6,386 research outputs found

    A Method to Separate Stochastic and Deterministic Information from Electrocardiograms

    Full text link
    In this work we present a new idea to develop a method to separate stochastic and deterministic information contained in an electrocardiogram, ECG, which may provide new sources of information with diagnostic purposes. We assume that the ECG has information corresponding to many different processes related with the cardiac activity as well as contamination from different sources related with the measurement procedure and the nature of the observed system itself. The method starts with the application of an improuved archetypal analysis to separate the mentioned stochastic and deterministic information. From the stochastic point of view we analyze Renyi entropies, and with respect to the deterministic perspective we calculate the autocorrelation function and the corresponding correlation time. We show that healthy and pathologic information may be stochastic and/or deterministic, can be identified by different measures and located in different parts of the ECG.Comment: 4 pages, 6 figure

    How random is your heart beat?

    Get PDF
    We measure the content of random uncorrelated noise in heart rate variability using a general method of noise level estimation using a coarse grained entropy. We show that usually - except for atrial fibrillation - the level of such noise is within 5 - 15% of the variance of the data and that the variability due to the linearly correlated processes is dominant in all cases analysed but atrial fibrillation. The nonlinear deterministic content of heart rate variability remains significant and may not be ignored.Comment: see http://urbanowicz.org.p

    Long-range dependencies in heart rate signals- revisited

    Full text link
    The RR series extracted from human electrocardiogram signal (ECG) is considered as a fractal stochastic process. The manifestation of long-range dependencies is the presence of power laws in scale dependent process characteristics. Exponents of these laws: β\beta - describing power spectrum decay, α\alpha - responsible for decay of detrended fluctuations or HH related to, so-called, roughness of a signal, are known to differentiate hearts of healthy people from hearts with congestive heart failure. There is a strong expectation that resolution spectrum of exponents, so-called, local exponents in place of global exponents allows to study differences between hearts in details. The arguments are given that local exponents obtained in multifractal analysis by the two methods: wavelet transform modulus maxima (WTMM) and multifractal detrended fluctuation analysis (MDFA), allow to recognize the following four stages of the heart: healthy and young, healthy and advance in years, subjects with left ventricle systolic dysfunction (NYHA I--III class) and characterized by severe congestive heart failure (NYHA III-IV class).Comment: 24 page

    The Earth as a living planet: human-type diseases in the earthquake preparation process

    Get PDF
    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injury heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study
    corecore