631 research outputs found

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Research on the methods of ship\u27s autonomous collision avoidance in complex environment

    Get PDF

    An Approach to Improve Multi objective Path Planning for Mobile Robot Navigation using the Novel Quadrant Selection Method

    Get PDF
    Currently, automated and semi-automated industries need multiple objective path planning algorithms for mobile robot applications. The multi-objective optimisation algorithm takes more computational effort to provide optimal solutions. The proposed grid-based multi-objective global path planning algorithm [Quadrant selection algorithm (QSA)] plans the path by considering the direction of movements from starting position to the target position with minimum computational effort. Primarily, in this algorithm, the direction of movements is classified into quadrants. Based on the selection of the quadrant, the optimal paths are identified. In obstacle avoidance, the generated feasible paths are evaluated by the cumulative path distance travelled, and the cumulative angle turned to attain an optimal path. Finally, to ease the robot’s navigation, the obtained optimal path is further smoothed to avoid sharp turns and reduce the distance. The proposed QSA in total reduces the unnecessary search for paths in other quadrants. The developed algorithm is tested in different environments and compared with the existing algorithms based on the number of cells examined to obtain the optimal path. Unlike other algorithms, the proposed QSA provides an optimal path by dramatically reducing the number of cells examined. The experimental verification of the proposed QSA shows that the solution is practically implementable

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    深層強化学習による東京湾フェリーの避航方法について

    Get PDF
    東京海洋大学修士学位論文 2022年度(2022年9月) 海運ロジスティクス 修士 第3881号指導教員: 田丸人意全文公表年月日: 2022-12-22東京海洋大学202

    A novel ship collision avoidance awareness approach for cooperating ships using multi-agent deep reinforcement learning

    Get PDF
    Ships are special machineries with large inertias and relatively weak driving forces. Sim-ulating the manual operations of manipulating ships with artificial intelligence (AI) and machine learning techniques becomes more and more common, in which avoiding collisions in crowded waters may be the most challenging task. This research proposes a cooperative collision avoidance approach for multiple ships using a multi-agent deep reinforcement learning (MADRL) algorithm. Specifically, each ship is modeled as an individual agent, controlled by a Deep Q-Network (DQN) method and described by a dedicated ship motion model. Each agent observes the state of itself and other ships as well as the surrounding environment. Then, agents analyze the navigation situation and make motion decisions accordingly. In particular, specific reward function schemas are designed to simulate the degree of cooperation among agents. According to the International Regulations for Preventing Collisions at Sea (COLREGs), three typical scenarios of simulation, which are head-on, overtaking and crossing, are established to validate the proposed approach. With sufficient training of MADRL, the ship agents were capable of avoiding collisions through cooperation in narrow crowded waters. This method provides new insights for bionic modeling of ship operations, which is of important theoretical and practical significance

    A Novel Ship Collision Avoidance Awareness Approach for Cooperating Ships Using Multi-Agent Deep Reinforcement Learning

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-09-19, pub-electronic 2021-09-25Publication status: PublishedFunder: Zhejiang Province Key Ramp;D projects,China; Grant(s): 2021C03015, R21F030005Funder: NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization; Grant(s): U1709215Ships are special machineries with large inertias and relatively weak driving forces. Simulating the manual operations of manipulating ships with artificial intelligence (AI) and machine learning techniques becomes more and more common, in which avoiding collisions in crowded waters may be the most challenging task. This research proposes a cooperative collision avoidance approach for multiple ships using a multi-agent deep reinforcement learning (MADRL) algorithm. Specifically, each ship is modeled as an individual agent, controlled by a Deep Q-Network (DQN) method and described by a dedicated ship motion model. Each agent observes the state of itself and other ships as well as the surrounding environment. Then, agents analyze the navigation situation and make motion decisions accordingly. In particular, specific reward function schemas are designed to simulate the degree of cooperation among agents. According to the International Regulations for Preventing Collisions at Sea (COLREGs), three typical scenarios of simulation, which are head-on, overtaking and crossing, are established to validate the proposed approach. With sufficient training of MADRL, the ship agents were capable of avoiding collisions through cooperation in narrow crowded waters. This method provides new insights for bionic modeling of ship operations, which is of important theoretical and practical significance

    A review: On path planning strategies for navigation of mobile robot

    Get PDF
    This paper presents the rigorous study of mobile robot navigation techniques used so far. The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap. The classical approaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (APF); reactive approaches such as genetic algorithm (GA), fuzzy logic (FL), neural network (NN), firefly algorithm (FA), particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization (BFO), artificial bee colony (ABC), cuckoo search (CS), shuffled frog leaping algorithm (SFLA) and other miscellaneous algorithms (OMA) are considered for study. The navigation over static and dynamic condition is analyzed (for single and multiple robot systems) and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches. It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm. Hence, reactive approaches are more popular and widely used for path planning of mobile robot. The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics
    corecore