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ABSTRACT 

Designing auditory interfaces is a challenge for current human-systems developers.  This 

is largely due to a lack of theoretical guidance for directing how best to use sounds in today’s 

visually-rich graphical user interfaces.  This dissertation provided a framework for guiding the 

design of audio interfaces to enhance human-systems performance.   

This doctoral research involved reviewing the literature on conveying temporal and 

spatial information using audio, using this knowledge to build three theoretical models to aid the 

design of auditory interfaces, and empirically validating select components of the models.  The 

three models included an audio integration model that outlines an end-to-end process for adding 

sounds to interactive interfaces, a temporal audio model that provides a framework for guiding 

the timing for integration of these sounds to meet human performance objectives, and a spatial 

audio model that provides a framework for adding spatialization cues to interface sounds.  Each 

model is coupled with a set of design guidelines theorized from the literature, thus combined, the 

developed models put forward a structured process for integrating sounds in interactive 

interfaces. 

The developed models were subjected to a three phase validation process that included 

review by Subject Matter Experts (SMEs) to assess the face validity of the developed models and 

two empirical studies.  For the SME review, which assessed the utility of the developed models 

and identified opportunities for improvement, a panel of three audio experts was selected to 

respond to a Strengths, Weaknesses, Opportunities, and Threats (SWOT) validation 

questionnaire.  Based on the SWOT analysis, the main strengths of the models included that they 

provide a systematic approach to auditory display design and that they integrate a wide variety of 

knowledge sources in a concise manner.  The main weaknesses of the models included the lack 
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of a structured process for amending the models with new principles, some branches were not 

considered parallel or completely distinct, and lack of guidance on selecting interface sounds.  

The main opportunity identified by the experts was the ability of the models to provide a seminal 

body of knowledge that can be used for building and validating auditory display designs.  The 

main threats identified by the experts were that users may not know where to start and end with 

each model, the models may not provide comprehensive coverage of all uses of auditory 

displays, and the models may act as a restrictive influence on designers or they may be used 

inappropriately.  Based on the SWOT analysis results, several changes were made to the models 

prior to the empirical studies. 

Two empirical evaluation studies were conducted to test the theorized design principles 

derived from the revised models.  The first study focused on assessing the utility of audio cues to 

train a temporal pacing task and the second study combined both temporal (i.e., pace) and spatial 

audio information, with a focus on examining integration issues.  In the pace study, there were 

four different auditory conditions used for training pace: 1) a metronome, 2) non-spatial auditory 

earcons, 3) a spatialized auditory earcon, and 4) no audio cues for pace training.  Sixty-eight 

people participated in the study.  A pre- post between subjects experimental design was used, 

with eight training trials.  The measure used for assessing pace performance was the average 

deviation from a predetermined desired pace.  The results demonstrated that a metronome was 

not effective in training participants to maintain a desired pace, while, spatial and non-spatial 

earcons were effective strategies for pace training.  Moreover, an examination of post-training 

performance as compared to pre-training suggested some transfer of learning.  Design guidelines 

were extracted for integrating auditory cues for pace training tasks in virtual environments. 

iv 



In the second empirical study, combined temporal (pacing) and spatial (location of 

entities within the environment) information were presented.  There were three different 

spatialization conditions used: 1) high fidelity using subjective selection of a “best-fit” head 

related transfer function, 2) low fidelity using a generalized head-related transfer function, and 3) 

no spatialization.  A pre- post between subjects experimental design was used, with eight training 

trials.  The performance measures were average deviation from desired pace and time and 

accuracy to complete the task.  The results of the second study demonstrated that temporal, non-

spatial auditory cues were effective in influencing pace while other cues were present.  On the 

other hand, spatialized auditory cues did not result in significantly faster task completion.  Based 

on these results, a set of design guidelines was proposed that can be used to direct the integration 

of spatial and temporal auditory cues for supporting training tasks in virtual environments. 

Taken together, the developed models and the associated guidelines provided a 

theoretical foundation from which to direct user-centered design of auditory interfaces. 
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CHAPTER ONE:  GENERAL INTRODUCTION 

Humans live and interact in a sound-rich world.  Sounds provide a multitude of 

information to humans about their environment, from ecological sounds characterizing the 

environment to speech, which is an intrinsic component of human-to-human communication.  

Despite its importance to real world interaction, audio cues have been underutilized in today’s 

human computer interfaces, which mainly consist of visual constructs such as windows, icons, 

menus, and pointing devices (WIMP) system.  Designing auditory interfaces is a challenge for 

current human-systems developers.  This is largely due to a lack of theoretical guidance for 

directing how best to use sounds in today’s visually-rich graphical user interfaces.  This 

dissertation provides a framework for guiding the design of audio interfaces to enhance human-

systems performance.  

A review by the National Research Council (NRC) of Engineering Research forecasts 

that multimodal systems will soon have extreme graphics “with some spatial audio interfaces and 

haptic interfaces” and in the not too distant future, “spatial-audio effects, full-hand haptics, and 

olfactory displays will also be available” (National Research Council, 2000, p.25).  Despite these 

optimistic projections, currently there is limited understanding with respect to the utility of using 

such multimodal technology, and there are few existing guidelines to aid in designing and 

implementing multimodal systems.  There is a need to develop theoretical models and associated 

design guidelines to aid the design of auditory interfaces, which taken together can provide a 

structured process for integrating sounds in interactive interfaces.  It is imperative to validate the 

theoretical design principles through empirical studies, and thus provide a foundation for a user-

centered design process for auditory displays. 
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This dissertation uses the alternative three papers format.  Chapter 1, this chapter, 

provides an overall introduction to this doctoral research.  Chapter 2 is the first paper, which is 

currently under review by the Theoretical Issues in Ergonomics journal.  Paper 1 presents the 

theoretical underpinnings of this work and illustrates the development of three models, including 

an audio integration model that outlines an end-to-end process for adding sounds to interactive 

interfaces, a temporal audio model that provides a framework for guiding the timing for 

integration of these sounds to meet human performance objectives, and a spatial audio model 

that provides a framework for adding spatialization cues to interface sounds.  In addition, paper 1 

includes the results of subject matter experts’ evaluation of the developed models.  Chapter 3 is 

the second paper, which is under review by the Military Psychology journal.  Paper 2 presents 

the results of an empirical evaluation study that examines using audio cues to train a temporal 

pacing task.  Chapter 4 is the third paper, which is under development.  Paper 3 presents the 

results of a second empirical evaluation study, which examines using audio cues to train 

combined temporal and spatial tasks.  Chapter 5 provides a general discussion based on the three 

papers combined.  Chapter 6 concludes the dissertation and provides directions for future 

research. 

Taken together, this body of research, from the theoretically-driven models to the 

validated design guidelines, establishes a foundation for user-centered auditory display design, 

thereby advancing the state-of-the-art in auditory science. 
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CHAPTER TWO:  THEORETICAL FOUNDATIONS FOR INTEGRATING 
AUDIO IN INTERACTIVE INTERFACES* 

This paper proposes theoretical foundations for conveying temporal (i.e., relating to time) 

and spatial (i.e., relating to space) information using auditory cues in interactive systems.  Three 

theoretical models are developed to aid the design of auditory interfaces, including an audio 

integration model that outlines an end-to-end process for adding sounds to interactive interfaces, 

a temporal audio model that provides a framework for when to integrate these sounds to meet 

certain performance objectives, and a spatial audio model that provides a framework for adding 

spatialization cues to interface sounds.  The models presented in this paper, which are each 

coupled with a set of design guidelines theorized from the literature, put forward a structured 

process for integrating sounds in interactive interfaces. 

Introduction 

Humans live and interact in a sound-rich world.  Sounds provide a multitude of 

information to humans about their environment, from ecological sounds characterizing the 

environment to speech, which is an intrinsic component of human-to-human communication.  

Despite its importance to real world interaction, audio cues have been under utilized in today’s 

human computer interfaces, which mainly consist of visual constructs such as windows, icons, 

menus, and pointing devices (WIMP) system.  The WIMP paradigm has become a standard for 

interacting with computers.  Nevertheless, it suffers from limitations in that it fails to adapt to 

                                                 

* Manuscript submitted to Theoretical Issues in Ergonomics.  
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individual user’s capabilities and limitations and some users still find such systems difficult to 

master (Pew, 2003).  In addition, these primarily visual interfaces may overload users with 

information and do not utilize human information processing (HIP) resources across multiple 

modalities (Wickens, 1984; 1992), thereby missing out on the advantages associated with the 

multiplicative effects of multi-sensory processing (Rowe, 1999).  Such parallel processing, as 

discussed in Wickens’ (1984; 1992) multiple resource theory (MRT), has been demonstrated to 

result in improvements in human-computer performance.  Thus, it is important to consider how 

to effectively integrate sound into human-system interactions. 

A recent review by the National Research Council of Engineering Research forecasts that 

multimodal systems will soon have extreme graphics “with some spatial audio interfaces and 

haptic interfaces” and in the not too distant future, “spatial-audio effects, full-hand haptics, and 

olfactory displays will also be available” (National Research Council, 2000, p.25).  Despite these 

optimistic projections, currently there is limited understanding with respect to the utility of using 

such multimodal technology, and there are few existing guidelines to aid in designing and 

implementing multimodal systems.  In terms of the utility of spatial audio, such cues are 

anticipated to improve performance in high stress applications, such as air craft cockpits and 

advanced command and control operations centers, as they are suggested to increase situational 

awareness (Begault, 2000).  In addition, spatial audio is suggested to contribute to the sense of 

immersivity in virtual environments (Begault, 1994).  Current advances in spatial sound 

technology make it possible to consider further the benefits of leveraging audio to enhance 

human-system performance.  The current research investigates using audio to enhance temporal 

(i.e., relating to time-varying characteristics) and spatial (i.e., relating to location in space) 

information conveyance.  Through the models and design guidelines presented in this paper, this 
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work aims to establish a foundation of user-centered auditory display design and provide a basis 

for user-centered evaluation of auditory displays, thereby advancing the state-of-the-art in 

auditory display design. 

Audio Integration Model 

The current work presents an audio integration model to address the end-to-end decision 

making process for integrating auditory cues in interactive applications (see Figure 1).  This 

model has four steps, identifying the performance objective(s) to be met by the integration of 

audio cues, selection of the audio cues to be presented, and identification of the temporal and 

then the spatial parameters for this presentation. 

 

Figure 1:  Audio Integration Theoretical Model 

When designing audio interfaces, the audio designer first needs to decide upon a 

performance objective(s) - why sounds need to be added, i.e., to enhance which aspects of 

performance?  Sounds in interactive applications can be used to influence psycho-motor 

(physical), affective (emotional), and cognitive (intellectual) aspects of human performance 
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(Bloom, 1956).  Psycho-motor goals include physical movement, coordination, and use of motor-

skill areas.  These skills require practice and are measured in terms of speed, precision, distance, 

procedures, or techniques in execution.  Audio has been shown to enhance psycho-motor 

performance by timing start and finish of goal-directed movements, marking cycle ends for 

rhythmic movements, and driving coordination in rhythm-modulated movements (Thaut, 2005).  

Affective goals deal with effect on human emotions and include feelings, values, appreciation, 

enthusiasms, motivations, and attitudes (Bloom, 1956).  Audio has been shown to influence 

human emotion, for example, fast tempo, large pitch variation, sharp envelope, few harmonics, 

and moderate amplitude variation can drive happiness, while slow tempo, low pitch level, few 

harmonics, round envelope, and pitch contour down can drive sadness (Fahlenbrach, 2002).  

Cognitive goals deal with knowledge and include recall and recognition of facts, storage of 

procedural patterns, and intellectual abilities and skills (Bloom, 1956).  Audio has been shown to 

enhance cognitive performance through reducing the amount of needed attentional resources by 

drawing attention via audio cues and decreasing user’s cognitive workload by distributing 

processing across multiple sensory systems (Brewster, 1997; Brown & Boltz, 2002). 

Once the target performance objective(s) is determined, the audio designer needs to select 

appropriate sounds for inclusion in the interface.  Interface sounds can be speech or non-speech 

(Kramer, 1994).  Non-speech sounds include auditory icons (if the sound has semantic mapping 

to an interface element) and earcons (Blattner et al., 1989; Brewster, 1994; 1997; Gaver, 1986).  

The selection of interface sounds is not a trivial task, and poor selection of sounds can severely 

hinder the efficacy of the interactive interface regardless of the timing and spatializing of the 

sound.  Some general design principles for selecting speech and non-speech sounds for 

interactive interfaces include: 
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• Use natural speech interface whenever possible (Tsimhoni et al., 2001). 

• Use different voices for different interface elements (ETSI, 2001). 

• Set speech output speed at about 160 words per minute and do not exceed 210 

words per minute (ETSI, 2001). 

• Use musical instrument timbres- not simple tones (Brewster, 1994). 

• Use timbres that are subjectively easy to tell apart (Brewster, 1994). 

• Use large differences in pitch to distinguish auditory cues (Brewster, 1994). 

Several authors have provided detailed guidelines for selecting interface sounds, which will not 

be duplicated in the current work, as the focus herein is on the overall process of sound 

integration (c.f., Barrass, 1997; Blattner et al., 1989; Brewster, 1994; 1997; 1998; 2003; ETSI, 

2002; Gaver, 1986; Kramer, 1994; McGookin & Brewster, 2004; Patterson & Mayfield, 1990; 

Walker & Kramer, 2005).   

After selecting the interface sounds to use, decisions regarding the timing of presentation 

and whether the sounds need to be spatialized are made, which are discussed in the following 

sections.   

Temporal Audio Theoretical Model 

In general, temporal information is used to describe events that take place at a specific 

instant in time (i.e., instant-based) or over a time interval (i.e., interval-based - before and after, 

overlaps and overlapped-by, starts and started-by, finishes and finished-by, during and contains, 

meets and met-by, and equal; Allen, 1984; Schreiber, 1994), as well as ordering and constraints 

between such events (Allen & Ferguson, 1997; Vila, 1994).  Such events can be grouped based 
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on how predictable they are (i.e., triggered, definite, spontaneous; Allen & Ferguson, 1994).  

 Audio is known to be superior as compared to visual when processing such temporal 

information (ETSI, 2002; Kramer, 1994).  Thus, events are specific occurrences in time that can 

be either instantaneous (i.e., instant-based) or they can span a time interval (i.e., interval-based) 

and often involve both (Schreiber, 1994).  For example, a progress bar is a visual construct that is 

commonly used to convey status information about a download task.  The download task has two 

main instantaneous events; start and finish.  Each increment on the progress bar defines an 

instance, including start and finish; however, the download time reflects an interval-based 

measure.  Conveying temporal information is dependent upon whether instant-based or interval-

based temporal information is needed.  Instant-based temporal information focuses on conveying 

information related to a particular point of time or a particular event.  On the other hand, 

interval-based temporal information focuses on conveying information related to durations, 

rhythms, rates, and changes over time.  Interval-based systems facilitate comparisons between 

different durations (Allen, 1983).  In a very general sense, the following holds true (Allen, 1983; 

1984; Allen & Ferguson, 1994; 1997; Schreiber, 1994; Vila, 1994): 

• Instant-based temporal information is used to specify a point in time such as an alarm 

or warning.  

• Instant-based temporal information is used to specify the start or finish of an activity.  

• Interval-based temporal information is used to indicate status and progress. 

• Interval-based temporal information is used to perform comparisons.  

The temporal audio theoretical model shown in Figure 2 illustrates that audio can be used 

to covey instant-based and interval-based temporal information.  For example, an audio format 

that is often used to guide rhythmic movements is a metronome, which marks exact instant-based 
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time increments by a regularly repeated tick (Kurtz & Lee, 2003).  On the other hand, an 

example of interval-based audio is using sounds with varying tempos that indicate relative 

distance to objects (Day et al., 2004); i.e., shorter time delays between sounds as a user gets 

closer to target or destination.  A rhythmic sound is a special case of interval-based audio that 

repeats at consistent time-increments within the interval (Thaut, 2005).  This classification can 

be of importance to the audio designer as rhythmic audio can be used to train pace-controlled 

psychomotor actions, such as those associated with medical procedures, dancing, and sports 

(Boyle et al., 2002; Interactive Metronome, 2005; Kaplan, 2002; Kern et al., 1992; Libkuman et 

al., 2002; Wijnalda et al., 2005).  When an external sensory stimulus is used to guide such 

rhythmic movement, audio cues generally result in the least variability from target rhythm as 

compared to visual or tactile cues (Chen et al., 2002; Kolers & Brewster, 1985).  

 

Figure 2:  Temporal Audio Theoretical Model 
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As indicated in Figure 2, the main characteristic of an instantaneous sound is choosing 

the acoustic wave attributes that enable a user to hear the sound as intended by the audio 

designer at the right time (Plomp, 2002; Zwicker & Fastl, 1999).  The acoustic wave attributes 

that enable listeners to hear and differentiate sounds are spectral content, intensity, and 

complexity (see Figure 2).  The human ear works as a frequency analyzer that processes the 

spectral content of an acoustic wave, thus extracting useful temporal and spectral information 

from various frequency bands that create human perception of sound intensity and pitch (Plomp, 

2002).  The intensity of an acoustic wave is its amplitude or pressure level, it is commonly 

measured relative to a reference level, in decibels (dB) (Zwicker & Fastl, 1999).  For example, a 

quiet forest will be about 15 dB, normal human conversations are about 70 dB, and a noisy 

environment is about 110 dB.  The audio designer selects (or develops) sounds with appropriate 

intensity, spectral content and complexity to implement a particular instant-based sound (see 

Figure 2).  In order to enable hearing the instantaneous sound, tradeoffs exist between 

overcoming ambient noises that might be present and producing sounds that are annoying or 

harmful to the listener (Walker & Kramer, 2004).  In addition to the acoustic wave attributes, an 

interval-based sound involves the pace at which the acoustic wave repeats within a particular 

time interval (see Figure 2).  If the acoustic wave repeats at consistent time-increments within the 

interval, then the sound is rhythmic, otherwise it is arrhythmic (Thaut, 2005).  As 

aforementioned, rhythms are an important consideration for motor task performance 

(Karageorghis & Terry, 1997).  They assume an important role in organizing music events into 

coherent and comprehensible events and forms.  The audio designer can select acoustic wave 

attributes and pace for an interval-based sound to achieve different psychomotor, affective, or 

cognitive performance objectives.    
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Several environmental factors and affecters can change how a user perceives the timing 

of a particular sound (see Figure 2).  The environment context factors include listener’s 

familiarity with the sound (i.e., is the sound certain, known to the listener, or is it ambiguous?), 

spatial position of the sound source with respect to the listener, and other characteristics of the 

listening environment such as reverberation (Walker & Kramer, 2004).   

Factors that can affect how users perceive a particular sound and may influence their 

judgments regarding multiple concurrent sound streams include spatial and temporal separation 

between sounds, frequency separation, and the presence of other concurrent sensory stimuli, such 

as visual (see Figure 2; Bregman, 1990).  For example, a listener will tend to associate a sound 

event with a concurrent visual event, which is known as the ventriloquist effect (Alais & Burr, 

2004).  Listeners’ attention can also drive how a user perceives the timing of a particular sound 

(Jones, 2004).  Assessing the user’s environment and tasks with respect to familiarity with 

sound, spatial position of a sound source within the application, reverberation, and attention is 

important when the audio designer is implementing instant and interval-based sounds for an 

interactive application.  For example, when integrating two sounds that are instant-based, the 

audio designer will need to ensure that the user will not mistake them to be a single interval-

based sound and that they will not be masked by other sensory stimuli (e.g., visual dominance), 

and to do so, selecting spatial and/or temporal separation of the sounds can drive 

differentiability.  For such integration, general guiding principles include (Bregman, 1990): 

• Use sounds with different frequency ranges to drive differentiation between multiple 

sound streams. 

• Use sounds with different spatial locations to drive differentiation between multiple 

sound streams.  
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The conceptual framework presented in Figure 2 identifies the general factors that must 

be considered when designing instant and interval-based temporal audio cues in an interactive 

application.  Table 1 presents design principles that can be used to guide this design process 

while meeting certain psychomotor, affective, and cognitive performance objectives. 

 

Table 1:  Temporal Information Conveyance Design Principles 

Performance 
Objective 

Audio 
Type Cue Design Principles 

Instant Certain 

• Use sounds to time start/finish of goal-directed movements 
such as throwing a ball (Thaut, 2005). 

• Use sounds to mark start/end points for rhythmic movements 
such controlling finger tapping (Thaut, 2005). 

Rhythmic 

• Use rhythmic music to synchronize physical activity in pace 
setting, and matching tasks (Wijnalda et al., 2005). 

• Use rhythmic audio to influencerhythmic physical movement 
(Kolers & Brewster, 1985; Repp, 2006). 

Psychomotor 
 

Interval 

Ar-
rhythmic 

• Use arrhythmic audio to enhance physical activities such as 
workouts (Karageorghis & Terry, 1997). 

• Use arrhythmic audio in rhythm-modulated movements to 
increase or decrease user’s pace* (Thaut et al., 2004). 

Affective 
 Interval Ar-

rhythmic 

• Use upbeat music to lessen anger, and depression rather than 
negative music (slow) (Karageorghis & Terry, 1997).   

• Use to drive happiness or sadness, by controlling tempo, pitch, 
and harmonics (Fahlenbrach, 2002). 

Instant Certain 

• Use sound to enhance memory performance in terms of object 
identification (Davis et al., 1999). 

• Use earcons to reduce user’s mental workload and reduce error 
recovery time (Brewster, 1997). 

• Use sound to capture attention (Frauenberger et al., 2005). 

Rhythmic 

• Use coherent sounds to convey information that requires 
predictability to reduce the amount of attentional resources 
needed* (Brown & Boltz, 2002). 

• Use rhythmic audio as a temporal ordering mechanism to 
facilitate remembering (Thaut, 2005). 

Cognitive 

Interval 

Ar-
rhythmic 

• Use arrhythmic audio with varying tempos to provide 
feedback regarding position or distance* (Day et al., 2004). 

• Use arrhythmic audio to convey cause of dysfunction or for 
urgent situations (alarm design)* (Guillaume et al., 2002). 

*:  Modified based on Expert Input. 
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Psychomotor Performance Design Guidelines 

There are three types of temporally-related psychomotor performance objectives; these 

are goal-directed, rhythmic, and rhythm-modulated movements (Thaut, 2005).  Goal-directed 

movements have a specific target, such as throwing a ball a certain distance in minimum time, or 

swinging a golf club.  Rhythmic movements repeat at a constant rate such as tapping fingers or 

drawing circles.  Rhythm-modulated movements repeat over time but at either increasing or 

decreasing rates, such as speeding up during exercise.  Sounds can be used to influence all three 

movement types.  For goal directed movements, the audio designer can use instant-based sounds 

to time start and finish of a movement (Thaut, 2005).  Rhythmic movements can be controlled 

using both instant and interval-based sounds.  The audio designer can use instant-based sounds to 

mark cycle ends for rhythmic movements (Thaut, 2005).  Also, the audio designer can use 

interval-based sounds as a guide for rhythmic movements by providing sounds that repeat at 

consistent pace.  People generally move in synch (Repp & Penel, 2004) and with less variability 

(Kolers & Brewster, 1985) with an auditory-modulated rhythm as compared to a visually-

modulated rhythm.  Once people synchronize their movements with that of auditory tones, they 

generally can maintain the pattern without the audio being played (Kolers & Brewster, 1985). 

Rhythm-modulated movements can be controlled using interval-based sounds.  In 

general, rhythm-modulation with audio cues involves using sounds that repeat at increasing or 

decreasing pace as a guide for physical movements.  These movements are common in 

rehabilitation studies that involve gait, where typically a music tempo is initially chosen that 

accommodates an individual’s gait capabilities and then the tempo is increased incrementally as 

gait performance improves (Thaut et al., 2004).  Repp (2006) provided an example of rhythm 
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modulation, when he noted that people who initially tapped their fingers at their own pace were 

influenced when exposed to rhythmic audio, and resynchronized their pace to that of the audio 

when the tempo difference was less than 10%. 

Music is an audio format that is commonly used when performing psychomotor activities 

during exercise, which can involve both rhythmic and rhythm-modulated movements.  Music is 

found to enhance physical activities in several ways, first, music can divert performer’s attention 

away from physical stress and fatigue, second, music can enhance psychomotor arousal by acting 

as a stimulant before exercise and as a sedative during exercise, and third, music can enable 

performers to synchronize their physical rhythm to that of musical rhythm (Karageorghis & 

Terry, 1997).  Music can be used to support user performance in three modes; these are pace-

fixing (i.e., playing music at a constant tempo to enable synchronization), pace-matching (i.e., 

playing music at a tempo that matches user’s pace), and pace-influencing (i.e., playing music at 

varying tempo to influence a user to slow-up or slow-down) (Wijnalda et al., 2005). 

In summary, audio can be used to influence the temporal aspects of psychomotor tasks in 

the following ways: 

• Instant-based sounds can be used to time start and finish of goal-directed movements 

(Thaut, 2005). 

• Instant-based sounds can be used to time cycle ends of rhythmic movements (Kolers & 

Brewster, 1985; Thaut, 2005). 

• Interval-based sounds can be used to drive synchronization of physical movements 

(Thaut, 2005). 

• Interval-based sounds can be used to influence rhythm-modulated movements to increase 

or decrease a user’s pace (Thaut et al., 2004; Wijnalda et al., 2005).   
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• Music can be used to synchronize physical rhythm to that of musical rhythm 

(Karageorghis & Terry, 1997).  

• Music can be used to influence user’s pace either to speed up or to slow down (Wijnalda 

et al., 2005). 

Affective Performance Design Guidelines 

Affective performance objectives may include influencing a listener’s happiness, sadness, 

or fear, among other emotions (Fahlenbrach, 2002; Karageorghis & Terry, 1997).  In order to 

drive such affective emotional experiences, the audio designer can vary the intensity, rhythm 

(tempo), and form of an interval-based sound (Fahlenbrach, 2002).   For example, fast tempos 

and high pitches tend to evoke positive pleasant emotions, whereas slower tempos with lower 

pitches evoke more negative somber emotions.  Listening to upbeat music generally results in 

positive moods and listening to slower music generally results in negative moods (Karageorghis 

& Terry, 1997).  A high intensity instant-based sound can scare a near-by person, and theatre 

interval-based sounds drive suspension and excitement (Begault, 2000).  It is important to note 

that sound’s affect on human emotions depends on socio-cultural codes and taste influences 

(Fahlenbrach, 2002).  Audio can be used to influence affective tasks in the following ways 

(Fahlenbrach, 2002): 

• Use fast tempo, large pitch variation, sharp envelope, few harmonics, and moderate 

amplitude variation to drive happiness.  

• Use slow tempo, low pitch level, few harmonics, round envelope, and pitch contour down 

to drive sadness. 
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• Use many harmonics, fast tempo, high pitch level, round envelope, and pitch contour up 

to drive potency. 

Cognitive Performance Design Guidelines 

Cognitive performance objectives may include capturing user’s attention (such as alerting 

a user to system malfunctions), decreasing user’s workload, enhancing information exchange 

between user and system, and providing feedback to the user (Brewster, 1997; Day et al., 2004; 

Frauenberger et al., 2005; Guillaume et al., 2002).  

Auditory alarms can be instant- or interval-based.  Instant-based alarms present 

information regarding the nature of triggered events, whereas interval-based alarms are used to 

present information regarding the nature and urgency of triggered events (Guillaume et al., 

2002), for example, high urgency can be expressed by fast pace, variable high pitch, irregular 

harmonics, and fast onset ramp, while low urgency can be expressed by slow pace, descending 

pitch, regular harmonics, and slow onset ramp.  Listeners tend to perceive sounds with faster 

vibrato and low frequency filtering as more important (Hakkila & Rankainen, 2003).   

Integrating instant-based sounds into graphical user interfaces can decrease user’s 

workload (Brewster, 1997).  Both synthesized speech messages (communicating numerical 

values and words) and rhythmical musical tones can be recognized successfully (Rigas et al., 

2001).  Brown and Boltz (2002) indicate that coherent interval-based sounds exhibit a high 

degree of internal predictability, which is common in conversational speech and western music, 

and can reduce the amount of needed attentional resources.  Rhythms with their internal cyclic 

periodic nature create anticipation and predictability (Thaut, 2005).  The temporal ordering 
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resulting from rhythm organizes time and hence using rhythmic interval-based sounds can make 

remembering easier since events may be patterned over time.   

When used in virtual environments, sounds can enhance the sense of presence (or “being 

there”, as reported by users), by providing “natural” ambient environment cues, and the recall 

and recognition of visual objects and their spatial locations, by providing feedback cues that can 

be utilized by users to remember environment characteristics (Davis et al., 1999; Dinh et al., 

1999).  Increased usage of instant and interval-based sounds may also allow for increased 

system-to-user information transfer, device/system miniaturization, increased user mobility, 

increased accessibility for people with disabilities, and enhanced navigation (Frauenberger et al., 

2005).  For example, when audio is used as a navigation aid, varying tempos can suggest relative 

distance to objects (Day et al., 2004); i.e., shorter time delays between interval-based sounds can 

be implemented, as a user gets closer to a target or destination.  This can be useful in driver 

assistance systems to aid in lane keeping, blind spot monitoring, and collision avoidance (Day et 

al., 2004).   

Audio can be used to influence the cognitive aspects of tasks in the following ways: 

• Instant- and interval-based sounds can be used to provide feedback (Guillaume et al., 

2002). 

• Instant- and interval-based sounds can be used as an alarm to alert the user to system 

malfunctions (Hakkila & Rankainen, 2003). 

• Interval-based sounds can be used to reduce user’s workload by dividing needed 

processing across vision and audition (Brewster, 1997). 

• Interval-based sounds can be used to reduce load on user’s memory by providing 

structured ordering of time and enhanced predictability (Thaut, 2005). 
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• Instant- and interval-based sounds can be used to enhance exchange of information 

between system and user by utilizing more communication channels (e.g., vision and 

audition; Frauenberger et al., 2005). 

Spatial Audio Theoretical Model 

Once the decisions on what sounds to use and when to use them in a particular interactive 

application have been made (see Figure 1), the audio designer might opt to augment some of the 

sounds with additional cues that enable listeners to hear the sounds coming from a particular 

point in space.  A conceptual distance-based model inspired by Cutting & Vishton’s (1995) 

spaces model is herein proposed to describe treatment of spatialization cues at varying distances 

from a listener.  Cutting & Vishton focused on visual depth perception and presented a 

framework to segment the space around an observer into three circular, egocentric regions.  

These regions are personal space, action space, and vista space.  Personal space is the area 

immediately surrounding an observer; it extends to slightly beyond the arm’s reach.  Action 

space is within the individual’s accessible area of action; the observer can interact with various 

objects within this space and it allows for quick action.  Vista space is beyond 30 m, where only 

monocular and static information are available.  In the current work, this conceptualization is 

extended to sound perception and the space around a listener.  Specifically, for spatial sound 

perception, three regions are defined, these are personal space (i.e., inside a listener’s head; ~<10 

cm), proximal (i.e., nearby) space (~10 cm- 1 m), and distal space (beyond 1 m).  All distances 

are defined from the center of a listener’s head.  The personal space dimensions are defined 

based on the size of an average human head (about 16 cm in diameter).  In proximal space, the 
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spherical nature of sound waves reaching the listener makes interaural intensity difference (IID) 

cues and monaural spectral cues dependent on the source’s distance from the listener.  In distal 

space, the sound waves reaching a listener are planar in nature, and are less sensitive to the 

effects of head size and pinnae structure.  Figure 3 shows the proposed segmentation for auditory 

spaces. 

 

Figure 3:  Proposed Spaces' Definition 

In addition to distance from the listener (see Figure 3), there are several factors that 

influence sound perception: sound location, environmental context, and affecters (see Figure 4).  

Humans perceive sound location in three dimensions; azimuth, elevation, and distance (see 

Figure 4).  The most important cues for localizing a sound source’s angular position (azimuth) 

are interaural time and intensity differences (ITD and IID).  Interaural cues are based on the 

relative differences between wave fronts at the two ears on the horizontal plane (Blauert, 1983).  

Due to the nature of IID and ITD, cones of confusion are created; these refer to points anywhere 

on a conical surface extending out from the ear (Duda, 1997).  When perceiving azimuth, 

additional angular position localization cues take place due to head and source movement 

(Begault, 1994).  The head and source movements result in dynamic spectral modifications to the 
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acoustic signals reaching a listener’s ears, which improve localization ability and reduce front-

back ambiguity (Wightman & Kistler, 1999). 

 

Figure 4:  Spatial Audio Perception 

With regard to perceiving the elevation of a sound source (see Figure 4), the human 

pinnae provide spectral modifications to acoustic signals that aid in elevation judgment with 

respect to the median plane (Hebrank & Wright, 1974).  The spectral modifications resulting 

from pinnae folds produce a unique set of micro-time delays, resonances, and diffractions that 

translate into a unique descriptor for each sound source position in the median plane (Begault, 

2000).    

With regard to perceiving the distance of a sound source (see Figure 4), the intensity of a 

sound source is the most prominent distance cue in anechoic environments (or with familiar 

sounds) (McGregor et al., 1985; Middlebrooks & Green, 1991).  The intensity of sound is 

inversely proportional to the squared distance from the sound source (Begault, 2000).  In 

reverberant environments, the ratio of reflected to direct sound plays an important role for 
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distance perception (Blauert, 1983).  This ratio of reflected to direct sound creates perceptual 

differences in the sound quality that depends on source distance (Middlebrooks & Green, 1991). 

Perceiving the environmental context of a sound requires integrating loudness, cognitive 

familiarity cues, spectral content, and reverberation content (see Figure 4) (Begault, 1994; 2000).  

The loudness of a sound source perceived by a listener provides information regarding the 

reverberation characteristics of the environment, as well as the location of the various sound 

sources with respect to the listener (Middlebrooks & Green, 1991).  The presence of different 

familiar sounds enables the listeners to judge their environment (Begault, 1994).  The spectral 

content of sound reaching a listener is dependent on the environment spatial layout, absorption 

characteristics, and the presence of various obstacles within the environment, which result in 

different reflection and diffraction patterns (Blauert, 1983).  The reverberant content of sound 

reaching a listener characterizes the spatial dimensions on the listening environment and its 

reflective characteristics (Blauert, 1983; Middlebrooks & Green, 1991).  

Several affecters (see Figure 4) are known to influence human perception of a sound 

source; these include multi-sensory, precedence, parallax, and Doppler-shift effects (Begault, 

1994; 1999).  The presence of concurrent multi-sensory visual or haptic stimuli can affect 

listener’s judgment regarding sound source location (Driver & Spence, 2000).  For example, a 

ventriloquist effect explains the correlation of apparent location of an auditory event with a 

concurrently occurring visual event (Alais & Burr, 2004).  The precedence effect describes the 

fact that humans tend to localize a sound source using the first information available to them.  If 

two sounds are played at the same time (or within 15 ms), humans will tend to assume a single 

location depending on which signal got to them first (Wallach et al., 1949).  This effect explains 

the localization of sounds in reverberant environments.  The auditory parallax effect describes 
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the differences in interaural cues that take place depending on sound distance and may lead to 

better distance judgment accuracy for sources to the side compared to sources straight ahead 

(Holt & Thurlow, 1969).  The Doppler-shift effect explains changes in pitch as a moving sound 

source passes by a listener (Neuhoff & McBeath, 1996).  When a sound source is moving 

towards the listener, the sound waves propagate in the same direction as the source, but as soon 

as it crosses over the listener’s position, the propagation becomes opposite to the source 

direction, which results in a sudden drop in the sound pitch perceived by the listener.   

Once integrated, the proposed spaces’ definition and spatial sound perception variables 

provide a conceptual framework to present design principles for integrating spatialization to 

sound sources (see Figure 5 and Table 2).   

Personal Space Design Guidelines 

When designing audio cues to be used without externalization (i.e., inside the head; in 

personal space), only laterality needs to be considered since sound sources will be perceived as 

falling on the axis connecting the listener’s two ears (Jeffress & Taylor, 1961).  To enhance 

laterality, the following design considerations for personal space should be considered: 

• Manipulating the interaural cues (time and intensity differences) moves sound on the 

intracranial axis connecting the listener’s ears (Blauert, 1983).  

• Frequencies between 1500 Hz and 5000 Hz should be avoided to enhance interaural cues 

(Mills, 1972). 

• Echoes and reverberation effects should be excluded to enhance interaural cues (Shinn-

Cunningham, 2001).



 

Figure 5:  Spatial Audio Theoretical Model 
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Table 2:  Spatial Information Conveyance Design Principles 

Effect Audio Cue Space Design Principles/Notes 
Personal  Use ITD to move source on intracranial axis. 
Proximal 

Interaural time 
difference (ITD) 1, 3 

 Dominate at low 
frequency 

Distal  
Use ITD to present source azimuth location at low frequencies 
(independent of distance). 

Personal  Use IID to move source image on intracranial axis. 
Proximal Use IID to present source azimuth location at high frequencies. 

The frequency effect increases as sound distance goes from 1m-10 
cm.   
Note: ILD increases dramatically as a lateral sound source 
approaches listener’s head. 

Interaural intensity 
difference (IID) 1, 3  

 Dominate at 
high frequency as 
wavelength of 
sound signal is 
small compared to 
head dimensions. 

Distal  Use IID to present source azimuth location at high frequencies. 

Proximal Use dynamic cues resulting from source and head movement to 
disambiguate location and reduce front/back errors.  
Note: Percent of front/back errors is greater for distances < 50cm.  
Note: Small changes in position don’t produce perceptible changes 
in the HRTF*. 

Azimuth 

Source and head 
movement  1, 3 Distal  Use dynamic cues resulting from source and head movement to 

disambiguate location and reduce front/back errors. 
Note: Small changes in position don’t produce perceptible changes 
in the HRTF*. 

Proximal Use broadband sources and high frequency content and vary audio 
presentation as a function of pinnae reflection to present elevation 
angels.  
Note: High frequency content varies with elevation, not with 
distance in near field. Elevation 

Spectral 
modifications by 
pinnae  1, 3 Distal Use broadband sources and high frequency content and vary audio 

presentation as a function of pinnae reflection to present elevation 
angels.  
Note: Independent of distance. 

Proximal Use intensity/loudness cues to convey distance information.  
Note: HRTFs change substantially with distance for sources 
between 10cm and 1m. 
Note: For distances less than 1m, low frequency content 
dominates distance perception. 
Note: For distances less than 1m, humans use ITD and IID to 
determine distance. 
Note: Distance judgment is better for lateral sources. 

Intensity/ 
loudness  1, 3 

 Can be lost in 
noisy operational 
environments. Distal Use intensity/loudness cues to convey distance information.  

Note: Fore distances < 3m, these cues are less discriminatory. 
Note: For distances > 1m, HRTFs vary with location (not 
distance). 

Proximal Use reverberant-to-direct ratio to improve distance estimation. 
Note: May inhibit localization and impede speech intelligibility. 
Note: The reverberant to direct ratio increases as the source 
distance decreases from 1m-10cm. 

Distance 

Reverberant-to-
direct ratio 1, 3 

 Can be lost in 
noisy operational 
environments. 

Distal Use reverberant-to-direct ratio to improve distance estimation. 
Note: May inhibit localization and impede speech intelligibility. 
Note: Independent of distance.  
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Effect Audio Cue Space Design Principles/Notes 

Proximal 

Intensity/loudness  
2, 3 

Distal 
Use to convey environment characteristics (e.g., absorption, 
composition, and presence of obstacles) and environmental 
conditions (e.g., temperature, and distance). 
Note: The intensity of a sound reaching a listener depends on 
distance, and environment type, characteristics, and presence of 
obstacles. 

Proximal Cognitive 
familiarity  2, 3 Distal 

Use familiar sound sources to better convey sound source distance 
and depth information. 
Note:  Enhances elevation judgment by improving spectral cues. 

Proximal 
Spectral content  2, 3 Distal 

Use to convey information about environment distracters and 
obstacles, which result in modifying the spectral content reaching 
the listener. 

Proximal 

Environ-
ment 
Context 

Reverberation 
content  2, 3 Distal 

Use to convey information about environment characteristics (e.g., 
absorption, composition, and presence of obstacles).   
Note: May inhibit localization.  

Proximal Multi-sensory 
effects  2, 3 Distal 

Use concurrent visual/haptic events to drive auditory event 
location judgment*. 

Proximal Precedence effect  
2, 3 Distal  

Use different concurrent sound sources (in terms of frequency, or 
complexity) to drive differentiability between competing auditory 
streams. 

Proximal Use sound sources in front of the listener to improve azimuth 
localization. 
Note: Azimuth localization accuracy degrades for sources that are 
on lateral location with respect to listener, this effect is more 
apparent for sources near head because of head shadow effect*. Parallax effect   1, 3 

Distal  Use sound sources in front of the listener to improve azimuth 
localization. 
Note: Azimuth localization accuracy degrades for sources that are 
on lateral location with respect to listener. 

Proximal 

Other 

Doppler shift effect  
2, 3 Distal Use pitch drop to convey a sound source moving by the listener. 

1: Studied in Psychoacoustic Research (Controlled) – HRTF characteristics are known. 
2: Studied in Psychoacoustic Research (Controlled) – HRTF characteristics are unknown.  
3: Not studied in Application Setting (Uncontrolled).  
Space:  Personal: <10 cm; Proximal:  (10cm – 1m); and Distal: (> 1m) 
*:  Modified based on Expert Input. 

Proximal and Distal Spaces Design Guidelines 

When designing sounds to be used with externalization (i.e., outside the head; in 

proximal and distal spaces), using individualized head-related transfer functions (HRTFs), 

broadband sound signals, and calibrating the HRTF as a function of head movement enhance 

spatial sound perception (Begault, 1994).  Audio designers can use interaural time and intensity 
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difference cues to present sound azimuth information in both proximal and distal spaces (see 

Figure 5) (Blauert, 1983).  It is recommended that the audio designer uses time difference cues 

when working with low frequencies and intensity difference cues when working with high 

frequencies (Blauert, 1983; Middlebrooks & Green, 1991; Mills, 1972).  It is important to note 

that, in proximal space, the frequency effect increases as the sound source decreases from 1 m to 

10 cm, and that the intensity differences increase dramatically as a lateral sound source 

approaches the listener’s head (Brungart & Robinowitz, 1999; Brungart et al., 1999).  In order to 

disambiguate sound source location, and reduce front-back errors, the audio designer can utilize 

the dynamic cues resulting from source and head movement (Brungart, 1999a).  To generate 

perceptible changes in the HRTF, gross source and head movements might be required (Wenzel, 

1992; Wenzel et al., 1993).  The percent of front-back errors is greater for sources that are 

located less than 50 cm from the listener (Brungart et al., 1999).  Audio designers can modify the 

HRTF spectral content to mimic pinnae reflections to present sound elevation information in 

both proximal and distal spaces (Brungart & Robinowitz, 1999).  The pinnae reflections are 

independent of distance.  In order to present information pertaining to sound source distance, the 

audio designer can use intensity/loudness and reverberant-to-direct cues in both proximal and 

distal spaces (Blauert, 1983; Middlebrooks & Green, 1991).  It is important to note that, in 

personal space, just noticeable differences (JND) in distance (defined in terms of percent of 

distance) decrease with decreasing distance (i.e., as go from 1 m down to 10 cm).  Also, the 

reverberant to direct ratio increases as the source distance decreases from 1 m to 10 cm (Brungart 

& Robinowitz, 1999).  For distances less than 1 m, the low frequency content of a sound signal 

dominates distance perception, and humans can use interaural time differences to judge distance 

from the sound source (Brungart, 1999a; 2001).  Further, in this space, distance estimation 
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accuracy is best for sources to the side of the listener and worst for sources anywhere in the 

median plane (Brungart, 1999b; Brungart & Rabinowitz, 1999).  In the distal space (i.e., beyond 

1 m), the HRTFs vary only with location, not with distance (Brungart & Rabinowitz, 1999).  For 

distances less than 3 m, intensity/loudness cues are less discriminatory, and hence distance 

perception is best for sources beyond 3 m (Strybel & Perrott, 1984).  Tradeoffs exist when the 

audio designer attempts to use reverberant-to-direct ratio as a distance cue as they may inhibit 

localization and impede speech intelligibility (Shinn-Cunningham, 2004).  In addition to 

conveying distance information, the audio designer can use intensity/loudness cues to convey 

information pertaining to the environment surrounding the listener in both proximal and distal 

spaces.  The sound characteristics reaching a listener is dependent on distance, environment 

characteristics (e.g., absorption, composition, and presence of obstacles), and environmental 

conditions (such as temperature) (Begault, 1994; Walker & Kramer, 2004).  In terms of sound 

source characteristics, humans judge source distance and depth more accurately for familiar 

sounds (Gardner, 1969).  In addition, humans have better judgment of source elevation for 

familiar sounds due to the improvement in spectral content cues (Duda, 1997).  The spectral 

content reaching a listener is modified as a result of passing around environment objects and 

obstacles (Begault, 1994).  Also, in real world listening environments, sounds reaching a listener 

include both direct content and reverberant content that results from the reflections from walls 

and other environment objects, this reverberation content can be used to convey information 

pertaining to environment characteristics such as absorption, composition, and presence of 

obstacles (Begault, 1994; Blauert, 1983; Middlebrooks & Green, 1991).  The audio designer 

should be aware that tradeoffs exist when adding the additional reverberation content to sounds 

to make it more realistic as they tend to inhibit the ability to localize sound sources accurately 
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(Shinn-Cunningham, 2004).  When presenting sound sources in proximal and distal spaces, the 

audio designer can utilize concurrent visual and haptic event to drive a listener’s judgment to 

sound source location (Driver & Spence, 2000).   In order to enable a listener to differentiate 

between different auditory streams, the audio designer needs to vary the frequency and/or 

complexity of the different concurrent sounds sources (Bregman, 1990).  When possible, the 

audio designer should use sources directly in front of the listener in order to improve azimuth 

localization in both proximal and distal spaces, but more importantly for sources closer to the 

listener (Brungart, 1999b; Brungart & Rabinowitz, 1999), since azimuth localization accuracy is 

worse for lateral sources with respect to the listener.  To convey information pertaining to 

moving sound sources in proximal and distal space, the audio designer should utilize the pitch 

drop of a sound source moving by a listener (Neuhoff & McBeath, 1996).   

Taken together, the following are design principles for conveying spatial information in 

the proximal and distal spaces (see Figure 5): 

• Use interaural time and intensity difference cues to present sound azimuth information 

(Blauert, 1983). 

• Use intensity/loudness and reverberant-to-direct to present sound distance (Blauert, 1983; 

Middlebrooks & Green, 1991). 

o In proximal space, interaural intensity difference cues can also be used (Brungart, 

1999a; 2001). 

• Use spectral modifications in the HRTF to represent sound elevation (Brungart & 

Robinowitz, 1999). 

• Utilize dynamic cues resulting from source and head movement to disambiguate sound 

source location and reduce front-back errors (Brungart, 1999a). 
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• Use sounds in front of the listener, if possible, in order to improve azimuth localization 

(Brungart & Rabinowitz, 1999). 

o This is more important in the proximal space (Brungart, 1999b). 

• Use reverberant content to add realism to sounds sources (Begault, 1994; Walker & 

Kramer, 2004). 

o Note that that addition of reverberation content may impede localization (Shinn-

Cunningham, 2004). 

Theoretical Models Validation 

The current work presented three theoretical models for integrating sounds in interactive 

applications.  In order to assess the utility of the developed models, and identify opportunities for 

improvement, a panel of audio experts was selected to respond to a validation questionnaire.  

The panel of experts included; 1) a research scientist who specializes in near field auditory 

localization and auditory display design, 2) an entrepreneur who focuses on spatial audio 

integration in real world and virtual reality training systems, and 3) an associate professor who 

specializes in auditory attention, binaural and spatial hearing, auditory scene analysis, effects of 

reverberation on perception, and physiologically-based models of spatial auditory processing.   

Each panel member was provided with a copy of the models along with a two-page 

summary describing the developed models and was asked to provide a candid Strengths, 

Weaknesses, Opportunities, and Threats (SWOT) analysis of the developed models.  In addition, 

each member responded to a set of questions pertaining to their satisfaction level (on a Likert 5-
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point scale, with 1:  Strongly disagree, 3:  Neutral and 5:  Strongly agree) for each model with 

respect to whether or not: 

• The model is well-thought through and is at the right level of detail. 

• The model provides audio designers a useful tool for integrating auditory cues in their 

applications. 

• The model is clearly displayed graphically, in terms of text and presentation. 

• The model is consistent with previous literature on auditory research. 

• The model logic is easy to follow. 

• The model does not contain terms that are unknown to an audio designer. 

• The model provides a unique way for synthesizing prior auditory knowledge. 

• The model can be used as a part of a training tool for audio designers. 

Table 3 presents the experts’ SWOT responses.  The main strengths of the models 

include that they provide a systematic approach to auditory display design and that they integrate 

a wide variety of knowledge sources in a concise manner.  The main weaknesses of the models 

include the lack of a structured process for amending the models with new principles, some 

branches were not considered parallel or completely distinct, and lack of guidance on selecting 

interface sounds.  The main opportunity identified by the experts was in the ability of the models 

to provide a seminal body of knowledge that can be used for building and validating auditory 

display design.  The main threats identified by the experts were that users may not know where 

to start and end with each model, the models may not provide comprehensive coverage of all 

uses of auditory displays, and the models may act as a restrictive influence on designers or they 

may be used inappropriately. 
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Table 3:  Expert SWOT Analysis 

Strengths 
(E1) These models provide, for the first time, 
the possibility of a systematic approach to 
auditory display design. 
(E2) Concise coverage of most relevant cues 
influencing sound perception. 
(E3) Integration of wide variety of sources of 
knowledge. 
(E3) Organization is generally useful. 
(E3) Immense amount of information is packed 
into a very concise summary. 

Weaknesses 
(E1) There should be a systematic approach 
developed that outlines structured approach for 
amending the models with new principles. 
(E2) Guidance is very weak for how to choose 
sounds, other than mentioning speech and the 
use of musical instruments rather than timbre. 
(E3) Organizational framework not completely 
consistent, in that some “branches” are not 
parallel or completely distinct. 
(E3) Not always clear if word “cue” means an 
acoustic attribute (the normal meaning of the 
word) or a physical sound source. 
(E3) Rationales should be given for each 
recommendation to enable users to weight how 
to compromise, if compromise is necessary. 

Opportunities 
(E1) These models, once developed fully, will 
constitute a seminal body of principals that can 
be used to develop and validate auditory 
display design. 
(E1) The models can provide a structured 
framework upon which other principals in 
auditory display design can be developed, 
cataloged and related to existing work. 
(E3) Give more intuition into the 
recommendations. 

Threats 
(E1) The models may never provide a 
comprehensive coverage of all uses of auditory 
display and, if adopted, may either act as a 
restrictive influence or be used inappropriately 
for applications that do not fit into the intended 
uses. 
(E3) Users may not know where to start or 
what each point means. 

E1 – E3: Expert assignment based on response time. 

 
Table 4 provides the descriptive statistics for experts’ responses on satisfaction 

questionnaires.  The average responses ranged from 3.0 to 4.7.  Figure 6 graphically illustrates 

average expert responses for each model.  There are only three average responses below 4, but 

still greater than 3, which are clarity of graphics of temporal model, and logicality of spatial and 

temporal models.  Appendix A graphically displays individual expert responses for each model.  

 

31 



Table 4:  Statistics for Expert Responses on Theoretical Models Validation Questionnaires 

Model Dimension Mean StDev Minimum Median Maximum 
Can be used for training 4.0 0.0 4.0 4.0 4.0 
Consistency with Literature 4.7 0.6 4.0 5.0 5.0 
Graphics are clear 4.7 0.6 4.0 5.0 5.0 
Logical 3.7 1.2 3.0 3.0 5.0 
No unknown terms 4.0 1.0 3.0 4.0 5.0 
Right level of detail 4.0 0.0 4.0 4.0 4.0 
Uniqueness 4.0 1.0 3.0 4.0 5.0 

Audio 
Integration 

Usefulness 4.0 1.7 2.0 5.0 5.0 
Can be used for training 4.7 0.6 4.0 5.0 5.0 
Consistency with Literature 4.3 0.6 4.0 4.0 5.0 
Graphics are clear 3.0 1.0 2.0 3.0 4.0 
Logical 3.0 1.0 2.0 3.0 4.0 
No unknown terms 4.3 0.6 4.0 4.0 5.0 
Right level of detail 4.0 1.0 3.0 4.0 5.0 
Uniqueness 4.3 1.2 3.0 5.0 5.0 

Temporal 
Audio 

Usefulness 4.0 1.0 3.0 4.0 5.0 
Can be used for training 4.3 1.2 3.0 5.0 5.0 
Consistency with Literature 4.3 0.6 4.0 4.0 5.0 
Graphics are clear 4.0 1.0 3.0 4.0 5.0 
Logical 3.3 0.6 3.0 3.0 4.0 
No unknown terms 4.0 1.0 3.0 4.0 5.0 
Right level of detail 4.3 0.6 4.0 4.0 5.0 
Uniqueness 4.3 1.2 3.0 5.0 5.0 

Spatial 
Audio 

Usefulness 4.0 1.0 3.0 4.0 5.0 
 

Based on input from the audio experts, the following changes have been made to the 

models: 

• Sample interface sound selection guidelines are now included on the audio integration 

model (see asterisks in Figure 1). 

• Modifications to the various branches of the spatial audio theoretical model, for example, 

initially only ventriloquist effect was included in the affecters section, and now this is 

extended to include other multi-sensory effects (see asterisks in Figure 5). 
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• The wording of the design principles associated with the temporal and spatial theoretical 

models is improved for clarity (see asterisks in Tables 1 and 2). 

• The wording of the temporal and spatial audio theoretical model is enhanced for clarity 

(see asterisks in Figures 2 and 5). 

• Thorough coverage for both spatial and temporal theoretical models’ dimensions is given 

in this paper. 
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Figure 6:  Average Expert Responses to Validation Questionnaires 
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Discussion and Conclusions 

The set of models presented in this paper put forward a foundational framework for 

integrating sound cues in interactive application.  Previous research has attempted to develop 

comprehensive frameworks for spatial visualization design (Buagajska, 2003) and perceiving 

layout (Cutting & Vishton, 1995).  Nevertheless, there are currently no foundational theoretical 

models for integrating auditory information.   

Three models were presented in this paper, including: 1) an audio integration model that 

addresses the end-to-end decision making process for integrating auditory cues in interactive 

applications, 2) a temporal audio theoretical model that addresses considerations pertaining to 

the timing of presenting auditory cues to achieve certain performance objectives, and 3) a spatial 

audio theoretical model that addresses the spatialization of sounds.  Taken together, the 

developed models equip audio designers with a body of knowledge with respect to integrating 

sounds in interactive applications.  Nevertheless, as noted by experts, the models may never 

provide a comprehensive coverage of all uses of auditory display and, if adopted, may either act 

as a restrictive influence or be used inappropriately for applications that do not fit into the 

intended uses, and audio designers may not know where to start or what each point means.  

Despite these limitations, as noted by experts, the developed models provide concise coverage of 

most relevant cues influencing sound perception.  In addition, the models provide a vehicle for 

cataloguing and conveying design principles for auditory displays. 
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Future Work 

The models presented in this paper put forward for the first time a classification 

framework for auditory information integration within interactive applications.  Several future 

research directions emanate from the present work, these include: 

• Evaluating alternative presentation approaches to make the models more intuitive. 

• Building the knowledge base presented in the models in a training tool format for audio 

designers. 

• Developing a systematic approach that outlines how to amend the models with new 

principles. 

• Developing theoretical models for selecting various interface speech and non-speech 

sounds. 

Acknowledgements 

This material is based upon work supported in part by the Office of Naval Research 

(ONR) under its Virtual Technologies and Environments (VIRTE) program.  Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the authors 

and do not necessarily reflect the views or the endorsement of ONR.  The authors would like to 

thank Dr. Douglas Brungart, Dr. Hesham Fouad, and Dr. Barbara Shinn-Cunningham who 

kindly provided feedback on the theoretical models presented in this paper. 

35 



CHAPTER THREE:  TRAINING PACE IN VIRTUTAL REALITY 
TRAINING SYSTEMS† 

This study presents an experimental evaluation of the utility of using auditory cues to 

train temporal tasks (e.g., pace setting) in virtual reality training systems.  There were four 

different auditory cues used for training pace: 1) a metronome, 2) non-spatial auditory earcons, 

3) a spatialized auditory earcon, and 4) no audio.  Sixty-eight people participated in the study.  A 

pre- post between subjects experimental design was used, with eight training trials.  The measure 

used for assessing pace performance was the average deviation from a predetermined desired 

pace.  The results demonstrated that a metronome was not effective in training participants to 

maintain a desired pace, while, spatial and non-spatial earcons were effective strategies for pace 

training.  Moreover, an examination of post-training performance as compared to pre-training 

suggests some transfer of learning.  Design guidelines were extracted for integrating auditory 

cues for pace training tasks in virtual environments. 

Introduction 

Auditory cues have been used to train spatial knowledge in virtual training systems from 

personal guidance systems for the visually impaired (Loomis et al., 1998) to Close Quarters 

Battle for Military Operations in Urban Terrain (MOUT CQB) (Jones et al., 2005).  

Nevertheless, there is an under explored opportunity for using auditory cues to present temporal 

information in such environments.  This paper focuses on exploring the utility of auditory cues 

                                                 

† Manuscript submitted to Military Psychology. 
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for training temporal tasks in virtual reality training systems.  Temporal events or tasks are 

specific occurrences in time that can be either instantaneous (i.e., instant-based) or can span a 

time interval (i.e., interval-based) and often involve both (Schreiber, 1994).  For example, a 

progress bar is a visual construct that is commonly used to convey status information about a 

download task.  The download task has two main instantaneous events; start and finish.  Each 

increment on the progress bar also defines an instance; however, the overall download time 

reflects an interval-based measure.  Audio is known to be superior when compared to visual 

when processing such temporal information (ETSI, 2002; Kramer, 1994, Repp & Penel, 2002).   

When training temporal information, the appropriate training strategy will be dependent 

upon whether instant-based or interval-based temporal information is involved in the target 

training task.  An example for using audio to train an instant-based temporal task is tapping a 

person’s finger on a surface; the finger tapping can be controlled by playing a metronome sound 

that repeats every second, and asking the person to match their tapping speed with the 

metronome (Kurtz & Lee, 2003).  Certain conditions, if met, enhance coordination accuracy and 

stability of such temporal performance, such as using synchronous and/or alternating tapping 

with fingers, and using simple harmonic ratios with pacing metronomes (Kurtz & Lee, 2003). 

In addition, motor learning can take place by extending perceptual learning (Meegan et 

al., 2000), which deals with performing tasks related to the use of the senses, such as 

discriminating temporal intervals denoted by brief auditory stimuli.  This is beneficial to this 

work where pace training took place in a perceptual fashion, where participants acquired pace 

skills solely through a virtual training system without actual motor performance, and these would 

in turn need to be extended into motor learning when using the acquired pace skills in real world 

tasks. 
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The work to date on auditory pacing strategies has largely been done in the physical 

world.  This paper explores the efficacy of using auditory information to guide participants in 

controlling their pace to a predetermined desired value in a virtual training system.  This study 

also examines short-term transfer of learning of the predetermined desired pace. 

Background Literature 

Real world applications for using audio to guide rhythmic movements are common in 

medicine, dancing, and sports (Boyle et al., 2002; Kaplan, 2002; Kern, et al., 1992; Libkuman et 

al., 2002; Wijnalda et al., 2005).  When an external sensory stimulus is used to guide such 

rhythmic movement, audio cues generally result in the least variability from target rhythm as 

compared to visual or tactile cues (Chen et al., 2002; Kolers & Brewster, 1985).  Once people 

synchronize their movements with that of auditory tones, they generally can maintain the pattern 

without the audio being played (Kolers & Brewster, 1985). 

There are three types of temporally-related movements; these are goal-directed, rhythmic, 

and rhythm-modulated (Thaut, 2005).  Goal-directed movements have a specific target, such as 

throwing a ball a certain distance in minimum time, or swinging a golf club.  Rhythmic 

movements repeat at a constant rate such as tapping fingers or drawing circles.  Rhythm-

modulated movements repeat over time but at either increasing or decreasing rates, such as 

speeding up during exercise.  Audio can be used to influence all three-movement types.  For goal 

directed movements, instant-based sounds can be used to time start and finish of a movement 

(Thaut, 2005).  Rhythmic movements can be controlled using both instant and interval-based 

sounds.  Instant-based sounds can be used to mark cycle ends for rhythmic movements (Thaut, 
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2005).  Also, interval-based sounds can be used as a guide for rhythmic movements by providing 

sounds that repeat at a consistent pace.  Controlling pace or rhythmic movements in general, is 

contingent upon selecting an appropriate audio format for a specific time-related application.  

For example, an audio format that is often used to guide rhythmic movements is a metronome, 

which marks exact instant-based time increments by a regularly repeated tick (Kurtz & Lee, 

2003).  On the other hand, an example of interval-based audio is using sounds with varying 

tempos that indicate relative distance to objects (Day et al., 2004); i.e., shorter time delays 

between sounds as a user gets closer to a target or destination.   

Rhythm-modulated movements can be controlled using interval-based sounds.  In 

general, rhythm-modulation with audio cues involves using sounds that repeat at increasing or 

decreasing pace as a guide for physical movements.  These movements are common in 

rehabilitation studies that involve gait, where typically a music tempo is initially chosen that 

accommodates an individual’s gait capabilities and then the tempo is increased incrementally as 

gait performance improves (Thaut et al., 2004).  Repp (2006) provided an example of rhythm 

modulation, when he noted that people who initially tapped their fingers at their own pace were 

influenced when exposed to rhythmic audio, and resynchronized their pace to that of the audio 

when the tempo difference was less than 10%. 

Metronome use in behavioral ecology studies dates to the late 60’s (Wiens et al., 1969); 

researchers have generally used metronomes to monitor specific individual’s activities over time, 

or to time individual actions.  For example, metronomes (or feedback earcons) have been used in 

training Cardiopulmonary Resuscitation (CPR) (Boyle et al., 2002; Kern et al., 1992).  

Metronomes have also been used to train rhythm-driven arm movements.  For example, Thaut 

(2005) used a metronome to synchronize movement frequency and found less spatial and 
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temporal variability in metronome-driven trials as compared to self-paced trials.  Thaut (2005) 

also used a metronome stimulus with three different sections (beats per minute) to demonstrate 

that participants were able to re-synchronize with a changing metronome within 50 ms.  An 

interactive metronome, which plays feedback earcons, has been used to train consistent and 

correct timing on tasks (Bartscherer & Dole, 2005).  For example, Libkuman et al. (2002) 

discussed an experiment where an interactive metronome was used for golf training.  A constant 

metronome was played to guide participants in different tasks that they were required to perform 

(e.g., continuously moving hands in a circle and clapping them when they reached a particular 

point in the circle; a metronome was used to indicate at which point they should clap).  In 

addition, earcons provided feedback regarding whether movements were late (low pitched tone 

in the left ear), early (high pitched tone in the right ear) or on time (+/- 15 ms of beat; high 

pitched tone presented in both ears at the same time).  An experiment was performed in which 

pre- and post- evaluations of accuracy of golf shots from people who used this training device to 

train timing was compared to those who used other forms of golf training.  Results suggested that 

training in timing and pacing of fine motor activities using audio as guidance can transfer to 

more complex tasks such as golf swings.  This study is of interest since it shows that although 

the metronome-based training was not directly associated with the actual golf training, it still 

gave participants a grasp over pace control that was later useful when performing actual golf 

swings.  There has been no use for spatialized feedback earcons or metronomes in pace setting to 

the best of the authors’ knowledge.  

Taken together, these studies demonstrate, as Kaplan (2002) suggested, that metronomes 

or interactive earcons can be used: 

• To produce steady clicks to indicate desired beat. 
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• At the beginning of an exercise to establish the right tempo that corresponds to a beat and 

at the end to check whether the tempo stayed the same. 

• To gradually become comfortable with a faster or slower tempo. 

• To train consistent and correct timing on various tasks. 

Beyond metronomes, music can be used to enhance physical activities such as exercise, 

which can involve both rhythmic and rhythm-modulated movements (Karageorghis & Terry, 

1997).  Music has been found to enhance physical activities in several ways.  First, music can 

divert performer’s attention away from physical stress and fatigue; second, music can enhance 

psychomotor arousal by acting as a stimulant before exercise and as a sedative during exercise; 

and third, music can enable performers to synchronize their physical rhythm to that of a musical 

rhythm (Karageorghis & Terry, 1997).  Music can be used to support user performance in three 

modes; these are pace-fixing (i.e., playing music at a constant tempo to enable synchronization), 

pace-matching (i.e., playing music at a tempo that matches user’s pace), and pace-influencing 

(i.e., playing music at varying tempo to influence a user to slow-up or slow-down) (Wijnalda et 

al., 2005).  Taken together, these studies demonstrate that music can be used for pace setting in 

the following ways: 

• To aid performers in synchronizing their physical rhythm to that of musical rhythm. 

• To influence performers either to speed up or slow down during exercise. 

Research Hypothesis 

Design principles for conveying temporal information in virtual training environments 

can be theorized based on the above review; these include: 
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1. Metronomes can be used to train a consistent pace. 

2. Earcons/metronomes can be used to gradually influence (increase/decrease) traversal 

pace. 

3. Metronome-based (or audio-based in general) pace setting can be used to train paces that 

become internalized and can be used when a metronome is removed. 

Method 

In combat situations, soldiers might be required to follow a particular walking pace set by 

the group leader (USArmy, 2003).  This study utilized a virtual reality training system to 

perceptually train participants on a pace setting task.  Figure 7 provides a conceptual framework 

for the study.  As depicted in Figure 7, each participant performed pre-training, post-training, and 

a set of eight training sessions.  The training sessions included audio cues for training pace, as 

discussed below.  Participants’ performance was assessed by: 

• Comparing performance on training session 8 (audio cues present and after learning 

the cues) to pre-training to assess the utility of using audio to cue pace. 

• Comparing performance on post-training (no audio cues present) to pre-training to 

assess pace internalization.  

Participants 

A total of sixty-eight participants (mean age = 19.9 years; s.d. = 3.6 years; 36 females 

and 32 males) participated in this study.  Participants were randomly assigned to one of four 

different treatment conditions.  All participants reported normal or corrected to normal vision 
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and normal hearing.  All participants were right-handed.  Participants were recruited through a 

university-based subject pool, and they voluntarily agreed to participate in the experiment for 

class credit. 

 

Figure 7:  Pace Training Model 

Apparatus 

The experimental setup consisted of two dual-processor Dell Precision computers.  One 

computer was used to generate graphics for a training task with ManSim software and the other 

was used to produce audio cues using ViBeStation software.  Participants interacted with the 

training task through an immersive Virtual Research Systems V8 Head Mounted Display 

(HMD).  Audio cues were presented using Sennheiser headphones built into the V8 HMD.  Head 

tracking was done using an Intersense InertiaCube tracker.  Participants navigated through the 

task through a standard Saitek game controller.  
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Several questionnaires were used in this study including, the verbalizer-visualizer 

(Richardson, 1977), immersive tendencies (Witmer & Singer, 1988), presence (Witmer & 

Singer, 1988), NASA Task Load Index (TLX) workload (Hart & Staveland, 1988), and the 

simulator sickness (SSQ; Kennedy et al., 1993) questionnaires.  The verbalizer-visualizer 

questionnaire is scored on a scale from 1-15; as the participant’s score on the questionnaire goes 

higher, the more indication that the participant is a visualizer.  The immersive tendencies 

questionnaire has 39 questions on a scale from 1-7.  As the participant’s average score goes 

higher, the more indication that the participant has a tendency to get immersed.  The presence 

questionnaire has 37 questions on a scale from 1-7.  As the participant’s average score goes 

higher, the higher the participant’s reported sense of presence.  The NASA-TLX consists of six 

scales: mental demand, physical demand, temporal demand, performance, effort, and frustration. 

For each scale, individuals rate the demands imposed by the task as well as each scale’s 

contribution to the total workload, the latter of which is calculated by summing the product of 

each scale’s rating and weight.  The SSQ has participants report the degree to which they 

experience a set of symptoms as one of “None,” “Slight,” “Moderate,” or “Severe,” which are 

then combined into a total sickness score. 

Virtual Environment 

The virtual environment (VE) was designed to mimic a room clearing exercise and 

included a 15 room building to be cleared.  Ten different variations of the environment at 

comparable task difficulty were created to be used for training and testing.  Each environment 
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contained 5 open doors, 8 enemy entities, 4 friendly entities, and 4 mouse holes.  See Appendix 

B for a screen shot of the VE used in this study.   

Figure 8 shows an example environment layout.  Four different versions of each 

environment layout were created based on the various audio conditions evaluated (see 

experimental design, below).  All environments had “user’s foot steps” and “gun shots” sounds 

implemented.  One environment variation was randomly selected for pre- and post-testing.  The 

pre- and post-testing environment did not include auditory cues for pace training.  Pre- and post-

testing were used to assess the perceptual transfer of training within virtual environment task 

performance when auditory cues are removed, see Figure 7.  In addition, the training 

environments had audio implementations depending on the experimental condition; 

• No audio for pacing:  No audio cues for pace training were present, i.e., only “user’s foot 

steps” and “gun shots” sounds were implemented. 

• Metronome:  A metronome sound with three settings (slow:  2 m before open door; 

medium: no open door or mouse holes; fast:  2 m before and after mouse holes) was 

implemented depending on the location of the participant in the environment. 

• Non-spatial earcons:  Two diotic metaphoric audio cues were selected to guide 

participants in setting their pace.  If the participant was traversing the hallway at the 

“correct” pace, no audio was played.  If the participant needed to slow down (2 m before 

an open door), a drum sound was played.  If the participant needed to speed up (2 m 

before and after a mouse hole), a flute sound was played.  The rate of the played audio 

was proportional to the deviation from the predetermined desired pace. 

• Spatialized earcons:  A spatialized (front or back) metaphoric audio cue was selected 

(flute) to guide participant in setting their pace.  If the participant was traversing the 
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hallway at the “correct” pace, no audio was played.  If the participant needed to slow 

down (2 m before an open door), the audio was played in front of the user.  If the 

participant needed to speed up (2 m before and after a mouse hole), the audio was played 

from the back.  The rate of the played audio was proportional to the deviation from the 

predetermined desired pace. 

 

Figure 8:  Virtual Environment Layout Example 

Tasks 

Each participant performed a series of Close Quarters Battle for Military Operations in 

Urban Terrain (CQB for MOUT) activities in a virtual environment.  There were two primary 

tasks that the participants were expected to complete.  The first task was to maintain a consistent 

pace while traversing the environment hallways.  Three predetermined paces were selected based 

on the environment configuration and dimensions, these were a slow pace when approaching 

open doors, a fast pace when passing mouse holes on walls, and a medium pace when no open 
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doors nor mouse holes were present.  The second task was to enter and clear all open rooms and 

engage all hostile and non-hostile units located therein.  To engage units, participants had to 

point their weapon towards a unit, and then use the correct button on the game controller to 

identify them as either friendly or foe (i.e., left controller button was used to clear friendly units, 

and right controller button was used to fire upon foe units).  When moving through the 

environment, turning was controlled through head movement.  Locomotion (i.e., stepping 

forward and back) was controlled using the game controller.  All participants wore the HMD and 

headphones during pre-training test, all training sessions, and post-training test. 

Experimental Design 

This study utilized a pre-post between subjects one-factor ANOVA design.  The one 

factor was audio condition, with four different levels: 1) a metronome, 2) cueing using non-

spatial audio (using one audio cue to indicate the need to speed up and another audio cue to 

indicate the need to slow down), 3) cueing using 3D audio (audio was played either in front [to 

push them backward] or to the back [to push them forward of the listener to regulate pace); and 

4) a no audio control.  Performance was assessed using the average deviation from the 

predetermined desired traversal pace for the hallway traversal task, and time and accuracy for the 

room clearing task.  Both audio cueing effects on pace setting (comparing last training to the pre- 

training) and near term transfer of pace setting skills (comparing post-training to the pre-training) 

were evaluated.  Performance on the room-clearing task was assessed using percent hits over fire 

and average task completion time.  In addition, workload, presence, and simulator sickness were 

assessed. 
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Procedure 

Before the start of a test session, participants completed an informed consent, 

demographics questionnaire, immersive tendencies questionnaire and verbalizer-visualizer 

questionnaire.  After that, participants completed task training involving interaction with the 

training environment and a pre-recorded animation that illustrated the predetermined traversal 

paces.  Once the training was done, participants completed a pre-training test, where they were 

required to complete their tasks with no audio cueing.  Then, participants were randomly 

assigned to one of the four different audio conditions.  Additional training was given based on 

the assigned condition.  Participants in an audio condition watched a presentation illustrating the 

earcons that they would experience, while participants in the no-audio condition were reminded 

verbally on their task objectives and the need for maintaining a consistent pace.  Participants then 

completed eight training sessions based on the assigned experimental condition.  The order of the 

training sessions was randomized for each participant.  After the training sessions, participants 

completed a post-training test, which used the same environment and settings as the pre-training 

test.  In addition, participants completed the simulator sickness questionnaire and NASA TLX 

workload index after pre-testing, training session number 1, training session number 8, and post-

testing.  Once testing was completed, participants completed a presence questionnaire.  Finally, 

the participants were provided with a written and oral debrief about the pace training experiment. 

Results 

Performance data in terms of participants’ location, speed, and time were logged through 

the experimentation software.  Although 68 participants completed the study, only 53 had their 
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data correctly logged via software, and hence were included in performance data analysis.  

Participant log files were processed for average traversal paces and average deviations from 

predetermined desired pace.  Subjective questionnaire data were manually input and all 68 

participants’ data were available.  Statistical significance was assessed using an alpha of 0.1 for 

pace performance data because of the nature of audio equipment and implementation used, 

which may have induced some variation.  For the subjective questionnaire data, an alpha of 0.05 

was used. 

Pace Performance Results 

Table 5 provides descriptive statistics on average traversal pace, average deviation from 

predetermined desired pace, percent hits over fire and average time to complete each task for 

pre-training, training session number 8, and post-training.  These results included performance 

on both pace and room clearing tasks.  Nevertheless, since the objective of this study was pace 

training, more attention will be given to pace task performance. 

Figures 9, 10, and 11 depict the average paces for hall traversal, entry danger areas, and 

mouse hole danger areas.  Table 6 presents ANOVA p-values for average pace and average 

deviation from predetermined desired pace for entry danger areas, mouse hole danger areas, and 

hall traversal. 

An ANOVA was used to compare the average deviations from the predetermined desired 

pace among the various audio conditions.  ANOVA results show significance for both training 

session number 8 compared to pre-training (p< .002) and post-training compared to pre-training 

(p< .06). 
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Table 5:  Statistics for Pace Performance 

Dependent Variable Audio Condition Pre-Training Training 8 Post-Training 

No Audio 0.381 
(0.095) 

0.431    
(0.094) 

0.433    
(0.087) 

Metronome 0.375 
(0.093) 

0.4426    
(0.0939) 

0.407    
(0.099) 

Non-spatial 0.398    
(0.088) 

0.395    
(0.052) 

0.362    
(0.094) 

Average Pace 
for Hall, Mouse 
Hole, and Door 

Entry Areas 
(m/s) 

Spatial 0.367   
 (0.104) 

0.3784   
 (0.072) 

0.345  
(0.054) 

No Audio 0.11438  
 (0.036) 

0.1254    
(0.058) 

0.109    
(0.062) 

Metronome 0.117  
 (0.042) 

0.123    
(0.059) 

0.111    
(0.061) 

Non-spatial 0.129  
 (0.047) 

0.101   
 (0.046) 

0.119   
(0.049) 

Average Deviation 
from Desired Pace 

(m/s) 

Spatial 0.106    
(0.038) 

0.0894 
(0.045) 

0.094   
(0.033) 

No Audio 90.16 
(10.43) 

94.62 
(7.08) 

95.46 
(5.76) 

Metronome 95.44 
(11.41) 

95.71 
(8.52) 

98.41 
(4.03) 

Non-spatial 91.62 
(11.58) 

95.88 
(8.46) 

90.38 
(11.36) 

Percent 
Hit Over Fire 

Spatial 93.96 
(9.14) 

95.39 
(12.57) 

94.72 
(8.76) 

No Audio 249089     
(52471) 

223846     
(51413) 

209721     
(42083) 

Metronome 265369     
(54494) 

200095     
(67130) 

243808     
(44833) 

Non-spatial 267570     
(60322) 

208650     
(26968) 

240376     
(44088) 

Average Time to 
Complete Task 

(ms) 

Spatial 264393     
(65162) 

227838     
(37764) 

245615    
 (41862) 

 

Table 6:  ANOVA Comparisons- p-values 

Dependent Variable Training 8 – Pre-training Post-training – Pre-training 
Average Pace (Door Entry) 0.426 0.561 
Average Pace (Mouse Hole) 0.117 0.001* 
Average Pace (Hall) 0.452 0.206 
Average Dev (Door Entry) 0.291 0.522 
Average Dev (Mouse Hole) 0.962 0.020* 
Average Dev (Hall) 0.002* 0.055* 

* Significant 
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Figure 9:  Average Pace for Hall Traversal 
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Figure 10:  Average Pace for Entry Danger Areas (Before Open Doors) 
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Figure 11:  Average Pace for Mouse Hole Danger Areas 
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Tukey’s post-hoc analysis indicated that the average deviation from predetermined 

desired pace for the no audio condition was significantly different from the non-spatial auditory 

cueing condition (p<.004) and the spatial auditory cueing condition (p<.02).  On average, the 

deviation from predetermined desired pace for the no audio condition was greater than that for 

the non-spatial audio by 0.055 m/s (s.d. = 0.015) and greater than that for the spatial audio by 

0.046 m/s (s.d.= 0.015).  These results suggest that spatial and non-spatial audio appear to be 

more effective strategies for pace setting for hall traversal and in the vicinity of mouse holes than 

no audio.  Also, the graphs indicate that the metronome was not an effective strategy for pace 

setting.  The average deviation from predetermined desired pace for the metronome cueing 

condition was 0.014 m/s (s.d. = 0.015) greater than that for the no audio condition, which was 

not significant (p>.77). 

Subjective Questionnaires’ Results 

The participants’ visual/verbal abilities were assessed using the visualizer-verbalizer 

questionnaire.  The average score on the questionnaire was 6.75 (s.d.= 1.68); 7 participants had a 

score above 8 (visualizers), 8 participants had a score of 8 (neutral), and 44 participants had a 

score below 8 (verbalizers). The participants’ immersive tendencies were assessed using the 

immersive tendencies questionnaire.  The average score on the immersive tendencies 

questionnaire was 4.25 (s.d. = 0.53).     

 After completing all testing and training tasks, the participants’ subjective sense of 

presence was assessed using the presence questionnaire.  The average score on the presence 

questionnaire was 4.43 (s.d. = 0.55).  The Pearson Correlation between immersive tendencies 
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and presence questionnaires average scores was 0.3 (p< .013).  A one-way ANOVA was used to 

compare presence scores among the various auditory conditions.  No significance was detected 

(p > 0.12; power > 42.54%), which indicates that presence scores did not significantly depend on 

auditory condition.     

The average participants’ total sickness scores on the SSQ were:   

• Pre-training  18.37 (s.d. = 22.27). 

• Training session number 1  19.09 (s.d. = 21.37). 

• Training session number 8   30.86 (s.d. = 33.28). 

• Post-training  27.83 (s.d. =  33.69). 

These value suggest that participants experienced various degrees of simulator sickness 

throughout the experiment; however, no significant effects were found for audio condition on 

average total sickness scores (p > 0.05; for pre-training, training session 1, training session 8, and 

post-training). 

 In addition, participants completed the NASA TLX questionnaire to assess subjective 

workload.  The total participant scores on the NASA TLX questionnaire were: 

• Pre-Training  19.48 (s.d. =  10.41). 

• Training session number 1  24.35 (s.d. = 11.52). 

• Training session number 8  24.27 (s.d. = 11.36). 

• Post-Training  22.37 (s.d. = 11.97). 

Paired t-tests were used to compare the average workload scores.  The results show that 

the total TLX score was statistically higher for training number 1 (p<.0001), training number 8 

(p<.0001) and post-training (p<.017) compared to pre-training.  The Kruskal-Wallis test was 

used to compare median total TLX scores across audio conditions, since the scores were not 
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normal.  The results showed no significant difference between post-training and pre-training 

medians, but, the training number 8 medians were statistically different among the various 

auditory conditions (p<.017).  Table 7 shows the NASA TLX total score medians. 

 

Table 7:  NASA TLX Total Score Medians 

Audio Condition N Training 8 - Pre-training Post-training – Pre-Training 
No Audio 17 -1.50 -3.00 
Metronome 17 3.50 2.50 
Non-spatial 17 5.00 3.00 
Spatial 17 7.00 4.25 

Discussion 

The present study examined the utility of using audio to train pace in an interactive 

virtual training system for MOUT CQB.  In particular, three auditory conditions were compared 

to a no audio control group to assess the utility of using auditory cues to set pace and whether 

short term transfer of training for pace skill can take place.   

The results of the experiment revealed that using a metronome was not effective in 

training participants to maintain a desired pace.  This is at odds with past literature that suggests 

metronomes can be used for guiding rhythmic movements in the real world (c.f., Boyle et al., 

2002; Kern et al., 1992, Kurtz & Lee, 2003).  Thus, there may be a fundamental difference 

between physical and virtual worlds that hinders the use of a metronome.  This might be due to 

the difficulties of metronome implementation with respect to footstep sound implementation.  

When trained with the metronome, participants had to match two sounds; the footsteps sound to 

the metronome, which may have been difficult due to volume differences between the 

metronome and footstep sounds.  Future virtual metronome implementation should consider the 
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relationship between metronome loudness level and the other sounds present, such as footsteps, 

and consider training first with just one of the sounds (e.g., the metronome) and then introducing 

the sound that is to be synched to the metronome.  Although in real world applications, a 

metronome is a very effective strategy for pacing setting, this study has shown that there might 

be some difficulties in integrating a metronome in interactive VE training systems.  These 

findings fail to validate the first design principle that metronomes can be used to train a 

consistent pace in virtual environments. 

On the other hand, the results of the present experiment provide preliminary validation 

for using earcons to influence (increase/decrease) traversal pace gradually.  Specifically, auditory 

cueing, as indicated by deviation from predetermined desired pace for the difference between 

training session number 8 and pre-training, has shown to be an effective strategy for setting 

desired pace.  Both the non-spatial and spatial audio conditions resulted in less deviation from 

the predetermined desired pace as compared to the no audio condition and these deviations were 

statistically significant.  This supports the literature related to using auditory cues to drive pace 

setting (c.f., Karageorghis & Terry, 1997; Thaut, 2005).   

The results also suggest that audio-based pace setting in virtual environments may 

become internalized and thus can be used when the audio is removed.  Specifically, examining 

performance on post-training compared to pre-training, indicates that the average deviation from 

desired pace in hallways was significant when audio cueing was present (i.e., training session 

number 8, p<.002), as well as when it was taken away upon post-training (i.e., post-training, 

p<.055), suggesting transfer of learning, or the ability of participants to maintain pace setting 

when the audio cueing was removed.  This extends the literature describing the internalization of 

pace skills.  Past literature demonstrated that people maintain their rhythm after removing a 
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synchronizing auditory cue, and when people learn timing on fine motor tasks (like drawing 

circles or clapping hands) using metronomes and feedback earcons, the learned skills transfer to 

more complex skills, such as golf swings  (c.f., Kolers & Brewster, 1985; Libkuman et al., 2002).  

Previous research dealt with training pace using auditory cues in the real world, whereas in this 

study, the pace training findings are extended to a virtual world and show that internalization is 

attainable in virtual environment training systems.  The evidence supporting internalization is 

very encouraging, as it suggests that virtual environments may be effective trainers for temporal 

skills that may be difficult to train in the real world due to limited access or potential danger 

(e.g., emergency procedures, military operations, etc.). 

An interesting finding from this study was that both non-spatial and spatial auditory 

cueing resulted in comparable pace setting performance.  The non-spatial audio condition used 

two different earcons, while the spatial audio condition used a front-back spatialization of a 

single earcon.  Both audio conditions had a similar implementation of earcons’ variation based 

on deviation from desired pace, where the rate of played audio was proportional to the deviation 

from the predetermined desired pace.  The implication of this finding could be that if auditory 

earcons are to be used for pace training in a virtual environment, the choice of implementing 

spatialized or non-spatialized earcons can be a design decision, as both appear effective.  If the 

environment contains many spatialized cues, then using non-spatialized cues might be a better 

option.  Nevertheless, if there are several different earcons in the environment, spatialized 

earcons could be a better option, as they can simplify the number of earcons used. 

Participants’ subjective assessments indicate that the training environment produced 

various  degrees of sickness as indicated by total sickness score greater than 7.48 (Stanney et al., 

2002); however, these symptoms due not appear related to the audio cues presented as there were 
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no significant differences in total sickness scores due to audio condition.  When assessing 

participants’ subjective feelings of presence, no significant differences were found based on 

audio condition, which can imply that earcons and metronome conditions did not differ from the 

no audio condition in terms of achieving a sense of immersiveness.  One possible explanation for 

the lack of significance in reported subjective feelings of presence may be due to possible 

network delays between the tracker, visual computer and audio computer.  This warrants further 

investigation, as any slight delay may indicate that audio implementations were not perceived as 

realistic by participants, thus further work on the ecological validity of audio cues for pace 

training is warranted.  The results of the subjective workload assessment indicate that audio 

conditions may increase perceived workload as indicated by comparing workloads between 

training session number 8 and pre-training and that the training environment imposed some 

sickness risks to participants.  The implication of this increased workload is that using audio to 

train pace in a VE may impose additional workload for trainees, and hence designers need to 

balance this increase in workload vs. the desired benefit of pace training.  The implication of the 

reported simulator sickness is that care should be exercised when using virtual training 

simulators to ensure participants are in good health before they leave the simulator facility.  As 

there were no performance losses associated with this increase in perceived workload and 

simulator sickness, and in fact, pace performance was enhanced with audio cues, it would appear 

that if effectively implemented the benefits of such audio cueing should outweigh the costs. 

The results of the study presented in this paper provide design principles for integrating 

auditory cues in interactive environments to train temporal tasks (e.g., setting pace), these 

include: 
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• Spatialized and non-spatialized auditory earcons may be effective strategies for pace 

training in interactive training systems. 

• Audio designers should consider using spatialized earcons when there are several 

different earcons in an environment (adds one less earcon). 

• Audio designers should consider using non-spatialized earcons when several aspects of 

the environment are spatialized using audio (reduces the complexity of the environment). 

• Using auditory cues for pace training can increase user’s workload, and hence designers 

need to exercise care when adding these cues. 

• It may be difficult to utilize strategies that have proven effective in the real world in 

interactive applications.  For example, metronomes are an effective real world option for 

pace setting.  But due to the complexity of metronome implementation, such techniques 

may not prove as effective for pace setting in virtual environments. 

Conclusions 

This paper presents the results of an experimental evaluation on the utility of using 

auditory cues to train temporal tasks in interactive virtual environments.  Study participants 

completed pre and post-training tests and eight training sessions where different audio conditions 

were used to train pace.  Auditory cueing using both spatialized and non-spatialized earcons was 

found to be an effective strategy for pace setting in such environments.  Moreover, there was an 

indication that participants were able to internalize pace training, thus indicating transfer of 

learning.  The results of the present study provide preliminary evidence that using audio to train 

temporal tasks can be extended to virtual training systems.  Nevertheless further research is 
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needed to assess; 1) when it is best to use spatialized vs. non-spatialized earcons for presenting 

pace setting cues, 2) the utility for using audio to train concurrent spatial and temporal tasks in 

virtual environments, and 3) how to best design auditory for these training systems to enhance 

their ecological validity. 
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CHAPTER FOUR:  SPATIAL AND TEMPORAL INFORMATION 
INTEGRATION USING AUDIO 

This study presents an experimental evaluation of the utility of using auditory cues to 

train spatial (e.g., location of enemy and friendly units) and temporal (e.g., pace setting) tasks in 

virtual reality training systems.  To train spatial tasks, three different spatial audio fidelity levels 

were used: 1) non-spatial, 2) a default HRTF, and 3) a “best-fit” HRTF.  Non-spatial auditory 

earcons (i.e., temporal auditory cues) were presented to all participants to train traversal pace.  

Thirty people participated in the study.  Participants were engaged in a series of Close Quarters 

Battle for Military Operations in Urban Terrain activities in a virtual environment, where they 

were to clear a series of rooms while travelling at a target pace.  A pre- post between subjects 

experimental design was used, with eight training trials.  The measure used for spatial task 

performance was time to complete each task, and the measure used for temporal task 

performance was the average deviation from a predetermined desired pace.  The results 

demonstrated that temporal auditory cues were effective in influencing pace while other cues 

were present.  On the other hand, spatialized auditory cues did not result in significantly faster 

task completion.  Based on these results, a set of design guidelines was proposed that can be used 

to direct the integration of spatial and temporal auditory cues for supporting training tasks in 

virtual environments.  The results of this study should be of interest to systems’ designers and 

researchers who are examining the utility of integrating audio cues into human-system interfaces 

with the objective of enhancing human performance and improving training effectiveness. 
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Introduction 

Next generation training systems are transitioning from primary visual-audio experiences 

to truly multimodal engagements.  Such multimodal systems are expected to have extreme 

graphics “with some spatial audio interfaces and haptic interfaces” and eventually, “spatial-audio 

effects, full-hand haptics, and olfactory displays will also be available” (National Research 

Council, 2000, p.25).  Despite these projections, currently there is a limited understanding with 

respect to the utility of using such multimodal technology to enhance training, and there are few 

existing guidelines to aid in designing and implementing multimodal systems (for some notable 

exceptions see ETSI, 2002; Stanney et al., 2004). 

Of specific interest to the current study, advances in spatial audio technology make it 

possible to leverage audio cues to enhance multimodal human-systems performance.  When 

implemented effectively, spatial audio cues are expected to improve human performance in high 

stress applications, such as aircraft cockpits and advanced command and control operations 

centers, as they are suggested to increase situational awareness and direct attention (Begault, 

2000).  For example, spatialized audio cues have been used to train spatial knowledge in virtual 

training systems from personal guidance systems for the visually impaired (Loomis et al., 1998) 

to Close Quarters Battle for Military Operations in Urban Terrain (CQB for MOUT) (Jones et 

al., 2005).  In general, these previous studies have found that spatial displays enable participants 

to complete their tasks up to one and a half times faster than non-spatial displays.  Auditory cues 

have also been used to train temporal knowledge, such as rhythm (Thaut, 2005) and traversal 

pace (Ahmad et al., under review b).  These studies, among others, have shown that audio cues 
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generally result in the least variability from target rhythm as compared to visual or tactile cues 

and once rhythm is established, it can be maintained without the audio being played (Chen et al., 

2002; Kolers & Brewster, 1985). 

The current study explores the effectiveness of audio cues to train spatial and temporal 

tasks in combination.  Specifically, this paper explores the efficacy of using auditory cues to 

guide participants in controlling their pace to a predetermined desired value, and presenting 

spatial audio information to indicate presence of enemy and friendly entities, with the objective 

of the latter being to enable faster task completion.  The validated design guidelines presented in 

this paper aim to establish a baseline of user-centered audio design science, thereby advancing 

the state-of-the-art in auditory display design. 

Background Literature 

Sounds provide substantial information to humans about their surroundings, from 

ecological sounds characterizing the environment to speech, which is the foundation of human-

to-human communication (Walker & Kramer, 2004).  Despite its recognized importance, audio 

is under-utilized in current human-system interfaces, which are primarily visual - mainly 

consisting of constructs such as windows, icons, menus, and pointing devices (WIMP; Pew, 

2003).  Yet audio has the potential to enhance all components of human task performance (i.e., 

psychomotor, affective, and cognitive; Bloom, 1956).      

The temporal dimensions of audio can be used to enhance different aspects of human 

performance.  For example, instant-based sounds can be used to time start and finish of goal-

directed movements (Thaut, 2005), or control rhythmic movements by marking their cycle ends.  
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Interval-based sounds that repeat at a consistent pace can also be used as a guide for rhythmic 

movements.  The preceding examples illustrate the utility of audio to enhance psychomotor task 

performance.  In addition, audio can be used to influence a listener’s affective states 

(Fahlenbrach, 2002; Karageorghis & Terry, 1997).  For example, fast tempos and high pitches 

tend to evoke positive pleasant emotions, whereas slower tempos with lower pitches evoke 

negative somber emotions.  Finally, audio can be used to drive cognitive task performance, such 

as by capturing user’s attention (e.g., alerting a user to system malfunctions), decreasing user’s 

workload, enhancing information exchange between user and system, and providing feedback to 

the user (Brewster, 1997; Day et al., 2004; Frauenberger et al., 2005; Guillaume et al., 2002). 

Such uses of audio to guide temporal task performance may be effective in enhancing training in 

combat situations where soldiers are required to carry out timely clearing of hostage situations, 

during which members of a 4-man team must follow the pace set by the group leader (US Army, 

2003).   

The spatial dimensions of audio can also be used to enhance human performance.  Spatial 

audio has been used to enhance psychomotor performance, such as in target acquisition 

(Billinghurst et al., 1998) and target localization (Tannen et al., 2004) tasks.  Spatialized audio 

can also influence one’s affective state, such as through the use of spatialized sounds to enhance 

the emotional experience in movies (Baumgartner et al., 2006) and virtual environments (VEs) 

(Kim et al., 2004).  Spatialized audio has also been shown to enhance cognitive performance, 

such as Wenzel’s (1992) use of spatialized audio in cockpit displays to represent the bearing of 

targets to inform cognitive tasks such as path (re)planning and Jones’ et al. (2005) use of 

spatialized audio to enhance search and detection tasks.  Such uses of audio to guide spatial task 
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performance may also be effective in enhancing room clearing task performance, during which 

members must locate enemy and friendly units (US Army, 2003).  

In using audio to enhance temporal and spatial tasks in combination, several issues arise, 

specifically - which interface sounds should be spatialized and which should not, and how to add 

spatialization cues to interface sounds.  In terms of which interface sounds should be spatialized, 

as the human listener is only adept in spatializing three sounds, on average, at one time (Sulzen, 

2001), it is herein suggested that when combining spatial and temporal auditory cues only the 

spatial auditory cues be spatialized and that the latter be limited to three concurrent spatialized 

cues.  Our previous research has suggested that either spatial or non-spatial auditory earcons can 

be effective in training traversal pace (Ahmad et al., under review b), which is corroborated by 

other studies that have investigated the utility of audio cueing for training temporal pacing tasks 

(c.f., Karageorghis & Terry, 1997; Thaut, 2005).  On the other hand, when training spatial tasks, 

the use of spatialization has been demonstrated to be key to enhancing performance.  For 

example, Edwards et al. (2004) unsuccessfully attempted to use non-spatialized audio in an effort 

to enhance performance on spatial tasks (i.e., disassembling a system of parts, replacing a part, 

and then re-assembling the system; within an immersive VE).  The implementation of audio cues 

did not result in improvements in terms of reducing task completion time or number of 

collisions.  The authors’ explanation was based on users’ comments, which “clearly indicated 

that force feedback cues presented potentially more useful information than audio.”  As 

aforementioned, Loomis et al. (1998), Jones et al. (2005), and several others (Apostolos et al., 

1992; Mulgund et al., 2002; Nelson et al., 2001) have demonstrated that spatialized audio can 

lead to substantial gains in performance time, among other benefits such as more natural 
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interaction and reduced workload.  Thus, the first theorized design principle for combining 

spatial and temporal audio cues is: 

When combining spatial and temporal audio cues, spatialize the auditory cues 

used to enhance spatial tasks – limiting this to three concurrent spatialized cues - 

and use non-spatialized cues to enhance temporal tasks.  

In terms of how to add spatialization cues to interface sounds, lessons learned from 

interruption management can prove useful (c.f., McFarlane, 2002; McFarlane & Latorella, 2002).  

When audio cues are being used to convey temporal information (such as pace; an ongoing task), 

and it is required to “phase in” spatial audio information (pertaining to locations of friendly and 

enemy units; an interruption task), the timing and content of this information is important.  

Tradeoffs exist between using audio cues to capture attention to a pending interruption task, and 

the preemptive nature of audio cues, which may worsen the performance on the ongoing task 

(Wickens et al., 2005), while improving faster switching to the interruption task (Ho et al., 

2004).  The resulting effect of interruption on task completion time is unclear and seems to 

depend on task complexity; i.e., generally with no effect on simple cognitive tasks, but a slowing 

down of complex tasks (Burmistrov & Leonova, 2003).  The selection of the most suitable 

strategy depends on the nature of ongoing and interruption tasks, timing of the interruption, 

clarity of the interruption, perceived importance of the interruption, and user’s workload prior to 

the interruption (Bailey et al., 2001; Banbury et al., 2003; Gillie & Broadbent, 1989).  Successful 

interruption management entails; 1) varying the nature of ongoing and interruption tasks (e.g., 

from visual to auditory or from non-spatial to spatial audio), 2) using an interruption task of a 

simpler nature than the ongoing task, 3) providing partial information pertaining to the 

interruption task (e.g., nature, urgency and cognitive requirements), 4) giving the user some 
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control over when to switch to the interruption task, and 5) providing cues to the user with 

respect to the ongoing task, when it is resumed (e.g., place markers to indicate when and at what 

stage of the ongoing task switching to the interruption task should take place) (Bailey & 

Konstan, 2006; Gillie & Broadbent, 1989; Ho et al., 2004; Sawhney & Schmandt, 2000).  This 

implies that when a user is engaged in a non-spatial audio task, to improve performance an 

interrupting audio task should be spatial, and these gains should improve with better audio 

spatialization fidelity (Bregman, 1990; Sawhney & Schmandt, 2000).  Audio spatialization 

fidelity refers to how representative is a listener’s perception of a virtual source compared to real 

world perception, the fidelity of which can be enhanced through the use of head-related transfer 

functions (HRTFs) that describe the changes in sound signal spectrum resulting from a listener’s 

anatomy (Wenzel et al., 1993).  HRTFs enable at least three levels of spatialization fidelity; 1) 

Generalized or default HRTFs, which are based on dummy measurements, 2) Individualized  

HRTFs, which require individualized measurement using tiny microphones placed in a listener’s 

ears, and 3) “best-fit” HRTFs, which entails personalizing an HRTF from a database (for 

example the CIPIC HRTF database; Algazi et al., 2001).  “Best-fit” HRTFs enable customizing 

the spatialization for a listener without going through the time-consuming invasive process of 

HRTF measurement.  In terms of fidelity, generalized HRTFs are at one end of the spectrum, 

while individualized HRTFs are at the other end, and “best-fit” HRFFs are somewhere in the 

middle depending on the effectiveness of the personalization procedure.  If selected properly, 

“best-fit” HRTFs are expected to enhance localization performance and provide close to 

“natural” spatial sound experiences (Wenzel et al., 1993; Wightman & Kistler, 1989).  Hence, 

when a user is engaged in a non-spatial task, generalized HRTFs are expected to result in the 

least gains in performance, while individualized or properly selected “best-fit” HRTF are 
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expected to result in the highest gains in performance.  In addition, with respect to an auditory-

based interruption, more exposure to the interruption task should improve its clarity and result in 

better performance (Banbury et al., 2003).   

Thus, additional theorized design principles for combining spatial and temporal audio 

cues include: 

1) Use higher audio spatialization fidelity to improve overall performance in terms of 

faster task completion. 

2) Use cognitively simple spatial and temporal tasks to enhance performance during 

interruption.  

3) Enable the user to control when to switch between tasks. 

4) Provide information to the user with respect to the nature of a pending interruption. 

Research Hypothesis 

Design principles for conveying concurrent temporal and spatial information in virtual 

reality training environments can be theorized based on the above review; these include: 

1. Non-spatial audio cues will be effective in guiding participants to control their pace. 

2. Spatialized audio cues will result in faster overall task completion time when compared 

to non-spatial audio cues, and the improvement will depend on spatialization fidelity. 

Specifically; 

o Generalized (default) HRTFs will result in faster completion time than non-spatial 

audio cues. 
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o “Best-fit” HRTFs will result in faster completion time than either non-spatial 

audio cues or generalized (default) HRTFs. 

3. When combining temporal and spatial information, the best gains in performance will 

result from using simple tasks, allowing user control over switching between tasks, and 

supplying information with respect to pending tasks. 

Method 

This study utilized a virtual reality training system to: 1) perceptually train participants 

on a pace setting task, and 2) assist participants in locating enemies and friendlies using spatial 

audio.  Figure 12 provides a conceptual framework for the study.  As depicted in Figure 12, each 

participant performed pre-training, post-training, and a set of eight training sessions.  

Performance was assessed by: 

• Comparing performance on training session 8 (audio cues present) to pre-training (no 

training audio cues present) to assess audio cueing efficacy. 

• Comparing performance on post-training (no audio cues present) to pre-training (no 

training audio cues present) to assess training internalization. 
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Figure 12:  Integration Study Training Model 

Participants 

Thirty students from the University of Central Florida (mean age = 21.47 years; s.d. = 3.1 

years; 6 females and 24 males) participated in this study.  Participants were randomly assigned to 

one of three different treatment conditions.  All participants reported normal hearing.  Twenty-

four participants were right-handed, four were left-handed (including 1 female), and two males 

were ambidextrous.  Participants voluntarily agreed to participate in the experiment for class 

credit. 

Apparatus 

The experimental setup consisted of one-dual-processor Dell Dimension 9200 computer 

and one-Pentium 4 Dell Dimension 8500 computer.  The Dimension 8500 was used to generate 

graphics for a training task with ManSim software and the Dimension 9200 was used to produce 

audio cues using ViBeStation software.  Participants interacted with the training task through an 
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eMagin 3DVisor Head Mounted Display (HMD).  Audio cues were presented using Sennheiser 

headphones.  Head tracking was done using an Intersense InertiaCube tracker.  Participants 

navigated through the task through a standard Saitek game controller. 

The participants assigned to a “best-fit HRTF” condition (see Experimental Design, 

below), used a profiler tool based on the approach suggested by Seeber and Fastl (2003).  The 

tool allows users to choose five candidate HRTFs and audition each of them while changing the 

sound source position to one of eight predetermined locations around their head.  Figure 13 

demonstrates the “best-fit” HRTF profiler tool.  

 
 

 

Figure 13: “Best-fit” HRTF Profiler Tool 

Several questionnaires were used in this study including, the verbalizer-visualizer 

(Richardson, 1977), immersive tendencies (Witmer & Singer, 1988), presence (Witmer & 

Singer, 1988), NASA Task Load Index (TLX) workload (Hart & Staveland, 1988), and the 

simulator sickness (SSQ; Kennedy et al., 1993) questionnaires.  The verbalizer-visualizer 

questionnaire is scored on a scale from 1-15; as the participant’s score on the questionnaire goes 

higher, the more indication that the participant is a visualizer.  The immersive tendencies 

questionnaire has 39 questions on a scale from 1-7.  As the participant’s average score goes 
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higher, the more indication that the participant has a tendency to become immersed.  The 

presence questionnaire has 37 questions on a scale from 1-7.  As the participant’s average score 

goes up, the higher the participant’s reported sense of presence.  The NASA-TLX consists of six 

scales: mental demand, physical demand, temporal demand, performance, effort, and frustration. 

For each scale, individuals rate the demands imposed by the task, as well as each scale’s 

contribution to total workload, the latter of which is calculated by summing the product of each 

scale’s rating and weight.  Total workload has possible scores ranging from zero to 60.  The SSQ 

has participants report the degree to which they experience a set of symptoms as one of “None,” 

“Slight,” “Moderate,” or “Severe,” which are then combined into a Total Sickness score.  The 

SSQ has possible scores ranging from zero to 235.  In addition, the participants completed two 

spatial aptitude tests:  Map Planning and Cube Comparison (Ekstrom et al., 1976). 

Virtual Environment 

The VE was designed to mimic a room clearing exercise and included a 15 room building 

to be cleared.  Ten different variations of the environment at comparable task difficulty were 

created to be used for training and testing.  One variation was used for task familiarization, one 

for pre-training and post-training tests, and one each for eight training sessions; the assignment 

of the training environments order was randomized among participants.  See Appendix B for a 

screen shot of the VE used in this study.  Each environment contained eight enemy entities, four 

friendly entities, four mouse holes, and six M16 objects to collect.  The number of enemy and 

friendly units in each room was limited to three to match a human listener’s spatial auditory 

capacity (Sulzen, 2001). 
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In a previous work by the authors (Ahmad et al., under review a), three theoretical 

models were developed to guide the addition of audio cues to interactive applications such as VE 

training systems.  These models established the foundations of the present study as follows: 

• The audio integration model aided in specifying the desired training performance 

objectives, which were: 1) Cognitive, information related to the rooms to clear and 

presence of friendly and enemy units, and 2) Psychomotor, information related to pace 

setting. 

• The temporal audio model provided guidance on when to add sound within the VE, more 

specifically, for the cognitive performance objective, instantaneous sounds were 

implemented to indicate the presence of various enemy and friendly units, and for the 

psychomotor performance-objective, arrhythmic interval-based sounds were added to 

indicate the need to speed up or slow down. 

• The spatial audio model provided specification on how to add spatialized cues to selected 

interface sounds, which were implemented using HRTFs.  In the present study, both 

generalized and “best-fit” HRTFs were used to add spatialization cues to the 

instantaneous sounds related to presence of enemy and friendly units. 

Figure 14 shows an example environment layout.  Audio cues were used for enemy and 

friendly voices, pace setting, and M16 objects.  The audio cues-enabled environments were then 

presented using different spatialization fidelities (see experimental design, below).  Pace setting 

used two diotic metaphoric audio cues to guide participants in setting their pace.  If the 

participant was traversing the hallway at the “correct” pace, no audio was played.  If the 

participant needed to slow down, a drum sound was played.  If the participant needed to speed 

up, a flute sound was played.  The rate of the played audio was proportional to the deviation 
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from the predetermined desired pace.  All environments had “user’s foot steps” and “gun shot” 

sounds implemented.  One environment variation was randomly selected for pre and post-testing.  

The pre and post-testing environment had only non-training audio cues, which included “user’s 

foot steps” and “gun shot” sounds.  Pre- and post-testing were used to assess the transfer of 

training within VE task performance when auditory cues were removed (see Figure 12).  The 

eight training environments had different spatial audio fidelity implementations depending on the 

experimental conditions, which were randomly assigned to each participant; 

• Non-spatial:  No audio cues for training were spatialized, i.e., all sounds were played 

equally loud at both ears and at the same time.  The audio cues implemented were enemy 

and friendly voices, pace-setting sounds, and M16 objects sounds.  In addition, “user’s 

foot steps” and “gun shot” sounds were implemented. 

• Spatial using “default”:  Enemy & friendly voices and M16 object sounds were 

spatialized using dummy HRTF measurements, i.e., additional spatial cues were added to 

the sounds to create a virtual source image at a particular point in space.  The pace-setting 

sounds, “user’s foot steps” and “gun shot” sounds were not spatialized.   

• Spatial using “best-fit HRTF”:  Enemy and friendly voices and M16 object sounds were 

spatialized using a subjectively selected “best-fit” HRTF, i.e., additional cues were added 

to the sounds to create a virtual source image at a particular point in space.  The pace-

setting sounds, “user’s foot steps” and “gun shot” sounds were not spatialized. 
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Figure 14:  Virtual Environment Layout Example 

Tasks 

Each participant performed a series of Close Quarters Battle for Military Operations in 

Urban Terrain (CQB for MOUT) activities in a virtual environment.  There were two primary 

tasks that the participants were expected to complete.  The first task was to open, enter and clear 

rooms and engage all enemy and friendly units located therein.  To engage units, participants had 

to point their weapon towards a unit, and then use the correct button on the game controller to 

identify them as either friendly or foe (i.e., left controller button was used to clear friendly units, 

and right controller button was used to fire upon foe units).  The participants were also required 
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to collect a set of M16 objects scattered throughout the environment at random locations (using 

the left controller button).  The second task was to maintain a consistent pace while traversing 

the environment hallways.  Two predetermined paces were selected based on the environment 

configuration and dimensions, these were a fast pace when passing mouse holes on walls (1.2 – 

1.35 m/s), and a medium pace (0.4 – 1.0 m/s) when neither doors nor mouse holes were present.  

When moving through the environment, turning was controlled through head movements.  

Locomotion (i.e., stepping forward and back) was controlled using the game controller.  The 

tasks were of simple cognitive nature (i.e., a maximum of 3 units to clear in each room and 

separating the pacing task from the spatial task by not placing any friendly or enemy units to be 

cleared in the hallways).  In addition, the following were considered to facilitate testing the 

proposed design guidelines:   

• The participant controlled when to switch between the temporal and spatial tasks by 

deciding when to: 1) open and enter rooms, and 2) exit the rooms to the hallway. 

• Partial information pertaining to the pending spatial task was provided in terms of audio 

cues at different spatialization fidelity levels that indicated how many units to clear in 

each room (i.e., each friendly or enemy unit had an associated audio event associated 

with its location in space). 

• Pace setting cues were present at all times when the participant was walking through the 

hallways. 

75 



Experimental Design 

This study utilized a pre-post between subjects one-factor ANOVA design.  The one 

factor was audio condition, with three different levels: 1) non-spatial audio cues, 2) cueing using 

spatial audio (default HRTF), and 3) cueing using spatial audio (“best-fit” HRTF).  Performance 

was assessed using the total time required to complete the simulation to assess spatial task 

performance and the average deviation from the predetermined desired traversal pace for the 

temporal pacing task.  Both audio cueing effects on task performance (comparing last training to 

the pre-training test) and near term transfer of skills (comparing post-training to the pre-training) 

were evaluated.  In addition, workload, presence, and simulator sickness were assessed. 

Procedure 

Before the start of a test session, participants completed an informed consent, 

demographics questionnaire, immersive tendencies questionnaire and verbalizer-visualizer 

questionnaire.  In addition, participants completed the cube comparison and map planning 

aptitude tests.  After that, participants completed task familiarization.  In the first part of the task 

familiarization, participants reviewed a PowerPoint presentation that explained the goals of the 

MOUT task, how to use the controller, and an illustration of the different audio cues used in the 

environments (pre-training test, post-training test, and eight training sessions, see Figure 12).  

During the second part of the task familiarization, participants completed hands-on training and 

experienced how to navigate through the environment and how to clear enemy and friendly units.  

Once the familiarization was done, participants completed a pre-test, where they were required to 

complete clear a room while controlling their pace with no audio cueing (only footsteps and gun 
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shot sounds were present).  Then, participants were randomly assigned to one of the three 

different spatial audio conditions under which they completed eight training sessions.  Each 

training session involved completing the MOUT room clearing task while controlling pace.  The 

order of the training sessions was randomized for each participant.  After the training sessions, 

participants completed a post-test, which used the same VE and settings as the pre-test (again, 

only footstep and gun shot sounds were present).  All participants wore the HMD and 

headphones during pre-training, all training sessions, and post-training.  In addition, participants 

completed the SSQ and NASA TLX index after pre-testing, training session number 1, training 

session number 8, and post-testing.  Once testing was complete, participants responded to the 

presence questionnaire.  Finally, participants were provided with a written and oral debrief about 

the integration experiment.  

Results 

Performance data in terms of participants’ location, speed, and time were logged through 

the experimentation software.  Participant log files were processed for total time to complete the 

tasks and average deviation from predetermined desired pace.  Subjective questionnaire data 

were manually input. 

Time and Pace Performance Results 

Table 8 provides descriptive statistics on the total time to complete tasks and average 

deviation from predetermined desired pace. 
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Table 8:  Time and Pace Descriptive Statistics 

Trial Condition Average Time 
(min) 

Average Pace 
(m/s) 

Average Deviation 
(m/s) 

Pre-test Best-fit 4.81 
(1.12) 

1.04 
(0.18) 

0.32 
(0.07) 

Pre-test Default 5.39 
(1.47) 

0.91 
(0.07) 

0.27 
(0.03) 

Pre-test Non-Spatial 5.10 
(2.74) 

0.94 
(0.18) 

0.27) 
(0.06) 

Training 8 Best-fit 3.55 
(1.00) 

0.95 
(0.12) 

0.22 
(0.07) 

Training 8 Default 3.52 
(0.75) 

0.99 
(0.17) 

0.23 
(0.11) 

Training 8 Non-Spatial 3.78 
(0.80) 

0.92 
(0.12) 

0.21 
(0.10) 

Post-test Best-fit 3.30 
(0.70) 

1.00 
(0.13) 

0.27 
(0.07) 

Post-test Default 3.05 
(0.93) 

1.06 
(0.15) 

0.29 
(0.08) 

Post-test Non-Spatial 3.32 
(1.02) 

0.98 
(0.19) 

0.25 
(0.12) 

 

Figures 15 and 16 depict the average pace and time to complete tasks, respectively.  A 

repeated measures ANOVA was used to compare the average deviations from the predetermined 

desired pace and average performance time among the various audio conditions.  ANOVA 

results show significance for the within subject variable training session for the deviation from 

predetermined desired pace (p < 0.01) and time to complete tasks (p < 0.001).  It also shows that 

the between subject spatial fidelity level variable had no significant effects on the deviation from 

predetermined desired pace nor the time to complete tasks (both p > 0.9).  There were no 

significant interaction effects between training session and spatial fidelity level (p > 0.8).  The 

effect sizes for the time to complete tasks were; 1) Default HRTF compared to non-spatial = -

0.315, 2) “best-fit” HRTF compared to non-spatial = -0.273, and 3 “best-fit” HRTF compared to 

Default HRTF = 0.042.  All these indicate a low influence of the spatial fidelity level on task 
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completion time.  Since spatial fidelity did not show overall significance, no post-hoc analysis 

was performed for this variable. 

On average, the deviation from predetermined desired pace for training session number 8 

(where audio pacing cues were present) was significantly less than that for pre-test (p < 0.05) by 

0.065 (s.d.= 0.023) or 22.73% less on average, and less than that of post-test (p < 0.05) by 0.038 

(s.d.=0.016) or 14.67% less on average.  These results suggest that non-spatial audio cues appear 

to be an effective strategy for pace setting.   In addition, the time to complete tasks for; 1) 

training session number 8 was significantly less than that of pre-test (p < 0.01) by 1.65 (s.d. = 

0.29) or 31.41 % less on average, 2) post-test was less than that of pre-test (p < 0.01) by 1.98 

(s.d. = 0.29) or 37.76% less on average, and 3) post-test was less than of training session 8 (p < 

0.01) by 0.33 (s.d. = 0.11) or 9.25% less on average.  These results suggest that there may be 

significant learning effects with respect to task completion times.  There were no significant 

correlations between time to complete tasks and scores on the Cube Comparison and Map 

Planning spatial aptitude tests (p > 0.5 for training session number 8 and post-test, and p > 0.085 

for pre-test ), see Table 9. 

Table 9:  Correlation between Time to Complete Tasks and Score on Spatial Aptitude Tests 

Time to complete Pre-Test Training Trial 8 Post-Test 
Cube Comparison Test Score -0.358 -0.111 -0.067 
Map Planning Test Score -0.361 -0.07 -0.021 
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Figure 15:  Average Traversal Pace 

A
ve

ra
ge

 T
im

e 
(m

in
)

Condition
Trial

Non-SpatialDefaultBest-fit
PostTr8PrePostTr8PrePostTr8Pre

6

5

4

3

2

1

0

 

Figure 16:  Average Time to Complete Tasks 

Subjective Questionnaires’ Results 

The average score on the Cube Comparison test was 17.23 (s.d. = 13.40) and on the Map 

Planning test was 24.57 (s.d. = 7.62).   The average score on the Visualizer-Verbalizer 
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questionnaire was 7.37 (s.d.= 2.04); 9 participants had a score above 8 (visualizers), 7 

participants had a score of 8 (neutral), and 14 participants had a score below 8 (verbalizers).  The 

average score on the immersive tendencies questionnaire was 4.60 (s.d. = 0.65).  The average 

score on the presence questionnaire was 4.43 (s.d. = 0.69).  The Pearson Correlation between the 

immersive tendencies and presence questionnaires average scores was 0.3 (p< .05).  A one-way 

ANOVA was used to compare presence scores among the various audio spatialization 

conditions, which showed significance (p < 0.02).  Tukey’s post-hoc comparison showed that 

non-spatial audio resulted in higher presence scores than spatialization using the default HRTF, 

which was statistically significant (mean difference = 0.85, s.d. = 0.27, p < 0.02).  One possible 

explanation for this finding may be possible network delays between the tracker, visual computer 

and audio computer.  This warrants further investigation, as any slight delay may indicate that 

the audio implementations were not perceived as realistic by participants.  All other differences 

were not significant. 

The average participants’ total sickness scores on the SSQ were:   

• Pre- training test  26.80 (s.d. = 32.77). 

• Training session number 1  32.91 (s.d. = 35.31). 

• Training session number 8   43.63 (s.d. = 46.80). 

• Post-training test  39.77 (s.d. =  46.82). 

These values suggest that participants experienced a relatively high level of simulator sickness 

(about the 95 percentile, as reported by Stanney, Graeber, & Kennedy, 2005) throughout the 

experiment; however, no significant effects were found for audio condition on average total 

sickness scores (p > 0.05; for pre-test, training session 1, training session 8, and post-test).  The 

implication of the reported simulator sickness is that care should be exercised when using virtual 
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training simulators to ensure participants are in good health before they leave the simulator 

facility.    

 In addition, participants completed the NASA TLX questionnaire to assess subjective 

workload.  The participant total scores on the NASA TLX questionnaire were: 

• Pre-training test  25.92 (s.d. =  8.31). 

• Training session number 1  27.08 (s.d. = 8.93). 

• Training session number 8  22.88 (s.d. = 11.24). 

• Post-training test  19.28 (s.d. = 12.48). 

A repeated measures ANOVA was used to compare the average workload scores.  The 

results revealed that the total TLX scores were statistically dependent on trial order (p<0.001), 

but they did not depend on audio condition (p>0.4).  The interaction between trial order and 

audio condition was not significant (p>0.2).  Specifically, training session 8 had an 11.71% 

lower total TLX score, on average, compared to pre-test (mean difference = 3.03, s.d. = 1.35, p < 

0.05), post-test had a 25.60% lower total TLX score, on average, compared to pre-test (mean 

difference = 6.63, s.d. = 1.77, p< 0.01), training session 8 had a 15.51% lower total TLX score, 

on average, compared to training session 1 (mean difference = 4.20, s.d. = 1.57, p< 0.02), post-

test had a 28.80% lower total TLX score, on average, compared to training session 1 (mean 

difference = 7.80, s.d. = 1.84, p< 0.001), and post-test had a 15.73% lower total TLX score, on 

average, compared to training session 8 (mean difference = 3.60, s.d. = 1.20, p< 0.01). 
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Discussion 

The present study examined the utility of using audio to train spatial and temporal pacing 

tasks in an interactive virtual training system for MOUT CQB.  In particular, three audio 

spatialization fidelity conditions were compared to assess the utility of using spatial auditory 

cues to enhance spatial task performance, while using non-spatial audio cues to guide trainees in 

maintaining a set pace. 

Research Hypothesis One:  Non-spatial audio cues will be effective in guiding participants to 

control their pace. 

The results of the experiment revealed that non-spatial auditory cues were effective in 

guiding participants in controlling their pace, even with the presence of spatial guidance sounds.   

This is in agreement with past literature that suggests both non-spatial and spatial auditory cues 

can be used for pace setting in virtual training systems (c.f., Ahmad et al., under review b, which 

extends Karageorghis & Terry, 1997; Thaut, 2005).  The present study sheds further light on the 

robustness of non-spatial audio cues to support pace training, as they were found to be effective 

even in the presence of potentially distracting auditory cues.  The implications of this finding 

include; 1) the decisions related to temporal and spatial information presentation using audio are 

potentially a sequential process, whereby the timing of cues is selected and then the spatial 

nature of those cues is determined, which provides support to the theoretical models developed 

in Ahmad et al. (under review a), and 2) supports the extension of interruption management 

theories on maintaining performance on an ongoing temporal task after interruption by a spatial 

task, if sequenced properly (Gillie & Broadbent, 1989; Ho et al., 2004).  The results of the 

present study provide support to Ahmad’s et al. (under review a) proposed process for 
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integrating audio in interactive application, which starts with making decisions pertaining to 

timing audio cue presentation based on desired performance objectives and then choosing to add 

spatialization cues if required in a particular application.  In terms of interruption management, 

the present study showed that the performance on an ongoing pacing task could be maintained 

even when several spatial interruptions took place. 

Research Hypothesis Two:  Spatialized audio cues will result in faster overall task completion 

time when compared to non-spatial audio cues, and the improvement will depend on 

spatialization fidelity. 

The present study did not provide support for the utility of spatial auditory cues to 

influence faster task completion, which is at odds with Loomis et al. (1998).  Although, this is an 

unexpected finding, other studies conducted in similar environments, such as Jones et al. (2005) 

and Milham (2005), did not show significant spatial auditory effects.  This may be due to the 

complexities involved with spatializing auditory signals, or to the limitations of the technology 

used to present these cues.  Specifically, it was expected that using different spatialization 

fidelities, if produced effectively to distinguish the interrupting spatial task from the ongoing 

temporal task (i.e., with effective task separation), and would result in improved overall task 

performance (Burmistrov & Leonova, 2003; Gillie & Broadbent, 1989).  The current 

implementation was not found to be effective, which may be due to the participants’ tendency to 

enter each room along the route instead of utilizing the spatial audio cues that provided guidance 

on the presence of friendly and enemy units in each room.  Some possible explanations for the 

participant’s behavior are; 1) The participants may not have maintained urgency with regard to 

fast completion of tasks, 2) The environment layout, which is a set of sequential rooms may have 

encouraged room-by-room search, and 3) The participants may not have been able to deduce 
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from the spatial audio cues enough information with respect to the location of the various units.  

If participants experienced an inability to effectively utilize the spatial audio cues, this may 

suggest technological limitations with regard to using HRTFs to produce virtual sound source 

images.  This was further supported by participants’ subjective feeling of presence, where non-

spatial audio resulted in higher presence scores as compared to spatialization using default 

HRTFs, which could be as indicated earlier due to possible network delays between computer 

systems.  Further investigation is warranted to clarify the effectiveness of using spatial audio 

cues to enhance performance and presence in virtual training systems. 

Research Hypothesis Three:  When combining temporal and spatial information, the best gains 

in performance will result from using simple tasks, allowing user control over switching between 

tasks, and supplying information with respect to pending tasks.   

The current study provided partial support to hypothesis three, as participants were able 

to maintain their performance on the pacing task while being interrupted by the spatial room-

clearing task.  Nevertheless, the study did not show improvement in task completion times, as 

discussed above.  Moreover, there was no significant interaction effect found between the 

different spatialization strategies and the performance on the pacing.  The resulting non-

significant interaction between spatial and temporal task performance provides support to the 

models developed in Ahmad et al. (under review a).  In these models, the integration of audio 

cues follows a sequential process, i.e., first the decisions pertaining to the timing of audio cues 

are made, then the decisions pertaining to spatialization are made, which assumes no interaction 

between these decisions.  The results support such a process.  The present VE design utilized 

simple tasks (e.g., only three units to clear in each room), allowed the user to decide when to 

switch between tasks (spatial and temporal tasks were separated by closed doors), and provided 
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information about pending interruption tasks (i.e., audio cues at different spatialization were used 

to indicate the presence of various friendly and enemy units).  Despite these implementations, 

only partial support was provided to hypothesis three, which extends the theories related to the 

dominance of auditory cues when it comes to temporal processing (c.f., ETSI, 2002).  This 

finding implies that, under the current state of technology, audio cues alone might not be 

sufficient to present spatial information within VE training systems, hence possibly augmenting 

the presentation with additional visual and haptic cues may produce better training outcomes 

(Begault, 2000).  

The current study revealed significant learning effects in terms of task completion time, 

with participants performing tasks faster over time.  This may indicate that the training 

environments used were simplistic to reveal significant spatial auditory cueing effects.  The 

spatial auditory cues were expected to guide participants to which rooms they should enter (i.e., 

opening the doors only for the rooms that contained friendly and enemy units and passing by 

rooms that were empty).  During the study, however, participants may have ignored these spatial 

audio cues and cleared the MOUT environment room-by-room.  This may have allowed 

participants to gain experience as they did the training tasks, thereby leading to performance 

improvements across trials.  The workload results suggest that perceived workload was less over 

training trials, which may further indicate a learning effect across trials.  This learning effect may 

have been exacerbated by the environment designs, which used the same environment layout and 

location of rooms, while distributing enemy and friendly units differently (the latter changed the 

nature of the audio cues from one environment to the next).  It is recommended that future 

studies vary both the environment layout and nature of auditory cues to address this learning 

effect.   

86 



There were two findings with respect to perceived workload; 1) The workload decreased 

over time spent on trials, and 2) The workload was higher for the audio-enabled training 

environments, and that increase in workload did not depend on the spatialization fidelity level 

implemented within these environments.  The decrease in perceived workload over training trials 

may also have contributed to the maintained performance on the temporal pacing task as 

indicated by Bailey et al. (2001).  The reduction in perceived workload could be due to the 

participants getting used to the environment, which, based on Bailey et al. (2001), can create 

more opportunity for the user to switch to pending interruption tasks without incurring losses in 

performance.  There are two additional implications of these workload findings; first, the training 

environments, which contained audio cues resulted in higher workload than the pre and post-test 

environments, which did not contain these cues.  This implies that tradeoffs may exist between 

achieving desired training benefits via audio cues vs. the increase in trainees workload, which is 

consistent with the workload results reported in Ahmad et al. (under review b).  Secondly, this 

increase in workload did not depend on the types of audio implementation (within the 

environment used in the present study).  This implies that it is important to assess the potential 

impact on workload when deciding which audio cues to incorporate in a training system 

regardless of the type of cues used.  

An interesting finding from this study was that there were no significant correlations 

between the time to complete tasks, which was used to measure spatial task performance, and 

scores on the Cube Comparison and Map Planning spatial visual aptitude tests.  As these tests 

measure the ability to maintain spatial orientation with objects in space and the speed of 

scanning a spatial field, respectively (Ekstrom et al., 1976), one would have expected higher 

scores on these tests to correlate with the performance on a spatial task guided by spatialized 
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audio cues.  This suggests the need for developing new aptitude tests that may correlate better 

with spatial auditory systems, as the visual-spatial tests do not seem to generalize to spatial 

audio.   

There are several implications to this study with regard to integrating auditory cues in 

interactive environments to train spatial and temporal tasks, these include: 

• When combining auditory cues to enhance performance on spatial and temporal tasks, 

non-spatial auditory cues can be used effectively to enhance traversal pace. 

• The integration of auditory cues can follow a sequential process; where first, decisions 

pertaining to timing of cues are made, followed by decisions pertaining to the 

spatialization of cues. 

• Using audio alone may not result in improvements in spatial task performance and hence 

may benefit from supplementation with visual and haptic cues. 

• When designing VE training systems, it might be beneficial to use a complex 

environment to guard against task learning and focus on the desired training objectives. 

In addition, there are two other insights that can be gleaned from this study: 

• An effort should be made to ensure the wellness of users of VE training system before 

they leave the simulator facility, as they may experience substantial simulator sickness 

during exposure. 

• There is a need to develop new aptitude tests that may correlate better with spatial 

auditory systems. 

• When using audio cues in a virtual training system, consider the tradeoffs that exist 

between achieving training outcomes vs. increased participants’ workload that be 

associated with the use of audio cues. 
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Conclusions 

 This paper presents the results of an experimental evaluation on the utility of using 

auditory cues to train spatial and temporal tasks in interactive virtual environments.  Study 

participants completed pre- and post- tests and eight training sessions where different audio 

spatialization fidelities were used to train spatial tasks while maintaining a consistent pace.  

Auditory cueing was found to be effective for pace setting, but no significant findings were 

found for task completion times or for the interaction between spatial and temporal training.  

This demonstrates the need for further exploration on how to best integrate both spatial and non-

spatial auditory cues in virtual training systems to enhance training outcomes.  The overarching 

finding of the present study is that selection of spatial and temporal information presentation 

schemes using audio can follow a sequential process within VE training systems.  This finding 

can be of importance to system designers and human-system integration researchers who are 

investigating how to integrate additional modalities such as audio in the next generation training 

systems. 
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CHAPTER FIVE:  GENERAL DISCUSSION 

This dissertation aimed to establish foundations for a user-centered auditory design 

science.  The overarching aim of this work is to put forward a framework for integrating sound 

cues in interactive applications, coupled with a set of empirically validated design principles.  

The research was broken into; 1) building comprehensive theoretical frameworks for integrating 

audio cues in interactive applications, 2) conducting a first empirical study on the utility of audio 

cues to train pace in a virtual reality training system, and 3) conducting a second empirical study 

to evaluate using audio to present both temporal and spatial information.    

Until recently, audio cues have been under-utilized in interactive applications.  This could 

be due to the lack of theoretical guidance of how to best integrate such cues.  The present 

research established three theoretically-driven models for adding audio cues to interactive 

applications that include; 1) an audio integration model that addresses the end-to-end decision 

making process for integrating auditory cues in interactive applications (Chapter 2, Figure 1), 2) 

a temporal audio theoretical model that addresses considerations pertaining to the timing of 

presenting auditory cues (Chapter 2, Figure 2), and 3) a spatial audio theoretical model that 

addresses the spatialization of sounds (Chapter 2, Figure 5).  The face validity of the developed 

models was assessed using an SME SWOT analysis, the results of which are displayed in 

Chapter 2, Table 3.  These models bring the audio design science closer to previous 

developments in spatial visualization design (Buagajska, 2003) and perceiving layout (Cutting & 

Vishton, 1995).  The empirical evaluation studies focused on validating; 1) the sequential 

decision making process, where first the timing of audio cues presentation is selected, then 

making the decisions pertaining to spatializing these cues (hence, temporal and spatial 
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information conveyance decisions can be made using a sequential process), and 2) the potential 

advantages of the temporal aspects of audio to train psychomotor tasks in VE training systems.  

The first empirical study was based on the temporal audio model (Chapter 2, Figure 2) 

and focused on training temporal pacing tasks.  The results of the first study provided 

preliminary evidence on utility of audio cues in training traversal pace in virtual reality training 

systems.  The results of this study revealed that using a metronome was not effective in training 

participants to maintain a desired pace, which is at odds with past literature that suggests 

metronomes can be used for guiding rhythmic movements in the real world (c.f., Kern et al., 

1992; Kurtz & Lee, 2003).  This implies that strategies that were effective for real world training 

may not extend well to virtual reality based training systems.  On the other hand, using earcons 

to influence (increase/decrease) traversal pace gradually was supported.  Both the non-spatial 

and spatial audio conditions resulted in less deviation from a predetermined desired pace as 

compared to the no audio condition and these deviations were statistically significant.  This 

supports the literature related to using audio cues to drive pace setting (c.f., Karageorghis & 

Terry, 1997; Thaut, 2005).  Also, the results of the first study suggested that audio-based pace 

setting in VEs may become internalized, hence can be used when the audio is removed.  This 

extends the literature describing the internalization of pace skills to VE training systems (c.f., 

Kolers & Brewster, 1985; Libkuman et al., 2002); previous research had shown that when audio 

cues are used to establish a psychomotor rhythm in the real world, people were able to maintain 

their rhythm even once the audio cues were removed.  The current study provides evidence that 

this internalization of pace holds true when training pace in virtual environments as well.  Future 

studies should evaluate if pace, once trained in a VE, can be transferred to the real world.  The 
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findings of the first study show support to the utility of using the temporal dimensions of audio 

(Chapter 2, Figure 2) to achieve psychomotor performance objectives (Chapter 2, Table 1).     

The second empirical study examined using audio to train both temporal pacing and 

spatial room-clearing tasks concurrently (Chapter 2, Figures 2 and 5).  The results of the second 

study revealed that non-spatial auditory cues were effective in guiding participants in controlling 

their pace, even with the presence of spatial guidance sounds.  This is in agreement with past 

literature that suggests both non-spatial and spatial auditory cues can be used for pace setting in 

virtual training systems (Chapter 3, which extends Karageorghis & Terry, 1997; Thaut, 2005 

both of which focused on real world training).  The second study also demonstrated that audio 

cues were successful in setting pace in a VE training system even while other sounds were 

present.  This supports the theoretical models developed in Chapter 2, Figure 2 in terms of 

temporal information presentation using audio.   

The second study did not provide support for the utility of spatial auditory cues to 

influence faster task completion, which is at odds with Loomis et al. (1998).  Although, this is an 

unexpected finding, other studies conducted in similar environments, such as Milham (2005), did 

not show significant spatial auditory effects.  Some possible explanations for the unexpected 

findings are; 1) The participants may not have maintained urgency with regard to fast completion 

of tasks, 2) The environment layout, which was a set of sequential rooms, may have encouraged 

room-by-room search rather than reliance on the audio cues, and 3) The participants may not 

have been able to deduce from the spatial audio cues enough information with respect to the 

location of the various units, thus suggesting the need for enhanced HRTFs. 

There also were no significant interaction effects found between the different 

spatialization strategies and the performance on the pacing task, this may indicate that decisions 
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regarding the auditory presentation of spatial and temporal information can be made using a 

sequential process within VE training systems.  The lack of a significant interaction effect 

provides support to the sequential process for audio cue integration illustrated in Chapter 2, 

Figure 1, where first decisions related to timing are made and then decisions related to 

spatialization are made. 

Both empirical evaluation studies resulted in a set of validated design principles that can 

be added to Chapter 2, Table 1.  These design principles include:  

• Audio cues can be used to influence traversal pace in VE training systems, and this holds 

true when a) using both spatial and non-spatial earcons, and b) when other spatial and 

non-spatial cues are present.  

• Using audio alone may not result in improvement in spatial (e.g., location of units in a 

VE) task performance, and hence may benefit from supplementation with visual and 

haptic cues. 

The limitations of this dissertation are particular to the findings from the empirical 

evaluation studies, where 1) undergraduate student participants were involved, 2) no appreciable 

time was allowed between training sessions and post-training test to evaluate retention of 

acquired skills, and 3) possible network delays existed between the computer systems used in the 

studies.  The nature of study participants may have biased the study findings, as undergraduate 

students may not have perceived task criticality in the same manner as other individuals, such as 

real world soldiers, with respect to maintaining pace and fast completion of tasks (USArmy, 

2003).  Also, since there was no appreciable time between training and testing, there is no means 

to assess the retention of task training within the current data, which is important for evaluating 

the effectiveness of training.  Possible network delays may have resulted in participants 
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perceiving spatial audio cues as being unrealistic and hence not achieving “true” immersiveness.  

Despite these limitations, the present studies showed significant effects for audio cueing for pace 

setting in desktop VE systems, and hence provide initial guidance for future studies that should 

address the limitations with respect to; 1) using more representative trainees, 2) evaluating 

retention of task training by allowing appreciable time between training and testing, and 3) 

ensuring that network delays are below the levels that can result in unrealistic spatial audio 

perception by participants.      

The results and discussion of the empirical studies provide practical guidance on how 

best to integrate audio cues in virtual training systems, and potential tradeoffs that may exist, 

thus establishing foundations of a much needed user-centered audio design science. 
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CHAPTER SIX:  CONCLUSIONS AND FUTURE WORK 

This research resulted in building comprehensive theoretical models for audio integration 

in interactive systems, and conducted two studies to empirically evaluate selected aspects of the 

developed models.  The theoretical models provide for the first time a process for audio 

integration, and a cataloging system for temporal and spatial audio design principles.  The 

empirical results from the studies support the inclusion of audio cues in virtual reality training 

environments to train traversal pace.  The results of the empirical evaluation provide additional 

validated design guidelines that further augment the theoretical models.  The results of this work 

support the research needs of the National Research Council (2000, p.25), as the developed 

models provide guidance on how to integrate spatial and temporal audio cues within multimodal 

systems. 

Several possible research directions are identified based on the results of the work 

presented in this dissertation; these include: 

• Using the spatial audio theoretical model to drive the specification and design of HRTFs. 

• Conducting further empirical evaluation of the utility of using audio cues to provide 

guidance with respect to spatial location of entities within VEs. 

• Developing the temporal model further in terms of providing more details on how to 

influence multiple human performance objective using audio cues. 

• Further expanding on techniques for effectively integrating audio to support both spatial 

and temporal tasks when performed concurrently. 
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APPENDIX A:  RESPONSES TO VALIDATION QUESTIONNAIRE 

Appendix A graphically displays individual expert responses to validation questionnaire 

(see Chapter 2).  Figures A.1, A.2, and A.3 are based on expert responses for Audio Integration 

Model (Chapter 2, Figure 1), Temporal Audio Theoretical Model (Chapter 2, Figure 2), and 

Spatial Audio Theoretical Model (Chapter 2, Figure 5), respectively. 
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Figure A.1:  Expert Responses for Audio Integration Model 
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Figure A.2:  Expert Responses for Temporal Audio Theoretical Model 
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Figure A.3:  Expert Responses for Spatial Audio Theoretical Model 
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APPENDIX B:  VE USED IN EMPIRICAL STUDIES 

Appendix B provides a graphical illustration for the VE used in the pace empirical 

validation study (Chapter 3) and integration empirical validation study (Chapter 4).  Figure B.1 

provides a screen shot of the VE. 

 

 

Figure B.1:  Screen Shot of VE used in Empirical Validation 
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