2,240 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    A nearly zero-energy microgrid testbed laboratory: Centralized control strategy based on SCADA system

    Get PDF
    Currently, despite the use of renewable energy sources (RESs), distribution networks are facing problems, such as complexity and low productivity. Emerging microgrids (MGs) with RESs based on supervisory control and data acquisition (SCADA) are an effective solution to control, manage, and finally deal with these challenges. The development and success of MGs is highly dependent on the use of power electronic interfaces. The use of these interfaces is directly related to the progress of SCADA systems and communication infrastructures. The use of SCADA systems for the control and operation of MGs and active distribution networks promotes productivity and efficiency. This paper presents a real MG case study called the LAMBDA MG testbed laboratory, which has been implemented in the electrical department of the Sapienza University of Rome with a centralized energy management system (CEMS). The real-time results of the SCADA system show that a CEMS can create proper energy balance in a LAMBDA MG testbed and, consequently, minimize the exchange power of the LAMBDA MG and main grid

    Overlay networks for smart grids

    Get PDF

    Integrating Low Voltage Distribution Systems to Distribution Automation

    Get PDF
    The aim of this thesis is to define and study the key elements and the main characteris-tics of the integration of the low voltage (LV) distribution systems to distribution auto-mation (DA). The key elements are defined by studying the development of essential systems in LV distribution networks as well as by studying the development of the net-works by way of evolution phases. The key elements and the main characteristics of the integration to DA are illustrated by a certain model of a LV distribution network under its development. For a start DA is reviewed by generally used functions and by technologies. The review includes the data and the information systems and in addition the communication net-works are studied generally. Thereafter the main elements of LV distribution networks are presented and their evolution visions are introduced. The main elements comprises of the distribution network, distributed generation, smart energy metering, electric vehicles and energy storages. The approach to the integration is the evolution of LV distribution networks, so four main evolution phases are introduced; traditional, boom of distributed generation, mi-crogrid and intelligent microgrid. The evolution phases bases on general research publi-cations and visions of Smart Grids. Management architectures for the networks are pre-sented. Also requirements for communication are evaluated by studying the number of nodes, capacity requirements for transferred data types and fault and event frequencies. In order to define a proposal for integrating LV distribution networks to DA, the man-agement architectures and the studied requirements are compared to produce functions for DA. As a result, the proposal is presented based on the studied architectures and re-quirements. In addition considerable issues are introduced relating to the functions in devices or sub-systems, which are needed for DA applications. This thesis indicates the need for further studies, such as: Which are the desired DA functions to be extended to LV distribution networks? Which device or system should offer the desired functions? How well the potential protocols using some media type serves the functions?fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Smart grid

    Get PDF
    Tese de mestrado integrado em Engenharia da Energia e do Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016The SG concept arises from the fact that there is an increase in global energy consumption. One of the factors delaying an energetic paradigm change worldwide is the electric grids. Even though there is no specific definition for the SG concept there are several characteristics that describe it. Those features represent several advantages relating to reliability and efficiency. The most important one is the two way flow of energy and information between utilities and consumers. The infrastructures in standard grids and the SG can classified the same way but the second one has several components contributing for monitoring and management improvement. The SG’s management system allows peak reduction, using several techniques underlining many advantages like controlling costs and emissions. Furthermore, it presents a new concept called demand response that allows consumers to play an important role in the electric systems. This factor brings benefits for utilities, consumers and the whole grid but it increases problems in security and that is why the SG relies in a good protection system. There are many schemes and components to create it. The MG can be considered has an electric grid in small scale which can connect to the whole grid. To implement a MG it is necessary economic and technical studies. For that, software like HOMER can be used. However, the economic study can be complex because there are factors that are difficult to evaluate beyond energy selling. On top of that, there are legislation and incentive programs that should be considered. Two case studies prove that MG can be profitable. In the first study, recurring to HOMER, and a scenario with energy selling only, it was obtained a 106% reduction on production cost and 32% in emissions. The installer would have an 8000000profitintheMGslifetime.Inthesecondcase,itwasconsideredeconomicservicesrelatedtopeakloadreduction,reliability,emissionreductionandpowerquality.TheDNOhadaprofitof8 000 000 profit in the MG’s lifetime. In the second case, it was considered economic services related to peak load reduction, reliability, emission reduction and power quality. The DNO had a profit of 41,386, the MG owner had 29,319profitandtheconsumershada29,319 profit and the consumers had a 196,125 profit. We can conclude that the MG with SG concepts can be profitable in many cases

    Smart Metering System for Microgrids

    Get PDF
    corecore