2,787 research outputs found

    Performance and movement kinematics of mouse pointing task: Perspectives from age, psychomotor ability, and visual ability.

    Get PDF
    Results from the first study confirmed the suspicion that not all kinematic measures reported in the literature were related to performance. For instance, although peak velocity is the most reported measure in the literature, it does not have any effect on performance. Kinematic measures correlate with performance are mainly temporal in nature, such as time to peak velocity, time to peak acceleration, and time from peak velocity until the end of movement. In the second study, as expected, age effects were detected in various kinematic measures. However, further investigation revealed the differences could in fact be attributed to psychomotor ability, but not the age effect per se. In general, the results confirm the notion of age being a surrogate variable, and that the causal relationship is in fact more directly related to age-related changes in psychomotor ability. In the third study, kinematics of the initial submovement for the low vision and the normal vision groups are stereotypical. However, the homing phase was significantly different between the two groups.This dissertation research consists of three related studies evolving around the movement kinematics of mouse-mediated pointing task. Movement time and error rates are the common performance measures used in similar studies. However, the performance-oriented approach is not capable of providing information about what happens "during" the movement. It is believed that much can be learned from studying the movement process. Investigation of movement process is often done by studying its kinematics, by which can be characterized using various measures. However, despite the common belief, it is suspected that certain kinematic measures do not have any relationship with movement performance. Therefore, the first study was conducted to determine the kinematics-performance relationship of a mouse pointing task.Of greater interest are the effects of age and functional abilities on the kinematics of aiming movement. The age effect is often identified as the cause of reduced performance. However, some argue the direct cause of such a reduction is actually due to age-related changes in functional abilities such as psychomotor ability. Based on that notion, it is hypothesized that the age effect on mouse use will become negligible if the effect of psychomotor ability is considered in parallel. Thus, the second study investigated the effects of age on mouse use, including after the psychomotor ability is included. Since good eye-hand coordination is required for mouse use, the research will be incomplete without considering how varying degree of visual ability can affect movement kinematics. Following along that line, the third study determined kinematic differences between people with low vision and those with normal vision

    Movement Kinematics and their Relationship with Performance in Target Acquisition Task Using a Mouse

    Get PDF
    Movement kinematics has been shown useful for characterizing the process of aiming movement in target acquisition tasks. There are multiple kinematic measures reported in the literature, but their relationship to eventual performance is not well documented. To determine the relationship between various kinematic measures and movement performance, data were collected from participants aged 21 to 90 years with a wide range of psychomotor ability. When computed across age groups, time to peak velocity (TPV), time to peak acceleration (TPA), and time from peak velocity until the end of movement (TPVEND) were found to correlate with movement performance. However, the relationships diminished when the correlations were computed within age groups (except for TPVEND). More interestingly, despite the extensive report, certain kinematic measures such as peak velocity were found to be uncorrelated with performance. Thus, when performance is the focus, improvement should be made to reduce TPV, TPA, and TPVEND.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A Robust Kalman Algorithm to Facilitate Human-Computer Interaction for People with Cerebral Palsy, Using a New Interface Based on Inertial Sensors

    Get PDF
    This work aims to create an advanced human-computer interface called ENLAZA for people with cerebral palsy (CP). Although there are computer-access solutions for disabled people in general, there are few evidences from motor disabled community (e.g., CP) using these alternative interfaces. The proposed interface is based on inertial sensors in order to characterize involuntary motion in terms of time, frequency and range of motion. This characterization is used to design a filtering technique that reduces the effect of involuntary motion on person-computer interaction. This paper presents a robust Kalman filter (RKF) design to facilitate fine motor control based on the previous characterization. The filter increases mouse pointer directivity and the target acquisition time is reduced by a factor of ten. The interface is validated with CP users who were unable to control the computer using other interfaces. The interface ENLAZA and the RKF enabled them to use the computer

    Software Design of an Experimental Management Suite for Evaluating Time-Delayed Teleoperative Simulations

    Get PDF
    A means of assessing human performance as it relates to telesurgery is critical in an age where computer-assisted surgery is becoming more commonplace in operating rooms around the world. This is particularly true when a human is controlling the robotic instruments over a considerable geographic distance; unpredictable delays in data transmission over a network can degrade the human-computer system performance. As the delay is increased, so too will the overall time to complete a given task along with its associated error rate. However, objective measures on the effect on performance are needed. The methodology developed here is based on Fitts’ paradigm; a framework that can be used to quantify human performance under simulated latency conditions. Data gathered from the software developed in this thesis shows a strong, positive, linear correlation between a subject’s performance and the imposed task latency. This coincides with similar studies performed using the same paradigm, demonstrating the usefulness of such a methodology with respect to systems for telesurgery and training

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Initial Validation Of Novel Performance-based Measures: Mental Rotation And Psychomotor Ability

    Get PDF
    Given the high-risk nature of military flight operations and the significant resources required to train U.S. Naval Aviation personnel, continual improvement is required in the selection process. In addition to general commissioning requirements and aeromedical standards, the U.S. Navy utilizes the Aviation Selection Test Battery (ASTB) to select commissioned aviation students. Although the ASTB has been a good predictor of aviation student performance in training, it was proposed that incremental improvement could be gained with the introduction of novel, computer administered performancebased measures: Block Rotation (BRT) and a Navy-developed Compensatory Tracking task. This work constituted an initial validation of the BRT, an interactive virtual analog of Shepard-Metzler’s (1971) Mental Rotation task that was developed with the intention of quantifying mental rotation and psychomotor ability. For Compensatory Tracking, this work sought to determine if data gathered concord with results in extant literature, confirming the validity of the task. Data from the BRT were examined to determine task reliability and to formulate relevant quantitative/predictive performance human models. Results showed that the BRT performance is a valid spatial ability predictor whose output can be modeled, and that Compensatory Tracking task data concord with the psychometric properties of tracking tasks that have been previously presented in the literature

    Improving the performance of input interfaces through scaling and human motor models

    Get PDF
    The performance of interfaces is affected by human factors, which vary from one person to another, and by the inherent characteristics of the various devices involved. A set of techniques has been studied in order to improve the efficiency and efficacy of input interface devices. These techniques are based on the modification of the motor scaling factor, a transformation similar to the known Control-Display ratio (CD ratio). Operation time, the accuracy of the task and user workload are the indicators used in this work. By means of models based on the various human motor behaviors, the improvement of such indicators has been demonstrated. Using some common input interface devices, a number of experiments have been carried out to evaluate the presented methodology. The results show that the overall performance of input interfaces is significantly improved by applying such methodology.Peer ReviewedPreprin

    Design For Auditory Displays: Identifying Temporal And Spatial Information Conveyance Principles

    Get PDF
    Designing auditory interfaces is a challenge for current human-systems developers. This is largely due to a lack of theoretical guidance for directing how best to use sounds in today\u27s visually-rich graphical user interfaces. This dissertation provided a framework for guiding the design of audio interfaces to enhance human-systems performance. This doctoral research involved reviewing the literature on conveying temporal and spatial information using audio, using this knowledge to build three theoretical models to aid the design of auditory interfaces, and empirically validating select components of the models. The three models included an audio integration model that outlines an end-to-end process for adding sounds to interactive interfaces, a temporal audio model that provides a framework for guiding the timing for integration of these sounds to meet human performance objectives, and a spatial audio model that provides a framework for adding spatialization cues to interface sounds. Each model is coupled with a set of design guidelines theorized from the literature, thus combined, the developed models put forward a structured process for integrating sounds in interactive interfaces. The developed models were subjected to a three phase validation process that included review by Subject Matter Experts (SMEs) to assess the face validity of the developed models and two empirical studies. For the SME review, which assessed the utility of the developed models and identified opportunities for improvement, a panel of three audio experts was selected to respond to a Strengths, Weaknesses, Opportunities, and Threats (SWOT) validation questionnaire. Based on the SWOT analysis, the main strengths of the models included that they provide a systematic approach to auditory display design and that they integrate a wide variety of knowledge sources in a concise manner. The main weaknesses of the models included the lack of a structured process for amending the models with new principles, some branches were not considered parallel or completely distinct, and lack of guidance on selecting interface sounds. The main opportunity identified by the experts was the ability of the models to provide a seminal body of knowledge that can be used for building and validating auditory display designs. The main threats identified by the experts were that users may not know where to start and end with each model, the models may not provide comprehensive coverage of all uses of auditory displays, and the models may act as a restrictive influence on designers or they may be used inappropriately. Based on the SWOT analysis results, several changes were made to the models prior to the empirical studies. Two empirical evaluation studies were conducted to test the theorized design principles derived from the revised models. The first study focused on assessing the utility of audio cues to train a temporal pacing task and the second study combined both temporal (i.e., pace) and spatial audio information, with a focus on examining integration issues. In the pace study, there were four different auditory conditions used for training pace: 1) a metronome, 2) non-spatial auditory earcons, 3) a spatialized auditory earcon, and 4) no audio cues for pace training. Sixty-eight people participated in the study. A pre- post between subjects experimental design was used, with eight training trials. The measure used for assessing pace performance was the average deviation from a predetermined desired pace. The results demonstrated that a metronome was not effective in training participants to maintain a desired pace, while, spatial and non-spatial earcons were effective strategies for pace training. Moreover, an examination of post-training performance as compared to pre-training suggested some transfer of learning. Design guidelines were extracted for integrating auditory cues for pace training tasks in virtual environments. In the second empirical study, combined temporal (pacing) and spatial (location of entities within the environment) information were presented. There were three different spatialization conditions used: 1) high fidelity using subjective selection of a best-fit head related transfer function, 2) low fidelity using a generalized head-related transfer function, and 3) no spatialization. A pre- post between subjects experimental design was used, with eight training trials. The performance measures were average deviation from desired pace and time and accuracy to complete the task. The results of the second study demonstrated that temporal, non-spatial auditory cues were effective in influencing pace while other cues were present. On the other hand, spatialized auditory cues did not result in significantly faster task completion. Based on these results, a set of design guidelines was proposed that can be used to direct the integration of spatial and temporal auditory cues for supporting training tasks in virtual environments. Taken together, the developed models and the associated guidelines provided a theoretical foundation from which to direct user-centered design of auditory interfaces

    Explaining Accessibility: Possible Variables in Users’ Abilities, Tasks, and Contexts in IT Artefact Use

    Get PDF
    The interconnection between the two information technology (IT) artefact qualities, accessibility and usability, is challenging to define. Efforts to design and develop accessible IT artefacts should encompass the broadest range of user abilities in identified tasks and contexts. We lack sufficient research on information systems and human-computer interactions that presents a comprehensive model to explain what variables these key components of accessibility contain and how they interconnect. To address this gap in the literature, I draw on theories beyond human-computer interactions, tasks, and contexts to posit the influence of human abilities on IT use by referring to the International Classification of Functioning, Disability, and Health (ICF) framework that the World Health Organization developed. In this paper, I theoretically describe accessibility, its components, and their relationships in the IT use context based on which I present an accessibility model. Furthermore, I argue that accessibility is a moderating variable between system features and usability. Therefore, accessibility is a major determinant of user acceptance
    corecore