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Abstract. Credit scoring models based on accepted applications may be biased and their
consequences can have a statistical and economic impact. Reject inference is the process
of attempting to infer the creditworthiness status of the rejected applications. Inspired by
the promising results of semi-supervised deep generative models, this research develops two
novel Bayesian models for reject inference in credit scoring combining Gaussian mixtures
and auxiliary variables in a semi-supervised framework with generative models. To the best
of our knowledge this is the first study coupling these concepts together. The goal is to
improve the classification accuracy in credit scoring models by adding reject applications.
Further, our proposed models infer the unknown creditworthiness of the rejected applications
by exact enumeration of the two possible outcomes of the loan (default or non-default). The
efficient stochastic gradient optimization technique used in deep generative models makes our
models suitable for large data sets. Finally, the experiments in this research show that our
proposed models perform better than classical and alternative machine learning models for
reject inference in credit scoring, and that model performance increases with the amount of
data used for model training.

Keywords: Reject Inference, Deep Generative Models, Credit Scoring, Semi-Supervised Learning

1 Introduction

Credit scoring uses statistical models to transform the customers’ data into a measure of the borrowers’
ability to repay the loan [1]. These models are developed, commonly, based on accepted applications
because the bank knows whether the customer repaid the loan. The problem is that this data sample is
biased since it excludes the rejected applications systematically. This is called selection bias.

Using a biased sample to estimate any model has several problems. The straightforward consequence is
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that the model parameters are biased [2], which has a statistical and economic impact [3, 4]. Another
consequence is that the default probability can be underestimated, affecting the risk premium and the
profitability of the bank [5]. Hence, reject inference, which is the process of attempting to infer the true
creditworthiness status of the rejected applications [6], has created a great deal of interest.

There is a vast literature on reject inference using classical statistical methods. However, there has been
little research using machine learning techniques (see Table 1). Semi-supervised learning approaches
design and train models using labeled (accepted applications) and unlabeled data (rejected applica-
tions), and aim to utilize the information embedded in both data to improve the classification of unseen
observations. There are several fields where semi-supervised deep generative models have achieved state-
of-the-art results, e.g. in semi-supervised image classification [7, 8], in semi-supervised sentiment analysis
[9, 10], and in unsupervised clustering [11]. Additionally, the useful information embedded in their latent
space is well documented [12, 13, 14, 15]. Inspired by the modeling framework introduced by [7], this
research develops two novel models for reject inference models in credit scoring combining, for the first
time, auxiliary variables [8] and Gaussian mixtures parametrized by neural networks in a semi-supervised
framework.

Our proposed models have a flexible latent space, induced by the Gaussian mixtures, to improve the
variational approximation and the reconstruction of the input data [8, 16]. In addition, one of our
models not only uses the input data to classify new loan applications, but also a latent representation of
it. This makes the classifier more expressive [8, 16]. We compare the performance of the semi-supervised
generative models with a range of techniques representing the state-of-the-art in reject inference for
credit scoring, including three classical reject inference techniques (reclassification, fuzzy parceling1 and
augmentation [17]), and three semi-supervised machine learning approaches (self-learning [18] MLP,
self-learning SVM, and semi-supervised SVM [19]). Additionally, we include two supervised machine
learning models (multilayer perceptron (MLP) [20] and support vector machine (SVM) [21]) to measure
the marginal gain of reject inference.

To summarize, the main contributions of this paper are as follows:

1. We develop two novel reject inference models for credit scoring combining auxiliary variables and
Gaussian mixtures in a semi-supervised framework with generative models for the first time.

2. We derive the objective functions for our proposed models and show how they can be parameterized
by MLPs and optimized with stochastic gradient descent.

3. We parametrize the Gaussian mixtures using an MLP and we show how to train them with semi-
supervised data.

4. Our empirical results show that our proposed models achieve higher performance compared to
the state-of-art methods in credit scoring. Additionally, the model performance for our proposed
models increases with the amount of data used for training.

The rest of the paper is organized as follows. Section 2 reviews the related work on reject inference in
credit risk, then Section 3 presents an overview of semi-supervised deep generative models and introduces
the proposed models. Section 4 explains the data, methodology and main results. Finally, Section 5
presents the main conclusion of this research.

2 Related Work

Banks decide whether to grant credit to new applications as well as how to deal with existing customers,
e.g. deciding whether credit limits should be increased and determining which marketing campaign is
most appropriate. The tools that help banks with the first problem are called credit scoring models,
while behavioral scoring models are used to handle exiting customers [22]. Both type of models estimate
the ability that a borrower will be unable to meet its debt obligations, which is referred to as default
probability. This research focuses on reject inference to improve the classification accuracy of credit

1For a review of the reclassification and fuzzy parceling approaches see [1, 3].
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(Year) Author Data type Status of rejects No. of accepts No. of rejects Reject Inference approach Classification method
(1993) Joanes [25] Artificial Unknown 75 12 Reclassification Logistic
(2000) Feelders [24] Artificial Unknown Varying Varying EM QDA, Logistic
(2001) Chen and Astebro [4] Coorporate Known 298 599 Heckman’s model Probit, Bivariate probit
(2003) Banasik et al. [26] Consumer Known 8 168 4 040 Augmentation Logistic, Probit
(2004) Crook and Banasik [27] Consumer Known 8 168 4 040 Augmentation, Extrapolation Logistic
(2004) Verstraeten and Van den Poel [28] Consumer Partially known 38 048 6 306 Augmentation Logistic
(2005) Banasik and Crook [29] Consumer Known 8 168 4 040 Augmentation Logistic
(2006) Sohn and Shin [30]* Consumer Unknown 759 10 Reclassication Survival analysis
(2007) Banasik and Crook [31] Consumer Known 8 168 4 040 Augmentation and Heckman’s model Logistic, Bivariate probit
(2007) Kim and Sohn [32] Corporate Known 4 298 689 Heckman’s model Bivariate probit
(2007) Wu and Hand [33] Artificial Known Varying Varying Heckman’s model OLS, Bivariate Probit
(2010) Banasik and Crook [34]* Consumer Known 147 179 Varying Augmentation Survival analysis
(2010) Marshall et al. [5] Consumer Known 40 700 2 934 Heckman’s model Probit, Bivariate probit
(2010) Maldonado and Paredes [35] Consumer Known 800 200 Extrapolation SVM
(2012) Chen and Åstebro [36] Corporate Known 4 589 Varying Bound and Collapse Bayesian
(2013) Bücker et al. [2] Consumer Unknown 3 984 5 667 Augmentation Logistic
(2013) Anderson and Hardin [37] Consumer Unknown 3 000 1 500 Augmentation, EM Logistic
(2016) Nguyen [3] Consumer Unknown 56 016 142 571 Augmentation, Extrapolation Logistic
(2017) Li et al. [23] Consumer Unknown 56 626 563 215 Extrapolation Semi-supervised SVM

Table 1: Up to date research overview on reject inference. The scope of the research marked with * differs from ours, hence
they are included in Section 2.

scoring models by utilizing the rejected applications. In Table (1), we present an updated research
overview on reject inference in credit scoring extending the one presented in [23].

There are two broad approaches to estimate the default probability; the function estimation model (e.g.
logistic regression) and the density estimation approach (e.g. linear discriminant analysis). The latter
is more susceptible to provide biased parameter estimates when the rejected applications are ignored
[6, 24].

According to [6], reject inference represents several challenges. First of all, when attempting to correct
the selection bias, the customer characteristics used to develop the current credit scoring model must
be available. Otherwise, including the rejected applications in the new model might be insufficient
to correct the selection bias. Some techniques, such as mixture decomposition, require assumptions
about the default and non-default distributions. In general, these distributions are unknown. Finally,
the methods based on supplementary credit information about the reject applications, which might be
bought at credit bureaus, can be unrealistic for some financial institutions. Either they cannot afford to
pay for it or the data may not be available.

A simple approach for reject inference is augmentation [17]. In this approach, the accepted applications
are re-weighted to represent the entire population. The common way to find these weights is using the
accept/reject probability. For example if a given application has a probability of being rejected of 0.80,
then all similar applications would be weighted up 1/(1 − 0.8) = 5 times [1]. None of the empirical
research using augmentation shows significant improvements in either correcting the selection bias or
improving model performance, see [1, 2, 26, 27, 28, 29, 31]. The augmentation technique assumes that
the default probability is independent of whether the loan is accepted or rejected [38]. However, [32]
shows empirically that this assumption is wrong.

Heckman’s bivariate two-stage model [39, 40] has been used in different reject inference studies2. This
approach simultaneously models the accept/reject and default/non-default mechanisms. Assuming that
the error terms in these processes are bivariate normally distributed with unit variance and correlation
coefficient ρ, the selection bias arises when ρ 6= 0 and it is corrected using the inverse of the Mills ratio.

Despite the popularity of Heckman’s model, it is unclear whether this model can correct the selection
bias or improve model performance. Some studies claim either higher model performance or different
model parameters after using Heckman’s model [5, 26, 31, 32, 42]. These results, as explained by [4],
depend upon whether the selection and default equations are correlated. On the other hand, [33, 36, 43]
state that the model parameters are inefficient, and the main criticism is that the Heckman’s model fails
to correct the selection bias when it is strong. This happens either when the correlation between the
error terms in the selection and outcome equations is high or the data has high degree of censoring [43].

A comparison of different reject inference methods, e.g. augmentation, parceling, fuzzy parceling and the

2The Heckman’s model, named after Nobel Laureate James Joseph Heckman, has been extended or modified in different
directions. See [4] for a chronological overview of the model evolution and its early applications. It was in [41] where the
Heckman’s approach was first applied to credit scoring where the outcome is discrete.
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Heckman’s model, is presented in [3]. The parceling and fuzzy parceling methods are very similar. They
first fit a logistic regression model using the accepted applications. Then they use this model to estimate
the default probability for all rejected applications. The difference is that the parceling method chooses
a threshold on the default probability to assign the unknown outcome y to the rejected applications.
On the other hand, the fuzzy parceling method assumes that each reject application has both outcomes
y = 1 and y = 0, with weights given by the fitted model using only the accepted applications. Finally,
the parcelling (fuzzy parceling) method fits a new (weighted) logistic regression using both accepted and
rejected applications. The results in [3] do not show higher model performance using the reject inference
methods. However, the parameter estimates are different when applying the augmentation and parceling
approaches. Hence, reject inference has a statistical and economic impact on the final model in this case.

Support vector machines are used in [35] to extend the self-training (SL) algorithm, by adding the
hypothesis that the rejected applications are riskier3. Specifically, their approach iteratively adds rejected
applications with higher confidence, i.e. vectors far from the decision-hyperplane, to retrain a SVM (just
as in the SL algorithm). However, vectors close to the hyperplane are penalized since the uncertainty
about their true label is higher. Their proposed iterative approach shows superior performance compared
to other reject inference configurations using SVMs, including semi-supervised support vector machines
(S3VM). In addition to higher performance, the iterative procedure in [35] is faster than the S3VM.

The S3VM model is used in [23] for reject inference in credit scoring 4 using the accepted and rejected
applications to fit an optimal hyperplane with maximum margin. The hyperplane traverses trough non-
density regions of rejected applications and, at the same time, separates the accepted applications. Their
results show higher performance compared to the logit and supervised support vector machine models.
In Section 4, we show that S3VM does not scale to large credit scoring data sets and that our proposed
models are able to use, at least, 16 times more data compared to S3VM.

In [24] Gaussian mixture models (GMM) are used for density estimation of the default probability. The
idea is that each component in the mixture density models a class-conditional distribution. Then, the
model parameters are estimated using the expectation-maximization (EM) algorithm, which can estimate
the parameters even when the class labels for the rejected applications are missing. The EM algorithm is
also used for reject inference in [37]. Both papers report high model performance. However, the results in
[24] are based on artificial data and [37] only judge performance based on the Confusion matrix. Finally,
the major limitation of the EM algorithm is that we need to be able to estimate the expectation over
the latent variables. We show in Section 3 that deep generative models circumvent this restriction by
approximation.

A Bayesian approach for reject inference is presented in [36]. In this method the default probability is
inferred from the missing data mechanism. The authors use the bound-collapse approach 5 to estimate
the posterior distribution over the score and class label, which is assumed to have a Dirichlet distribution
as well as the marginal distribution of the missing class label. The reason for using the bound-collapse
method is to avoid exhaustive numerical procedures, like the Gibbs Sampling, to estimate the posterior
distributions in this model. Their results show that the Bayesian bound-collapse method perform better
than the augmentation and Heckman’s model.

In this research we propose a novel Bayesian inference approach for reject inference in credit scoring,
which uses Gaussian mixture models and differs from [24, 36] in that our models are based on variational
inference, neural networks, and stochastic gradient optimization. The main advantages of our proposed
method are that (i) inference of the rejected applications is based on an approximation of the posterior
distribution and on the exact enumeration of the two possible outcomes that the rejected applications
could have taken, (ii) the models use a latent representation of the customers’ data, which contain
powerful information, and (iii) deep generative models scale to large data sets.

3The self-training algorithm is an iterative approach where highly confident predictions about the unlabeled data are
added to retrain the model. This procedure is repeated as many times as the user specify it. The main criticism of this
method is that it can strengthen poor predictions [7].

4The model used in [23], originally developed by [44], uses a branch-and-bound approach to solve the mixed integer
constrained quadratic programming problem faced in semi-supervised SVMs. This approach reduces the training time
making it suitable for large-sized problems.

5This model is originally presented in Sebastiani and Ramoni (2000) ”Bayesian inference with missing data using bound
and collapse”.
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3 Deep Generative Models

The principles of variational inference with deep neural networks are given in [45, 46]. Building upon
this work, [7] proposed a generalized probabilistic approach for semi-supervised learning. This approach
will be explained in Section 3.1 before we introduce two novel models for reject inference in credit scoring
in Sections 3.2 and 3.3.

3.1 Semi-supervised Deep Generative Models for Reject Inference

In reject inference, the data set D = {Daccept, Dreject} is composed of n (labeled) accepted applications
Daccept = {(x, y)1, ..., (x, y)n} andm (unlabeled) rejected applicationsDreject = {xn+1, ...,xn+m}, where
x ∈ R`x is the feature vector and yi ∈ {0, 1} is the class label or the outcome of the loan, y = 0 if the
customer repaid the loan, otherwise y = 1. Additionally, generative models assume that latent variable
z ∈ R`z governs the distribution of x.

The goal of the generative model is to obtain the joint distribution p(x, y) of the data used for credit
scoring and the outcome of the loan. However, this distribution is intractable since it requires integration
over the whole latent space, i.e.

∫
p(x, y,z)dz. Further, the intractability of p(x, y) translates into an

intractable posterior distribution of z through the relationship

p(z|x, y) =
p(x, y,z)∫
p(x, y,z)dz

. (1)

Hence, we approximate the true posterior p(z|x, y) with the inference model q(z|x, y) and minimize
the Kullback-Leibler (KL) divergence6 KL[q(z|x, y)||p(z|x, y)] to make the approximation as close as
possible to the true density.

The KL[q(z|x, y)||p(z|x, y)] term, the objective function Laccept, and the density p(x, y) are related by
the following expression

log p(x, y) = Eq(z|x,y)[log p(x, y)]

= Eq(z|x,y)
[

log
p(x, y,z)

p(z|x, y)

q(z|x, y)

q(z|x, y)

]
= Eq(z|x,y)

[
log

p(x, y,z)

q(z|x, y)

]
+ Eq(z|x,y)

[
log

q(z|x, y)

p(z|x, y)

]
:= −Laccept(x, y) +KL[q(z|x, y)||p(z|x, y)]. (2)

Given that the KL divergence in Equation 2 is strictly positive, the term −Laccept(x, y) is a lower bound
on log p(x, y), i.e. log p(x, y) ≥ −Laccept(x, y). Hence, since we cannot evaluate p(z|x, y), we maximize
log p(x, y) by maximizing the negative lower bound.

Note that in Equation 2 we assume that the outcome y of the loan is known. However, this is not the
case for the rejected applications Dreject. In this case, generative models treat y as a latent variable
and approximate the true posterior distribution p(y|x) with the parametric function q(y|x). Assuming
the factorization q(z, y|x) = q(y|x)q(z|x, y) and a simple form for q(y|x), we can take the explicit
expectation over the class label y, i.e. we handle the uncertainty about the outcome of the loan by
summing over the two possible outcomes that it might have taken. Mathematically,

Eq(z,y|x)
[

log
p(x, y,z)

q(z, y|x)

]
= Eq(y|x)Eq(z|x,y)

[
log

p(x, y, z)

q(z, y|x)

]
= Eq(y|x)[−Laccept(x, y)− log q(y|x)]

=
∑
y

q(y|x)[−Laccept(x, y)− log q(y|x)]

:= −Lreject(x). (3)

6The KL divergence is a measure of the proximity between two densities, e.g. KL[q(·)||p(·)], and it is commonly
measured in bits. It is non-negative and it is minimized when q(·) = p(·).
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Figure 1: Plate notation for Model 1 and Model 2 where x is the observed feature vector, y is the outcome of the loan
and it is only observed for the accepted applications, and z and a are latent variables. The generative process is specified
by solid lines, while the inference process is shown with dotted lines. Note that the MLP weights θ and φ lie outside the
plates and we omit them to do not clutter the diagrams.

Therefore, the objective function in semi-supervised deep generative models is the sum of the supervised
lower bound for the accepted applications and the unsupervised lower bound for the rejected applications

L = Laccept(x, y) + Lreject(x). (4)

Furthermore, deep generative models parametrize the parameters of the density functions in Equation
2 and 3 by multilayer perceptron (MLP) networks. For example, if z|x, y is multivariate Gaussian
distributed with diagonal covariance matrix, we use the notation

p(z|x, y) ∼ N (z|x, y; µ = fθ(x, y),σ2I = fθ(x, y)), (5)

where µ ∈ R`z and σ2 ∈ R`z , to specify that the parameters of the Gaussian distribution are parametrized
by an MLP network denoted by f(x, y) with input data x, y and weights θ7. Hence, the optimization
of the objective function is with respect to the weights in the MLP. An alternative notation is to simply
use the subscript θ in the corresponding distribution, i.e. pθ(z|x, y).

Finally, note that the EM algorithm used in [24, 37] cannot be used in this context since it requires
to compute the expectation of p(z|x, y), which it is intractable. Other variational inference techniques,
like mean-field or stochastic variational inference, determine different values of µi and σ2

i for each data
point xi, which is computationally expensive. Similarly, traditional EM algorithms need to compute an
expectation w.r.t the whole data set before updating the parameters. Therefore, deep generative models
use complex functions of the data x (MLP networks) to estimate the best possible values for the latent
variables z. This allows replacing the optimization of point-specific parameters µi and σ2

i , with a more
efficient optimization of the MLP weights θ. The latter is denoted amortized inference [48].

3.2 Model 1: Generative and inference process

In this section we build upon the work done in [7, 11] to develop a new semi-supervised model with a
Gaussian mixture parameterized with MLPs. The Gaussian mixture induces a flexible latent space that
improves the approximation of the lower bound [8, 16]. Hence, Model 1 assumes a generative process
pθ(x, y, z) = p(y)pθ(z|y)pθ(x|z), where x ⊥ y|z, with the following probability density functions

p(y) ∼ Bernoulli(y;π),

p(z|y) ∼ N (z|y = k; µzk = fθ(y),σ2
zk
I = fθ(y)) for k = 0, 1,

p(x|z) ∼ N (x|z; µx = fθ(z),σ2
xI = fθ(z)). (6)

7Deep generative models can also be developed with convolutional neural networks (CNNs). However, CNNs require
structured data like videos, images, or time-series data. The data sets in this research are feature vectors with customer’s
characteristics at the application time. This kind of data does not have the grid-like structure required for training CNNs.
For an application of CNNs in credit scoring the reader is referred to [47].
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HereN denotes the Gaussian distributions and f(·) is a multilayer perceptron model with weights denoted
by θ. Furthermore, we assume that the inference process is factorized as q(z, y|x) = q(y|x)q(z|x, y),
with the following probability densities

q(y|x) ∼ Bernoulli(y;πy|x = fφ(x)),

q(z|x, y) ∼ N (z|x, y; µz = fφ(x, y),σ2
zI = fφ(x, y)). (7)

Again N is the Gaussian distribution and f(·) is a multilayer perceptron model with weights denoted by
φ. Note that the marginal distribution p(z) in the generative process is a GMM, i.e.

p(z) =
∑
y

p(y)p(z|y)

=πN (µz0 ,σ
2
z0I) + (1− π)N (µz1 ,σ

2
z1I),

where (1−π) represents the prior for the default probability. The generative and inference processes are
shown in Figure 1.

In the following sections, we use θ and φ to distinguish the expectation and variance terms in the
generative process from the ones in the inference process as well as to differentiate the MLP’s weights
in the generative process from the ones in the inference process. Further, we derive the lower bound for
the supervised and unsupervised data under our novel approach for reject inference in credit scoring.

Labeled data: Deriving the objective function Laccept

We use Equation 2 and the factorization of the generative process in Equation 6 to derive the lower
bound for the accepted data set Daccept. Hence, expanding the terms in the lower bound we obtain

Eqφ(z|x,y)
[

log
pθ(x, y,z)

qφ(z|x, y)

]
= Eqφ(z|x,y)[log p(y) + log pθ(z|y) + log pθ(x|z)− log qφ(z|x, y)], (8)

and taking the expectations, see Section B.2 in the Appendix, we find the negative lower bound for a
single (supervised) data point, which is

−Laccept({x, y}i;θ,φ) =
1

2

[ `z∑
j=1

(1 + log σ2
φj

)−
`z∑
j=1

(
log σ2

θj,y +
σ2
φj

σ2
θj,y

+
(µφj

− µθj,y )2

σ2
θj,y

)]
+ log πi

+
1

L

L∑
l=1

logN (xi|zi,l). (9)

Here `z is the dimension of z, σ2
·j and µ·j are the j ’th element of σ2

· and µ· respectively, πi is the prior
distribution over the class label yi, and L is the number of zi,l samples drawn from qφ(z|x, y). We use
the reparametrization trick zi,l = µiφ + σiφ � εl, where εl ∼ N (0, I) and � denotes an element-wise
multiplication, to backpropagate through σ2

· and µ·. Hence, the last term in Equation 9 is N (xi|zi,l =
µiφ +σiφ � εl) and we use qφ(z|x, y) to sample µiφ and σiφ . Note that since y is known in this case, we
only need to backpropagate through its corresponding Gaussian component in the MLP parameterizing
the GMM. In other words, if yi = 0 the stochastic gradient optimization only updates all weights in µθy
and σ2

θy
for the first component in Figure 2. This is specified by the subscript y in Equation 9.

Unlabeled data: Deriving the objective function Lreject

In this case, we treat the unknown labels y as latent variables and we approximate the true posterior
distribution with q(y|x). Given that q(y|x) ∼ Bernoulli(·) is a relatively easy distribution, we take the
explicit expectation in the unsupervised lower bound. Following the steps in Equation 3 together with
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Figure 2: Gaussian mixture components parameterized by a multilayer perceptron model, where y· is the one-hot-encoding
for the input data ([y1 y2] = [0 1] and [y1 y2] = [1 0] are the one-hot-encoding for y = 1 and y = 0 respectively), hl

is the l ’th neuron in the hidden layer, and µzi and σzi are density moments for the i ’th component in the GMM. For
the accepted applications, we backpropagate trough its corresponding component, while for the rejected applications we
backpropagate through both components.

the factorization in Equations 6 and 7, we obtain

Eqφ(z,y|x)
[

log
pθ(x, y, z)

qφ(z, y|x)

]
= Eqφ(z,y|x)[log p(y) + log pθ(z|y) + log pθ(x|z)− log qφ(y|x)

− log qφ(z|x, y)]

= Eqφ(y|x)[−Laccept(x;θ,φ)− log qφ(y|x)]

=
∑
y

qφ(y|x)[−Laccept(x;θ,φ)− log qφ(y|x)], (10)

which is, by definition, the unsupervised negative lower bound −Lreject(x;θ,φ). Furthermore, taking
the expectations, see Section B.3 in the Appendix, we can obtain the negative lower bound for a single
data point, which is

−Lreject(xi;θ,φ) =
1

2

1∑
y=0

πy|xi

[ `z∑
j=1

(1+ log σ2
φj

)−
`z∑
j=1

(
log σ2

θj,y +
σ2
φj

σ2
θj,y

+
(µφj − µθj,y )2

σ2
θj,y

)]

+

1∑
y=0

πy|xi
log

π

πy|xi

+
1

L

L∑
l=1

logN (xi|zi,l), (11)

where πy|x is the y ’th element of the posterior probability over the class labels πy|x = [πy=0|x (1−πy=0|x)].
The rest of the parameters have the same interpretation as in the supervised negative lower bound. Note
that in this case we take the expectation over the latent variable y by enumerating the two possible values
(y = 0 and y = 1) of the posterior parameter πy|x, which also implies that we need to backpropagate
through the two components, one at a time, in σ2

θy
and µθy , see Figure 2.

We train Model 1 alternating the objective function

L =

n∑
i

Laccept((x, y)i;θ,φ)− α · logEp̂(x,y)[qφ(yi|xi)] +

n+m∑
j

Lreject(xj ;θ,φ), (12)

where Ep̂(x,y) is the empirical distribution.

Note that we introduce the term logEp̂(x,y)[qφ(yi|xi)], which is actually the classifier in Model 1, into
the supervised lower bound to take advantage of the accepted applications and train the best possible
classifier. The term α = β · m+n

n controls the importance of the classification in the supervised loss
function, where m and n are the number of rejected and accepted observations respectively, and β is just
a scaling factor.
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3.2.1 Reject Inference in Credit Scoring with Model 1

Model 1 does not just learn the distribution p(x|z) of the customers’ data used in credit scoring, but
it also learns a latent representation p(z|x, y) of it. This latent representation reflects an intrinsic
structure or the semantics of the customers’ data. Additionally, Model 1 approximates the posterior
class label distribution q(y|x), which we use to estimate the default probability for new applications.
This probability is given by the mutually exclusive outcomes in the posterior parameter πy|x, which is
parametrized by an MLP with softmax activation function in the output layer.

The most important characteristic of Model 1 for reject inference in credit scoring is that the unknown
creditworthiness is evaluated by considering the two possible states y = 1 and y = 0 that the loan might
have taken in case that the credit had been granted (Equation 10). This means that this method clearly
differs from all extrapolation approaches for reject inference. Further, it is not as restrictive as the
expectation-maximization algorithm since it relies on the approximation of the posterior distributions.

It can be shown that Equation 12 includes the term KL[qφ(z|x, y)||pθ(z|y)]. Then, the optimization of
the objective function forces qφ(z|x, y) to be as close as possible to pθ(z|y), which we have modeled as
a mixture of Gaussian distributions. The first motivation for this is that the data for the accepted and
rejected applications are generated by two different process, just as in [24]. Second, this mixture model
generates a flexible latent space, which helps to improve the approximation of the inference process in
Model 1.

Finally, the objective function in Equation 12 includes the MLP weights θ for the densities p(z|y)
and p(x|z), and φ for the densities q(y|x) and q(z|x, y). These are all the weights in Model 1 and
are present in both the supervised and unsupervised loss. Hence, the stochastic gradient optimization
updates these weights jointly and estimates the different parameters µ, σ2, and π in Equation 6 and
7. In practice, when a labeled (accepted) observation is presented to the algorithm, the loss function
in the backpropagation algorithm is Laccept((x, y)i;θ,φ). Similarly, when handling unlabeled (rejected)
observations the loss function is Lreject(xj ;θ,φ). In any case, all the MLP weights θ and φ are updated
at each iteration since the same MLP handles both accepted and rejected applications.

3.3 Model 2: Generative and inference processes

Inspired by the work by [8, 16], we develop an extension of Model 1 introducing auxiliary variables.
Auxiliary variables improve the variational approximation and introduce a layer of latent variables to
the model’s classifier. Hence, our proposed Model 2 combines a Gaussian mixture with auxiliary variables
in a semi-supervised framework for the first time in the literature.

Specifically, we assume the generative process p(x, y,z,a) = p(a)p(y)p(z|y)p(x|z, y) with the following
distributions

p(y) ∼ Bernoulli(y;π),

p(a) ∼ N (a; 0,1),

p(z|y) ∼ N (z|y = k; µzk = fθ(y),σ2
zk
I = fθ(y)) for k = 0, 1,

p(x|z, y) ∼ N (x|z, y; µx = fθ(z, y),σ2
xI = fθ(z, y)). (13)

Here N is the Gaussian distribution and f(·) is a multilayer perceptron model with weights denoted by
θ. The inference process factorizes as q(z,a, y|x) = q(a|x)q(y|x,a)q(z|x, y). The distributions for this
process are

q(a|x) ∼ N (a|x; µa = fφ(x),σ2
aI = fφ(x)),

q(y|x,a) ∼ Bernoulli(y|x,a; πy|x,a = fφ(x,a)),

q(z|x, y) ∼ N (z|x, y; µz = fφ(x, y),σ2
zI = fφ(x, y)). (14)

Again N is the Gaussian distribution and f(·) is a multilayer perceptron model with weights denoted by
φ.

9



Labeled data: Deriving the objective function Laccept

Following the steps in Section 3.1, it is straightforward to show that the supervised negative lower bound
is

−L(x, y;θ,φ)accept = Eqφ(z,a|x,y)
[

log
pθ(x, y, z,a)

qφ(z,a|x, y)

]
= Eqφ(z,a|x,y)[log p(a) + log p(y) + log pθ(z|y) + log pθ(x|z, y)

− log qφ(a|x)− log qφ(z|x, y)]. (15)

Using Equations 13 and 14 and taking the corresponding expectations, see Section B.4 in the Appendix,
we obtain the lower bound for the i ’th data point, as follows8

−Laccept((x, y)i;θ,φ) =
1

2

[ `z∑
j=1

(1 + log σ2
φzj

)−
`z∑
j=1

(
log σ2

θj,y +
σ2
φzj

σ2
θj,y

+
(µφzj − µθj,y )2

σ2
θj,y

)]
+ log πi

+
1

2

`a∑
c=1

(σ2
φac

+ µ2
φac
− (1 + log σ2

φac
)) +

1

Lz

Lz∑
l=1

logN (xi|zi,l, y). (16)

Here `z and `a are the dimensions of z and a respectively, σ2
·j and µ·j are the j ’th element of σ2

· and µ·
respectively, and they refer to the variance or expectation of either z or a, πi is the prior distribution
over the class label yi, and Lz is the number of zi,l samples drawn from qφ(z|x, y). Note that y is known
in this case, hence we only backpropagate through its corresponding Gaussian component, just as in
Model 1. This is specified by the subscript y in Equation 16.

Unlabeled data: Deriving the objective function Lreject

Using the factorization in Equation 13 and 14, the unsupervised negative lower bound in Model 2 has
the form

−Lreject(x;θ,φ) = Eqφ(z,a,y|x)
[

log
pθ(x, y,z,a)

qφ(z,a, y|x)

]
= Eqφ(z,a,y|x)[log p(a) + log p(y) + log pθ(z|y) + log pθ(x|z, y)

− log qφ(a|x)− log qφ(z|x, y)− log qφ(y|x,a)]. (17)

For the i ’th observation, Equation 17 takes the following form, see Section B.5 in the Appendix,

−Lreject(xi;θ,φ) =
1

2

1

La

1

Lz

La∑
la=1

1∑
y=0

πy|xi,ai,la

[ `z∑
j=1

(1 + log σ2
φzj

)−
`z∑
j=1

(
log σ2

θj,y +
σ2
φzj

σ2
θj,y

+
(µφzj − µθj,y )2

σ2
θj,y

)
+

1

Lz

Lz∑
lz=1

logN (xi|zi,lz , yla)

]
+

1

2

`a∑
c=1

(
σ2
φac

+ µ2
φac

−(1 + log σ2
φac

)
)

+
1

La

La∑
la=1

1∑
y=0

πy|xi,ai,la
(− log q(y|xi,ai,la)) + log πi. (18)

Here all parameters are just as in −Laccept(x, y;θ,φ). It is important to note that the posterior proba-
bility over the class labels πy|x,a = [πy=0|x,a (1− πy=0|x,a)] depends on the sampled auxiliary variables.
We denote this dependency explicitly using the subscript a.

Finally, just as we did in Model 1, we include the term log qφ(y|x,a) in the unsupervised objective
function to take advantage of the accepted applications. Therefore, the final objective function for
Model 2 is

L =

m∑
i

Laccept((x, y)i;θ,φ)− α · logEp̂(x,y,a)[qφ(yi|xi,ai)] +

n∑
j

Lreject(xj ;θ,φ). (19)

8We clutter the notation by adding the subscript a and z in the distribution parameters. This helps to differentiate the
parameters of the density qφ(a|x) from the ones in qφ(z|x, y).
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Accepted
53 698
(6 528)

Rejected
536 459

Test (30%)
16 109
(1 958)

Pool of data 
(70 %) 
37 589
(4 570)

Experiment 1
A - 3 104
(1 502)

R - 30 996

Figure 3: Data partition used in the experiments in Table 3 for the Lending Club data set. Numbers in parentheses are the
number of defaulted observations, and numbers in parenthesis in percentage are the proportion of accepted applications.
The experiments with the Santander data set and in Table 4 follows the same logic, but in the last sampling (’Experiment
1’ box) we sample the number of accepted and rejected applications as needed.

3.3.1 Reject Inference in Credit Scoring with Model 2

Model 2 has almost the same characteristics as Model 1, but there are two new items. First, Model 2
approximates two layers of latent representations q(a|x) and q(z|x, y). The posterior distribution q(a|x),
together with the customers’ data x, is used to estimate the default probability (Equation 14). By doing
so, Model 2 has a relatively more expressive estimation of creditworthiness. The presumption is that the
latent representation a captures the intrinsic structure of the data and that it therefore provides relevant
features for enhancing the performance of the classifier q(y|x,a). Finally, note that q(a|x) is assumed
to be multivariate Gaussian distributed, hence we use the reparametrization trick (see Section 3.2) to
sample from this distribution, i.e. a = µa +σa� ε where µa and σa are the outputs in the MLP for the
density q(a|x).

The second difference from Model 1 is that the data generating process p(x|z, y) is conditioned on the
latent variable z and class label y. This is simply done to achieve better training stability. See Section
4.3 for more details about model training.

4 Experiments and Results

The goal with the experiments is twofold. First, we compare the performance of our proposed models
with a range of techniques representing the state-of-the-art in reject inference for credit scoring, including
three classical reject inference techniques (reclassification, fuzzy parceling and augmentation [17]) and
three semi-supervised machine learning approaches (self-learning [18] MLP, self-learning SVM, and semi-
supervised SVM [19]) under a realistic scenario preserving the original acceptance rates in two real data
sets. Second, to have a better understanding of the behaviour of reject inference models for credit
scoring, we test the model performance in different scenarios varying the number of accepted and rejected
observations. In both cases, we include two supervised machine learning models (multilayer perceptron
(MLP) [20] and support vector machine (SVM) [21]) to measure the marginal gain of reject inference.

4.1 Data description

We use two real data sets containing both rejected and accepted applications. The first data set is
public9 and consists of personal loan applications through Lending Club, which is the world’s largest
peer-to-peer lending company. We replicate the data sample used in [23], which includes applications

9The data can be obtain directly at the Lending Club’s website, however they require the user to login. We obtain a
complete version of the available data at the website https://github.com/nateGeorge/preprocess lending club data, which
is updated quarterly.
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Lending Club and Santander Credit Cards
MLP Network Number of hidden layers and dimensions
q(z|x, y) [10 10]*, [10 20], [10 30], [10 50], [100 70]***, [10 20 10], [10 30 10], [10 40 10]**, [10 50 10], [60 90 60]****
p(x|·) [10 10]*, [10 20], [10 30], [10 50], [70 100]***, [10 20 10], [10 30 10], [10 40 10]**, [10 50 10], [60 90 60]****
p(z|y) [10]

∗,∗∗,∗∗∗,∗∗∗∗

q(a|x) [50], [10 10], [10 20], [10 30], [10 40]**, [10 50], [20 40], [20 50], [30 50], [30 60], [40 60]****
q(y|·) [50], [60], [70]*,[80]***, [100]****, [120], [130]**
Parameter/hyperparameter Value
z dimension 30, 50∗,∗∗,∗∗∗∗, 100***
a dimension 30, 50∗∗,∗∗∗∗

β 0.008**, 0.01, 0.025, 0.14, 1.1*, 3****, 8***

Table 2: Grid for hyperparameter optimization for Model 1 and 2 and for both data sets. The numbers within brackets
specify the number of neurons in each hidden layers, i.e. [10 10] means two hidden layers with 10 neurons each. Finally, the
superscript * and ** shows the final architecture for Model 1 and Model 2 respectively for the Lending Club data set used
in Table 3. Similarly, *** and **** shows the final architecture for Model 1 and Model 2 respectively for the Santander
Credit Cards data set used in Table 3.

from January 2009 until September 2012 with 36-months maturity. However, we do not split the data
set in yearly sub samples, since we want to keep as many observations from the minority class (y = 1) as
possible. Hence, the data set that we use in our experiments has 53 698 accepted applications, including
6 528 defaults, and 536 459 rejected applications10. That is, the acceptance ratio is 9.10% and default
rate is 12.16%. For more details about the Lending Club data, see Table A1 in the Appendix.

The second data set is provided by Santander Consumer Bank Nordics and consists of credit card
applications arriving trough their internet website. The applications were received during the period
January 2011 until December 2016. During this period Santander accepted 126 520 applications and
only 14 993 customers ended up as defaults. The number of rejected applications during this period is
232 898. Hence, the acceptance ratio is 35.20% and default rate 11.85%.

In addition to these two data sets, we have two small samples after September 2012 and December
2016 for Lending Club and Santander Bank respectively, which are used to produce well-calibrated
estimates of class probabilities using the beta calibration approach [49]. These samples are not part of
the experimental design explained in Section 4.2.

4.2 Experimental Design

We conduct two different set of experiments. In the first experimental setup, we keep the original
acceptance ratio, but we do not use more than 34 100 observations in total 11. To construct this data
set, we first split the original data in 70%-30% for training and testing respectively. Then, we down
sample the majority class (y = 0) in the training set until it equals the number of observations for the
minority class (y = 1). To achieve the correct acceptance ratio, this requires a random selection of both
class labels. Note that the test data set is left as it is, i.e. it preserves the original default rate. Finally,
we randomly select the number of reject applications in a way that these, together with the balanced
training sample, do not exceed 34 100 observations, see Figure 3.

In the second set of experiments12, we analyze the effect of varying the number of accepted (rejected)
applications, while keeping the same number of rejected (accepted) applications. We follow the same
approach as in the the first experiments, splitting the data set into a training and test data set, down
sampling the training set, and randomly selecting the number of reject applications.

For the Lending Club data set, we use all variables in Table A1 to train all models, while for the Santander
data we use a forward selection approach to select the explanatory variables that are included in the

10The number of accepted and rejected applications are not exactly the same as in [23], but the variable statistics are
very similar and the default trend is the same. See Table A1 for more information.

11This is done to allow a fair comparison to S3VM, which does not scale to larger datasets due to memory requirements.
For the 34 100 observations, S3VM requires 123GB of memory to estimate the kernel matrix.

12S3VM is not included in this section since it takes around 356 hours to evaluate each scenario in this section and
in total we evaluate 12 different scenarios. In addition, it has the memory restrictions already mentioned. Similarly, the
iterative procedure in the self-learning SVM is not feasible in this section.
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Lending Club (LC) Santander Credit Cards (SCC) Runtime
AUC GINI H-measure Recall Precision AUC GINI H-measure Recall Precision LC SCC

MLP 0.6273 0.2547 0.0535 0.4454 0.1738 0.7091 0.4183 0.1326 0.7909 0.1772 00:01.28 00:04.53
SVM 0.6284 0.2567 0.0543 0.4632 0.1783 0.7388 0.4777 0.1689 0.7997 0.1895 00:06.59 00:14.42
Reclassification 0.5784 0.1567 0.0227 0.4906 0.1493 0.6415 0.2830 0.0625 0.9989 0.1187 00:05.04 00:01.15
Fuzzy Parceling 0.6198 0.2560 0.0540 0.4598 0.1772 0.6791 0.3582 0.0957 0.8676 0.1541 00:03.82 00:08.45
Augmentation 0.6219 0.2558 0.0541 0.4581 0.1777 0.6761 0.3523 0.0923 0.8735 0.1524 00:13.07 00:15.25
Self-lerning MLP 0.5868 0.1737 0.0326 0.4504 0.1570 0.6726 0.3451 0.0877 0.8502 0.1519 00:18.80 00:20.53
Self-lerning SVM 0.6206 0.2551 0.0535 0.4957 0.1731 0.7266 0.4532 0.1529 0.8494 0.1725 03:25.89 05:08.36
S3VM 0.6201 0.2402 0.0481 0.0000 NA 0.6520 0.3040 0.0733 1.0000 0.1185 09:17.00 06:20.12
Model 1 0.6294 0.2588 0.0554 0.4540 0.1788 0.7394 0.4788 0.1678 0.8326 0.1848 10:48.19 04:12.16
Model 2 0.6363 0.2755 0.0632 0.4688 0.1825 0.7431 0.4851 0.1764 0.6282 0.2303 12:24.06 05:54.33

Table 3: Model performance keeping the original acceptance ratios, i.e. 9.10% for Lending Club (LC) and 35.20% for
Santander Credit Cards (SCC). The training data set is balanced by down sampling the majority class, and the threshold
used to calculate recall and precision is based on the empirical default rate in the test data set. The last two columns show
the runtime for one cross-validation and the format is given in mm:ss.cs, where mm, ss, and cs stands for minutes, seconds
and centiseconds respectively.
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Figure 4: The left panel shows the AUC performance for the Lending Club data set in the 10 cross-validations (CV), while
the right panel shows the performance for the Santander Bank data set. Both diagrams correspond to Model 2.

reclassification, fuzzy parceling and augmentation methods13. For the other models we use all variables
in Table A2. Finally, we do hyperparameter tuning using grid search with 10-cross validation for the
MLP, SVM, S3VM, Model 1, and Model 2. The best architecture for the MLP and SVM is used as the
base model in the self-training approaches for MLP and SVM. The details of the grid search are given
in Table A3.

4.3 Model Implementation and Training

Model 1 and Model 2 are implemented in Theano [50]. We use softplus activation functions in all hidden
layers and linear activation functions in all output layers estimating µ and σ2. For the output layer
in the classifiers qφ(y|·) we use softmax activation functions. Further, we use the Adam optimizer [51]
with learning rate equal to 1e-4 and 5e-5 for training of Model 1 and Model 2 respectively. The rest
of parameters in the Adam optimizer are the default values suggested in the original paper. We use
L = 1 and La = 1 for both Model 1 and 2 in all experiments. Finally, both data sets are standardized
before training and testing, and the class label y is one-hot-encoded. The model architectures used in
the experiments in Table 3 are shown in Table 2.

It is important to mention that deep generative models are, in general, difficult to train [52, 53]. The
training of Model 1 and Model 2 in some cases become unstable, especially for the experiments where we
vary the number of accepted and rejected applications. Moreover, it is sensitive to the initial weights.
Hence, we use a Variational Autoencoder [45] to pretrain the weights in qφ(z|x, y) and pθ(x|z) for Model

13These three methods are based on the logistic regression. Hence, the forward selection approach prevents the logistic
regression from overfitting and avoids numerical problems on its optimization.
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Lending Club
Accepted applications Rejected applications

No. observations
200 600 1 200 2 000 6 000 All 30 997 100 000 200 000 300 000 400 000 All

(0.04%) (0.11%) (0.22%) (0.37%) (1.11%) (1.67%) (0.64%) (0.20%) (0.10%) (0.07%) (0.05%) (0.04%)
MLP 0.6002 0.6236 0.6237 0.6304 0.6299 0.6307 0.6037 0.6037 0.6037 0.6037 0.6037 0.6037
SVM 0.6039 0.6267 0.6253 0.6320 0.6302 0.6309 0.6054 0.6054 0.6054 0.6054 0.6054 0.6054
Reclassification 0.5786 0.5785 0.5812 0.5853 0.5806 0.5816 0.5616 0.5785 0.5783 0.5574 0.5693 0.5779
Fuzzy Parceling 0.6017 0.6240 0.6232 0.6295 0.6297 0.6302 0.6041 0.6026 0.6018 0.6031 0.6073 0.6006
Augmentation 0.6017 0.6216 0.6207 0.6301 0.6295 0.6304 0.6023 0.6028 0.6010 0.5967 0.5953 0.5979
Self-lerning MLP 0.5824 0.5728 0.5734 0.5675 0.5858 0.5631 0.5640 0.5485 0.5706 0.5715 0.5758 0.5703
Model 2 0.6175 0.6269 0.6310 0.6344 0.6381 0.6404 0.6112 0.6075 0.6091 0.6107 0.6121 0.6175
Runtime
Self-learning MLP 00:20:36 00:26:14 00:29:31 00:29:23 00:31.39 00:35:11 00:02.10 00:05:02 00:09:50 00:15:01 00:18:02 00:23:36
Model 2 02:39:02 02:41:75 02:55:19 03:24:13 03:42:17 04:03:10 00:14:18 00:38:07 01:09:02 01:39:48 02:00:54 02:39:02

Table 4: Left panel: Model performance, measured with AUC, as a function of accepted applications. In all six experiments
to the left, we use all 536 459 rejected applications. Right panel: Model performance, measured with AUC, as a function
of rejected applications. In all six experiments to the right, we use only 200 accepted applications. Numbers in parenthesis
are the acceptance ration for each experiment. The last two rows show the runtime for one cross-validation and the format
is in hh:mm:ss, where hh, mm, and ss stands for hours, minutes, and seconds respectively. We do not include the runtime
for the first five models because the difference with respect to the runtimes in Table 3 is negligible.

1. Similarly, we prewarm all weights θ and φ in Model 2. In both cases, we initialized the MLP weights
as suggested in [54]. We also achieve more stable training in Model 2 by conditioning pθ(x|z, y) on the
class label y.

4.4 Benchmark Reject Inference

Table 3 compares the performance of Model 1 and Model 2 with other models when using the original
acceptance ratio in the data sets. It can be seen that both Model 1 and Model 2 perform better than all
supervised and semi-supervised models in terms of AUC, GINI, H measure and precision. Our results
support previous findings that the reclassification, fuzzy parcelling and augmentation methods do not
improve model performance. The reclassification approach is consistently the worst model. Further, the
self-training approaches do not improve the performance of the base models MLP and SVM. Finally,
S3VM has significantly worse performance than the base models for the Santander Credit Cards data
set.

We use the Platt scaling method [55] to get (pseudo) default probabilities from SVM and S3VM. It is
interesting to see that we could not estimate the recall and precision for S3VM in the Lending Club
data because the estimated default probabilities are concentrated around the average, with practically
no dispersion, see Table A4. S3VM estimates default probabilities for all applications below the default
rate in the Lending Club data set, and above the default rate in the Santander data set.

Model 2 performs better than Model 1 in terms of all measures except for recall. Remember that the
main difference between these models is the classifier in Model 2, which uses a latent representation of the
customers’ data. Our results are hence in correspondence with previous studies showing the predictive
power embedded in the latent transformations. It is further interesting to note that our proposed models
for reject inference not only perform better, but also estimate higher variability in the predicted default
probabilities, as shown in Table A4. This result supports previous findings that the default probability
is underestimated if reject inference is ignored. Unfortunately, given the nature of the data sets in this
research we are not able to draw any conclusion about the economic impact of this interesting detail.

It is worth mentioning that Model 2 is the algorithm that takes longer time to converge for the Lending
Club data set, while for the Santander Credit Cards data set is S3VM. In any case, the runtime for both
Model 2 and S3VM, in the experiments in Table 3, is moderate.

In Table 4, we analyze the impact of the number of accepted and rejected applications on model perfor-
mance using Model 2 and the Lending Club data set. In the right panel, we can observe that the general
trend is that the more rejected applications we add to Model 2, the higher model performance. In the
left panel, we can see that the more accepted data we have available, the better model performance for
the supervised models and the less difference compared to Model 2. Note that Model 2 achieves the
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highest average AUC of 0.6404 in the All scenario, which includes 545 599 observations. This is 16 times
more data compared to what self-training SVM and S3VM handled.

The runtime for Model 2 in the experiments that use all rejected applications has increased significantly
compared to Table 3. In the scenario where we use all accepted and rejected applications, 545 599
observations in total, Model 2 takes about 4 hours to converge. Note that this model has 16 080 learnable
parameters, which are significantly more than the 502 parameters in the MLP. Generally, training deep
learning architectures is computationally intensive and the computational complexity increases linearly
with the number of parameters (including MLP architectures). However, training can be accelerated by
distributing training in parallel across multiple GPUs.

5 Conclusion

In this research we develop two novel deep generative models for reject inference in credit scoring. Our
models use the posterior distribution of the outcome of the loan to infer the unknown creditworthiness
of the rejected applications. This is done by exact enumeration of the two possible outcomes of the loan,
which is an advantage compared to reject inference methods based on extrapolation. To the best of our
knowledge, this is the first research that develops novel methods for reject inference in credit scoring
coupling Gaussian mixtures and auxiliary variables in a semi-supervised framework with generative
models.

The experiments show that our proposed models achieve higher model performance compared to many
of the classical and machine learning approaches for reject inference in credit scoring, and the models’
performance increases as we add more data for model training. Further, the efficient stochastic gradient
optimization technique used in deep generative models scales to large data sets, which is an advantage
over supervised and semi-supervised support vector machines. Note that even though the focus of this
research is on credit scoring, our proposed models generalize to other research domains, e.g. image
classification.

The higher model performance of our proposed methodology is further enhanced by adding latent rep-
resentations of the customers’ data to the classifier. This data representation captures the intrinsic
structure of the data providing relevant information for classification. Since our proposed approach for
reject inference in credit scoring offers flexible modeling possibilities, we hope that this research spurs
future work on reject inference in credit scoring using deep generative model focusing on improving the
training stability and classification power.
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6 Appendix

A Tables and Figures

To replicate the data set presented in [23], we excluded all observations with missing values in any of the
variables in Table A1. Further, the allowed variable range, which we choose based on [23], is determined
by the minimum and maximum values as shown in the table. The summary statistics in our data sample
is not exactly the same as in [23], but the default trend is the same (the default rate in 2009 is 12.59%,
2010 is 9.61%, 2011 is 10.32% and in 2012 is 13.76%).

Table A1: Lending Club Descriptive Statistics

Variable Mean Std Min 1 Quantile Median 3 Quantile Max
Accepts Debt to income 14.51 7.19 0.00 9.06 14.44 19.82 34.99

Loan amount 10 610.34 6 738.61 1 000.00 5 706.25 9 600.00 14 000.00 35 000.00
Fico score 711.49 35.06 662.00 682.00 707.00 732.00 847.50
State d1 0.43 0.49 0.00 0.00 0.00 1.00 1.00
State d2 0.43 0.49 0.00 0.00 0.00 1.00 1.00
State d3 0.10 0.29 0.00 0.00 0.00 0.00 1.00
Employment length 3.97 3.18 0.00 1.00 3.00 6.00 10.00

Rejects Debt to income 24.29 31.14 0.00 7.90 18.19 31.18 419.33
Loan amount 13 330.74 10 361.51 1 000.00 5 000.00 10 000.00 20 000.00 35 000.00
Fico score 638.15 74.10 385.00 595.00 651.00 690.00 850.00
State d1 0.47 0.50 0.00 0.00 0.00 1.00 1.00
State d2 0.37 0.48 0.00 0.00 0.00 1.00 1.00
State d3 0.10 0.30 0.00 0.00 0.00 0.00 1.00
Employment length 8.40 3.16 0.00 10.00 10.00 10.00 10.00

The second data set which we use in this research is provided by Santander Consumer Bank. The details
that we can provide about this data set are limited by its proprietary nature. The descriptive statistics
are shown in Table A2.

Table A2: Santander Credit Cards Descriptive Statistics

Variable Mean Std Min 1 Quantile Median 3 Quantile Max
Accepts Var1 86 475.84 107 975.22 0.00 29 852.00 69 162.00 108 898.00 10 570 323.00

Var2 152 205.11 1 778 838.75 0.00 0.00 0.00 4 376.00 393 676 928.00
Var3 38.95 13.38 19.00 28.00 37.00 48.00 92.00
Var4 976 647.69 16 125 692.00 −2.00 −2.00 −2.00 1 250 000.00 2 701 061 888.00
Var5 903 518.75 3 228 558.75 −2.00 −2.00 −2.00 1 430 000.00 985 694 976.00
Var6 807 869.63 13 848 935.00 0.00 0.00 0.00 1 075 000.00 2 667 096 064.00
Var7 95 622.16 14 090 133.00 −2 664 925 952.00 −2.00 −2.00 79 000.00 984 075 008.00
Var8 9.46 23.82 −2.00 −2.00 −2.00 4.63 100.00
Var9 −0.44 1.86 −2.00 −2.00 −2.00 1.00 82.00
Var10 −0.91 1.14 −2.00 −2.00 −2.00 0.00 4.00
Var11 −1.99 0.15 −2.00 −2.00 −2.00 −2.00 3.00
Var12 −0.63 2.06 −2.00 −2.00 −2.00 1.00 164.00
Var13 −0.34 2.09 −2.00 −2.00 −2.00 1.00 164.00
Var14 −1.98 0.32 −2.00 −2.00 −2.00 −2.00 26.00
Var15 −0.47 1.73 −2.00 −2.00 −2.00 1.00 52.00
Var16 −1.15 1.00 −2.00 −2.00 −2.00 0.00 1.00
Var17 0.16 0.53 0.00 0.00 0.00 0.00 19.00
Var18 0.95 2.25 0.00 0.00 0.00 1.00 67.00
Var19 1.12 2.42 0.00 0.00 0.00 1.00 72.00
Var20 1.57 3.27 0.00 0.00 0.00 2.00 97.00
Var21 357 123.84 372 109.81 0.00 170 103.14 295 917.44 443 333.95 34 850 852.00
Var22 8.29 8.53 0.00 3.97 6.91 10.29 760.94
Var23 37 156.38 250 887.75 −12 873 071.00 −14 218.19 23 241.04 79 463.82 33 829 372.00
Var24 16 168.70 432 254.88 −40 114 780.00 0.00 0.00 0.00 50 003 248.00
Var25 9 037.99 60 101.17 −2 641 216.00 −4 085.00 5 520.00 19 799.25 6 169 685.00
Var26 0.35 42.04 0.00 0.20 0.23 0.26 14 940.20
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Table 2 Continued
Variable Mean Std Min 1 Quantile Median 3 Quantile Max
Var27 0.47 0.50 0.00 0.00 0.00 1.00 1.00
Var28 46.04 75.70 −29.00 −2.00 12.00 65.00 754.00
Var29 6.71 34.72 −2.00 −2.00 −2.00 −2.00 412.00
Var30 6.71 34.72 −2.00 −2.00 −2.00 −2.00 412.00
Var31 1.08 0.97 0.00 0.53 0.90 1.36 43.75
Var32 0.98 1.02 0.00 0.47 0.82 1.22 101.95
Var33 0.98 1.01 0.00 0.47 0.81 1.22 99.13
Var34 0.56 1.18 0.00 0.00 0.00 1.00 73.00
Var35 0.49 0.50 0.00 0.00 0.00 1.00 1.00
Var36 0.00 0.01 0.00 0.00 0.00 0.00 1.00
Var37 0.58 0.49 0.00 0.00 1.00 1.00 1.00
Var38 0.07 0.25 0.00 0.00 0.00 0.00 1.00
Var39 0.21 0.41 0.00 0.00 0.00 0.00 1.00
Var40 0.09 0.29 0.00 0.00 0.00 0.00 1.00
Var41 0.06 0.23 0.00 0.00 0.00 0.00 1.00
Var42 0.01 0.11 0.00 0.00 0.00 0.00 1.00
Var43 0.37 0.48 0.00 0.00 0.00 1.00 1.00
Var44 0.53 0.50 0.00 0.00 1.00 1.00 1.00
Var45 0.09 0.28 0.00 0.00 0.00 0.00 1.00
Var46 0.00 0.02 0.00 0.00 0.00 0.00 1.00
Var47 0.65 0.48 0.00 0.00 1.00 1.00 1.00
Var48 0.26 0.44 0.00 0.00 0.00 1.00 1.00
Var49 0.06 0.23 0.00 0.00 0.00 0.00 1.00
Var50 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Var51 0.03 0.18 0.00 0.00 0.00 0.00 1.00
Var52 0.75 0.44 0.00 0.00 1.00 1.00 1.00
Var53 0.25 0.44 0.00 0.00 0.00 1.00 1.00
Var54 0.08 0.27 0.00 0.00 0.00 0.00 1.00
Var55 0.16 0.36 0.00 0.00 0.00 0.00 1.00
Var56 0.39 0.49 0.00 0.00 0.00 1.00 1.00
Var57 0.30 0.46 0.00 0.00 0.00 1.00 1.00
Var58 0.08 0.27 0.00 0.00 0.00 0.00 1.00

Rejects Var1 57 198.23 68 931.46 0.00 12 800.00 43 182.50 80 412.00 3 635 832.00
Var2 33 128.01 568 171.50 0.00 0.00 0.00 0.00 208 626 176.00
Var3 34.60 12.16 1.00 25.00 32.00 42.00 95.00
Var4 507 337.69 11 648 304.00 −2.00 −2.00 −2.00 105 937.50 2 701 061 888.00
Var5 434 133.63 1 137 152.75 −2.00 −2.00 −2.00 0.00 72 376 000.00
Var6 432 619.66 10 198 556.00 0.00 0.00 0.00 0.00 2 303 705 088.00
Var7 1 499.88 10 159 168.00 −2 299 855 104.00 −2.00 −2.00 −2.00 72 376 000.00
Var8 3.45 16.70 −2.00 −2.00 −2.00 0.00 100.00
Var9 −1.16 1.51 −2.00 −2.00 −2.00 0.00 82.00
Var10 −1.39 1.02 −2.00 −2.00 −2.00 0.00 4.00
Var11 −1.87 0.95 −2.00 −2.00 −2.00 −2.00 36.00
Var12 −1.24 1.67 −2.00 −2.00 −2.00 −2.00 105.00
Var13 −1.06 1.77 −2.00 −2.00 −2.00 1.00 105.00
Var14 −1.79 1.20 −2.00 −2.00 −2.00 −2.00 38.00
Var15 −1.13 1.52 −2.00 −2.00 −2.00 1.00 43.00
Var16 −1.52 0.87 −2.00 −2.00 −2.00 −2.00 1.00
Var17 0.26 0.74 0.00 0.00 0.00 0.00 87.00
Var18 3.28 6.06 0.00 0.00 1.00 4.00 166.00
Var19 3.54 6.30 0.00 0.00 1.00 4.00 172.00
Var20 4.62 7.90 0.00 0.00 2.00 5.00 176.00
Var21 250 519.14 242 146.78 0.00 112 918.59 212 571.75 337 357.29 13 897 584.00
Var22 5.80 5.55 0.00 2.64 4.94 7.84 308.84
Var23 23 313.24 179 360.19 −31 086 966.00 −15 761.49 16 862.45 61 574.02 11 590 733.00
Var24 2 551.04 171 498.02 −30 644 804.00 0.00 0.00 0.00 16 552 538.00
Var25 5 758.38 43 678.19 −6 499 649.00 −3 843.00 3 537.00 14 794.00 1 851 795.00
Var26 0.30 31.14 0.00 0.16 0.23 0.26 14 940.20
Var27 0.25 0.43 0.00 0.00 0.00 1.00 1.00
Var28 32.24 65.42 −43.00 −2.00 −2.00 43.00 804.00
Var29 6.67 32.32 −2.00 −2.00 −2.00 −2.00 377.00
Var30 6.67 32.32 −2.00 −2.00 −2.00 −2.00 377.00
Var31 0.77 0.70 0.00 0.35 0.67 1.05 36.99
Var32 0.69 0.67 0.00 0.31 0.59 0.93 38.16
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Table 2 Continued
Variable Mean Std Min 1 Quantile Median 3 Quantile Max
Var33 0.69 0.66 0.00 0.31 0.59 0.93 38.90
Var34 0.36 1.07 0.00 0.00 0.00 0.00 97.00
Var35 0.27 0.45 0.00 0.00 0.00 1.00 1.00
Var36 0.00 0.01 0.00 0.00 0.00 0.00 1.00
Var37 0.51 0.50 0.00 0.00 1.00 1.00 1.00
Var38 0.07 0.26 0.00 0.00 0.00 0.00 1.00
Var39 0.23 0.42 0.00 0.00 0.00 0.00 1.00
Var40 0.14 0.34 0.00 0.00 0.00 0.00 1.00
Var41 0.05 0.22 0.00 0.00 0.00 0.00 1.00
Var42 0.00 0.07 0.00 0.00 0.00 0.00 1.00
Var43 0.20 0.40 0.00 0.00 0.00 0.00 1.00
Var44 0.75 0.43 0.00 0.00 1.00 1.00 1.00
Var45 0.05 0.22 0.00 0.00 0.00 0.00 1.00
Var46 0.00 0.02 0.00 0.00 0.00 0.00 1.00
Var47 0.74 0.44 0.00 0.00 1.00 1.00 1.00
Var48 0.16 0.37 0.00 0.00 0.00 0.00 1.00
Var49 0.06 0.23 0.00 0.00 0.00 0.00 1.00
Var50 0.06 0.00 0.00 0.00 0.00 0.00 1.00
Var51 0.04 0.19 0.00 0.00 0.00 0.00 1.00
Var52 0.55 0.50 0.00 0.00 1.00 1.00 1.00
Var53 0.45 0.50 0.00 0.00 0.00 1.00 1.00
Var54 0.09 0.29 0.00 0.00 0.00 0.00 1.00
Var55 0.16 0.37 0.00 0.00 0.00 0.00 1.00
Var56 0.38 0.48 0.00 0.00 0.00 1.00 1.00
Var57 0.28 0.45 0.00 0.00 0.00 1.00 1.00
Var58 0.09 0.28 0.00 0.00 0.00 0.00 1.00

Table A3: Grid for hyperparameter optimization for Lending Club: The total number of model configurations are 132, 160
and 240 for MLP, SVM, and S3VM respectively. For the Santander data set the number of model configurations evaluated
are 204, 160, and 240 for MLP, SVM, and S3VM respectively.

Lending Club
MLP SVM S3VM

Layers 1 C 5, 10, 13, 14, 15, 17, 19, 21, 23, 25 C 1, 5, 10, 13, 15, 17
Neurons 3, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 Gamma 2, 1.5, 1, 0.5, 0.1, 0.01, 0.001, auto Gamma 2.5, 2, 1.5, 1, 0.5
Activation logistic, tanh, relu Kernel rbf, linear Kernel rbf, linear
Learning rate constant, adaptive LamU 0.5, 1, 1.5, 2
Solver sgd, adam

Santander Credit Cards
Layers 1 C 5, 10, 13, 14, 15, 17, 19, 21, 23, 25 C 1, 5, 10, 13, 15, 17
Neurons 50, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 130, 140, 150 Gamma 2, 1.5, 1, 0.5, 0.1, 0.01, 0.001, auto Gamma 2.5, 2, 1.5, 1, 0.5
Activation logistic, tanh, relu Kernel rbf, linear Kernel rbf, linear
Learning rate constant, adaptive LamU 0.5, 1, 1.5, 2
Solver sgd, adam

18



Table A4: Empirical moment statistic for the default probability.

Lending Club Santander Credit Cards
Average Std. Kurtosis Skewness Average Std. Kurtosis Skewness

MLP 0.1101 0.0096 −0.1027 0.0969 0.1180 0.0146 −0.0885 0.0563
SVM 0.1012 0.0130 −0.1505 0.0420 0.1202 0.0199 −0.1016 0.0517
Reclassification 0.1066 0.0083 −0.0635 −0.2861 0.1200 0.0011 6.1730 −0.8207
Fuzzy Parceling 0.1003 0.0132 −0.1389 0.0813 0.1198 0.0041 0.6406 −0.6061
Augmentation 0.0995 0.0131 −0.1487 0.0881 0.1198 0.0040 0.6285 −0.6151
Self-learning MLP 0.1055 0.0116 −0.0471 0.0770 0.1276 0.0058 0.2282 −0.5179
Self-learning SVM 0.1014 0.0130 −0.1494 0.0384 0.1257 0.0147 −0.1199 −0.0741
S3VM 0.1203 1.39e-6 −0.1173 −0.1297 0.1200 7.08e-7 0.7407 0.8687
Model 1 0.0985 0.0408 −0.5650 0.3368 0.1190 0.0367 −1.1459 −0.2455
Model 2 0.0999 0.0424 −0.5366 0.3819 0.0925 0.0340 0.8182 0.7802
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Figure A1: Empirical distribution of the default probability for the original acceptance ratio as explained in Section 4.2.
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Figure A2: Model performance based on 5 cross-validations (CV) for the different scenarios analyzed in Table 4, using the
Lending Club data set and Model 2. Since training for these scenarios in some cases become unstable, we keep only the
results where Model 2 converged. Note that Model 2 achieves the highest AUC equal to 0.6450 in the All scenario in the
left panel.
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B Deriving the lower bounds

B.1 Lemma 1

Given two multivariate Gaussian distribution, with diagonal covariance matrix, p(x) ∼ N (µ1,σ
2
1I) and

q(x) ∼ N (µ2,σ
2
2I), where µ· ∈ Rd and σ2

· ∈ Rd, we have:∫
q(x) log p(x)dx =

d∑
i=1

−1

2
log(2πσ2

1,i)−
σ2
2,i

2σ2
1,i

− (µ2,i − µ1,i)
2

2σ2
1,i

, (B1)

where µ·,i and σ·,i are the i ’th element of µ and σ2 respectively.

Proof:∫
q(x) log p(x)dx =
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q(x) log

1
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In the following sections we derive the lower bounds presented in the main text by taking the corre-
sponding expectations, and using Lemma 1 where it is needed. We drop the subscripts θ and φ from the
distributions p·(·) and q·(·), respectively, to do not clutter the notation. However, we use these subscripts
in the parameters µ· and σ· to distinguish between them.

B.2 Model 1: Supervised lower bound

Eq(z|x,y)[log p(y)] =

∫
q(z|x, y) log p(y)dz

= logπ

Eq(z|x,y)[log p(z|y)] =

∫
q(z|x, y) log p(z|y)dz

=

∫
N (z;µφ,σ

2
φ) logN (z;µθ,σ

2
θ)dz

=−
`z∑
j=1

(
1

2
log(2πσ2

θj,k
) +

σ2
φj

σ2
θj,k

+
(µφj

− µθj,k)2

σ2
θj,k

)
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Eq(z|x,y)[log p(x|z)] =

∫
q(z|x, y) log p(x|z)dz

≈ 1

L

L∑
l=1

logN (xi|zi,l)

Eq(z|x,y)[log q(z|x, y)] =

∫
q(z|x, y) log q(z|x, y)dz
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∫
N (z;µφ,σ

2
φ) logN (z;µφ,σ

2
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2
log(2πσ2
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B.3 Model 1: Unsupervised lower bound

Eq(z,y|x)[log p(y)] =
∑
y

∫
q(y|x)q(z|x, y) log p(y)dz

= logπ
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∫
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=
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q(y|x) log q(y|x)
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B.4 Model 2: Supervised lower bound

Eq(z,a|x,y)[log p(y)] =

∫ ∫
q(a|x)q(z|x, y) log p(y)dzda

= logπ

Eq(z,a|x,y)[log p(z|y)] =

∫ ∫
q(a|x)q(z|x, y) log p(z|y)dzda

=
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B.5 Model 2: Unsupervised lower bound

Eq(z,a,y|x)[log p(y)] =

∫ ∑
y

∫
q(a|x)q(y|x,a)q(z|x, y) log p(y)dzda

= logπ

Eq(z,a,y|x)[log q(y|x,a)] =
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∫
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∑
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q(y|x,ala) log q(y|x,ala)
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Eq(z,a,y|x)[log p(z|y)] =

∫ ∑
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≈− 1

La

La∑
la=1

∑
y

πy|x,ala

[ `z∑
j=1

(
1

2
log(2πσ2

θj,k
) +

σ2
φj

σ2
θj,k

+
(µφj − µθj,k)2

σ2
θj,k

)]

Eq(z,a,y|x)[log p(x|z, y)] =

∫ ∑
y

∫
q(a|x)q(y|x,a)q(z|x, y) log p(x|z, y)dzda

≈ 1

La

La∑
la=1

∑
y

πy|x,ala

1

Lz

Lz∑
lz=1

logN (xi|zi,l, yla)

Eq(z,a,y|x)[log p(a)− log q(a|x)] =

∫ ∑
y

∫
q(a|x)q(y|x,a)q(z|x, y)[log p(a)− log q(a|x)]dzda

=
∑
y

q(a|x)

[ ∫
q(y|x,a) log p(a)da−

∫
q(a|x) log q(a|x)da

]

=− 1

2

∑
y

πy|x,ala

[ `a∑
c=1

(σ2
φac

+ µ2
φac
− (1 + log σ2

φac
))
]

Eq(z,a,y|x)[log q(z|x, y)] =

∫ ∑
y

∫
q(a|x)q(y|x,a)q(z|x, y) log q(z|x, y)dzda

≈ 1

La

La∑
la=1

∑
y

q(y|x,ala)

∫
q(z|x, y) log q(z|x, y)dz

=− 1

La

La∑
la=1

∑
y

πy,ala

[1

2

`z∑
j=1

(1 + log σ2
φzj

)
]
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