2,853 research outputs found

    Credit Scoring Using Machine Learning

    Get PDF
    For financial institutions and the economy at large, the role of credit scoring in lending decisions cannot be overemphasised. An accurate and well-performing credit scorecard allows lenders to control their risk exposure through the selective allocation of credit based on the statistical analysis of historical customer data. This thesis identifies and investigates a number of specific challenges that occur during the development of credit scorecards. Four main contributions are made in this thesis. First, we examine the performance of a number supervised classification techniques on a collection of imbalanced credit scoring datasets. Class imbalance occurs when there are significantly fewer examples in one or more classes in a dataset compared to the remaining classes. We demonstrate that oversampling the minority class leads to no overall improvement to the best performing classifiers. We find that, in contrast, adjusting the threshold on classifier output yields, in many cases, an improvement in classification performance. Our second contribution investigates a particularly severe form of class imbalance, which, in credit scoring, is referred to as the low-default portfolio problem. To address this issue, we compare the performance of a number of semi-supervised classification algorithms with that of logistic regression. Based on the detailed comparison of classifier performance, we conclude that both approaches merit consideration when dealing with low-default portfolios. Third, we quantify the differences in classifier performance arising from various implementations of a real-world behavioural scoring dataset. Due to commercial sensitivities surrounding the use of behavioural scoring data, very few empirical studies which directly address this topic are published. This thesis describes the quantitative comparison of a range of dataset parameters impacting classification performance, including: (i) varying durations of historical customer behaviour for model training; (ii) different lengths of time from which a borrower’s class label is defined; and (iii) using alternative approaches to define a customer’s default status in behavioural scoring. Finally, this thesis demonstrates how artificial data may be used to overcome the difficulties associated with obtaining and using real-world data. The limitations of artificial data, in terms of its usefulness in evaluating classification performance, are also highlighted. In this work, we are interested in generating artificial data, for credit scoring, in the absence of any available real-world data

    Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains

    Full text link
    There has been increased interest in devising learning techniques that combine unlabeled data with labeled data ? i.e. semi-supervised learning. However, to the best of our knowledge, no study has been performed across various techniques and different types and amounts of labeled and unlabeled data. Moreover, most of the published work on semi-supervised learning techniques assumes that the labeled and unlabeled data come from the same distribution. It is possible for the labeling process to be associated with a selection bias such that the distributions of data points in the labeled and unlabeled sets are different. Not correcting for such bias can result in biased function approximation with potentially poor performance. In this paper, we present an empirical study of various semi-supervised learning techniques on a variety of datasets. We attempt to answer various questions such as the effect of independence or relevance amongst features, the effect of the size of the labeled and unlabeled sets and the effect of noise. We also investigate the impact of sample-selection bias on the semi-supervised learning techniques under study and implement a bivariate probit technique particularly designed to correct for such bias

    Deep Generative Models for Reject Inference in Credit Scoring

    Get PDF
    Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring

    EC3: Combining Clustering and Classification for Ensemble Learning

    Full text link
    Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.Comment: 14 pages, 7 figures, 11 table

    Investigating the Performance of Smote for Class Imbalanced Learning: A Case Study of Credit Scoring Datasets

    Get PDF
    Classification of datasets is one of the major issues encountered by the data mining community. This problem heightens when the real world datasets is also imbalanced in nature. A dataset happens to be imbalanced when the numbers of observations belonging to rare class are greatly outnumbered by the observations of another class. Class with greater number of observation is called the majority or the negative class, while the other with rare observations is referred to as the minority or the positive class. Literature represents number of resampling techniques that address the problem of class imbalance. One of the most important strategies is to resample the datasets that aim to balance the number of minority or majority observations by over-sampling or under-sampling respectively. This paper aims to investigates and analyze the performance of most widely used oversampling procedure Synthetic Minority Oversampling Technique (SMOTE) for different thresholds of oversampling using four classifiers for three credit scoring datasets

    Data mining for detecting Bitcoin Ponzi schemes

    Full text link
    Soon after its introduction in 2009, Bitcoin has been adopted by cyber-criminals, which rely on its pseudonymity to implement virtually untraceable scams. One of the typical scams that operate on Bitcoin are the so-called Ponzi schemes. These are fraudulent investments which repay users with the funds invested by new users that join the scheme, and implode when it is no longer possible to find new investments. Despite being illegal in many countries, Ponzi schemes are now proliferating on Bitcoin, and they keep alluring new victims, who are plundered of millions of dollars. We apply data mining techniques to detect Bitcoin addresses related to Ponzi schemes. Our starting point is a dataset of features of real-world Ponzi schemes, that we construct by analysing, on the Bitcoin blockchain, the transactions used to perform the scams. We use this dataset to experiment with various machine learning algorithms, and we assess their effectiveness through standard validation protocols and performance metrics. The best of the classifiers we have experimented can identify most of the Ponzi schemes in the dataset, with a low number of false positives

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure
    • …
    corecore