 

that it deteriorates PCF performance as traffic load increases [Qiang]. 

2.2.2 802.11e 
 

802.11e was developed to improve the QoS features of the standard 802.11. 802.11e 

focuses on the MAC layer. It is not dependent on the physical layer chosen. 802.11a, 

802.11b, 802.11g or any future standard can be used with it.  In 802.11e a set of 

stations and an access point is called a quality of service capable basic service set 

(QBSS) and an access point is called QoS enabled access point (QAP). Stations are 

called QoS enabled stations (QSTA). 

 

IEEE802.11e introduces a hybrid coordination function (HCF) for QoS provisioning. 

HCF is divided into contention and contention-free periods. Contention period is 

called enhanced distributed channel access (EDCA) and contention-free period is 

called HCF controlled channel access (HCCA). During EDCA, the stations compete 

for the medium according to preset parameters. In the HCCA mode the access point 

takes control of the medium and decides, based on a scheduling mechanism, how to 

distribute the transmission time [IEEE802.11e]. 

 

In addition to the main functions, IEEE802.11e introduces a few other improvements. 

Block acknowledgements allow several MAC service data units (MSDU) to be 

delivered without individual ACK frames. Only at the end of a block of frames the 

ACK is sent. Direct link setup (DLS) makes it possible for two QSTAs to 

communicate with each other without the QAP. After the setup procedure that still 

uses the QAP, the QSTAs can communicate directly with each other. In addition, 

each access category has an MSDU maximum lifetime to specify the time a frame 

may wait before being dropped. This helps in discarding frames of delay sensitive 

traffic that are no longer useful. Also it is possible for the QAP to poll stations even 

during EDCA. This way critical traffic can override all other traffic.  
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Ramos et al. [Ramos2005] identify three main challenges for QoS support in 802.11e 

networks. These are: handling time-varying network conditions, adapting to varying 

application profiles and managing link layer resources.  

 

1. Handling time-varying network conditions. 802.11e does not take into 

account varying network conditions like channel condition and network load. 

Degrading channel condition can weaken the QoS differentiation mechanism 

of 802.11e so that it does not work as intended. Increasing amount of users in 

the network brings throughput degradation and even starvation; because of 

larger defer periods and higher collision probability. 

2. Adapting to varying application profiles. The second problem area 

identified by Ramos et al. is the question of adapting to varying application 

profiles. The QoS requirements of a flow can vary significantly based on the 

application type. Requirements can also vary with time. Estimating these 

requirements correctly is crucial in designing and tuning the medium access 

mechanism. Poor estimation leads to unacceptable delays, buffer overflows 

and inefficiently used resources.  

3. Managing link layer resources. Since 802.11e is a MAC layer enhancement, 

there remains a need for some kind of link layer cooperation, so that link layer 

resources can be optimally managed. General network goals for the QoS must 

be taken into account. Additionally, some kind of an overall admission control 

scheme should be designed. This admission control could also be used in 

EDCA, not just in HCCA like in the 802.11e amendment.  

 

Addressing these three challenges has been a topic for several research papers but so 

far no all-encompassing solution has been proposed.  

2.2.3 EDCA 
 

To provide prioritized QoS, IEEE802.11 EDCA enhances the original IEEE802.11 

DCF by introducing user priorities (UP) and access categories (AC). When traffic 

arrives to the MAC layer it has a user priority value that is mapped into an access 

category. Table 1 shows the mapping specified in the amendment. User priority zero 

is mapped between two and three because of IEEE802.1d bridge specification 
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[IEEE802.11e]. The highest AC is the voice category and lowest is the background 

category. 

Table 2. IEEE802.11e user priorities to access categories mappings [IEE802.11e]  

User priority (UP) Access category (AC) Designation 
1 AC_BK Background 
2 AC_BK Background 
0 AC_BE Best Effort 
3 AC_BE Best Effort 
4 AC_VI Video 
5 AC_VI Video 
6 AC_VO Voice 
7 AC_VO Voice 
 

Each AC has its own transmission queue and an own set of parameters that determine 

channel access frequency and duration. These parameters are called the EDCA 

parameter set.   Figure 5 shows a sketch of the new queue model. In addition to 

collisions between competing QSTAs, collisions can occur between queues in one 

QSTA. These are called virtual collision since packets don’t actually collide. In such a 

situation the queue with higher priority gets the channel access while the lower 

priority queue backs off.  

 

 

Figure 4. 802.11e channel access mechanism 
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Each AC has a different EDCA parameter set. The EDCA parameter set consists of 

the arbitrary interframe space number (AIFSN), contention window minimum and 

maximum (CWmin, CWmax) and transmission opportunity limit (TXOP limit). These 

will all be discussed in more detailed in later sections. QAP sets these parameters and 

transmits them to the QSTAs as part of periodic beacon frames. QAP broadcasts 

beacon frames at regular interval. The next target beacon transmission time (TBTT) is 

always announced in the previous beacon frame. As opposed to the 802.11, in 

802.11e no QSTA may transmit across the TBTT. This way beacon delay is reduced 

and HC has a better control over the QBSS [IEEE802.11e]. 

 

Figure 6 shows the EDCA transmission process and interframe space relationships. 

The basic CW backoff mechanism remains the same as earlier, but with four different 

CW sizes and AIFS values there is differentiation between queues. High priority 

queues get to access the channel considerably more than low priority queues if they 

have packets to send. AIFS values  should be selected so that earliest possible access 

time for QSTAs is DIFS.   

 

Figure 5. 802.11e transmission process and interframe time relationships 
 

2.2.4 HCCA 
 

The other half of the HCF is the contention-free period, HCCA. The hybrid 

coordinator (HC), in practice the QAP, has the highest priority to access the channel. 

This is accomplished by setting the stations’ AIFS so that it is at least DIFS, which is 

longer than PIFS. At the same time QAP uses PIFS without backoff to access the 
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channel. This way the QAP gains control of the channel and announces the beginning 

and the end of the contention free period. During CFP the stations wait to be polled, 

except when they are sending reservation requests. These requests contain flow 

information like mean data rate, mean packet size and maximum tolerable delay. QAP 

determines the polling cycle according to the flow information and the algorithm it is 

using. After determining the cycle, the QAP starts to issue QoS contention-free polls 

(QoS CF-Polls) to QSTAs that have requested parameterized services. QAP sends the 

QSTA in question a TXOP limit, which is also called polled TXOP or HCCA TXOP. 

During a polled TXOP a QSTA can transmit multiple frames with SIFS in between, 

provided that the total given TXOP limit is not exceeded.  

 

The standard provides a simple scheduler algorithm as a reference scheduler for CFP. 

With the information QSTAs send, the QAP determines the maximum service interval 

(SI) to be used for all of the QSTAs. The selected SI should satisfy the delay 

requirements of all the flows. The QAP also determines TXOP durations for each of 

the flows based on mean application data rates. This simple scheduler is, however, 

quite inefficient. Each time a new flow is added or terminates, the QAP needs to 

recalculate the SI. In addition to recalculation issue, if two or more WLAN cells are 

overlapping they interfere with each other. When this happens the traffic suffers from 

unpredictable delays and throughput degradation. In such a situation, a coordinated 

resource sharing between the QAPs of overlapping cells needs to take place in order 

to provide QoS guarantees. 

 

2.3 EDCA parameter set 
 
 
In IEEE802.11e EDCA the parameter set selected determines the actual traffic 

differentiation. Therefore it is crucial that the parameter set reflects the differentiation 

required. Modifying these parameters also provides possibilities to improve network 

performance. Table 2 shows the basic EDCA parameter set that is provided in the 

amendment [IEEE802.11e]. In the amendment, the contention window is called aCW. 

Table 3. Standard EDCA parameter set. 



 16 

 

 

2.3.1 Contention Window 
 
802.11e EDCA contention window is similar to the distributed coordination function 

(DCF) contention window, except in the backoff countdown rules. In 802.11e EDCA, 

the first backoff countdown occurs at the end of the AIFS, not DIFS. Also, each AC 

has a different size CW to create further differentiation. The CW sizes relative to each 

other are important in determining the relative channel access frequency of an 

individual AC. 

 

For the higher two ACs, voice and video, the CWmax-CWmin difference shouldn’t be 

very large, otherwise the delay this traffic experiences will be too big. In heavy 

congestion it can be better to just drop the packet than wait indefinitely for a 

transmission opportunity. This is especially true with delay sensitive traffic. When the 

CW is small there are more opportunities for transmission and smaller delay. 

However, a small CW causes a bigger collision probability. On the other hand, if 

CWmin is increased, the overall throughput in the network decreases.  

 

As the number of high priority traffic streams increases, the differentiation effect of 

the CW becomes smaller. This is because there are more collisions among the high 
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priority flows. Also, the smaller the CW size, the more significant the impact of the 

AIFS value on differentiation. Setting a small CWmin is a good way to give a flow 

more throughput, but this will starve other flows, especially low priority ones. 

2.3.2 AIFSN 
 
AIFS is a new interframe space time that varies in length depending on the AC. Each 

AC has its own AIFS. It is the minimum time interval for the medium to remain idle 

before starting a backoff. AIFS helps to differentiate between different priority 

streams.  

 

The arbitrary interframe space number (AIFSN) is used to calculate AIFS. It specifies 

how many times a slot time should be multiplied by. The formula for AIFS is as 

follows [IEE802.11e]: 

 

! 

AIFS[AC] = SIFS + AIFSN[AC]* aSlotTime, AIFSN[AC] " 2 

 

Here aSlotTime means the duration of a slot. It is a MAC variable, which is set to a 

predefined value. The smaller the AIFSN, the smaller the AIFS and higher the 

medium access priority [IEEE802.11e].  

 

Increasing AIFS decreases the overall system throughput because stations must wait 

longer to access the medium. This effect is stronger when network load increases, 

because AIFS occurs after every transmission. Thus large AIFS can have a dramatic 

negative effect on the network under heavy load. AIFS should be kept as small as 

possible and focus on relative AIFS difference between queues to create 

differentiation. However, if difference is large, low priority might not be able to 

access medium at all. 

2.3.3 TXOP limit 
 
The fourth parameter the QAP sets is the TXOP limit. There are two kinds of TXOP 

limits. The TXOP limit used during EDCA is called an EDCA TXOP limit. EDCA 

TXOP limit is sent in the beacon frame and it has a same value for one access 

category across the QBSS. The TXOP limit used during HCCA is called the HCCA 
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TXOP limit. HCCA TXOP is unique for a QSTA and it is based on the QSTAs 

requirements. This work focuses on EDCA TXOP limit. 

 

In EDCA, for each transmission opportunity the AC wins, it may initiate multiple 

frame-exchange sequences. These sequences are separated by SIFS. The total 

duration of frame-exchange sequences must not exceed the TXOP limit. The duration 

of the frame-exchange sequence can of course be shorter than the maximum allowed. 

In such a case, the QSTA releases the media and normal contention resumes. The 

value of TXOP limit is a multiple of 32µs up to the maximum of 8160µs 

[IEEE802.11e]. 

 

If TXOP limit is zero, QSTA can transmit a single MSDU, irrespective of its length or 

PHY sending rate.  In many research papers zero is the value used because it is part of 

the standard EDCA parameter set. Some of the papers point out however, that zero 

should not be used at all. This is because QSTAs can perform link adaptation leading 

to a lower PHY, when they determine degradation in the connection. If such a QSTA 

then has a TXOP limit value of zero, it will send the one packet allowed considerably 

slower than before. This degrades the network performance. Also using zero leads to 

lower class starvation as the network load increases because of the minimal amount of 

packet it can send [del Prado Pavon2004 ].  

 

The overall system throughput increases as TXOP is increased because overhead is 

reduced. However, if TXOP limit is too large for one category, other traffic categories 

experiences delays. This way TXOP limit has direct effect on network fairness. 

 

2.4 Summary 
 

WLANs have unique challenges compared to wired networks.  Issues such as 

security, range vs. speed and reliability need to be considered when developing 

WLANs. Reliablity issues are especially challenging where quality of service is 

concerned.  IEEE 802.11 standard family has developed over the years to address 

these unique issues and a multitude of amendments to the standard have been 

approved.  
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To improve QoS features of IEEE 802.11 WLANs, a MAC layer amendment 802.11e 

was approved in 2005. IEE802.11e bases QoS provisioning on a hybrid coordination 

function that is divided into contention and contention-free periods. The focus of this 

thesis is the contention period called the enhanced distributed channel access 

(EDCA). 

 

EDCA is based on a new queue mechanism, where each station has four queues 

instead of one. Traffic is divided into these queues based on traffic’s requirements and 

each queue has a different set of channel access parameters. There are four channel 

access parameters that control the frequency and duration of channel access. The 

parameter for channel access duration is called the transmission opportunity (TXOP) 

limit. TXOP limit is a multiple of 32µs up to the maximum of 8160µs. With TXOP 

limit value zero however, a station may transmit one packet irrespective of its length 

of physical sending rate. With larger TXOP limit values, the system throughput 

increases but can cause delay to other traffic. 
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3 Fairness 

 

Without a need to favor one kind of traffic, fairness in computer networks is generally 

a good thing. Ideally, everyone would get the service they want without disturbing 

others. However, the real world is not ideal and network congestion does occur, 

particularly in wireless local area networks where network capacity has a strict upper 

limit. When congestion occurs, different traffic streams might not get what they want, 

in terms of throughput or delay. This is when a decision needs to be made whether to 

prefer some traffic over another. This chapter first discusses different ways to look at 

fairness. Secondly, some key fairness schemes are introduced.  

 

3.1 Different Kinds of Fairness 

 

Fairness is a broad concept and its roots are in philosophy and social sciences. Each 

individual has a sense of what is fair generally but the outcome of a person’s though 

on what is fair might be different depending on circumstances and preferences. 

Similarly fairness in computer networks is seen generally as a good thing but what is 

perceived as fair in congestion situation varies.  It is also important to distinguish 

what kind of fairness is looked at and how it is measured. For instance fairness can be 

considered between flows, between same protocols or between two different 

protocols. Fairness can also be looked at between sessions, users or other entities. 

 

Fairness can be absolute or relative. Absolute fairness means that each user gets the 

exact same amount of time, throughput or any other desired measure of resources. 

However, this is often not a very useful measure, since different traffic types have 

different requirements. Relative fairness is a better way of measuring fairness. 

Relative fairness takes into account how much of your individual requirements are 

being fulfilled. The overall relative fairness can be calculated by comparing how 

much of individual requirements are being fulfilled. 

 

Fairness that uses time as a measurement unit is called temporal fairness. However, 

even in a network where each user gets to send the same amount of time, the 
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transmissions can use different rates. This is a very typical situation in 802.11 

WLANs since stations are allowed to decrease their transmission rate if channel 

conditions worsen. Hence the amount of bits a station is able to send can be different. 

Instead of temporal fairness, the focus could be on cost fairness, throughput fairness, 

access probability fairness, delay fairness, packet delivery fairness or any other 

metric.   

 

3.2 Fairness Schemes  

 

Some notion of fairness is incorporated in many network mechanisms used today. 

They mostly consider fairness between flows but recently cost fairness has also been 

proposed. This section presents some well-known fairness schemes.  

3.2.1 TCP 
 
A familiar example of incorporated fairness scheme is TCP. It utilizes congestion 

avoidance mechanism to avoid congestion collapse in the network. The congestion 

avoidance mechanism was first introduces by Jacobson et al. [Jacobson1988]. It tries 

to create fairness between flows with the assumption that it is fair if flow rates 

through a bottleneck ling converged on equality. However, it cannot take into account 

history or the flows as a whole. This means that it can be cheated by starting new 

flows or splitting flows. TCP aims for absolute fairness since there is no 

differentiation between flows.  

 

In addition to TCP, an algorithm can be TCP-friendly [RFC3448]. TCP-friendliness is 

based on the fairness notion that TCP-friendly flows should get the same rate as TCP 

compatible flows. TCP-friendly flows converge at the same rate as TCP flows and 

they need to have the same dynamics as well. TCP-friendly flows face the same 

problems as TCP. 

3.2.2 Utility Based Fairness 

 
Utility based fairness criteria defines a utility function that describes the utility a flow 

gets from the network with a certain capacity share. It aims to maximize the total 
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utility of all users.  Max-min fairness is a special case of utility fairness. Other special 

cases include maximizing the overall throughput, proportional fairness and 

minimizing the potential delay [LeBoudec2005]. 

3.2.3 Max-min Fairness 
 

A famous fairness scheme in networking is max-min fairness. It proposes that fair 

service means that the service of the entity receiving the worst service is maximized. 

In practice this means that small flows receive all they demand while large flows have 

to share the remainder of the capacity equally. Starting from the smallest flow, the 

bandwidth is distributed so that all flows receive what they need until bandwidth is 

exhausted. In the case the flows that are not receiving all they require, they have to 

divide the capacity [LeBoudec2005]. Max-min fairness guides the user to appreciate a 

very low bit rate, which is unnatural. If a user wants to cheat max-min fairness 

algorithm, the flows are split into small flows so that everyone else’s allocation is 

reduced. 

3.2.3 Proportional Fairness 
 

Proportional fairness tries to maintain a balance between maximizing the network 

throughput and allowing users to have at least a minimal level of service. Each flow is 

given a data rate or a scheduling priority which is inversely proportional to anticipated 

resource consumption.  This criterion also favors small flows, but not as much as 

max-min fairness [LeBoudec2005].  

 

A case of proportionally fair scheduling is weighted fair queuing (WFQ) that was 

introduced by Demers et al. [Demers1989]. It aims to ensure that a router’s capacity is 

fully utilized. Low volume traffic is scheduled first and high volume traffic shares the 

remaining bandwidth according to weights assigned.  

3.2.4 Jain’s Fairness Index 

 
A well-known index of fairness was proposed by Jain et al. [Jain1984]. It is a very 

general definition and suitable for many situations. If the amount of contending users 

is n and ith user receives an allocation xi then Jain’s fairness index f(x) is   
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The result is the measure of equality of the allocation of values. The index gets values 

between 0 and 1. When all the users receive an equal share i.e. the system is 

completely fair, the index gets the value 1. As fairness decreases the index value 

decreases until it reaches 0. This index is dimensionless, independent of scale and 

continuous with respect to the allocation variable xi. It can be used on any number of 

users. Additionally because of continuity, even slight changes in the allocation of 

values change the value of the index [Jain1984]. 

 

Section 3.1 explained the concept of relative fairness. When using Jain’s fairness 

index, relative fairness can be calculated by  
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where di is the total demand of user i and ai is the amount it is actually given 

[Jain1984]. In later calculation in this thesis both a and d are throughputs.  

 

This thesis uses Jain’s fairness index in estimating fairness because of its generality. It 

would not be sensible to use for instance max-min fairness because this thesis is not 

looking into just maximizing the throughput of small flows.  

3.2.5 Cost Based Fairness 

 
The above mentioned schemes are mostly focused on flow rate fairness. Briscoe 

[Briscoe2007] criticizes this view and says that it is myopic. He claims that since 

schemes based on flow rate do not take into account how many flows users create or 

how long flows last it would be better to focus on cost fairness. By cost fairness he 
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means sharing out the cost of one user’s actions on others. He says that in order to 

arbitrate cost fairness only the volume of congestion is needed. This is calculated by 

multiplying the congestion with bit rate of each user causing it. In his paper he goes 

further into details of how a cost fairness scheme could be achieved while vigorously 

criticizing flow rate based fairness schemes.     

 

3.3 Summary 

 

Fairness is a complex concept but it has an integral part in computer network design. 

The question is what is a fair way to allocate scarce resources and how are you going 

to measure it? Some schemes such as max-min fairness prioritize based on flow size, 

while other let weights be assigned. An interesting new proposal is cost fairness, 

which takes a step to another direction. An important matter to consider in a fairness 

scheme is its complexity. Complex algorithms take a lot of processing time. This 

decreases link capacity since time is spent in choosing the next packet. With a 

decreased link capacity low priority traffic is more likely to suffer starvation.     

 

In evaluation of fairness this thesis uses Jain’s fairness index. It is a simple and 

general definition to see how far a set of shares is from equality. Additionally in this 

thesis fairness is calculated in a relative sense. This means that the calculations take 

into account the throughput need of each flow and not just pure equality. With Jain’s 

fairness index this is also easy to calculate. 
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4. Related Work 

  
This chapter shortly describes earlier work on IEEE802.11e enhanced distributed 

channel access period. First it introduces research that has been done to prior to 

EDCA. Next it presents research done to evaluate EDCA as it is presented in the 

standard. Then it discusses work done to improve EDCA and finally introduces work 

specifically focusing on EDCA fairness.  

 

4.1 Pre-EDCA Research 

 
Prior to EDCA several papers were published about bringing better QoS features to 

802.11 WLANs. Although 802.11 MAC already has QoS features they were deemed 

not sufficient. Ni et al. [Ni2002] list the QoS limitations of 802.11. They say that the 

DCF period of 802.11 can only support best-effort services and no guarantees to high 

priority flows can be made. All flows have to share just one queue and thus they all 

experience the same delay. They say that only by using admission control quality of 

service in the DFC period can be improved. PCF on the other hand was designed to 

support time-bounded multimedia applications. However there are three main 

problems associated with it. The first is that the central polling scheme forces all 

communications to go through the access point, which wastes channel bandwidth. 

Secondly, the operations between DCF and PCF modes can lead to unpredictable 

beacon delays. Thirdly, the transmission time of a polled station is difficult to control.  

This section only presents research related to DCF since it is the predecessor or 

EDCA. 

 

Banchs et al. [Banchs2002] propose a distributed weighted fair queuing (DWFQ) 

algorithm to be used in improving DCF. The DWFQ mechanism gives a flow an 

average bandwidth proportional to its weight by dynamically changing the contention 

window. Their simulations show that the scheme is able to provide the desired 

bandwidth distribution regardless of the aggressiveness of the flows or their 

willingness to transmit.  However, using a contention window means that there is 

always certain randomness, which leads to variability in throughput and delay. 
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Vaidya et al. [Vaidya2000] propose a distributed fair scheduling algorithm. In their 

scheme packets with smallest ratio between its packet length and weight are 

transmitted first. The weight is higher for a higher throughput class. With the 

combination of packet length and throughput need, differentiation of service can be 

achieved with backoff calculations. In this scheme though, mapping QoS 

requirements to a weight is complicated. 

 

Campbell et al. [Campbell2001] propose a virtual MAC (VMAC) algorithm for 

distributed service differentiation. VMAC monitors the radio channel and estimates 

service levels that can be achieved locally. VMAC does not handle real packet 

transmissions. The goal of VMAC is to estimate QoS parameters in the radio channel 

accurately. The scheme then uses different contention window values for delay 

differentiation of different kinds of traffic. The drawback of this algorithm is the 

processing capacity needed in each device.  

 

Sobrinho et al. [Sobrinho1996] propose a Blackburst scheme to minimize the delay of 

real-time traffic. In this scheme low priority stations use CSMA/CA for channel 

access while the high priority stations use the Blackburst scheme. High priority 

stations send bursts called black bursts to jam the channel if the medium is busy. The 

length of the black burst is determined by the time the station has waited to access the 

medium. After transmitting the burst, the station listens to the channel to find out if 

someone else is sending a black burst. If so, that other station has waited longer and 

should access the channel first. Once a station does get to transmit, it schedules its 

next frame transmission. This way real-time flows synchronize and share the medium 

in time division multiplexing (TDMA) fashion. This means that unless low priority 

flows disturb the situation, very few blackburst periods need to occur. The main 

drawback of the scheme is that high priority traffic needs to arrive at constant 

intervals or else the performance degrades considerably.  

 

In addition to work suggesting improvement to 802.11 QoS features, research on 

fairness and 802.11 has been conducted. Pong et al. [Pong2004] have investigated the 

trade-off between fairness and capacity in the 802.11, especially in the presence of 

channel errors.  They compare throughput fairness and temporal fairness and come to 

the conclusion that in error situations, when link adaptation takes place and stations 
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transmit with different rates, maintaining temporal fairness leads to higher capacity. 

They also suggest that admission control should be used to maintain fairness. Also, if 

possible, stations should transmit only at high PHY rates during congestion so that the 

network has high efficiency.   

 

Jiang et al. [Jiang2005] investigate proportional fairness in WLANs and ad-hoc 

networks.  By proportional fairness they mean finding a balance between fairness and 

throughput. They point out that in multi-rate environments, throughput fairness can 

lead to degrading network performance. They do not consider 802.11 specifically but 

WLANs in general. They come to the conclusion that in multi-rate WLANs, fairness 

deriving from time allocations rather than throughput is more natural and would lead 

to better network performance.  

 

4.2 Evaluations of EDCA 
 
There are quite a few evaluations made of EDCA, mainly with simulations. Practical 

testing has been somewhat limited. Simulations by Qiang et al. [Qiang] show that 

EDCA supports better QoS than DCF or PCF when load conditions are low or 

medium. In their simulations they increased the number of stations from 2 to 50 and 

notice that the total goodput increases between 2 to 15 stations, but after 15 stations it 

decreases rapidly. They also notice that the average delay increases as the number of 

stations increase. Another observation they make is that EDCA-based ad-hoc 

networks saturate very fast. In addition they mention that finding optimal EDCA 

parameters is difficult as they are static and not adjusted to the network conditions. 

Finally they remark that strict service guarantees can only be made when admission 

control is used together with EDCA to stop the network from becoming too 

congested. 

 

Similar results are reported by Choi et al. [Choi2003]. They say that EDCA works 

better than the legacy 802.11 in providing differentiated channel access to different 

priority traffic. The researchers did not optimize the network by tuning of EDCA 

parameters, which they say would be important to research. They also mention that an 

admission control scheme would be needed for the QoS provisioning to work 

acceptably.  
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Del Prado Pavon et al. [Del Prado Pavon2004] evaluate the effect of frame size, 

number of stations and mobility on EDCA. Generally they found that EDCA offers 5-

20% throughput efficiency improvement over the legacy DCF. They note that small 

frame sizes mean that overhead consumes a significant amount of the channel 

capacity. Also as the number of transmitting stations increase so does the collision 

probability. At that point lower priority traffic starts to experience significant packet 

loss.  The authors also notice that a bad link penalizes all other links as well. They say 

that it is important to use TXOP values other than zero. If TXOP is zero the station is 

allowed to transmit one packet irrespective of its length or the physical transmission 

rate. However, it is possible for a station to independently reduce their physical 

transmission rate, if it for example moves further away from the AP. If they then are 

allowed to send one packet regardless of the time it takes to send it, all other traffic 

has to wait longer than normally.  

 

In their study, Xi et al. [Xi2005] also investigate the 802.11e effectiveness. Their 

focus is on different traffic types. They agree that 802.11e is an improvement over the 

legacy 802.11 but say that the improvement comes at the cost of decreased quality for 

the lower priority traffic. The higher priority is able to acquire the channel very 

effectively, which makes the lower priority traffic suffer up to a point of starvation. 

They also found that 802.11e has a much higher collision rate than the legacy system 

and hence suffers from increased retransmissions and packet loss. This has a negative 

effect on channel efficiency.  

 

Tinnirello et al.  [Tinnirello, May2005] investigate the performance of new channel 

utilization mechanisms in 802.11e via an analytical model. They prove that the block 

ACK mechanism is not useful for low date rates and low TXOP values, but it is very 

attractive for high data rates. Also they conclude that the optimal selection between an 

immediate ACK and a block ACK does not depend on the number of stations. 

 

Banchs et al. [Banchs2005] are one of the few to report results from practical testing. 

They investigate EDCA mechanism’s ability to support traffic engineering and 

service guarantees. The results show that with UDP traffic the system works well. 

With TCP traffic the results were also promising, and only slight deviations from the 
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desired was noticed. Overall, EDCA worked better than DCF. Service guarantees 

were harder to satisfy and more work needs to be done in developing optimal EDCA 

configuration. They note that the inherent uncertainties of a mobile environment make 

creating service guarantees very difficult. They think that monitoring WLAN traffic 

situation in real time to help an admission control algorithm could be a solution to 

providing service guarantees.  

 

4.3 Proposed Enhancements to EDCA 
 
Early on it was clear that albeit 802.11e was a better than the legacy 802.11 there 

were still adjustments and improvements that could be done. This section presents 

some of the most interesting ones.  

 
Ni et al. [Ni2002] propose a scheme called adaptive enhanced distribution 

coordination function (AEDCF). They investigate resetting CW values more slowly to 

adaptive values while considering CW current sizes and collision rate in the network. 

The factor for CW update is calculated so that flows with high collision rate have 

better chance to transmit the next time. CW of high priority traffic increases slower 

than CW of low priority traffic. This dynamic varying of the CW for each class of 

service achieved better throughput, delay and jitter performance in an ad-hoc 802.11e 

network. Even though the main focus of their research was ad-hoc networks, they say 

that this scheme could be extended to access point controlled networks as well. The 

problem with this scheme is that performance of low priority streams degrades with 

high network load. 

 

Zheng et al. [Zheng2005] investigate using arbitrary interframe space number 

(AIFSN) to improve the performance of real-time traffic. In their proposition real-

time traffic has no backoff period and has the smallest AIFSN. Hence real-time traffic 

gets to transmit before any other traffic and only collisions between real-time traffic 

are possible. To avoid these collisions, real-time queues are assigned a different 

AIFSN based on the time packets have been waiting. This scheme naturally decreases 

latencies of the high priority flows but is not fair by any means. It is be useful if real-

time traffic needs to get a strong priority but otherwise it is not be the best solution. 



 30 

Also their simulated with an ad-hoc network, so further testing is need to be done to 

investigate the behavior of this scheme in the infrastructure mode.  

  

Kim et al. [Kim2005] propose a new MAC scheme called multi-user polling 

controlled channel access (MCCA), which is based on EDCA multi-user polling. It 

also uses two-level frame aggregation, on MAC and PHY layers. Their scheme can 

aggregate frames with different QoS requirements and different destinations but needs 

good scheduling to work properly. Therefore they have created a scheduling 

mechanism to do this. Through simulations they are able to show that MCCA 

improves system throughput quite a lot while delay remains reasonable.  However this 

scheme needs to be tested or simulated in more realistic channel environment. 

 

Gu et al. [Gu2003] present a measurement-based distributed admission control 

method in their paper. Their scheme is aimed to protect high priority flows and 

improve network performance in heavily loaded 802.11e networks. They propose that 

each station measures the existing traffic load in the network and has an admission 

controller, which decides if more packets can have the right to access the medium. 

Each station measures either relative occupied bandwidth or average collision ratio. 

Measurement-based admission control can be a viable solution, but any strong 

conclusions cannot be drawn based to on this paper.  

 

Naoum-Sawaya et al. [Naoum-Sawaya2005] propose a scheme to adapt the CW 

according to the channel congestion level. CW is set directly to a value close to a 

required one for transmission thus eliminating the time spent on try, fail and wait. In 

They demonstrate the effectiveness of their scheme compared to the standard model 

especially in high congestion situations.  

 

Approaches to improve EDCA are quite numerous, ranging from adaptive CW to 

frame aggregation. However, there is still a lot of work to be done to optimize the 

tradeoff between channel efficiency, priority and fairness. Adapting EDCA 

parameters according to the traffic load sounds easy but is in fact a very difficult 

problem. Researchers have pointed out that adapting all four parameters dynamically 

at the same might improve network performance. However, such a complex dynamic 

scenario is very difficult to mathematically model or simulate or to test in any other 
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way. Nevertheless, it seems that using dynamic parameters to some extent as in many 

of the above-mentioned research, gives better performance than the static model 

provided in the standard.   

 

4.4 Research on Fairness in IEEE802.11e WLANs 
 
To address the fairness issue in AEDCF described in Section 4.2, Malli et al. 

[Malli2004] propose an adaptive fair EDCF scheme (AFEDCF). This scheme aims to 

decrease collision rate and idle time. In it, CW increases not only when there is a 

collision but also when the channel is sensed busy during deferring periods. The 

backoff timer can decrease linearly or exponentially. Backoff threshold is the 

boundary between these two. When a collision occurs or the station is deferring, it 

doubles the CW, randomly chooses a new backoff time and reduces the backoff 

threshold. After a successful transmission, the station resets the CW to minimum, 

chooses a backoff time randomly and increases the backoff threshold. The adaptive 

CW of the AEDCF scheme is not used. AFEDCF achieves higher absolute throughput 

fairness than AEDCF. The fairness in high traffic loads is due to the fact that 

contention windows of each queue are at their maximum value and they will transmit 

almost at the same time with the same CW. The issue here in contrast to the AEDCF 

is that high priority traffic can suffer and sometimes it can even have a bigger CW 

than low priority traffic.  

 
Leith et al. [Leith2005] are interested in TCP fairness in 802.11e networks. TCP 

dominates current network traffic. However, because of cross-layer interaction 

between 802.11 MAC and TCP flow/congestion control used, TCP and 802.11 

WLANs do not work optimally together. The result is gross unfairness between 

individual flows. They identify two issues to be solved in order to improve fairness. 

First, the asymmetry between TCP data and TCP ACK paths disrupts TCP congestion 

control. Second, the network level asymmetry between TCP upload and download 

flows. To solve these issues they propose that the MAC should be configured so that 

TCP ACKs have unrestricted access to the wireless medium. This way the volume of 

TCP ACKs is matched to TCP data packets, which restores path symmetry at 

transport layer. To restore fairness in the network level they suggest prioritizing the 

downlink data packets at the AP so that downlink traffic gets an equal share of the 
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wireless channel. This approach would no doubt increase the fairness of TCP traffic. 

This is an interesting topic to be investigated further especially with voice and other 

real-time traffic. This way the effect MAC modifications has on real-time traffic can 

be investigated.  

 
Tinnirello et al. [Tinnirello, June 2005] investigate temporal fairness provisioning in 

multi-rate contention-based 802.11e WLANs. They show that equalization of the 

channel access times allows stations to obtain throughputs proportional to their 

transmission rates but independent of frame lengths. They focus especially on the 

effect of fragmentation on the system. Through their model they prove that the system 

throughput is optimized if MPDUs exceeding the TXOP limit are divided into equal-

sized fragments. Also depending on the network condition, it can be more efficient to 

release the channel before the TXOP limit expiration without activating fragmentation 

to fully exploit the TXOP limit. Additionally, they show that there exists some 

tradeoff between fairness and system efficiency since equalization of channel holding 

time generally requires fragmentation, which introduces a lot of overhead. This is a 

very interesting research but it does not consider different traffic types.  

 

Inan et al. [Inan2007] focus on the uplink-downlink fairness issue in 802.11e EDCA 

when default EDCA parameter set is used. They note that the QAP is a huge 

bottleneck in the system because according to the standard, it is mostly treated like 

any other node. According to them, this effect is even more catastrophic in the case of 

TCP flows. They propose a model-assisted measurement-based dynamic EDCA 

parameter adaptation algorithm. They claim that their algorithm achieves a 

predetermined utilization ratio between uplink and downlink flows of the same AC 

while maintaining the AC prioritization. The algorithm also differentiates the 

adaptation depending on whether the traffic is TCP or UDP. They also propose that 

QAPs should use any value of the CW, instead of using exponents of two. QSTAs on 

the other hand should still use values that are exponents of two. This way the QAP 

can satisfy any required utilization ratio. Additionally, their results show that using 

constant ECDA parameters does not result in high fairness.  
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4.5 Summary 

 
There has been a considerable amount of research on quality of service and 802.11 

and 802.11e.  Early on 802.11 standard’s deficiencies in this area were identified and 

attempts to improve its QoS capabilities were proposed. Once 802.11e started to take 

form, research focus turned into comparing it to 802.11 and suggesting further 

improvements. Of the EDCA parameter set, especially contention window 

modifications have been a popular research topic. The effect of modifying the TXOP 

limit on the other hand has not been researched very much. There has also been 

research with specific focus on fairness but fairness together with TXOP limit has not 

been investigated thoroughly.   
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5. Simulations 
 
Simulations are a popular way to investigate computer networks. There are several 

different simulators available but these often only include current features of 

networks. Thus any new ideas require tweaking of existing simulators or even 

programming a new simulator. Simulations also require a lot of details and 

assumptions about the network that is simulated. Even so, they are never as realistic 

as monitoring a real network. However, when keeping in mind pitfalls and 

shortcomings, simulations do have their use. This chapter first discusses general 

principles of simulations, then the simulation setup and finally the tools used.  

 

5.1 Simulation Goals 
 
The purpose of the simulations is to investigate the effect of transmission opportunity 

limit on fairness during EDCA. The simulations investigate the effect by changing the 

TXOP limit of the lower category traffic and compare the results to simulations done 

with EDCA standard parameter set. The purpose is to find out whether modifying the 

TXOP limit improves 802.11e EDCA fairness, but in such a way that the delay 

sensitive traffic is not overly disturbed. Additionally, if changing the TXOP limit has 

an effect, the purpose is to find out how the TXOP limit should be changed. 

 

5.2 Introduction to Simulations 
 
There are basically three methods of doing computer network research: mathematical 

modeling, simulations and real-life measurements. Each has merits and each has 

drawbacks. Mathematical analysis is an exact method, but because of this exactness it 

falls short in depicting the complex real world. Simulations do a better job in 

describing the real world, especially if real traffic traces are used, but they still are not 

close to perfect accuracy. Measuring real networks would be the most realistic way to 

study networks but it expensive and time consuming. Moreover exactly the same 

measurement conditions can be difficult to re-create for repetitions and random 

factors can influence the situations. This can make it hard to see underlying principles 

factors.  
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In order to create usable and valid results via simulations it is important to follow 

good simulation practices. Kurkowski et al. [Kurkowski2005] list four key aspects 

that should be taken into account when doing simulations; otherwise the credibility of 

the simulations can be called to question.  According to the article simulations should 

be repeatable, unbiased, rigorous and statistically sound. More specifically, the 

researcher should explain the simulation type used, validate the simulation model, 

explain random number generation, define variables, develop scenarios, determine 

steady-state and provide good statistical analysis of the results, including confidence 

intervals. In their study of MANET papers they come to the staggering conclusion 

that none of the papers with simulation studies provided enough information for the 

reader to determine if they fill all these criteria.  

 

5.3 Simulation Setup 
 
This section presents the specifics of the simulations used in this thesis. First the 

simulation topology is explained followed by the traffic models used. Lastly this 

section presents scenarios used in the simulations. 

5.3.1 Simulation Topology 
 
Figure 7 shows the simulation topology. QSTAs are evenly distributed in a circle 

around the QAP. During the simulations the QSTAs do not move and can always hear 

each other. The radio links are free of errors. The physical layer the simulations use is 

IEEE802.11b. 
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Figure 6.  A simulation topology sketch.  
 

All simulations have one QAP and n QSTAs. The amount of QSTAs can be changed 

in the simulation. Each node transmits two kinds of traffic, voice and data, and the 

transmissions are one-way. The transmission is sent to the sink node, which is an 

ordinary wired network node. The wired node and the AP are connected via a fast 

connection of 500 Mbits/s to minimize its effect to the results. There is no 

interference, channel errors or noise.  

5.3.2 Simulation Traffic 
 

In order to simplify the situation in the network, there are only two kinds of traffic, 

voice and data.  

 

In an attempt to be as realistic as possible, network simulations often use heavy-tailed 

distributions to model Internet data traffic. Heavy-tailed distributions are distributions 

whose tails are not exponentially bounded. These distributions produce mostly small 

values with occasional large values. However, these random large values can be very 

large. Research such as by Mah et al. [Mah1997] and Park et al. [Park1996] points out 

that HTTP traffic file size distribution is heavy-tailed.  
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Most often used heavy-tailed distributions come from the Pareto family. Weigle 

[Weigle2006] investigates the use of heavy-tailed distributions in networks 

simulations. She uses Pareto distribution as example and comes to the conclusion that 

using Pareto distributed traffic creates high variability. Single large values the 

distribution generates greatly affect the network load. For this reason it is very hard 

for a Pareto traffic simulation to reach steady state in a reasonable amount of time. To 

achieve two-digit accuracy for the mean over 1010 samples were needed. Even then 

the mean is unstable. She comes to the conclusion that heavy-tailed distributions, 

although theoretically great for traffic modeling, do not create meaningful simulation 

results. The author presents three possible solutions for dealing with this issue. The 

first is to use bounded Pareto, the second is to approximate Pareto with Lognormal 

distribution and the third is to treat the result as transient. 

 

To make it possible for simulations to reach steady state they use bounded Pareto in 

data traffic modeling. In the modified code bounded Pareto distribution generates 

values normally, but all values larger than a threshold value are discarded and the 

distribution is asked to generate a new value. Packet sizes are drawn from the Pareto 

distribution with average packet size of 140 bytes, shape parameter 1.2 and maximum 

size of 200 bytes. Data traffic rate is 10 kbits/s and it is UDP traffic. Data traffic is 

generated during random bursts that are also drawn from the bounded Pareto 

distribution with a shape parameter of 1.2. Burst average time is 1.35 seconds and 

average idle time is 1.5 seconds. Maximum burst time is 5 seconds and minimum is 

zero.  Since packet size is not constant only an estimate of packets per second is 

possible. With the average packet size of 140 bytes packet throughput rate during 

bursts is 8,9 packets per second.  

 

To model voice traffic the simulations use ITU-T G.729 standard. G.729 is supported 

widely in VoIP products. In G.729, the voice is encoded at the rate of 8 kbps and with 

20 or 40 bytes payload size in a packet. The voice quality can be degraded compared 

to another widely used standard, G.711, because the compression in G.729 can be 

lossy. However G.729 requires less bandwidth. The payload size is 20 bytes. With 

packet overhead, the rate required is 26.4 kbits/s [Cisco]. In the simulations voice 

traffic is generated in bursts with the average duration of 1.35 seconds and average 
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idle time duration of 1.5 seconds. The burst length is drawn from the exponential 

distribution and it also has a maximum duration of 5 seconds and minimum of 0 

seconds. During bursts packet throughput rate is 165 packets per second.  

5.3.3 Simulation Scenarios 
 
There are three simulation scenarios. The first is the reference scenario that uses the 

standard EDCA parameter set. Other two modify the TXOP limit. In each case only 

the TXOP limit of data traffic is modified. The voice traffic TXOP limit remains at 

the standard static value in all simulations. Voice traffic uses the AC_VO access 

category standard values. Data traffic uses the AC_BK access category standard 

values for other parameters than the TXOP limit.   

 

The seconds simulation scenario uses an infinite TXOP limit. Each station sets the 

data traffic TXOP limit independently based on the data queue’s length. Each time a 

queue in a QSTA needs a TXOP limit value, it calculates how long it would take to 

send all the packets currently in the queue and uses this as TXOP limit. If that queue 

then wins access to the channel it can send all its packets. This represents the 

maximum TXOP limit value that is useful, because any values larger than this do not 

create extra benefit for the queue. This way the effect of maximizing the data traffic 

TXOP limit has to voice traffic can be observed. 

 

The third scenario investigates the effect of different size static TXOP values for data 

traffic. According to the standard the value should be zero. In this scenario however, 

the data traffic TXOP limit is set to a non-zero value that remains the same through 

one simulation set. By changing the data traffic TXOP limit from one simulation set 

to another, a range of values is covered.  

 

5.4 Simulation Tools 
 
This section describes the tools used in the simulations. First the simulator used is 

explained followed by details about execution. Then statistical analysis discussed and 

finally simulation metrics that are used in interpreting the results are explained. 
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5.4.1 Simulator 
 

In the simulations Network Simulator 2 (NS-2) is used. NS-2 is a discrete event 

simulator written in C++ for many different kinds of computer network simulations 

[NS-2]. In NS-2, the actual simulations are written in Tool Command Language (Tcl). 

The basic NS-2 itself has built in IEEE802.11 WLAN capabilities but it does not have 

802.11e features. However, there are extensions to NS-2 to make it possible to 

simulate 802.11e networks as well. The simulations use the module developed by 

Wiethölter et al. [Wiethölter] of the Telecommunication Networks Group of 

Technical University of Berlin. Their extension module to NS-2 focuses on EDCA 

and it does not have HCCA functionalities. Because their module only runs with NS 

version 2.28 that version of NS-2 is used.  

 

Wiethölter’s extension module simulates in accordance of the IEEE802.11e standard 

and uses by default the EDCA parameter set provided in the standard, which is 

provided in Table 4.  Reference simulations in this thesis use these standard values. 

The C++ source code related to the TXOP limit is changed so that it is possible to 

modify the TXOP limit. With the modified code it is also possible to change the 

TXOP limit dynamically during a simulation, which was not possible before. Also, 

the changes in the TXOP limit are local to each QSTA. The values for other 

parameters like the AIFS and the CW size remain the same as in the amendment and 

they are controlled by the QAP. CW and AIFSN values or any other settings of NS-2 

are not changed at all in the simulations. This way the effect of the TXOP limit can be 

isolated.  
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Table 4.  Standard EDCA parameter set values  

 

5.4.2 Simulation execution 
 

In order to collect a sufficient amount of samples each simulation is run 20 times with 

exactly the same parameters. The duration of one simulation is 1000 seconds. During 

the simulation NS-2 creates a trace file, which then can be processed to abstract 

information about the simulation. 

 

 In order to determine when the simulation has reached a steady state, a script 

calculates the mean of a metric, such as delay or fairness, every second. Then with the 

help of the script, data is removed from the beginning of the file as much as is 

appropriate for the simulation to have reached steady state. 

 

For random number generation the instructions in a paper by Weigle [Weigle2006] 

are followed. She notes the importance of using random generator sub streams 

correctly.  

5.4.3 Statistical Analysis 

 
The built in statistical features of Matlab are used to perform statistical analysis. Each 

one steady-state simulation produces only one value for throughput, delay, packet 

delivery ratio or fairness. This value is the mean value for that one simulation run. 

After 20 runs there are 20 individual results from which the final mean value is 

calculated. From these values the standard deviations and the confidence intervals are 

calculated. 
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5.4.4 Simulation Metrics 
 
To understand the overall behavior of a network it is helpful to look at several 

different metrics. In addition, for simulations where the TXOP limit changes, the 

program creates an output file detailing the change of the TXOP limit.  

 

Delay, or latency, can be classified depending on what is causing it. Propagation 

delay is the time it takes for a signal to travel in the wire or in air, and it can only be 

improved by improving the wires for example from copper to fiber. The second type 

of delay is processing delay, which is the delay caused by packetization, compression 

and routing. The third is queuing delay that is caused by congestion. In addition there 

is a serialization delay, which is the amount of time it takes to place a bit onto an 

interface. This delay can be reduced by faster link speed and smaller packet sizes. 

[Davidson2006] One notable issue with delay measurements in the simulations is that 

it can only be measured of packets that are actually delivered. Packets dropped or lost 

have an infinite delay and they are not taken into account in the calculations.  

 

Delay can be one way or two-way depending on what we want to calculate. One-way 

delay means the time it takes for a packet to reach its destination, two-way is the 

roundtrip time. In these simulations only one-way delay is measured.  

 

Packet delivery ratio simply means packets that are delivered and not dropped at some 

point. It is a ratio of packets received divided by packets sent. Throughput is 

measured in bits/second and is a capacity measure for the network. Fairness in this 

case means relative throughput fairness as discussed in Chapter 3. 

 

In these simulation scenarios the lower limit for fairness is 0.5 instead of 0, because 

the actual fairness calculation only uses two figures, one from data traffic and one 

from voice traffic. The fairness f(a) is calculated as follows: 
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In each calculation a1 = voice traffic and a2 = data traffic. 

 

The Equation (2) is used when calculating fairness because in this situation, the 

interest is in fairness related to the closeness of the allocations of respective demands. 

 

In EDCA, there are four categories of traffic and each gets to use the WLAN 

resources differently. The network is completely fair if all traffic categories get to 

send all the packet they want.  On the other hand, the network can be totally unfair, if 

one category of traffic gets its needs fulfilled and others get nothing. It should be 

noted that when no traffic gets through at all the network is also completely fair. 
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6. Results 
 
This section presents the simulation results. First the section presents simulation 

results with infinite TXOP limit. The section concludes with the results from static 

TXOP limit simulations. 

 

6.1 Infinite TXOP Limit 
 
In this section simulations with standard settings are compared to simulations where 

the TXOP limit changes. Standard setting simulations use the static values given in 

the 802.11e amendment. This means that in standard setting simulations data traffic 

TXOP limit is always zero. In the infinite TXOP limit changing simulations, data 

traffic TXOP limit is always set to a value that allows all packets in a queue to be 

sent. This is the maximum useful TXOP limit because queues release the channel 

when they have nothing to send. With this scheme, the maximum disturbing effect of 

data traffic has on voice traffic can be observed.  

 
Figure 7. Data traffic queue length during one simulation.   
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Figure 7 shows an example of how data traffic queue length changes during one 

infinite TXOP limit simulation run. The figure shows that data traffic packets have to 

wait a random time for channel access, which can at times be quite long. When the 

data traffic queue gets to transmit the queue empties. 

 
Figure 8. Average non-zero data traffic queue length when number of stations with 
infinite TXOP limit. The average queue length also shows the average data traffic 
queue length.  
 
Figure 8 shows how data traffic TXOP limit increases as more stations are 

transmitting. The figure also shows the average data traffic queue length. When there 

are 1-7 stations transmitting the average TXOP limit for data traffic is zero. This 

means that all traffic is transmitted without waiting in the queue. When over 7 stations 

are transmitting the queue length and queuing delay increase.  
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Figure 9. Fairness, standard and infinite TXOP limit settings 

 

Figure 9 shows the network fairness with standard and infinite settings. When more 

than eight nodes are transmitting the network fairness starts to suffer. When 20 nodes 

are transmitting the system is totally unfair. Comparing the standard settings to the 

infinite TXOP limit settings, it seems that the latter settings produce better fairness. 

This applies only to the situation where the network is getting congested; when the 

network is already congested the infinite settings are of no further help.  The 

maximum difference in fairness index is 8% and it occurs when 12 stations are 

transmitting. At that point, the fairness index in the infinite case is 0.859 and 0.7788 

in the standard case. This difference means about 10% improvement. The 

improvement percentage is even higher as number of stations increase beyond 12, but 

because at the same time traffic increases the significance of the improvement lessens.    
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Figure 10. Data traffic packet delivery ratio, standard and infinite TXOP limit 
settings 
 
Figure 10 shows the data traffic packet delivery ratio. Results are similar to Figure 10. 

The figure shows that infinite data traffic TXOP limit improves the packet delivery 

ratio. When 12 stations are transmitting the improvement is 38%. The result shows 

that more data packets are getting through with infinite TXOP limit settings than with 

standard settings. The improvement occurs when transmitting stations increase so that 

the network slowly becomes congested. However, after more than eight stations are 

transmitting the network starts to become congested. As the amount of stations 

increases, packet delivery rate drops rapidly and the network quickly becomes 

unusable.  
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Figure 11. Voice traffic packet delivery ratio, standard and infinite TXOP limit 
settings  
 

Figure 11 shows the voice traffic packet delivery ratio as number of stations 

transmitting increases. The key point of interest is whether infinite data traffic TXOP 

limit disturbs the voice traffic packet delivery ratio. The results show that when 12 

stations are transmitting the decrease in data traffic packet delivery ratio is around 

5%. As with data traffic in Figure 10, after more than eight stations are transmitting 

the packet delivery ratio of voice traffic starts to drop. As the number of transmitting 

stations increases, the network becomes unusable and any voice conversation 

unintelligible.  
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Figure 12. Data traffic delay, standard and infinite TXOP limit settings  
 
Another crucial metric to look at is delay. Figure 12 shows data traffic delay as more 

and more stations are transmitting. The figure shows that when there are between 14 

and 18 stations transmitting, data traffic delay is significantly larger with standard 

settings than with infinite TXOP limit settings. With a very large number of nodes the 

delay is similar.  However, since delay can only be measured of traffic that actually 

gets through, dropped packets are ignored. So in case of a congested network, the sink 

node receives very few data traffic packets and the mean is calculated from 

significantly smaller amount of data. Hence delay values when a large number of 

stations are transmitting only indicate that practically no data traffic gets through in 

the network. When 12 stations are transmitting data traffic delay decreases about 

32%. 
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Figure 13. Voice traffic delay, standard and infinite TXOP limit settings 

 
Figure 13 shows the voice traffic delay. This is a crucial metric for voice traffic 

because it cannot tolerate large delays. The figure shows that using standard or 

infinite TXOP limit settings the difference is not very largest. The biggest increase in 

voice traffic delay, 11.7%, occurs when 12 stations are transmitting. It’s worth 

noticing that when more than 10 stations are transmitting voice traffic delay becomes 

substantial. It is so large that voice quality suffers. Delays beyond 12 stations 

transmitting are so large that voice conversation cannot be sustained.  
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Figure 14. Data traffic throughput, standard and infinite TXOP limit settings  
 
Figure 14 shows the data traffic throughput. The throughput reaches its peak when 

nine nodes are transmitting. After nine nodes data traffic throughput starts to 

deteriorate. This means that more packets are dropped. When comparing standard and 

infinite TXOP limit settings the figure shows that dynamic settings allow more data 

traffic to pass through than the standard settings when amount of stations transmitting 

increases from 10 to 16. When 12 stations are transmitting the improvement in 

throughput is about 35%. 
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Figure 15. Voice traffic throughput, standard and infinite TXOP limit settings  
 
Figure 15 shows the voice traffic throughput. The figure shows that standard and 

infinite TXOP limit settings produce nearly identical results. This means that infinite 

data traffic TXOP limit settings do not disturb the voice traffic throughput much. 

When 12 stations are transmitting the decrease in voice traffic throughput is about 

0.85%. The network maximum capacity causes voice traffic throughput to deteriorate 

when more than 12 stations are transmitting. 

 

6.2 Static TXOP Limit 
 
The purpose of these simulations is to investigate how different static TXOP limit 

values for data traffic affect the system. In one simulation set the data traffic TXOP 

limit is preset to a fixed value. In the next simulation set, the data traffic TXOP limit 

is preset again to a different value. TXOP limit values are multiples of 32µs like the 

802.11e specifies. 
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In all the simulations of this section 12 stations are transmitting. 12 transmitting 

stations is an interesting moment to look at the network. This is because with 12 

transmitting stations the difference in the results between standard TXOP limit values 

and infinite TXOP limit values is the largest. From one simulation set to another, only 

the TXOP limit value changes. All other parameters remain the same. 

 

  
Figure 16. Fairness with different static TXOP limit values.  
 
Figure 16 shows the system fairness. Compared to the data traffic TXOP limit value 

zero recommended in the amendment, it seems that there is improvement in fairness 

when data traffic TXOP limit is increased to larger values. Maximum improvement is 

about 9%. This occurs when TXOP limit is 0.0088 seconds. At that point fairness 

index is 0.86. Depending on the packets in the queue the actual used TXOP limit time 

can be shorter that what would be allowed. This is because the station releases any 

left-over time it cannot use. Stations are also allowed to fragment MSDUs in order to 

increase the probability of successful transmission or maximize the use of their 

allowed TXOP limit.  
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More and more data traffic gets through when its TXOP limit is set to a larger value. 

This is seems to happen up to a point when the TXOP limit is 0.0056 seconds.  After 

that, the fairness seems to level off and the effect of increasing the data traffic TXOP 

limit is not so large anymore. According to the standard, the largest TXOP limit 

should be 0.00816 seconds. Interestingly, maximum fairness improvement occurs 

with 0.0088 seconds TXOP limit. Values larger than this seem not to provide much 

more benefit in fairness. Additionally, if the data traffic TXOP limit is set to a very 

large value, even larger than 802.11e recommends, it is likely that high priority traffic 

suffers too much. A large static data traffic TXOP limit might not be useful to data 

traffic either, if it has very few packets to send it will not need all the time a large 

TXOP limit allows.  

 
Figure 17. Voice and data traffic throughput  
 
Figure 17 shows the voice and data traffic throughput with different TXOP limit 

values. The figure shows that data traffic throughput increases when TXOP limit 

increases. At the same time voice traffic throughput decreases. The change is around 

30 % improvement for data traffic and 0,78% decrease for voice traffic. Positive 
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effect on data traffic throughput is larger than negative effect on voice traffic 

throughput. However, at this traffic level data traffic packet delivery ratio is around 

30-40% as Figure 18 shows. This means that most data traffic is not delivered. 30% 

improvement is not enough for all data traffic to get through.   

 

 
Figure 18. Voice and data traffic packet delivery ratio  
 
Figure 19 shows the packet delivery ratio of voice and data traffic with different 

TXOP limit values. The figure shows that voice traffic packet delivery ratio suffers 

slightly with large data traffic TXOP limit values. However the change is only 

approximately 0,78%. The figure shows that with large data traffic TXOP limit 

values, data traffic packet delivery ratio is improved by approximately 34% from 30% 

to 40%.  The improvement in data traffic packet delivery ratio is larger than the 

decrease in voice traffic packet delivery ratio. As with fairness presented in Figure 16, 

it seems that data traffic packet delivery ratio improves with larger TXOP limit values 

up to 0.0056 seconds. There does not seem to be much significant improvement with 

values larger than that. It is worth noticing that although voice traffic packet delivery 

ratio only suffers slightly, at just above 90% delivery rate, voice conversation is not 
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very usable. When comparing the result to those of Figures 10 and 11 at twelve 

stations transmitting, it seems that results are very similar.  

 

 
Figure 19. Voice and data traffic delay  

 
Figure 19 shows the voice and data traffic delay when TXOP limit increases. The 

figure shows that voice traffic delay increases by approximately 12% as data traffic is 

sent in bigger bursts. With data traffic, there seems to be a much larger improvement 

in delay. Data traffic delay seems to decrease about 38%. However, even with the 

improvement the delay is very large. Again results seem similar to those of Figure 12 

and 13 with twelve stations transmitting. As with infinite TXOP limit simulations, 

dropped packets are not included in the delay calculations.  
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7. Conclusions 
 

Both static and infinite TXOP limit simulations show an improvement in fairness as 

data traffic TXOP limit increases. The effect of the increase depends on the network 

congestion level; in highly congested networks, large data traffic TXOP limit does not 

improve fairness. This is because the network does not have any capacity left to 

accommodate more traffic. Conversely, when the network has very little traffic, large 

data traffic TXOP limit is not needed. In such a situation all traffic can be transmitted 

without much delay in any case.  

 

Most interesting phase in the network occurs when the network moves from not 

congested to fully congested. During this change data traffic starts to be dropped 

because of its low priority. Data is always dropped sooner than voice.  Figures 11 and 

12 showed the data and voice traffic packet delivery ratio respectively. These figures 

show that data traffic packet delivery ratio drops to almost zero in a relative short 

time, while voice traffic throughput only suffers. When there are 16 stations 

transmitting almost zero data packets are being delivered. At the same time 

approximately 77% of voice traffic is still delivered. When there are 8 stations 

transmitting, the packet delivery ratio for both traffic types is approximately 100%. In 

this situation all traffic can be delivered.  

 

The transition phase from not congested to fully congested is the period when TXOP 

limit change can have an impact on the network fairness. Figure 10 shows this impact. 

When infinite TXOP limit is used, network fairness improves.  

 

7.1 Comparing Static TXOP and Infinite TXOP 
 

In the simulations of Section 6.1 an infinite TXOP limit was used. This means that the 

data traffic TXOP limit is always set to the maximum value where all the packets in 

the queue can be sent. The results show that using an infinite TXOP limit the network 

fairness improves as network becomes congested. The biggest effect was noticed 

when 12 stations are transmitting. This same network situation with 12 transmitting 
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stations was then looked at more carefully by using static TXOP limit values. The 

results of these simulations are shown in Section 6.2. The static TXOP limit 

simulations showed an increase in the network fairness with larger TXOP limit 

values. It seems that the larger the TXOP limit the more the fairness improves. 

However, after a certain TXOP limit value the fairness does not significantly improve 

anymore. This means that bigger TXOP limit values are not useful to data traffic of 

the kind used in these simulations.   

 

When comparing the maximum improvement in fairness in both infinite and static 

TXOP limit case, the difference in the maximum fairness value is only 0.1%. In the 

static case the maximum fairness occurs with a large TXOP limit of 0.0088 seconds. 

Static TXOP limit values larger than this do not lead to better fairness. This indicates 

that the biggest TXOP limit value 802.11e amendment suggests to be used, 0.00816 

seconds, is a good maximum value for a static TXOP limit. In case of the infinite 

TXOP limit simulations, the average of the TXOP limit increases as network becomes 

more congested. When 12 stations are transmitting it is 0.011 seconds. This average is 

larger than the static TXOP limit value needed to produce almost the same fairness 

results. This indicates that a smaller static TXOP limit is enough to produce the same 

results as using an infinite TXOP limit.  

 

The effect fairness improvement had on voice traffic was varied. Voice traffic delay 

increased by 12% in the static simulations. In the infinite TXOP limit simulation 

voice traffic delay overall remained almost same with standard simulations. Voice 

traffic packet delivery ratio remained approximately the same as well as. Voice traffic 

throughput also did not seem to suffer.  

  

From the data traffic’s point of view, in addition to fairness, also delay, packet 

delivery ratio and throughput improved with a non-zero TXOP limit. The biggest 

change was in delay, which improved more than the others metrics.  

 

Overall it seems that having a high static or infinite data traffic TXOP limit improves 

fairness in the network, as well as data traffic throughput, delay and packet delivery 

ratio. However no one static TXOP value seems to produce better results than the 

infinite TXOP limit. 
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7.2 Evaluation of results and improvements 
 
The results show improvement in fairness with non-zero data traffic TXOP limit 

values. However, there were only two kinds of traffic in the network in the 

simulations. In real life traffic would be far more diverse. It is difficult to create traffic 

models for simulations. Simulation traffic models, like the kind used in this thesis, are 

simplifications of real traffic. So results from live networks can be different.  

 

In order to improve simulation traffic modeling, real traffic traces can be used.  

Realistic traffic models create spikes and other random behavior that can make it 

harder to interpret the results. For further realism, noise and channel error should also 

be used. Real life situation is not error free like the simulations in this thesis. Also the 

traffic model in this thesis is heavily VoIP laden, which might not be realistic.    

 

Where VoIP is concerned it is crucial to pay attention to delay. The rule of thumb for 

VoIP delay is that one-way delay should not exceed 150 ms and anything over 250 ms 

will make the conversations difficult. Also the encoding scheme chosen can have a 

delay effect. G.711 does not compress and hence adds little delay but G.729 compress 

voice and adds a delay of 25 ms [Cisco]. It is possible to reduce bandwidth 

requirements either by using a technique called RTP header compression or with 

voice activity detection (VAD) technique, which prevents packets of silence in the 

conversation from being sent.  

 

In the simulations of this thesis, VoIP delay quickly exceeds 150 ms when more than 

10 stations are transmitting. After more than 10 stations are transmitting VoIP quality 

suffers. This excessive delay occurs in both standard simulations and infinite TXOP 

limit simulations and is due to increasing overall congestion in the network. Changing 

the TXOP limit did not seem to have a big further effect on VoIP delay.  

 

Of the absolute numbers of how many voice or data traffic streams the network can 

sustain definite conclusions cannot be made based on the simulations. This is because 

the network used in the simulations is not realistic enough. Also based on the 
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simulations it cannot be determined what would generally be the best static TXOP 

limit value. In real life, traffic is much more varied than in the simulations of this 

thesis. The high TXOP limit value determined to give the best fairness results in the 

simulations is the best result for the kind of traffic modeled here, but it might not be 

best for all kinds of traffic and all kinds of traffic combinations.  

 

7.3 Topics for Further Study 
 
This thesis only focused on two access categories, voice and background. It would be 

interesting to use all four access categories in simulations. Simulation model in such a 

case would be more complicated to construct, especially in terms of modeling 

different kinds of traffic. Such simulations would show the effect TXOP limit changes 

have on all four categories together. In addition, changing TXOP limit in all the 

access categories, either simultaneously or separately would make it possible to 

observe TXOP limit effect on the entire system.  

 

TXOP limit affects the transmission duration, while AIFS and contention window 

define the channel access frequency. In this thesis the relationship between 

transmission duration and channel access frequency was not studied. This relationship 

and its effect on fairness would be interesting to research. This could be researched 

for example by looking at changing TXOP limit effect on best effort and background 

access categories. 

 

Besides TXOP limit, the access point can change the contention window maximum 

and minimum and AIFS per access category. 802.11e gives a basic standard 

parameter set of static values as a reference. The standard parameter set is just one 

example of how the parameters can be used. It would be interesting to investigate 

other possibilities for the entire set, either static or dynamic. Dynamic tuning of all the 

parameters would likely be the most optimal solution, but it is very difficult to create 

an algorithm for dynamic change. It is also possible to set EDCA parameter set 

differently inside an access category, which would create even more differentiation. 

Whether this brings any benefits or not would be interesting to investigate. However, 

finding an optimal way to do this is also very complicated.  
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Another point that needs to be considered in optimizing the 802.11e WLAN is uplink-

downlink fairness. The access point can use a different set of EDCA parameters than 

those it advertises to the QSTAs. If  an access point is not prioritized in the parameter 

set, it can become a bottleneck that diminishes the overall network capacity.  

 

In 802.11e there are also other parameters that could be changed. These are: RTS 

threshold, fragmentation threshold, long and short retry limit. However, it is likely 

that sufficient traffic differentiation can be accomplished without changing these 

parameters. Fragmentation threshold is useful when there are a lot of channel errors 

and in these situations changing it dynamically could be beneficial. For real-time 

multimedia, retransmitted frames may be too late to be useful, so smaller retry limit is 

appropriate and for non real-time a larger retry limit is needed for reliable 

transmissions. 

 

In addition to modifying the TXOP limit/EDCA parameter set it is possible to 

improve the system fairness in other ways.  One simple way to improve the efficiency 

and reduce overhead is to use block acknowledgments introduced in 802.11e. Another 

would be using admission control. This is mentioned in several research papers as 

way to assure that the network never becomes so congested that QoS suffers. 

Research papers suggest admission control as an interesting topic to study further. 

 

Admission control can be centralized or decentralized. In the centralized model, 

solely the access point handles admission control. In the decentralized model, the 

QSTA’s or applications in need decide if there is enough capacity available to fulfill 

their requirements. If an application realizes that the channel is unable to meet its QoS 

requirements it can refrain from loading the channel further or reduce its demands for 

example by increasing compression. Application based access control assumes that 

there are no greedy applications, but in real life preparations for the occurrence of 

such applications would need to be made. Admission control could also be tentative. 

First all streams would be accepted into the network and delay and throughput is 

measured to see whether there actually is any capacity for the new traffic. 

 
In order for admission control to work, the access point or the station implementing it 

needs to measure the network situation in some way. Network measurement is an 
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intriguing area to study and would benefit 802.11e networks as well. The 

measurements could be used not only for admission control but also as a trigger for 

changes in EDCA parameter set. Changing the parameters in accordance to the 

network situation is an interesting topic to study, although also complicated. One 

possibility for the AP to know when the EDCA parameter set should be changed is to 

monitor the network and periodically measure its situation. For different access 

categories different parameters could be monitored. The channel usually becomes 

delay limited before throughput limited, so delay should be the focus of higher 

category traffic measurements.  

 

The downside in using network monitoring to perform admission control or general 

controlling is the fact that it is hard to do. Especially measuring delay in a live 

situation is very complicated since clocks in each end need to be synchronized to a 

high degree. For traffic load a simple way to measure it, is to look at the relative 

occupied bandwidth, which means channel busy time divided by total time.  

 

To synchronize clocks for delay measurements in 802.11e it might be possible to use 

beacon frames. Then the timestamp in the packets could be used to estimate the delay. 

Also it is possible for each individual station to measure delay in its queues and in 

ACK receiving. Then if AP needs the results of the measurements, the stations would 

need to periodically transmit the results to the access point but this would increase 

overhead. Besides these methods, using some specialized measuring protocol could 

be studied further. 

 

7.4 Summary 
 

Overall the effects of TXOP limit changes seem positive. Fairness in the network 

increased, but not at a big expense to voice traffic. Voice traffic delay, throughput and 

packet delivery ratio remained almost the same while data traffic experienced 

improvement. It seems that sending data traffic in bigger bursts improves the network 

fairness. However, the improvement is not very large. Also when the network is 

heavily congested, data traffic queues almost never gain access to the channel. In such 

heavy congestion situations this method does not improve fairness.   
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The results indicated that having a large static TXOP limit gives equal results as 

letting the TXOP limit set itself according to the queue length. In the latter case, 

TXOP limit average is very high. This means that large data traffic TXOP limit of any 

kind improves fairness in the network. Whether it is enough just to use a static TXOP 

limit in a more realistic network needs to be researched further.     

 

In the end everything comes down to trade-offs. The most important question to ask is 

what kind of traffic we want favor and how much? If we are only interested in the 

highest category of traffic then we should be willing to sacrifice all other traffic. 

However, it might not be optimal to favor   one kind of traffic that much. It is also 

important that the lower priority traffic gets transmitted. To improve data traffic 

throughput, TXOP limit modifications are beneficial. Most importantly, modifications 

do not seem to disturb high priority traffic very much. These results indicate that low 

priority TXOP limit changes should be used if network fairness improvement is 

wanted. However, TXOP modifications are likely to be just a part of the answer. For 

fully optimized network the entire EDCA parameter set should robustly respond to 

network conditions.  
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